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ABSTRACf 

We consider the common problem of ballistic deficit 
which is the loss of output signal amplitude due to the 
interplay between the finite charge collection times in a 
detector and the characteristic time constants of the 
amplifier. Quantitative estimat:s of. ballisti~ deficits .have 
been developed by using numencal mtegratIOn .techmq~es 
on a microcomputer and by exact calculatIOns usmg 
Laplace transforms. A new pr~c.tical. procedure is 
developed in which an actual amphfler With even an un
specified complex-pole network can be accurately related 
to an "equivalent" semi-Gaussian shaping networ~ wh?se 
exact solution is known. Simple formulas for estImatmg 
ballistic deficits and resulting degradation in spectral 
energy resolutions are given. 

INTRODUCTION 

By ballistic signal, one is referring to an output 
signal whose amplitude is proportional to the total charge 
that appeared on the collection electrode of the detector 
irrespective of the time profile of charge arrival. The 
deflection indicated by a ballistic galvanometer is a classic 
example. However, for most detectors, the signal is 
usually processed by a pulse-shaping network in a charge 
amplifier. The optimum choice of pulse shaper for a 
given application is based on the performance trade-offs 
among factors such as signal to noise ratio, counting-rate 
behavior, sensitivity of rise-time fluctuations of the input 
signal, and the suitability of the output pulse-shape for 
feeding a pulse height analyzer [1]. 

For a given pulse shaping network, there is an 
impulse response output function V o(t) when all the 
charges are collected instantly. Fig. 1 shows that Vo(t) has 
a peaking time of to. If the charge collection time is fmite, 
the input function U(t) will reach its maximum at time T, 
and the output VT(t) will reach its peak amplitude at tm . 
However, this maximum amplitude is generally less than 
that of the impulse response function. The ballistic deficit 
(BD) is therefore defmed as 

(1) 

and the relative ballistic deficit ( RBD ) is defmed as 

RBD = L\ V N oCto) (2) 
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Fig. 1 An illustration of the Input, Impulse Response 
and Output Functions and their Peaking Times. 
L\ V is the Ballistic Deficit. 

The effect of ballistic deficit is therefore the im
precision in the determination of the signal in a detector 
due to variations in the time of arrival at the collection 
electrodes. In semiconductor detectors, fluctuations in 
the peaking time of the input signals are often the results 
of distribution of charge origins within a detector vol
ume, field inhomogeneities, or charge trapping. We 
know qualitatively that RBD is always large when the 
ratio (T/to) is high. But with T being an inherent property 
of the detector, choosing very large values of to to reduce 
RBD would jeopardize rate performance. A quantitative 
estimate of RBD is therefore needed for making a 
judicious choice in order to strike an optimal balance 
between the effect of sensitivity to rise-time fluctuations 
in relation to signal-to-noise and count-rate 
performances. 

EXACT SOLUTIONS 

We shall consider the problem of calculating the 
RBD for a special case in which the charge arrival times 
are distributed uniformly over a period T. The input 
function U(t) therefore has a linear rise and reaches a 
peak value at time T. Once the solution of this special case 
is known, it can be applied to conditions in real detectors 
which typically exhibit some variations in T ranging from 
Tmin to Tmax. 



In the following discussion, we shall assume for 
simplicity that the characteristic time constants 't = RC 
are the same for all the circuits except where noted, and 
that the times given in mumerical examples are expressed 
in units of 'to 

(A) NUMERICAL INTEGRATION 

If I(t) is the source function (e.g. the current in a 
detector), then the input function is 

t 

U(t) = J I(z) dz (3) 

and the ou?put function is a convolution integral rep
resenting the superposition of the impulse responses over 
time. 

t 

VT(t) = J I(z) V o(t-z) dz (4) 

o 
VT(tm) hence RBD may be determined by numerical 

integration when I(z) and Vo(t) are specified. Fig. 1 
shows the plots of such calculations to illustrate the case 
where I(z) is constant over a period of T=2. U(t) there
fore has a linear rise peaking at amplitude 1.0 at time T. 
In this example, Vo(t) is a fourth order semi-Gaussian 
shaping function with to=4. The resulting output VT(t) 

peaks at t=5.08 with a maximum amplitude of 0.960. The 
RBD is therefore 4.0 %. 

(B) LAPLACE TRANSFORMATION 

The output V(t) can be found from the inverse 
Laplace transformation 

V(t) = 
00 

J f(s) est ds 

o 

(5) 

where f(s) is the Laplace transform of the differential 
equation characterizing the pulse shaping network. Fig. 2 
shows the typical circuits used in shaping current pulses 
with their corresponding Laplace Transforms. 

In a semi-Gaussian shaper of order N, a differen
tiator is followed by N integrator stages, thus 

f(s) = s't 

(1+s't)N+I 
(6) 

(7) 

and to = N't (8) 
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Fig. 2 Typical Pulse Shaping Circuits and Their Laplace 
Transforms. 

Again, for the constant source function of duration T, 

I(t) = ( Iff) [t - (t-T) H(t-T)] 

where H(t-T) = 0 for t <T and 

= 1 for t ~T 

The resulting output VT(t) is 

v"t)~ ~ {I- oxp~) (I + t ~!:J 

(1- exp (:~) - exp (:') t ~: },' n} 
and 

T 
tm = ----=----

1 - exp (-~'tJ 

(9) 

(10) 

(11) 

(12) 

Similar calculations can be carried out for circuits 
with complex-poles. For example, a circuit similar to the 
ORTEC Model 472 amplifier is characterized by 

s't [(1 +jB)/'tJ[ (I-jB)/'t] 
(13) f(s) = 

l+s't [s+(1+jB)/'tJ[s+(l-jB)/'t] s+N't 

where j= rt, and the corresponding impulse response 
function is 

A(1+B2) 
where D = B(I-A) 

(14) 
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_ (A_1)2 
E- B(B2.tA2_2A+1) 

(A-I) 
F = B2.tA2-2A+l 

and 
B 

APPROXIMATE SOLUTIONS 

Baldinger and Franzen have shown that, using a 
second order series expansion, RBD may be expressed 
~rn . 

RBD = Vo"(to) /24 Vo(to) (15) 

where 

" ( d
2 

) Vo (to) = -2 Vo(t) 
dt t=to 

(16) 

For all practical purposes, the differences between 
the second order and the fourth order approximations are 
insignificant. Thus when Vo(t) is found by eq.(5), 

eq.(15) will give a direct estimate of the RBD. 

In the case of semi-Gaussian shaping, 

(17) 

A PRACfICAL METIIOD 

We have shown that if we know the exact form of the 
;,npulse response function of the pulse shaping amplifier, 
we may use the technique of numerical integration; and if 
we know the details and actual values of the circuit 
parameters, we may apply the exact albeit often tedious 
calculations with Laplace Transformations. While these 
analytical procedures may be of interest to those who 
design amplifiers, the typical user needs a simpler and 
more direct way of estimating RBD. 

Eq.(15) indicates the important fact that RBD is 
proportional to Vo"(to) which in tum is proportional to the 
curvature of V 0 at its peaking time to. This suggests that 
if there are simple ways of generating V 0 and determining 
its curvature near its maximum amplitude, we may 
conveniently arrive at a quantitative estimate of RBD 
without knowing the specific circuit design of the pulse 
shaping amplifier. 
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Since we have already worked out the exact solutions 
of the semi-Gaussian shaping network for all integer 
values ofN (equations 7,8,11, and 12), we may use them 
as a set of base solutions. The curvature of any impulse 
response function that has a near parabolic shape at its 
peak can be compared with those of the semi-Gaussian 
shapers and an "equivalent" N or n can be assigned to that 
unknown function and its RBD can be calculated by a 
modified eq. 17 

RBD ... _1 (I.y =~ ( Ty 
24n 't) 24 to ) 

(18) 

where to = n 't, but n is no longer restricted to integer 
values. 

TIME 

Fig. 3 Semi-Gaussian Shaping Functions of Order N 
Normalized to the Peaking Time to. The W's are 
the Full Width at 90% Maximum Values. 

Fig. 3 shows some representative plots of semi
Gaussian Vo(t) for N in the range of 1-16 which are 
normalized to the same peaking time to. The curvature 
near the peak can be related to some readily measurable 
quantities such as W which is defmed as the full width at 
0.9 maximum in units of to. Table 1 lists the calculated 
values of W for N's in the range of 1-10. A functional 
relationship between Nand W is derived from a least 
squares fit to these tabulated values with a correlation co
efficient of 0.999999: 

n = 0.8517 W-1.992 (19) 

Table 1. Computed W for Semi-Gaussian Shapers of Order N 

N W N W 
1 .9235 6 .3752 
2 .6511 7 .3473 
3 .5311 8 .3248 
4 .4597 9 .3062 
5 .4111 10 .2905 



To estimate the performance of a given amplifier, 
one needs only to inject charges through the detector with 
a fast pulse generator. By displaying the output Vo(t) on 
an oscilloscope (triggered by the pulser), the values of W 
and to can be readily measured, and the resulting RBD 
easily calculated using equations 19 and 18. 

RESULTS AND DISCUSSION 

To test the accuracy of the above procedure(we shall 
refer to it as the LBL method), we first calculated the 
exact solutions to the ORTEC Model 472 amplifier by the 
Laplace Transform (L T) method and the RBD's as de
termined by eq.15. These results are then compared to 
those obtained by the LBL method using eqs. 19 and 18 in 
which the W's were calculated from the exact values of 
v 0(0.9to). Table 2 summarizes the results for T= t over 
an assumed range of circuit parameters. The agreement 
between these two methods are generally within 2 %. 
Such agreements are quite remarkable considering the 
very different paths by which the results were arrived. 
We have also made a comparison using an amplifier 
similar to the Canberra Molel2010 design consisting of a 
differentiator, an integrator and two complex-pole stages. 
The agreement between the LBL and the exact L T 
methods were equally impressive: 

Table 2. Comparison Between the LBL and the 
Laplace Transform (LT) Methods. 

ORTEC 472 to 
RBD RBD 

LBL/LT n (LBL) (LT) 

B = 1.5 1.646 T 3.83 5.89% 5.94% .992 

A=3 B - 1.0 1.924 T 3.34 3.76% 3.79% .992 

B - 0.5 2.225 T 2.83 2.39% 2.43% .984 

We have so far demonstrated the means for deter
mining the RBD for a given value of T. A distribution in 
T thus will lead to a range of degradation of output pulses 
and result in an asymmetric broadening in the lower en
ergy side of a spectral line. To translate the effect of RBD 
into a .quantitative ~easure of degradation in energy 
resolution, let us consider an example involving a planar 
or coaxial germanium detector. The peaking time T is the 

. time for all the charge carriers, electrons and holes, to 
reach their respective electrodes. Under sufficient 
detector bias voltage and at a temperature near that of 
liquid nitrogen, the saturation velocities of electrons and 
holes are about the same. T min therefore corresponds to 
the case where the charges are generated near the middle 
of the sensitive volume while T max will be about twice as 
long for those charges originating near one of the elec
trodes. The signals for those charges starting between 
these two extremes will have composite slopes with the 
later portion having half the initial value when both 
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carriers are in transit. The resulting RBD although not 
given precisely by the above analysis will nevertheless fall 
in between the two extremes as determined by T min and 
T max. It is generally reasonable to assume that the 
frequency distribution is approximately uniform between 
these two values [3]. Since the RBD is proportional to T2, 
its frequency distribution will be inversely proportional 
to T2. Fig. 4 illustrates that, under these approximations, 
the corresponding increases in spectral resolution are 
then given by 

FW = ~o [ f:xf - f:inf] (20) 

and 

FWHM = ~ (T~n) (21) 

where Eo is the true energy of the gamma-ray, and n is the 
equivalent N of the semi-Gaussian shaping network. 
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Fig. 4. Asymmetical Spectral Broadening Due to 
Ballistic Deficits. . 

We recognize that input signals from real detectors 
may not have constant slopes during their rise-times so 
the actual amplifier performance may have slight 
departures from our analysis. But the extreme values or 
even the frequency distribution of T of a given detector 
system may be observed experimentally. Quantitative es
timates of RBD are especially valuable where rather large 
rise-time fluctuations may be expected in detectors such 
as GaAs, HgI2' CdTe or ionization chambers. On the 
other hand we are encouraged by the excellent agreement 
between the LBL and the L T methods even for the very 
large values of T/to used in the examples. In typical ger-
manium detector systems, the T/to values are generally 
much smaller. The procedures described above can 
therefore give quite resonable estimates of ballistic 
deficits, and should prove to be a useful guide for 
optimizing measurement conditions. 
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