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MICRO CANONICAL SIMULATION OF NUCLEAR MULTIFRAGMENTATION 

J¢rgen RANDRUp· 

Nuclear Science Division, Lawrence Berkeley Laboratory, 
University of California, Berkeley, California 94720 

and 

Steven E. KOONIN+ 

W.K. Kellogg Radiation Laboratory, 
California Institute of Technology, Pasadena, California 91125 

We discuss the formal basis for the theoretical trE!atment of nuclear multifragmentation 
within a microcanonical framework. The important role played by highly excited 
nuclear states and the interfragment for<;es is illustrated. The requirement of detailed 
balance is especially discussed and illustrated for the fission~fusion Metropolis moves' 
in configuration space. 

1. INTRODUCTION 
The properties of hot nuclear matter at subsaturation gensities are of general physical 

interest, especially within the context of the "Equation of State" of matter at high energy 
densities. The topic is of direct relevance to astrophysics (e.g. supernova processes) and is 
intertwined with energetic nuclear collisions: a good unders,tanding of the nuclear equation 
of state over a wide range of energies and densities is a prerequisite for making reliable pre
dictions about the outcome of nuclear collisions and, conversely, nuclear collisions present 
a unique tool for probing the properties of nuclear matter away from its normal state. 
Because of its strong link to nuclear collision dynamics, the study of subsaturation matter 
is often performed in the guise of multifragmentation, in the sense that one considers an 
assembly of interacting nuclear fragments within a finite ("freezeout") volume n. 

The theoretical interest in nuclear multifragmentation has increased in concert with 
the substantial improvements in accelerator capability through the past decade. The 
emergence of the field was originally stimulated by the Bevalac and it has gained fur
ther momentum in recent years through the construction and planning of several modern 
intermediate-energy heavy-ion accelerators throughout the world, especially CEfu,{ CS 
(Europe), GANIL (France), CELCIUS (Sweden), and SIS-18 (Germany). This latter fa
cility will provide beams of nuclei over the entire mass range at energies up to ~1 GeV IN 
and with intensities exceeding those of the present Bevalac by 2-3 orders of magnitude. 
It is noteworthy that these developments have occurred outside of this country, and it 
appears that a drastic modernization of the US accelerator capabilities would be required 
for this country to maintain a significant role in the expanding field of medium-energy 
nuclear collisions . 

• Supported by the Director, Office of High Energy and Nuclear Physics of the Department of High 
Energy and Nuclear Physics of the Department of Energy under contra.ct DE-AC03-76SF00098. 
+ Supported by the National Science Founda.tion Grants PHY85-05682 and PHY82-07732. 



In this note, we discuss some central aspects of the micro canonical simulation of nuclear . 
multifragmentation. Much of the material is based on recent work reported elsewhere.[l] 

The first formulation of a model for nuclear multifragmentation processes was made 
within the framework of a grand canonical model.[2] In that model, an assembly of non
interacting, 'excitable nuclear fragments was considered and the general expressions for the 
one-fragment observables were derived. Only particle-stable nuclear levels were included 
for simplicity, although it is clear that there is abundant production of unbound fragments 
that subsequently deexcite on a time scale long compared with that characterizing the 
primary disassembly. The inclusion of such unstable nuclei, and their sequential decay by 
evaporation of light particles, was made later.[3J 

The development of powerful multifragment detection systems have demanded more 
detailed models and established the need for addressing complete fragmentation events. 
For this task an approximate microcanonical procedure was developed and tested (4]; it 
is based on the recursive use of the grand canonical model for an ever smaller source. 
This convenient method was then exploited to formulate a microcanonical model for gen

erating complete multifragment events in nuclear collisions at medium energies. [5] This 
model divides the colliding system into a number (~ 3) of sources which independently 
disassemble into metastable nuclear fragments. Interfragment forces can not be incorpo
rated in this approach, although the Coulomb energy. can be included at the one-particle 
level (such as the vVigner-Seitz approximation) and the nuclear. incompressibility can be 
approximated through the use of a reduced, effective volume Xn. In conjunction with this 
work, a computer code, named FREESCO, was developed [6J; it has been employed in 
numerous· theoretical and experime}1tal studies. 

Nuclear multi fragmentation has ruso been studied by other groups. Most relevant to 
our present discussion is the work of Gross et al. and Bondorf et al.: Gross et al. started 
by addressing the deexcitation process following a high-energy proton-nucleus reaction. 
The focus was on the fragment mass distribution and it was found that the interfrag
ment Coulomb repulsion is instrumental in enhancing the production of heavy fragments 
(leading to a U-shaped yield curve), at the relatively low excitations involv~d.[7J After 
these grand-canonical studies, Monte Carlo simulations were made within the canonical 
approximation. [8J Most recently, an approximate microcanorucal simulation model has 
been developed. [9J It differs from ours in many important respects, both as regards the 
physical assumptions and in the numerical implementation. For example, metastable frag
ments are not included. The descriptions in the literature are not sufficiently complete to 
let us ascertain the validity of the particular simulation procedure a~opted. 

Bondorf et al. have formulated a model for statistical multifragmentation of nuclei. [IOJ 
Their focus is on the mass partition and so a canonical approach is taken. The model 
does not incorporate any fragment interactions, altho'ugh the Coulomb energy is included 
in the vVigner-Seitz approximation. Furthermore, there is no suppression of the level 
density for highly excited fragments. The numerical sampling procedure chooses evenly 
between all possible mass partitions and· subsequently performs a weighted average of the 
partition-dependent observables, employing the canonical weights for the different parti
tions selected. vVhile tecnically correct, this method is probably less efficient than sampling 
the partitions according to their (strongly varying) weights, as is done in [1]. 
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2. CLASSES OF MULTIFRAGMENT STATES 
In the current literature on multifragmentation problems, the distinction between vari

ous conceptually different classes of multifragment states is often blurred. In the following 
we shall define some classes of multifragment states that are frequently of interest, in the 
hope that this may contribute to establishing common terms and help avoid confusion in 
discussions of multifragmentation processes. 

It is convenient to define a fragmentation F as a set of elementary multifragment states 
that all have the same fragment masses, positions, momenta, and internal excitations. 
Thus a given fragmentation F contains the following specific information, 

(1) 

Here the number of fragments is denoted by NF , they are labeled by the index n, n = 

1, ... , N F, and they have the mass numbers An. Furthermore, their internal excitation en
ergies are en, and their positions and momenta arern and Pn, respectively. We find it 
convenient to consider only fragments with a mass number in a specified range, Amin ~ 

An ~ Amax. Although we do not .distinguish between neutrons and protons iIi the present 
discussion, it would be formally simple to incorporate the isospin degree of freedom by 
simply interpreting the nucleon number An as a two-dimensional quantity An whose com
ponents are the respective neutron and proton numbers, N n and Zn. 

An "interval" ~F",in the space of fragmentations is generated by the tolerances ~rn' 
~ 

~Pn, and ~cn for position, momentum, and excitation, respectively. The number of 
elementary multifragment states in the interval 6.F is then 

(2) 

Here h is Planck's constant and Pn( en) is the density of states in the fragment n at the 
excitation energy en. [vVe have here chosen to consider €n as a continuous variable, even 
though is strictly quantized. This is convenient because of the large level density. In a 
discrete formulation the excitation energy Cn should be replaced by the level index in and 
the state density Pn(cn) by the level degeneracy gift' as was done in ref. [3J.] 

Multifragment states that differ only by a permutation of the fragment labels n are 
physically identical. Nevertheless, it is formally convenient to distinguish between such 
states. Consequently, the fragmentations F form some sort of hyperspace, with the redun
dant dimensions corresponding to label permutations, and observable features are obtained 
by projecting onto the space of physical fragmentations where label permutations have no 
effect. The summation over all possible multifragment states can then be expressed in 
terms of a sum over fragmentations, with each fragmentation weighted according to the 
measure (2): . 

L: (.) (3) 
F 
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The factor 1/ N F! appears because label permutations are taken to be significant. It 
is convenient to· define the family F of fragmentations as the set of N F! fragmentations 
obtained by performing all possible permutations of the fragment labels in a particular 

fragmentation F. 
A fragmentation represents the most complete information available. Most often this 

degree of detail is not required and it is convenient to integrate over some of the variables. 
For example, in an ordinary collision experiment, only asymptotic variables are observa.ble 
and so it is of interest to eliminate the fragment positions fn from the characterization of 
the multifragment states. This has been done in ref. [5] where the concept of an event was 
defined as 

(4) 

[Actually, for notational convenience, in ([5]) the notation f was used for the entire event 
family j containing all states obtained by permuting the fragment labels in f.] In [5] the 
algebraic properties of the event set F = if} were discussed and the associated notation 
was developed. In particular, it was shown that it is possible to introduce a partial ordering 
in F, that F is an Abelian semi-group with respect to event addition, and that F is a 
complete lattice with respect to event intersection and union. 

In the present study, \ve find it convenient to eliminate the fragment·momenta Pn and 
define a configu.ration C as <l: set of fragmentations that differ only by the values of the. 
fragment momenta, 

C : { .4.n, en, f n, n = 1, ... , lV c} . (5) 

If both positions and mome~ta are eliminated we obtain a channel, 

C : {A,,, en, n = 1, ... ,.Ne} . (6) 

Thus a channel is characterized by the mass numbers of its fragments and their intrinsic 
state of excitation, as in ordinary reaction theory. 

Finally, it is convenient to define a partition as a set of channels that differ only with 
respect to the internal excitation of the fragments. A partition is then characterized by 
the sequence of the mass numbers of its fragments, 

(7) 

In the work of Bondorf et al.the interest is focussed on the statistical distribution of 
multifragment partitions. 

The are of course still other classes of possible interest. In particular, one may wish 
to eliminate the information about the internal excitations en and focus the attention on 

{A.n , fn, Pn}, as is done by Gross et al., or possibly eliminate the momenta P" as well, 
leaving {A.", r,,}. No names have yet been proposed for these multifragment classes. 

It should be recalled that throughout our discussion the particular order of fragment 
labeling is taken to be significant, as a matter of convenience. It is of course straightforward 
to abandon this purely formal distinction. In that permutation-invariant case the various 
classes of multifragment states introduced above are erlarged by a factor of N F!, the 
number of possible permutations of N F elements. 
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3. GENERAL DESCRIPTION OF THE MODEL 
We consider an ensemble of systems which each consists of a number of spherical nuclear 

fragments that are individually excitable and .mutually interacting. 
Our fundamental statistical hypothesis is that all multifragment states consistent with 

specified values of the. total nucleon number A and energy E are equally probable. The 
properties of the system can then be expressed in terms of the density of states, pen, A, E), 
which is obtained by performing the above summation using the appropriate weight of a 
given fragmentation, 

Pmicrocan(n, A, E) = L: 8(AF - A)8(EF - E) . (8) 
F 

Here AF = Ln An is the total number of nucleons in F and EF is its total energy, to be 
specified later (see eq. (11)). It should be noted that conservation of linear and angular 
momentum is not demanded, nor is conservation of the center-of-mass position. These 
simplifying omissions have been made for convenience, since they are not expected to be of 
great importance. Conservat.ion of the total linear momentum P can be included without 
difficulty by attaching the factor 8(P F - P) and the further formal developments are not 
made more complicated by that (see eq. (14)). However, it would be more cumbersome 
to incorporate conservation of angular momentum and center of mass. 

In order to develop a well-defined model, it is necessary to impose constraints on the 
fragment positions. This is most conveniently done by requiring their centers to be confined 
within a (usually spherical) volume n. The mean nuclear density is then p::::: A/n in the 
bulk of the system and falls off rapidly near the surface of n. This particular prescription 
is the natural one when one is simulating a translationally invariant system. by way of 
imposing periodic boundary conditions, as is of relevance in astrophysical systems and for 
the general discussion of matter at subsaturation densities. In [8J a different prescription 
is used: the boundary of n are considered to be an infinite potential wall causing the 
entire fragment (not merely its center) to be within n. For the same n, this of course 
leads to a slightly more compact (and correspondingly denser) system, but by adjusting n 
appropriately the two prescriptions can be made nearly identical. [Contrary to the above 
two prescriptions, Bondorf et ai. adopt a freezeout volume depending on the fragment 
multiplicity N, based on the intuitive expectation that the freezeout happens at a certain 
gap with so that a many-fragment partition of the system will have a alrger spatial extent 
than one consisting of only a few fragments. J 

Our microcanonical formulation should be contrasted with the canonical or grand 
canonical approaches [2,3]' where the density of states (8) is replaced by the partition 
functions 

or 

ZcanorucaJ(n, A, r) = L: 8(AF - A)e-Ep/,r , 
F 

Z ( f"\ ) ~ (~p-Ep)/T' grand can H, /J, T = ~ e . 
F 

(9) 

(10) 

In the latter, the chemical potential J.L and the temperature T are specified and E and 
.4 follow from the appropriate derivatives of Z, whereas p. and f follow from E and A 
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in the microcanonical formulation. vVhile the two formulations are equivalent for la,rge 
(thermodynamic) systems, there may well be differences between -the two approaches for 
the finite systems formed in heavy-ion collisions. It is a particularly appealing feature of the 
microcanonical formulation that inter-fragment forces are readily incorporated, as these 
are expected to be important. [An analytical grand canonical treatment is impractical 
when the fragments interact and only when there are no forces between the fragments can 
sufficient simplification be achieved [2].] 

In our studies, the total energy of a given fragmentation is taken to be of the form '-:' 

(11) 

Here the first term represents the the kinetic energy of the moving fragments. The second 
term is the binding energy of a given fragment species. In the present study, this quantity 

2 1 

is approximated by the semi-empirical mass formula Bn = av An - as A>~ - ac Z~ A~ 3". 

The coefficients are taken to be av = 16 MeV, as = 16 MeV, ac = 0.70 MeV, and, since 
only one generic type' of nucleon is considered and we wish to be fairly schematic, we 

assume that Z11. = An /2. In more realistic studies, it is quantitatively important to employ 

more accurate values for the binding energies of the lighter fragments whjch are the most 
abundant. 

The last term in (11) represents the potential energy of the configuration arising from 
pairwise interactions between the fr'agments. This quantity has both Coulomb and nuclear 

components: 

(12) 

'We have here used the asymptotic fonn of the electrostatic interaction potential, since 
the fragments rarely overlap in realistic ~ituations, due to the high incompressibility of 

nuclear matter reflected in the nuclear interaction potential. For fairly dilute systems, in 
which the nuclear surfaces are well separated, the proximity potential can be conveniently 
used for Vnuc . However, 'it may be relatively inaccurate for the ordinarily rather small 

nuclear fragments occuring and for denser configurations a more refined calculation is 
required, in order to avoid pa:thological results. In particular, the strong minimum in the 
proximity potential, between two small fragments as a function of their separation leads 
to the formation of an ordered, "crystalline" state in our simulations, which we regard as 
unphysical. In the present study we therefore disregard the attractive nuclear contribution 
to the inter-fragment potential and sometimes model the repulsive contribtuion as a hard
sphere potential. How to best treat this important physical ingredient is currently under 

study. 
The significance of the interfragment forces is illustrated in figure 1, which shows the 

resulting values for the maen fragment mass number and the energy per nucleon for in 

various physical scenarios. 
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The mean fragment mass number A (left) and the mean energy per nucleon E (right), as functions of 
the temperature T specified in a canonical treatment of a source with A = 100 nucleons at a mean 
density of p=O.08 fm-3 • The solid curve shows the results for non-interacting fragments, using 
the adopted standard value To=12 MeV, while the short-dashed curve corresponds to surrounding 
each fragment with a spherical hard repulsive potential, and the long-dashed curve arises when the 
mutual Coulomb repuls!on between fragments are also included. The solid dots indicate the results 
when this latter system is expanded to p=O.04 fm- 3 • (Taken fron ref. [1].) 

Because EF depends quadratically on the fragment momenta, the integrals over Pn in 
(8) can be expressed an,cilytically: 

(13) 

If conservation of the total momentum were also demanded, the result would be modified 
to: 

(14) 
\J . The essential difference is that the quantity N is replaced by N - 1, both in the power 

of K and in the r-function; this change can readily be made in the expression (16) for 
the statistical weights. While such a refinement is not expected to be important in the 

present simplified model, it should be included in more realistic treatments. Furthermore, 
the quantitative importance of conserving the overall angular momentum and the center

of-mass position also ought to be examined. 
In our current studies, we are not interested in obsetvables depending on the individual 

fragment momenta and so the above analytical result may be employed to eliminate the 
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explicit appearance of the momentum variables. The density of states can then be written 
in the form 

00 N [Amax roo J dr 1 
p(n,A,E) . fig An~mill Jo den nn vV = ~W(C) , (5) 

where C denotes multifragment configurations, as defined in eq. (5). The statistical weight 
of a particular configuration is 

(16) 

where 

N 1 
J(=E- L[-Bn+enl+:) I:Vnnl (17) 

n=1 - nn' 

is the total kinetic energy of the N fragments .. Note that in (15) the integration over 
fragment positions has been changed into an average by dividing by the volume n; this 
change, which is made merely for dimensional convenience, introduces an explicit factor of 
nN into the statistical weight (16). 

Similar expressions can be deIjved for the canonical and grand canonical partition 
functions, eqs .. (9-10). In particular, the canonical partition function (9) takes precisely 
the form (15) with 

(IS) 

while the grand-canonical partition function (10) corresponds to 

(19) 

In these expressions, V is the total potential energy of the system, as given by the last 
term in (11). 

Observables can be evaluated as averages over a representative sample of configurations, 
{C}. For example, as shown in ref. [11, the mean values of the inverse temperature f3 and 
.~he fragment multiplicity N are obtained as 

- _ Lc vV(C) [ON -1) /K] 

(3 - Lc W(C) 
N:::::: LC vV(C)Nc 

, Lc vV(C) 
(20) 
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4. UNBOUND FRAGMENTS 
In the first, grand-canonicaI, treatment of disassembly of nuclear matter [2], only 

particle-stable fragment levels were considered. Subsequently, the production (and sequen
tial decay) of particle-unstable fragments was incorporated [3], an extension that requires 
the inclusion of highly excited nuclear levels. Since the density of these levels increases 
strongly with energy, the results are sensitive to this quantity. Morevover, the fact that 
the surface tends to reduce the level density makes a highly excited system prefer to coa
lesce into a single large fragment, rather than break up into many small ones, as physical 
intuition would suggest. Some caution must therefore be exercised, as we now discuss. 

The density of highly excited nuclear levels is given approximately by the Fermi-gas 
formula so that Pa(e) ~ p~F(e) ,.... exp(2~. The general very strong increase of P with 
€ implies that at high energies the configuration space will be dominated by the intrinsic 

level density. It has been argued previously on physical grounds that only sufficiently long
lived excited levels should be included in the partition function.[3] With the assumption 
that the stability of excited levels generally des creases with energy, this criterion can 
be implemented through a modulation factor expressing the probability that levels at a 
given excitation are sufficiently long-lived to be counted as possible final states.[3] As 
the modulation factor, we use a simple exponential, e-(/-ro , which is formally convenient, 
and thus introduce an effective state density, p~ff( e) = PA( e)e-(/-ro .[1] By considering the 
corresponding effective intrinsic partition function, 

(21) 

it can be seen that the introduction of the exponential suppression factor formally is 
equivalent to describing the intrinsic nuclear e."(citation in terms of an effective temperature 
leff given by 

(22) 

This effective temperature is always smaller than I and approaches 10 when I » '0' Thus, 
'0 can be interpreted as the maximum temperature attainable by nuclear fragments. The 
existence of such a limiting temperature has been suggested on theoretical grounds and 
values in the range of 10-12 MeV have been calculated.[ll] In our calculations we have 
used the value '0 = 12 MeV. [Moreover, it has been pointed out [12] that Levinson's 
theorem, which relates bound-state properties and scattering phase shifts, implies that the 
nuclear level density will in general decrease and ultimately vanish at high excitation. The 
suggested limiting value for the excitation energy in 208Pb of around 8 MeV IN corresponds 
to a limiting temperature of ~ 8 MeV.] 

The importance of reducing the intrinsic level density is illustrated in figure 2. It is 
seen that there is a large sensitivity to this physical ingredient. Our present approach 
should only be regarded as a temporary prescription will have to suffice until this problem 
has been better understood. 
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FIGURE 2. 
Grand canonical calculation of a) the mean fragment mass number, A, b) the energy per nucleon, 

€, c) the specific heat, Cv, and d) the entropy per nucleon, <7, as functions of the temperature 

T, for the values TO = 0, 12 MeV, 1000 MeV. Also shown are results of canonical (solid dots) 

and microcanonical (open dots) calculations, for the standard· value TO = 12 Me V. The system 

considered has 40 nucleons and a mean bulk density of p = 0.5po =0.08 fm- 3 , the values Arnin = 1 

and Amax = 40 were used, and there is no interaction between the fragments. (Taken form ref. [1].) 
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5. THE NUMERICAL METHOD 
While the large of the number of contributing configurations precludes an exact eval

uation in all but the smallest systems, it does invite to employ statistical methods. We 
therefore evaluate observables as averages over a representative sample of configurations, 
generated by application of the method first proposed by Metropolis et aI.,[13] which pro
vides a Markovian sequence of configurations {Ck , k = 1, ... }. In the present case, the 
method is implemented as follows. Given any configuration Ck , we form a trial config
uration, C', by making anyone of several small "moves" in configuration space. These 
moves consist of changing the location or excitation energy of a fragment, exchanging nu
cleons and excitation energy between two fragments (a "reaction"), dividing a fragment 
into two ("fission"), or c,?mbining two fragments ("fusion"). These moves suffice to make 
any configuration reachable. (In fact, there is some redundancy: the reaction moves are 
not strictly necessary, but they are calculationally convenient since they produce a faster 
exploration of partition space.) 

The trial configuration C' is accepted as the next memb"er of the sequence, Ck+l, with 
the probability [p]j if C' is unsuccessful the Ck is used again: CHI = Ck • Here [p] = p if 
p ::s 1] and p] = 1 otherwise. The quantity p is proportional to the ratio of the statistical 
weigths, p "" W(C')/W(C). However, car·eful account must be taken of the fact that the 
probability T( C - C') for forming the trial configuration C' form C is in general different 
from the probability T(C - C') for forming C form C'.Indeed, certain elementary moves 
in configuration space have no reverse moves, as is the case with the fusion moves (see 
later ). 

The Metropolis algorithm produces a diffusive exploration of the configuration space in 
a physically appealing way, and, if the sample of configurations, {C .. }, is drawn from the 
sequence {Ck } at intervals of such size that correlatio~s between successive confi~urations 
are unimportant, the required average can be evaluated directly. It is important to note 
the flexibility and generality o( this method; as we need only be able to compute ltV for 
given configurations, it is possible to use realistic mass formulas and level densities and, 
in particular, inter-fragment forces are easily included. 

\Vhile there is a large degree of freedom with respect to choosing the specific types of 
elementary moves in configuration space, it is mandatory that the particular procedure 
devised conforms with the principle of detailed balance, in order to ensure that the config
uration sequence C Ic be sampled in accordance with the probability measure provided by 
the statistical weigth W( C). 

Ordinarily, this principle states that when the system is in statistical equilibrium then 
r~ the rate of transition from a given configuration C to another one C' is equal to the rate 

of the reverse move. This can be expressed in the form· 

W(C) 6.C P(C - C') = W(C') 6.C' P(C - C') , (23) 

where P( C - C') is the probability that the random walk moves to C' when it is at C and 
P( C - C') is the probability that the next configuration is chosen as C when the current 
one is C'. Furthermore, 

N [~r ] 6.C = IT _n 6.€n 
n=l n 

(24) 
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denotes the interval in configuration space. 
In our present formulation only the configuration familie3 are physically significant, 

and the condition of detailed balance yields the weaker requirement 

L W(C) ~C P(C -+ C') = L W(C') 6.C' PCC +- C') . (25) 
CEC 

Here P( C -- C') is the probability that the system moves to any member of the family 
C' when it is currently at the configuration C, and P( C +- C') is similarly the probability 
that the system moves to any member of C when currently at C', Since the statistical 
weight W(C) is the same for all members of the family C, the above condition may be 
rewritten as 

vV(C) ~C L P(C -+ C') = W(C') ~C' L P(C +- C') , (26) 
cEe C'EC' 

Furthermore, for the moves considered in the present study the transition probability 
P( C -+ C') is the same for all initial configurations belonging to the family C and corre
spondingly for P( C +- C'). Since the family C has Nc ! members, we find that detailed 
balance dictates that the relation 

PCC -+ C') Nc'! vV(C') 6.C' 
= -- -~~-:-~ 

P(C +- C') Nc ! vV(C) 6.C 
(27) 

be satisfied for all family pairs C and C' that are connected by elementary moves. 

6. EXAMPLE: FISSION i-+ FUSION 

Here we shall discuss in some detail the fission and fusion moves in configuration space, 
These moves are the most complica.ted ones considered beca.use they change the number 
of fragments in the configuration. 

6.1 Fission 
Assume that we are at a given configuration C having N fragments and we attempt to 

make a fission move. The fissioning fragment i is picked randomly from the N fragments 
in C; if Ai < 2Amill or if A.i > 2Amax there are no open fission channels for that fragment 
and the move is aborted. It is also checked that the excitation energy ei lies within an 
interval of width eiO centered around e = eiO. Usually, we take eiO = a(Ai)f2, i.e. the mean 
excitation energy in fragment i at a definite "temperature" f prescribed ahead of time and 
employed throughout the entire sampling process.[1] 

Provided these tests are passed, the fragment is then split in two, Ai -+ A;, + Aj" 

selecting randomly between all the distinct binary partitions p~ If Amax ~ Ai - Amin then 
p = 1 + Ai - 2Amin and otherwise p = 1 - A.i + 2Ama.x. 

After the partition has been picked, the excitation energies of the two fission products 
are chosen, so that the fianl channel is determined. These are chosen randomly from the 
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intervals [!e~o, ~<o] and [!ejo, ~ejo], where <0 and ejo are defined similarly to eiO. Thus the 
fission move only goes from a fragment with an excitation energy in the prescribed interval 
to fragments with the similar property. 

Finally, the positions of the fission products are chosen. They are picked randomly 
within the confining volume n. Once they are deteimined, it is possible to invoke (17) 
to calculate the amount of energy available for kinetic energy of the fragments, K'. If 
this quantity comes out negative, the move is aborted. Otherwise, the thus determined 
configuration C' is a possible next configuration and it is accepted on the basis of the 
quantity p given below by 

p -
we C') e~o€jo 
WeC) eiO 

(28) 

The new configuration C' is identical to C except that the first fission product i' has 
taken the place of the mother fragment i and the second fission product j' has been added 
as fragment number N + 1. It is elementary to verify that there is always two different 
moves leading from C into the family. C'. This is because the two fission 'products always 

have different positions {A.~ <~ } and {A~ ejrj } in the reduced one-fragment space, so 
that an interchange of their labels~ields a different member of the configuration family C' 
which is equally likely to be reached. in the given step. 

The probability for making a move into the specific family C' is thus 

P(C - C') = 2 
1 1 
N p 

~t: ~e'. _' __ 1 

<0 ejo 
~r' ~r' _'_J .[p] 
n n (29) 

Here the factor 2 accounts for the just discussed fact the two different moves corresponding 
to permuting the fission products i' and j' lead into the same family C'. The factor l/N 
is the probability for picking the fragment i and 1/1.1 is the probability for partitioning A.i 
correctly. The next factors are the probabilities for picking the excitation energies and 
fragment positions within the specified tolerances. The final factor [p] is the acceptance 
probability; it is equal to p when p ~ 1 and is unity otherwise. 

6.2 Fusion 
Now consider the reverse process: starting at a configuration C' E C' we attempt 

to make a fusion move. First the two fusing fragments i' and j' are chosen at random 
from all fragment pairs in C' (i. e. i' is chosen randomly from the N + 1 fragments and 
j' is chosen subsequently from among the remaining N fragments) and it is checked that 
A~ + Aj ~ AItlAX • If so the move is allowed to proceed with the probability l/p, where p is 
as defined above using A; = A~ + Aj. If this hurdle is overcome, the excitation energy €i in 
the compound fragment A; and its position ri are picked as above and it is checked that 
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the available kinetic energy K is positive. If so, a possible final configuration has been 
constructed and the move is accepted on the basis of the quantity II p. 

The probability for making a move from C' into the family 6 is then 

P(G 4- C') = 2 
1 

(30) 
(N + l)N 

Here the factor 2 accounts for the fact that an interchange of the labels of the two fusing 
fragments yields an equally likely process leading into 6. The hurdle 1 I p appears to 
compensate for the calculational fact that only one out of the p fission partitions is being 
pursued; as will be clear below, it is essential to include this factor to ensure detailed 
balance. The acceptance probability is defined as in (15). Note that the ratio of acceptance 
probabilities is [pl![ll p] = p, irrespective of the value of p. Moreover, \ve see that 

P( C - 6') ( :\T ) f:..C' CiO _ = lv + 1 ----p 
P( C 4- C') f:..C ciOe5O 

(31) 

SInce 

~C' _ ~€i~ej ~ri6,rj 

~C:- t:..€j nf:..ri 
(32) 

6.3 Detailed balance 
"vVe finally demonstrate that the procedure described above satisfies detailed balance. 

In the present case, the general relation (27) becomes 

P( C - G') W( C') f:..C' 
p(e 4- C') = (Ne + 1) W(C) ~C . (33) 

A comparison with (31) immediately gives the expression (15), which is the the quantity 
first given in ref.[l]. The present discussion constitutes a more formal proof of the strict 
validity of the sampling procedure developed in [1] and, in particular, it explicitely brings 
out the fact that detailed balance is satisfied. Therefore, it is ensured that the particular 
sampling procedure devised does indeed sample the configurations in accordance with the 
proper weights VV( C). 

The fact that the proper expressions sometimes appear somewhat counterintuitive (e.g. 
the factor lip in the fusion move) should be cause for a word of warning: It is essential 
to demonstrate that any particular sampling scheme does in fact satisfy detailed balance! 
If that is not shown, there is no reason to expect that the produced sample is statistically 
unbiased. Indeed, if some of the elementary moves violate detailed balance the calculated 
"equilibrium" distribution represents a false stationary solution corrresponding to the in
troduction of an additional, spurious bias into the problem. 
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7. CONCLUDING REMARKS 
Recently, we have formulated a practical and well-founded method for an exact de

scription of the statistical mechanics of the type of finite, interacting system of nucleons 
and nuclei likely to be formed in an energetic nuclear collision.[l] In the present note, 
we have discussed some important theoretical aspects of any microcanonical model for nu
clear multifragmentation. In particular, we have defined a precise nomenclature for various 
classes of multifragments states of frequent interest, outlined the general formulation of a 
microcanonical description, and discussed the importance of satisfying detailed balance in 
a simulation approach. Furthermore, the significance of interfragment forces and unbound 
fragment states has been illustrated. Both of these aspects need further study before a 
realistic model is in hand. In [1] a tentative extension was made to incorporate a nucleon 
vapor, in order to facilitate studies of liquid-gas phase transition phenomena. This part 
also need further development. 

There are many interesting applications of the type of model discussed here, especially 
in astrophysics and nuclear collision dynamics. However, and this is particularly true of 
simulation studies which often lack the tran.sparency of more analytical studies, the utility 
of massive calculations depend entirely on the soundness of the physical assumptions and 
the formal basis of the model. Therefore, :it is essential to demonstrate that any particular 
simulation scheme conforms with the general physical requirements, such as conservation 
laws and detailed balance. ' 
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