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CHAPTER 1 

INTRODUCTION 

In field theory a symmdry at the c1nssicallevel is sometillles 1I0t n sym

metry nt the quantum level. III such a situnt~oll . the nlllollnt by which nil 

effective action violalcs the symmctry, if it call not be removed hy ndding 

a local f"ndionnl to the effedivc nction, is cnllcd an nllomnly. The gnuge 

anomaly hIlS been oLtnincd by calculating Feynnmn diagrams [1-3), hy tllC 

point-splitting mcthod [4,5), and also hy thc path integral mdhOlI hy noticing 

that the measure of 0. fermion field is not invariant IIn,ler a chiral trnnsCorma-

tion (6). Thc o.nomruy was 0.150 undcrstood in terms of differential geomclry 

[7,8J. 

Anomnlics themselves can be used for phenomenologicnl applicntions 5ince 

thcy give thc alllount of current non-conservation. Furthermore, by solving 

the anomaly equation .sW = Anomaly, we can get the effective action W 

which gives the effective interactions 8.lI1ong pnrticles in the systell1. This 

was first done by Wess nnd Znmino for the cnse of SlI(3)L x SU(3)n flavor 

symmetry and wn.~ npplied to the intuactions 8.mong the pseudo-scalar and 

vector particlcs sllccc::sfully [9]. 

1 

e ., 

Another import.nllt npplicnl.ioll is n~ a critc-rinn f"r the cOlIsist"llr.y of 

models of ullified gn"I'." t.heories. III onkr 1.0 hnve ullitaril.y nlld relle.rtrHlI

i7.abilil.y, It 1I1()(lel shoul,1 nnt. hn,·" an al\omaly of a "Ylllunical sYlIlflld.ry 

[10,111. For C)('UII 1'1<: , in the \\'cillherg-Salarn lIIod", the gaur." allolll'lly is 

canceled 01lt for each gClleratinll wllell the k"loll all" tllC '(uark sccl .. rs arc 

comhillcd. A grn"ilali'IIIalanornaly was foun,1 r,~cr;lIt.ly, all,lthe cancelhtioll 

of this anollmly "ecallle lUI irnpr1rl.alll. nile-rion for IIInrlch whirl, ullify "II I.he 

inlcradions incitl<Jing t)", gra\'ilal.ir"nal intrraction [12.13J. 

In thi~ the5i~ we slluly various I.npks of """malics in two ,limclI,ions. 

The rcas,-", fQr inlerest in two-di,"e"sional Rnomalies is that lhey cc·nlain 

the main structurcs of higher dimensionnl IlnolIInlies Rnd have lheir own 

intercsling propcrtics. The topic~ of 1I,i~ lhesis consists of lhe anlJnlalies 

of Yang-Mills gatlge theory, grnvilntional 1I1C(lry, and ~tlrCr5pnm"trir: I~aul;c 

theory. 

In chnpter 2-4 wc shuly the r,augc Itnomaly. We obtain the ~(llulj"n of 

the anolTlaly cqllation (the Wess-hllmin" term) with only gallg" fiel,h, wil.h· 

(lilt allxiliary fidd~. "'c show, lip to the scenn(1 non-trivial or,ler, that thi~ 

soilltion Rgree-s with the rr;~ull of Fcy",nan dingram calculation. By sf ucly

ing tlte intimate rel,,' it'n hdwccn the anomaly Ilncl the Schwillger tcr"" we 

find Il ltIelh'Jd of obl.ailling the an<.lln"ly of D"./I' (dlirnl cllrr"nl.) frOl" lhe 

Schwinger lCTlns of 1.1", CCI',nllimc "ollnnlll"tinn rc1aliolls. Thmlll;h t.his pro

ce-dllrc we can nlso 'IIl,krsl.aml easily the dimcultics in flllnnti?ins an,,"nlolls 



gauge theories. Dy studying the Schwinger model, wc show that the roint

splitting mclhod disagrees with the loop-diagram mclhod by the sign all,1 

by the factor 1/2 for the anomaly of u"J~' and for the Schwinger term of 

(J~{x), JO{Y))ETC respectively. 

In chapter 5 we study the gravitational anoll1aly. \Ve calculate FCYlllnllll 

diagrams to gct an effective action, and show, up to the second non-trivil\l 

order, that this eITective action is in agreement with the anotnl1ly ohtl1ined 

by the differential geometric method. 

In chapter 6-7 we study the supersymmelry onoml1ly. We ol>tain a super

syuunetric extension of the gauge anomaly, and find that this is the origin of 

a supersymmclry anomaly in the \Vess-Zumino gauge. \Ve obtain an eITective 

action whose variations give rise to the gauge and supersymmetry anoJnalies 

in the \Vess-Zumino gauge. We also find a supcrmultiplet which contains 

u"J:: and u"J" as componcnts, and a corresponding anomaly superfield. \Ve 

confirm this anomaly 8uperficld by diagram calculations. 

In order to make comparisons with refcrences easier, we use the mclric of 

chaptcrs 2-5 al\d that of c1anpters 6-7 diITerently. However, there will he 110 

confnsion since we specify the metric in each chapter. 

.. 

3 

CHAPTEIl2 

GAUGE ANOMALY 

In lhis chaplcr we sludy Yang- Mills grttlge ficlds COli pled tt) chiral ferlllions. 

\Ve ohlain a solulion tt) the anolllaly c'lual.iml wiLh only gauge fields, wiLh

out auxiliary fields. Similar prohlclTls were sLurlied for Lhe massless Dirac 

fermion cnsc, and solutions were obtaincd ill terms of gauge fields and :Luxil-

iary sc.alar fields, or in terms of Il."dliary scalar fields alone (14-17). However, 

we study the massless chiral fermion c"-.c 1\",1 ohlnin the solution explicitly 

in terlllS of gauge ficl,ls alone, whkh is a power serics of gauge fields ror the 

non-Abelian theory. Then we can compare this solution with thc result or. 

Feynnmn diagrnrn ca1culalion~. 

In 6ection 2.1 we .,\,tain tlte gauge anomaly incl,"ling the normali7.aLion 

factor up to tlte sign by -using tlte differential geomeLric method. In sf'clion 

2.2 we solvc the anoll:aly equation to get the effective action which cont.nins 

only gauge riel,ls. In section 2.3 we calculate onc-loop diagrams lip Lo O( A3
) 

in the effective action. \\'e show that tltis calcnl"tion ngrccs with the rrsults 

of sections 2.1 ali<I 2.2. 

2.1 Gauge Anomaly 

Our system is cOIllPosed of 1\ nmltiplet of left-hllnded fermions anrl 1\ 

lIIultiplet of g:ulge fields. Its I.ngrangian is given by 

(2.1) 



wllcre 

''Ie use i, j, k, ... for group indicics, and a, b, c, ... for Lorcnlz indicie~. 

Our cOllvf!nlioll5 for the mclric and gnrnlrm matrices Itrc given by 

(-1 0) 
1'6 = ') 01'1 = 0 1 (2.2) 

We trent fermiolls as quantized fields and gauge fields lUI external classical 

fields. Their infinitesimal gnllge transformations are given by 

(2.3) 

where 

In this paper we study the consilltent anomaly which is given by Il vari· 

ation oC Il connected vacuum functional. We call this variation nn anomaly 

if we cannot make it vanish by adding Il local functional to the connected 

vacuum functional. There is another kind of anomaly, Il covariant anomaly 

(which transforms cO\'llfiantJy), but this anomaly is not gh'en by Il variation 

of a functional (13). 

The consistent nnomaly is defined by nn equntion which we will cltll nn 

anomaly equation : 

5AW[A) = 1\.. G(A.) , (2.4) 

where 

A· (7(/1) "= / ":7:A;I"i.(/1) == [1l<>Il·Alwliall Alln"."ly I, (2.5) 

will. / '[,r: "C J d(Vol1lll1f~) . 

III (2.4) ~V(t11 i~ UIP f·rf .. di\"(~ IV'lion, i.e., Ow cOlllled<:fl "aC1lllln fundiflll"\. 

(2A) ldl5 liS \'y how IIlIIch lhe q1lfllllllll1 dff·d .)f fcrrlli<>" Ikl.t5 calif,:" lhe 

system not to be gallge ill\"arialll.. 

Since the cOll5islcIlt Itlloll1"ly is gi\"(,1l hy a g:wg!" ""ri"tion of nrll1). 'H' 

tmvc "a cOllsist.cllcy cnll<lilicm", i.e., 

( Vi) 

gives the c(lnsi<;t.ency condit i,-,Il 

(27) 

which cltn Itlso be used rt." It .Idillitioll of lhe (l.nolIlaly [!I). 

In or.ler to obtain the two-dilllellsif'nnl lIoll·Abeliltll '\llomaly which Sltt· 

isficR the consistcnC}" condition (2.i), let us follow !'ricny the c1ilTerellli,,1 R'" 

olllclric mclhod given hy ZllI"illo [RI. The Aliyah·Singcr ilul,,;o( of the Dimc 

118,(9). 

where 

(n+ - n_) = ( Clt(V) , 1M 

I 
Ch(\') == Tr[exp( - F») , 

27[ 

(2.8) 

(HI) 

(j 



with 

(2.10) 

III ord~r to obtain the two-dimcllsionlll Ilon-Ahclian anomaly, we start 

from the Chcrn character in four dimcnsions. 

(2.11 ) 

where 

(2.12) 

Theil the two-dimensional non-Abelian gauge anomaly is given by w~(v, A, F) 

which is first order in v when we cxpand w3(A + v, F) in powcrs of t', i.e., 

w~(v,A,F) = __ l_Tr(vdA). 
811"2 

(2.13) 

The non-Abelian anomaly is normalized with an additional factor of 211" in 

order to give the ulliqne Z = cilV , i.e., 

(2-dim. 1I0n-Abclian Ano.) = -~ f Tr(lIdA). 
411" JM 

Dy changing the (orm notation to the tcnsor notation, we have 

or Gi(A) in (2.4) is given by 

(2.14) 

(2.15) 

(2.16) 

7 

III the ahove dcrivatiOIl the overall sign of I.he nllOlnnly is Rlllhig1l0llS. Dy 

chance it turns ont that the ahove sign ngrccs with the FeYllrna.n diagram 

cnknlalion in 6cdion 2.3. 

In the followillg light-cone coordinntes will he lISed ortcn. The COI1\'Clll.iOllS 

and propertics of the lighl-<:onc coordinalcs ancl f:nl, which we will lISe are 

given helow. 

± 1 0 I 
:r == h(x ± x ) , 

1 
:r. ~ = m(xo ± xt} , 

. v2 

'/+- = ,/-+ = ,/+_ == '/_+ == 1 (olhcr ,.,'s nre zero) , (2.17) 

A not her form of thc anomaly, which will be useful in the following analy-

sis, is uhtaincd hy adding the gnuge variation of a local fnndiunnl I /RrrTr f J2x /I.,A" 

to (2.15), i.e., 

(2-dirn. non-Abelinn Ano.) == - "III" j ,P:rTr[h{'),,/h(f:"~ -I- ,(b») 

'" -~ jd2 xTr[hD\.A_J. 
211" 

(2.IR) 

2.2 Solution of the Anomaly Eqllnt.ion - Effective Ac-

tion 

The solntion of the nnomaly c'IlInlioll gives the effcctive nclion .. f the 

system. \\lcss nncl Zumino 501\'(,.\ this cqnRtioll ill the following WRy [R,!>!. 



Inlroduce e fields which lransform lion-linearly under a finite gallJ;e lrans-

formation as 

(2.1 !l) 

whcre 

A = lI. i1i, e = Wi. 

Then the solution of (2.4) is given in a COlli pact forlll as 

W[A,eJ = / dz t dt ei Gi(A(t))(x) + Wc[A,eJ , (2.20) 

where 

(2.21 ) 

and lVc[A,eJ is an arbitrary gauge invariant fllnctional. 

In their original work, Wess and Zumino dealt with SU(3)v x SU(3)A 

flavor symmetry and treated the pseudo-scalar octet as non-linearly realized 

fields. Their solution describes the interactiolls among lhe pseudo-~calar and 

vector particles in good Ilgrccment with experiments. 

In this section we will perform one more step to obtain a solulion which is 

a functional of only gauge fields, without independent e fields. Thi~ solution 

will be useful since in section 2.3 it will be compared.with Feynman dingram 

calculalions which have only gauge fields as external fields. Thill solulion 

is also interesting since it gives a system which contains only gauge fie"ls. 

In (2.20) we observe that inslead of independent e fields, we can use the 

fUIlcl:ions ~(A) of gang" fidds which t.rallsr"rJlI iL~ (2.l!l) wll<"l1 A tr:1l1~r()rm 

as gilur,e fielch, if wc call lillrl ~n(C" functiolls. 

In lh~ Ahcli'LlI casr, we rilsily fill" sudl (A) as 

(2.2'.1) 

SIIICC 

«A) = ~ a.,(A'f ~ ~ <'J .. ("" -I ,,"A) = ~(A) 'Ba"D"1I. = (Il) , A, 

("l.2:l) 

which i~ the samc ItS (2.19) for lIl" Ahdiiln (cllse. 

Theil in two rlimclIsiollS tlte solntinn of the Itnnlllilly c'lnlltion cltn he r,ivclI 

with only gallg" fidds ItS 

W[AJ = / d'z L' eLL ( ~ (l"A") G("(t» -I- Wei"! 

I 1 . 
= f d'x L tlt( OD<N)(i;;:""A~(t)~"b) + Wd/ l ) , 

(2.2,1) 

where 

(2.2;') 

Since lhe second I,rn .. of (2.2:') dnrs lIot contril>ltt~ in (2.2·1), we ha\'f~ 

(2.2") 

Lel liS nnw cnllsider the nOIl-A(,eli"n casc in two dimclIsiolls. \\'e lint icc 

(2.27) 

10 



II 

trails forms like a gauge field ns scen by 

(2.28) 

Conversely, if we invcrt (2.27), we obtnin HA) which transfofm as (2.19) 

when A tmnBform as gauge fields. 

Wc arc going to obtain lY[A) as a functionnl of only A_ sincc in the next 

section we will compare this with Feynman diagram calculations which }Ilwe 

only A_ as edernal fields. For this we will use the anomaly of the fOfm (2.18) 

and invcrt (2.27) for fJ = -, 

(2.29) 

Note that in (2.29) WI, relate only A_ with ( in this form, hut A+ is not rdaled 

with { and nrbitrary, therefore our gauge fields A" 's nrc nol restricted lo be 

pllre gauge fields. 

In the following procedure of inversion of (2.29), we will denote IL "y A 

ancl x- by x for notational simplicity. Thcn (2.29) bccomcs 

(2.30) 

Let us multiply both sides of (2.30) on the right by e-( . Then we hnve 

(2.31) 

Oy dcfining 

- -( 
'I = e , (2.32) 

(2.3 t) hecnll\es 

Solving (2.3:\) hy iteralion we gel 

,,(:r.) = 11(-00) - i~ ,1:", A(xd,.,(xd 

= 11(-00) - i~ dx, A(xdll(-oo) + l~ dx, {:. dX2 A(x.}A(x2)11(-00) 

-i~ (iT., L: dX2[r: (lx3 A(x,)A(X2)A(X3)"'( -(0) + 

In (2.31), nole t1l1\l al\ x's in this equation arc x- cornprncnl, huwever,., nnd 

A are also dcpendcnt on x ~ cven though we omitled writing this d",pcl1rlf!l1ce 

explicitly. 

Lel \IS lake the hounrlnry c0IlIlition 

{(at x = -00) = 0, i.e., '1(-00) = I . (2.3;') 

. We also assullle lhat lim",,_._oo A(x) == 0 sufficiently rnpidly. ) TIICII (2.3.1) 

)ccornes 

(2:11i) 

,hieh can be given as a compnct Cxprt'ssion 

(2.37) 

12 



by defining the path ordered product P to menn (2.:l6). 

From (2.36) we can gel (A) in 0. powcr ~eries of A, 

Using In(1 -I- x) = x - ~x2 -1- ••• , (2.38) becomes 

(A) = i: dXI A(xl)-roo dXI i: dX2 A(x.)A(X2)-~({00 dXI A(xl »2_t·0(A3) , 

(2.39) 

where all the A's are A_ and they depend on bolh x- and x+. 

'Ve arc now prepnced to obtnin W(A) in term~ of only gllugc fields. Using 

the nnolllaly in (2.18), wc get from (2.:1.0) 

(2.10) 

where 

(2.41) 

and (A_) is givell ill (2.3G), (2.37), or (2.3tl). 

We cnn gel ~V(A) as n power scries of A_ by the following proccdure. 

First expnnd A_(L) of (2.41) in tcrms of t I\nd integratc over t in (2.40). 

Thcll ~V(A} becomcs 0. slim oC products of (A_ )'s alld A_ 's. Next expl\nd 

the (A_)'s in W(A) as power series of A_ tlsing (2.39). Then W(A) in (2.40) 

becomes 8. stlm of prodtlcts of powcr scries of A_. As a last step, expnnd 

thcsc products to gel W(A} as one power fierieR of A_. 

1:1 

After follrJwillg lhis prnccdllre, we get. 

W[AJ = -. 2
1
rr'l'r f ,ex [ >(X)(}IA.(:r) 

7 ;, 
-I 12 / (x)<7 1 {f(:r)A.(:r)} -I- 12/(,r.)r7~ {/L(x)!(x)} 

1 1, 1 
- i!1(x)(}"L(:r) - ~(f(:r)t(}'lL('r.) I + 0(/\ ) , 

(2.-12) 

wlwre 

J(X) =-co J(X-,T I) == {~ tiT I A,(xl,xl) , 

Y(T) = fI(x-,XI),~ i7~ drl .l: dX2 lL(xl,xl)/L(x2,TI). (2.-13) 

III IIlOIl1ClIlUII1 space, (2.'l2) becoflles 

(2.'11) 

As IISIlI\I, (2AIJ) or (2.-1-1) is nlllhigllCllls by a I'KIlI flllldiollal of Ao. 

\Vhcn we ohlaillc,l (2.'l·I) frolll (2.-12), wc IIsed the c0n\·ol •• t:i<'II pr""rrlies 

(2..t5) 

(wherc tier) is the Fourier trnllsfnrm (.f (I(x), elc.), 1\11(1 the properlies or I(x) 

nud !l(x) 

• A_(,,) 
1(,') = -. -, 

11'-

II 
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2.3 Comparison with Diagram Calculations 

For our diagram calculations it is convenient to usc the light-conc coordi-

nutes given in (2.17) (12J. In these coordinales lhc condition for Illcfl-hanrlecl 

chiml fermion (1 + '6)t/J = ti' (where ,5 = ,0,') bccomes simply ,+tll = 0 or 2 p_ + 1(;/1'+ 

,_ti' = O. Then, from (2.1) we have thc inleraclion Lagrnnginn 

(2.47) Fig.l Feynlllfl.n rule: Take 'l'r J (~~2 • nnel altach ( - ) ~ign for a fermion loop. 

i.e., only the A_ component of the gauge field couples to the left-handed Then multiply the symmetry factor (l/n l ) for fl.n effective Itclion. 

chiral fermion. Then we have the following Feynman rules. 

For a vertex, from iI',n' , 

(2.48) 

and for a propagator of a fermion, 

.!.Fa," _ ip+ ,_ + ip_ ,+ ,-
1'2 + il!: - 2p+p_ + il!: - 21'- + il!:/l'+ ' 

(2.49) 
11:+1' 

where we have eliminated the 1+ part since the vertex contains ,+ Itn,1 

Using the fad Tr(-y+ ,_)" 2", we obtain the Fcynmall rule gi\'cn in 

Fig.1 for one-loop diagrams. 

Diagrnm (2.1) gives the Ilmpltude Fig.2 Dingram (2.1) 

d2k i i 
Amp. = - f -( )' Tr[( -A_(p))( -k(q))){ k . /k }{ (k ) . /(k ») . 211' _ + II!:'+ + l' - + It': • + r + 

(2.50) 

( 



., 

+ (p.-- q) 

r=-(p+q) 

Fig.3 Diagram [2.2) 

We inleg~"te first over Ie by using the residue method and then over k~ to 

get the result (12) 

i 1'+ Amp. = --Tr[A_(p)A_(-p»). 
271" p_ 

(2.51 ) 

In order to oblain the effedive adion, we aUach the ~ymrnetry f"clor (I /2!) 

and use the fact that the amplitude of n di"grnm calculation corresponds to 

iW[A). Then we get for O(A~) 

(2.52) 

We call the lowest order of non-vanishing terms the first non·trivin.l order, 

and so on. 

For the next order in A(:z:), i.e., O(A3
), we c;l.lculate Diagrll.m [2.2). 

Amp. = -iTr[A_(p)A_(q)A_(r») 

Ii 

f 
dZk 1 1 1 

X (271")2 {k_ + i~/k+ }{ (k + '1)_ + i~/(k + '1>+}{ (k - p)_ + i~/(k - ph } 

+ (1' .... '1) 

= (-.!...)1'+'1- - '1+1'-Tr[A_(p)A_(q)A_(r») + (1' ..... '1), 
271" l'-'1-r-

(2.53) 

IR 

where we followed the same I'ruccflllre n.. (2.;'0), (2.;' I). 

We alt.af:h the R}'lllIw:t.ry fndur (1/3') 1I1H1 match t.his wit.h iIV'(/11 , 

r .2 1 f ,['1' ,[''1 1 2 (1'+'1·· - '11·1'-) n 2(A) = ,--.-. --------d r fJ (" -I- '1 -I- r)· .---.--_. 
2rr:II (2rr)2(2rr)' 1'-'1 .. r-

(2.5-1) 

Adding (2.52) nlHl (VH) to hn\'c WItt) "I' 10 O(A~), 

1 f ,['1' 2 2 1'+ Witt) = -{Tr - .. --,{ '1" (1' .,. '1)'--/L(p)/L ('1) 
1rr (2rr F 1'-

.2, f d'p d'q 2 , (Vt'1- -. 11tl'-) 
-I- t- rr ---;--d r fJ (1' -I- q -I- r)-·----A_(,')/L('1)A. (T') 

:J (21T)2(2rr)2 l' .. q-r_ 

(Vi5 ) 

TIIiR is the snmc n.~ (2.4·1) which wn.~ oh1nined hy cxpnnfling t.he Rol'11ion 

(2.10) of the nnol1l"ly (''1l1n1ion. Tlwrcfore it hn.~ hcen shown thnt (2.-10) 

ngrees with t1w di"grnlll ca!c1lIn1ioll~ "I' to the scrOll/luon·trivial <>r.ll'r, i.e., 

O{l\~) in the dTeclhc ndion. 

It is nlso interesting to SI:C explicitly how (2.;,;,) gin·s rise to the nll'>lllnly 

(2.18). We cn!cubtc "" U'[,,) ill (2.1) I,y I\pplying lhe 1'auge triln~r(lrnl'lt.i(>n 

(2.3) lo (2:!i5). Th~ deri""th'e (f']o) ill (2.3) cnrresl'ollfl!l to (iI"') in rtI0llWlltllll1 

spnce since we lnke ex1<'rnnl 1I101ll1:nt.a ns incoming M can be secn ill Di"gr"llI 



From the O(A3) term of W[A], i.e., W,[,l], 

.5AW2[A)=i~~X3TrJ d1p d'q d2r62(p+q+r)h'+Q--qtP-) 
471'3 (271')2(271')2 , p_q_r_ 

2, J d2
p d'q 2 , Pt qt 

= - 471' l'r (271')2 (271' pd r" hI + q -I- ")(p_ - q_ )A_{p)A_(q)A(r) 

+ O(A3) . 

(2.57) 

When we add (2.56) and (2.57), we sec that the second term of (2.56) is 

cancelled by the first term of (2.57). We thcn expect thnt the second term of 

(2.57) will be cancelled by the first term of.5" W3[A), where W3 [A] is the O(A4) 

term oC ~V(AJ, an" so on. Therefore we expect that the direct contrihution 

to the anollll\ly comes only from the two poillt vacuum functional. The 

reasoll hehind this is that higher ortler dingrams are more finite and do 1I0t 

contribute to the Ilnomaly. Then we have consistently with (2.18) 

(2.58) 
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CHAPTEll 3 

ANOMALY OF D,.J" FllOM SCIlWINGgn TEn1\,IS 

After tile discovery of t.lle ,anolJlaly of D"J~' (where J~' = :;['''(''''(51/'), it 

was soon understood llmt th~ Schwinger term of tile equnl ti,ile comlrlutn-

tion rel.ttioll i5 another face of the 8nomaly [!i]. Iteccnlly this relation has 

been studied in tile differential geolJletric methorl [20,21]. Tn this ch"pter 

we will show this relation clearly by obtaining the auomaly of V"J" (where 

J!' = ~..."j\ -;jlro >." V') from the Schwinger terms of the equal time r:01l1lT11I1 <ltion 

relations. 

\Ve first dcrive a c1n.'sical relation <':loGa = (D"J")a' Then we ca1cu-

late the quantum verdon of this relation. By this pror:edure we obtain the 

I\nomaly oC V,,]" Crom the Schwinger terms. This rda1ion also suggests tile 

situation that when V"J" i8 I\nomnlous, the constraint Go I phys) = () docs 

not propagate in tirn~. We confirm this explicitly a1thc quantulJI level. Tllis 

fcature causes a difficulty in qllanti?:ing an 8nomalous ~I\uge tlleory. 

III section 3.1 we oh1ain 1\ classical rela1ion <'oGa = (lJ,,]")a. In sedion 

3.2 we ohtain the ftnomaly oC fJ"J" from the Scllwinger tenn5 for the .'hiral 

Schwinger model. In 6edioll 3,3 we show thnttlle result of section 3,2 or,rees 

with that of the effective action method. III section 3.'1 we show the t1imcultirs 

ill quantizillg anomalous gnuge theorics, alle\ s~lIdy the ~on-Ahdinll CIl!'C. 

3.1 UOGn = (D,.J'"}n A Clnssicnl nclntion 
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In this section let liS consider a fOlJr-dimen5ionnl chira\ gauge theory which lhen 

is described by the Lagrangian (:-I.R) 

(3.1 ) 

F'W = F~"'A .. = D"Av - aVA" - i[A", A") , and we use 11,11' = (+, -, -, -). (:-1.9) 

(3.1) gives the equation of motion 

v - vI -1'6 
D"F"" = _Jv

, where J .. = V'I' -2-A .. V'. (3.2) 
Then nrtrr some calclllnli(ln~ IIsing (:-I.:-I)-(3.r.), n vector id"nl.ity amI the .Ia-

cobi j,lentit.y we ohtnin th" folln"'in/; rdntion. 

(3.2) can be written in components lIS 

(:1.IO) 

- ...... -...... 0 
V' E .. - fnfx:A~' E. = -Jft , (3.3) 

...... - - 0- - - -
V x IJ .. - DoE .. - fnfx:(AbE. + A~ x B.) = -J", of th" fermionie cnnellt. \\'c cnn n\so write the left hanc) sirlc of (:1.IO) 

by nsing (3.3). In tllC I\\'ovc wc derivcd (3.10) in fOllr dilll('n~iolis. III two 
(3.5) 

dimensions thc corrc~pol\(ling dcri\'ntion bccomes siwpler sincc 1.I..,rc is II ... Dn 
...... - - 1 - -4 

Do = V x A.. - 2fn""A~ x A •. (3.6) 
ill two dimcnsions, 1\1\(1 the rc~nlt is the snllle as (3.10). (:-1.10) is a d",;sieal 

In the following derivation, we treat (3.3) and (3.4) Ill! slltisfied only at relnlion. \Ve will ot.tnin 1\ '1uantlllll vcrsirJII of this r('hlinn ill two rliIllCI"ic)ll< 

the initial time, and derive how the Gauss Illw constraint G .. (x) given in in sections 3.2 And 3.1. 

the following (3.7) propagates in time. That is, we do not trcnt the time 

derivalh'cs of (3.3) alld (3.4) Ill! satisfied equations. 
3.2 Anoll1aly of D",}" from Schwinger Terms 

In this sectiun wc will ohlninlhc "l1nlllnly of {J"J" (where J".,., ;:.-y,oI:~T".",) 
o ............ _ ...... 

G .. (:r.) == J .. (x) + V' E .. (x) - fnbeAb{X)' E.{:r.) , (3.7) f0r the chiral Sdl\vingrr IIInrlr\ hy using lhe Sdl\vingcr terms of lhe ('''I'l'll tillle 
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cOlrllllutution relations. \Vhen we calculale lhe Schwinger terms, we will use 

the BJL (Djorken-Joltnson-Low) limit mel hod which is summarized below 

[1,5,22,2::1). 
(:115) 

\Vhen we have u time ordered product of two operators From (3.1-1) we get the canollir.al conjugal.e momenta 

(3.11 ) 
(3. Hi) 

Then we assigu the Poisson brnckct~ 
the equllI time commutation relation of these two operators is obtaincd "y 

the following limiting procedure. 
(A,.(t,x). E"(t,x'»rD. = ,,;6(x - z'), 

(::1.17) 

(::1.12) The equat.ion of motion is given by the Hamiltouian II ns 

Then from (3.12) we have the following correspondence. Do! = U,II)"TJ. , (:118) 

[A(O, x), B(O, 0») = ill(x), if lim pOT(p) = 1, 
pO_oo 

(3.1::1) 
whcn f is not <!<'pcmlenl explicitly on lhe lime, which is salisfied in ollr ense. 

[A(O, x), B(O, 0)) = - .5'(z), if lim ,,0Th') = pI , 
"'-'00 

Using (3.16) we ohlnin the Hamillonian 

8 
where 5(x) == 5(zl), 6'(z) == 8z16(x'). 

If T(p) hill! R polynomial in pO (thnt is, 1, JP, (pO)2, - - -), we drop Ruch terms 

110 = f dx {1t( A,,)OoA,. + 'If ( V'nF)oV'n - L} 

f {I , ,I ,- ,1--16.1 .- '0.1 (" E" -,ol-"Y5., )} = dx -E f- + eA V'"Y --v' - u/,"y I v, - Ao VI' .,. C"", .- -y' . 
2 2 2 

(:l.W) 

since they do not contribule to the Schwinger lerms. 
From (3.16) we sce thnt 1t(Ao) ~ 0 is a primary constraillt [2-1-2fll (whcr r , ~ 

The chirnl Schwinger model is described by the Lagraugiall 
means IL we Ilk condition in Dirac's sense), and we get a sceondnry conslrllint 

L 1 F. F"v .? "(8 . A 1 - '"'(&)tJ = -4 ',",' +, ''"'( ,. - 'c "-2- '. (::1.11) 

Our convenlioJls arc fiven by 
(:1.'20) 

Since 80 G = (G,lIo)rD. = 0, allhe Poisson brllckct Icvellhe chirnl Schwinger 
{'"'(", '"'(V} = 2f"." , 

mOtl'" is consislcnl by having two first class constraints 1t(AII) ~ 0 nlHl 



G ~ O. Thcn by incorporating thcse constrnints we havc 

If' = Ilo + u1T(Ao) + bG , (3.21) 

wherc a, b are arbitrary functions of canonical coordinatcs and momenta. In 

(3.21) 1T(Ao) ~ 0 is always satisfied and DoAo ~ a is arbitrnry, 60 1T(Ao) nntl 

Ao are not of interest. ThcrcCore we neglcct thcse two canonical variables 

[21). Thcn we have the following Hamiltonian. 

[{ = III + Il2 + Il3 , 

{ 

Ifl = J dx( l EI EI + eA 1;j;,,1 (~h") 

J[2 = J dx(uG) 

Il3 = J dx( -i;j;"IDJ'/J) , 

(3.22) 

whcre u is an arbitrnry fundion of thc clU1Qnica\ variables At, EI, V' nml 

Now lct UR consider 1\ quantum theory. We change (3.17) and (3.18) to 

the equal time commutation relations 

(3.23) 

DuO = i(I/,O). 

If we calculate (ll, G) naively using (3.23), we gel zero ns in the cn.qc of 

using the Poisson brackets. lIowever, we should be careful whcn therc is nn 

anomaly. 

First let us calculnte variolJs bnsic equal time commutation relations using 

the DJI. limit method which takes care of the quantum clfcct. Let us tllke 

25 

. .( 

the gnllge Ao(x) 0= 0 in (:1.1-1). Then 

(:1.21) 

nn,l the propagator of the gallr,c lIeI,l is given hy 

wllPre ""~ = (1, Il) . 

\Vc quantized gallge li"\,I, as wdl ns fermiollic fidd~ hy cPIlc,id,:rinR (>llr 

sy,tem n.q a slIb-system of nn nllnmhly-free Inrgersyslr:l1l. 'I'll<:n we silldy 

whclher this sllh-systl:'l11 is anoma\r-.",s or lint .. Fnr example, nllr system wl,ich 

is composed of gallge lIeI,ls nmllcft-hnndcd "himl ferminns cnn he cOlIsid"rcd 

ficlds nnd Dirnc fcrmions. 

consi<ler 

(:l.2r.) 

which corresponds to Fig. I. 'l"1\('n 

1'(,,) ,--' (---ill,.)( - in.,)II'''·(,,) • (3.27) 

whcrc 

11''''( ) f d
2 
k 'I' Ii. .. 1 - /s i ..,1 - "51 l' == - --- r -------t-y ----. t-y ----

(2Ir)l .., . k + l' . l' I- if: 2 l' . Ie + if: 2 

i I 
= - - -( -,,.."," .,. 2,1',," + f:'··\P.\I'·' -t f:"~, •. \".). 

-tIT ,,2 



-- 0 1 - ,5 .p, --I/J. 
2 

p 

III the BJL limit. 

-p 

Fig.1 

where we follow the prescription of the BJL limit method to drop a term 

which is proportional to 11° in pOT(p). Then using the correspondence given 

in (3.13). we obtain 

(3.29) 

where the commutator is an equal time commutator. and the subscript S.T. 

means Schwinger term. 

For other equal time commutation relations we follow the same proce-

dllre. For example. for (1°(x). 81 E1(y)JETC and (8I E1(z).8IE1(Y)]ETC. we 

consider the Feynm8.J1 diagrams in Fig.2 and Fig.3 respectively. After similar 

calculations we obtain the following results. 

,. .. 

2" 

Fig.2 Fig.:! 

(f1(X),JO(Y)]ST. = (f1(X).JI(y)JST. = (J1(x).J1(!I)]ST. = -26'(x - !I)k 

(J°(x). 81 EI (!I)]ST. = [JI(x). 81 EI (!I)]ST = e6'(x - y)k 

(1°(x). E1(Y)]S.T. = [J1(x), E1(!I)]ST. = -e6(x - !I)k 

(.I°(x).A1(!I)]ST = (11(x).A1(Y)]ST. = 0 

(commutators among DtE1(x) , Et(x) ant.! A'(x) ]S.T.· = (I, 

(3.30) 

where 

IUId all commutators are eqllal time commutftt0U. \Ve note the sir,n of the 

II\..~t term in 

(11(X), JO(Y)]ST = -26'(x - y)k = +(1°(x), J1(!I)]ST , elc .• 

in contrnst to 

IEI(X).JO(y)]U = ,s(x - y)k = -[JO(x), E'(y)JU. 



Thcn let 115 cnlculrlle [/l,G(:!:)] using the reslIlts in (3.30). We first con-

sider 112 in (3.22). 

[/I2 ,G(x)) = J dx'[u(x')G(x'),G(x») 

= J dx'{u(x')[G(:c'),G(:c)] + [u(x'),G(:c»)G(:c')} 

~ J dx'tt(x')[G(x'),G(:c)] , 

(3.31) 

whcre we could decompose the commutator since a radiative correclion docs 

not givc rise to an anomaly. Dy using the basic cOlJllJlutation relations in 

(3.30) we get 

(3.32) 

Thercfore [ll" G(z») = 0 , hcre and (3.33) we .use = instead of ~ by restricl-

ing the IIilbert space to the physical Spl":C which slltisfies G(:c) I phys} = o. 

Therefore following reilltions Ilre satisficd in the physical space. 

which are not given ill the table of (3.30). Sincc ~-ylal'" lll\.~ II. derivative, 

corresponding diagrams arc more divergcnt, so we should regulari7.c. Using 

the Pauli-Villars regularization method, we obtain afLer a somewllllt Icngthy 

calculation the result that T(p)'s of those dingrnms hllve no (~) term when 

we expand T(p) in a Laurent series. Therefore 113 docs not give an Ilnonllllons 

2!l 

contriIHlt.inn. '1'1,(,11 

--iDuG(:r.) = [fl,G(:r.)J = ITII,G(x)] 

= j rlx'[~EI(:r./)EI(x')" CAI(X')./I(:"/),OI/,:I(X) 1 c.J°(x)! 

= I":r./{~/~'(xl)[/':'(:r/),rJ(l(x») + ~[/_;I(x,),c.lO(:r»)r';I(:r./) 

+ rAI(xl)[JI(x/),.J1 [-;I(:r.))} 

i 2 j I {.I I I I ( ') [} ( I = - -c tlx E, (:r. )h(x - z ) + A x ---h x - :r. )} 
,," Ox' 

= -.!....e'jdx'{E1(xl)h(x - :r. /) + AI (.r./);"'h(x - x')} 
,," ,Ix' 

i 2 1 , 
= - 4; c (E (x) -- ,']1 A (x)} . 

(:1.:13) 

Thcreforc wc ohtllin Il lloll·7.cro r(,~1I1t for [lI.G(x»). whcrclls it is 7.('[ .. nt 

the Poisson "racket levd. 

On the other hlllld. froll1 the ,Iefinit;on of G 

OoE1(x) in the right haml s;.le of (:l.3·1) is cnlculated M 

-= j dx'{ic[A'(x'). /,:I(X»).II(X /) 1_ icA1(x')[JI(x'). /,:'(:r.» 

+ icu(x')[Jo(x'). /,:I(x}l} 

= j dx'{i,.( -.i,~(x' - :r.»)1'(:r.') ,. iCAI(:r.')(c~~h(x' -:r.)) 

I· iCII( x')( c _i_ h( x' - :r.))} ,," 
1 (" 1 

== c.J (:r.) -- ;;;(A (:r.) + 1I(:r.». 

(:1 3-1) 

(:1 :1:') 

30 
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Then (:1.31) becomes 3.3 Comparison with the Errcctive Action Method 

LeL us calculate the effective nction for the chiral Schwinger lIlo(l~1 cle-
(3.36) 

scriLor:-d hy (3.14). 1'll(en we cnn cnlculate tlte anomaly of tJ"J" following the 

Therefore hy combining (3.33) and (3.36) we have for Ao = 0 
familiar mellto,1 [271. The only dingram which gives nil anolll"ly is gi ven ill 

(3.37) Fig.4. 

In (3.37) u(x) should be dependent only OIl AI(X), since the anomaly is a 

local function nnd terms containing E' , .,p or V'· would give rise to non-local 

functions in (3.37) becnuse of their dimensionalities. Then 

p.3!) 

(3.38) 

where c is an arbitrary constant. Therefore we cnlculated lhe anomaly of 
nale space, 

8,.J" using the Schwinger terms of the equal lime cormnutatocs. In the next 

section we will show that (3.38) is consistent with the result of lhe effeclive (:1.40) 

action method. 

Il is sometimes allowed to add an arbitrary local function of the gnuge 
However, in (3.40) the second term which is proportionlll to B"A" is n vnri-

field A to G. If we do it, the right hand side of (3.33) changes, bul 8,']" in 
alion or 1\ local t.erm which is arnhiguous in the loop calculation. Wh'~11 we 

(3.37) does not change since the right hand side of (3.35) also changes by the 
take care of lI,is ambiguity, (3.40) l,ecomcs 

same amount as that of (3.33). However, in this paper we do not consider 

such an ambiguity of G because the constmint G is given ns (3.20) without 
(3.41 ) 

amhiguity when we follow the Dirac's trentment ns we did from (3.14) to 

(3.20). This ill also true in the non-Abelian case in section 3.4. 
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3.4 Dirnc11lties in Qllrllltization rind t.he NOIl-Abclirln 

Case 

Fig.1 

where d is an arbitrary COlIstlUlt. 011 thc othcr Imlld, (:"'.1(1) 

J 6W' 
6"W[A] = d':z: 6A" 6"A" wherc :::::: wn~ illtro,llIced ill ~ ... clinn 3.2. 

= J d':z:c.T"(:r.)8,.A(:r.) (3.42) For thc chirlll Schwingcr lI10ckl ill ~ection 3.2 nlHl 3.3, we hnvc OIW "011-

= J d':z:A(z){-c8,.)"(z)}. str'lillt G givclI ill (3.20). At the roi~~oll \'rnckctlevc! \'oth (3.-1:') 'llld (:I.1G) 

Then from (3.-11) and (3.42) nrc s'ltisficcJ. lIow('ver, nt the C!1I'llllulI1 level (3.4:') i" sntisfiecl ns showlI ill 

(3.32), bllt (3.4G) is lIot snl.isficd ns showlI in (3.33). This mC'lIl~ that when 
e 

8,.)" = 411" {t;"" 8,. A" + c' 8,.A"} . (3.43) 
we iml'o~c on the I'hysicnl stnte I phy~) thc cOlHlit.ioll G I phys) = 0 nt 

In order to compllre (3.43) with (3.37), let us take Ao(:z:) = 0 in (3.43). 
nil illitinl tillie, this cOllrlili<'11 is IIOt 51ltislied nt 1\ Inkr limc. Thercfnrr we 

Thcn (3.43) becomes 
om not qunlltize lhe chirnl Schwinger model consistclltly. Hcfcn'n("es 12P' 30\ 

,liscussc,l lhis difficully of qllnnti7.'lt.ioll ill similnr wnys. 

(3.41) 
It is interesting thnl the c1nssicnl rclntion (3.10) nlreluly 5111'.1;('51.5 I.his 

This is the slI.D1e as (3.38) since both c and d Me Mbitro.ry. Therefore we dimc1111.y when D,..!'· is nnOrnnlOll5. Of coursc, this should be cnnfirrrw,I \'y 

&howed that the result of section 3.2 is con~istel1t with that of the effective cnlclll'llions nl tile qllantlllll level. \Vc nl50 1I"te tlmt we cnn Jlf)t. hnve II. </It-

action method. isfaclory situation \'y lnking the right hnlul side of (3.33) n5 .. new ~c("on,lnry 

eonstmillt, sillce ir we do that, the time ,Icrivntivc or this IICIV cQllstrailtt is 

ngain not 7.('ro nlt,'\ gives rise to nllnthC'r JI('IV sccOl\(lnry ("oll~trailll., nll<l ~" 011. 



Then we will have too lIIany construints. 

Now let liS consider a lion-Abelian chiral gauge theory, which has con-

struints Go's given in (3.7). At the Poisson brncket level both (3.'1;» ntHl 

(JA6) nre satisfied. However, at the quantulll level the Schwinger terms cnn 

spoil this situation. RecenLly references [31-33) studied the conrlition (3.'15) 

and presented the result that this hIlS a Schwinger term. 

Let us consider the cOlldition (3.'16) for the system described by the r,a-

granginn in (3.1) in two dimensions. In this lIon-Ahelin.n cn.se the IIn.milto-

nin.n is given by 

which is similar to (3.22), n.nd we have the following Schwinger terms like 

(3.30) of the Abclin.n case. 

(J:(X),J~(Y»)S.T. = (J:(x),J~(Y»)S.T. = (J~(x),J~(Y))S.T. = -6'(z - y)kSnb 

(J:(x),aIE~(Y))S.T. = (J~(x),aIE~(Y»)S.T. = ~6'(x - y)k6ob 

(J:(x) , E~(Y))s.T. = (J~(x), E~(y»)s.T. = -~6(x - y)k5,,~ 

(J:(x),A~(Y»)sT. = [J~(:t:),A:(Y»)s.T. = 0 

[commutators among aIEI(x), EI(x) and AI(z) )S.T. = 0, 

(3.48) 

where k = -t;. Then using these Schwinger terms we obtain the fullowing 

result by the procedure which gllve (3.33). 

DoG .. = i[l/,G .. ] = ~{E! - VIA!}. 
8rr 

(3A!J) 
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(3AG) shows that the ("('ndilion (3AG) is subject tc) the Schwinger ter." nnd 

this fact gives rise tu II. difficully ill '1un.lltbmtion. Of course, wI,en (:JAr.) hn.s 

a Schwinger term, it also cnuses a dimclIlly in quantization [3·1]. 

Now let us cnlclllate (D"J")o lIsillg the ,.roccrlllre in section 3.2. From 

the definition of Go 

(3.50) 

where DoAbJ = Rbi is mcd since we are taking the gauge AnD = O. Usil'J; the 

same procedure as (3.35) Uo E! in (3.50) is given hy 

13.51) 

Then (3.50) becomes 

13.52) 

where we used !obeAMlie = 0 since lie is proportional to Ad because .·f the 

reason explained helow (3.37). Then from (3AG) and (3.52) we have 

( :t.5J) 

One cn.n !lhow that (3.53) agrees with the result of I.he efTcdive aclion 1J"'lh"d 

in the sn.me way lIS in section 3.3 (27). 
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CHAPTEIl 4 l.y lhe r,"granginn 

ASPECTS OF THE POINT-SPLITTING lVIETIIOD ( 1.1) 

As tools for calculating anomnlies, the loop-diagmm mcl.hod and the Our cnnvc-nl iOlls fl.l1l1 thrir I'rQl'rrl.if's nre gin'll I.y 

point-splitting method have been important from the beginning of the dis-

covery of lhe nnomnlies [1-5,35,36]. However, it iR known thnt in rour di-

mens ions lhese two methods agree for the anomaly of O,.J~·, but disagrr:e ror (01) I (0 ') _ 01_(-' 0) -yo = , .., , IS _ -y -y _ 

I 0 -\ 0 0 1 

the Schwinger term of [ J~(x) , JO(y) ]ETe (where" ETC" means "equal lillie ( 1.2) 

commutator") [37-39]. \-Vhen we cnlculate the Schwinger term [35] hy the 
In ordc-r to obtain ... ', • .1:. , let liS ~\.nrt hy indlulillR It IlII\.<S term -mf·" in 

loop-diagram method, we use the Djorken-Johnson-Low (DJL) limit method 
(1.1). Then IIsing the eq1lation or motkm we gd 

[22,23]. In this chnpler we study the two-dimensional Abelinn gnuge the-

ory (the Schwinger model) [10-42], nnd we find thnt in this cnse the two ( 1.3) 

methods disagree for both the anomaly of a"J: nnd lhe Schwinger term Lel 115 regularize (-t.3) 1\5 

of [ J~(x), JO(y) JETe. This result show8 thnt the disagreement of the two 

( \.1) 
methods nre more severe than it hns been known. 

In sedion 4.1 we cnlculate al'J~' and [ J~(x), JO(y) JETe using the loop-

diagram method. In sed ion 4.2 we calculnte the same quantities using the III lhe nhove lit 1l11<1 M nrc the l'lluli- Villars rc-g1llator fic-hl 1\1111 its 11In.<S 

point-splitting methml, nnd show thnl lhese two methods disagree. 

4.1 Loop-Diagram Method 
(-1.1) hr:r:omcs 

A. (),.J~' 
D, • .I~'(rcg.) '"" -2iMiiI)'sllt. (\.5 ) 

We consider the two-dimensionnl Abelian gallge lheory which is descriherl In terms of Il'W all' I n" ill Fig.I, (1.5) is e:ocpre5se,\ ns 

il'l,Il""(rC9.) = --2iMIl", ( 1.1;) 



k+p kl P 

Fig.l i R'''' and R" 

where we used the correspondence 8,. +-> ip,. , since 1',. is IIl1 incoming 010-

mentum. Then the anomaly is given by 

8,.1:'(rcTlormalized) = Anomaly = lim {-2iM Tr' A,,}. (4.7) 
J\I~oo 

Let liS calculate the right hand side oC (4.7) .. 

" J cPk ii,. . " 
R = - (211')2 k' _ 1\/2 (k + 1')2 -1.1' 'I r{{-y. k + "y' l' + Mhs{-Y' k + JIf)Ie"'( } 

= 2iet;''''p,.AfI , 

(4.8) 

J cPk 1 1 
where I = (211')' k' _ M' (k + 1')2 - 1112 ,I J cPl 1 

= 10 clz (211-)2 [ll _ 1112 + r:l:(1 _ :1:»)2' with I = k + p(1 - :.:) 

r I . f cPls 1 
= 10 (:.:. (211')2 [l~ + j\.f' - p2z(1 - :.:»)' 

I I ill' I 
- d:.: -- :-::c=--::-~--:-;: 
- 0 (211')2 [1112 - r:.:(l -:.:))' 

(4.9) 

Then 

(4.10) 

e ,U" A ( ) = -t; tp,. ,,1' • 
11' 
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k+p 

Fig.2 

To get the coordillll.te spllce cxprcssirJII we lise D,. 4-' iT',. agllin, then 

lJ J ,. e 'U'8 A ,J 5 = -~ ,~~.." ..... 
11' 

(4 11) 

B. [ J~(x) I JO(y) JETe 

The DJr. limit method says (t ,5,43j that 

(4 12) 

Therefore if we gel 1'1 in the Idt hand side oC (,U3). it means that (0 I 

( J~(O.:.:I), JO(O.O) ) I 0) in the righl hand side is - ii~ih(:.:I), i.e., 

I D I 
P .-. --D 15(:1: ). 

x 
(4 14) 
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T(,,) in (4.12) is givcn by Fig.2 as 

(I 'J £fie x(1 - x) 
= 41'01'1 10 d:c t (211")2 [lk _ p2x(1 - x)J' 

i POPI 
=-;7' 

(4.15) 

Thcn 
• 2 • • 

. t 1'01'1 I t I 
lun 1'oT(lJ) = ----- = --PI = -lJ . 

"""'00 11" p~ - P~ 11" 11" 
(1.16) 

Thcrcfore from (4.11) 

or 

I[ 0 0] i 8 I 1 (0 J&(x),J (Y) GTcIO)=---{J 1.5(x -'II). 
11" x 

( 1.17) 

4.2 Point-Splitting Method 

A. 8,.J~' 

From (4.1) we have the cquations of molion 

( 1.18) 

1/18,d' = -ic1/1-y" A" . 

Lel 115 define lhe axial currcnt in the following gauge invariant form [1,1,5]. 

11 

In U,is sedi011 we t.rent. il,. 'IS nn external firld. 

( U!l) 

Using (4.tR) 

( (f.T.' ~ O, • .J~·(x;()",~ -ir..l~'(x;f")[I1,.(:r.+ ;:-)-/1,.(x-- -)--{),. ;\.~(Y)"'''·J 
2 2 r· ~ 

(1.20) 

Tlwn 

11.21 ) 

where r" == !"(n I J~'(x;!} I 0). 

From (1. HI) 

f I. 22) 

taken R~ posith·c [:'J. SA(X, y) CRn he cxpan,lcd in powers of ;1,. as sl, .... vn in 

Fig.:l. 

t t 
SA(X - 2'x -I- 2) 

= S,..( -t )1- ie J tfy S,..(x - ~ - y)'(Sr··(Y -- x - ~)",.(!I) ... , 

( 12:1) 



+ 

Fig.3 Fermion propagator SA(Z) in the externallicld AI' 

where SF is a free fermion propagator. 

The first term SF(-~) in (4.23) or Fig.J is as singular n.~ 1/~, and next 

terms are less singulllr. Therefore when ~ goes to zero, only this first term 

contributes in (4.22) 

Therefore from 

we have 

S ( ) - . / cPp -ipz .., . P 
F Z -I (271-)2 e 1'" 

S (_ ) - '/ cPp ;P • ..,IJPIJ 
F ~ - I (211 )2 e ",' 

101' _ -'T {" _Jl} / cPp ° ;p.PI1 
- I r .., "'n (27r)2 ~ e p' 

-_2'I'IJ'/ cPp iP.~(PIJ) 
- I~ I (27r)2 e opo'" 

,. / cPp (vI1 = 2~ P (27r)2 00 ",). 

In (4.25) we apply the following property. 

l=p rfpoo I(p) = i27rP'/(P) , 

( 4.24) 

(-1.25) 

(4.26) 

where P is the value of p at infinity which is the boundary of the volume 

intcgrnl. 

where we IIl'plic(1 t.he IIvern~ing I'fOCcllllre. Thcn 

(,I 2R) 

Using (4.2R), (4.21) ],ecornes 

e e 
(0 I D,.J~'(:r.) 10) = - _EO,. [0'"" = ---E''''D,.A". 

2rr 7r 

(4.2!» disngrce~ with the re~lIlt (1.11) of the loop-dingrnm mclhod hy the 

sign. 

In order lo calculate lhe "eqllnl time commulntor" of two hili ncar' of 

fermion fields, we,tnke the sCl'eration EO I\S spatial [I,33J. The reason is 'hal 

we will use the eqllal tillle canonic,,1 cOIIHl11ltation relation 

(,1.10) 

Also, we lake the point-splitting forHl (4.19) only for J~(z) since the re::lllt 

is the same I\!l the case when we lake lhe poinL-spliltillg form for holh .Ji.'(:r.) 



and .J0(y). Then 

_ 1 8 C( 1 1 )JO(O I. I) - -I; 8x l iJ X - Y 6 ,X, I; . 

Therefore 

(0 I [J~(O,Xl;I;I), .J°(O,yl) 1 I 0) 

8 = - 8xl S(xl - yl)I;I(O I J~(O,xl;t:I) 10) 

= - 8:' S(xl - yl)[IO, where [nl' is defined in (4.21) 

8 i = _-S(xl - yl)_t:IO , where we used (4.28) 
Dxl 2" 

i 8 1 t = -2"8x1 .5(x -y). 

(4.32) is half of the result (4.17) of the loop-dingrnrnmcthod. 
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(1.31 ) 

(4.32) 

CIIAP'l'Elt r, 

GIlAVJTATIONAL ANOI\:lALY 

III thi~ dl"l'\.('r w~ ~t.u.Jy I.he purely gravil.al.intlfll alllJlJl"ly ill I.h" ~)";.ll?m 

of t.he grnvilal.ilJllnl Ii.-\d cnllplell to a chiral fl"rrninll [H-4GI. \Vc ol,l:t;ll all 

effeclive nelion hy ('"lculal illg Fl"YIlllHlll di"grnllls ill tIle lighl Cfllll" o"',r.Ji-

Jlal.e~. nll<1 we ~ltow IIlal lit" onf)maly given by lhis dTedivf~ "diem n.~rt .. cs 

with tlmt. gin'n hy th" dilferclll.i,,1 r,{,nJnrlric IIldho,l. We will ""II n W''l{'ral 

cQortlinnle lrnllsforlllal.i'JII an Einslein transforllloli')n nrHI n grn"rl\l ("(·',r.Ji-

nale trnn~forlJJation nn"maly nn Eill~kin nnomaly re~l'ccl.i vcly [I :11. 

In s.~dion 5.1 we "hl."in lire anomaly up to the sign hy IIsing tit" differ-

cntial gcometric l11etIl"(1. In scclion 5.2 we solve lh" anomaly C'l'lal.ioll. In 

8eclion 5.:1 we show tIl a!. the result of seclioJl 5.1 ngrcc~ wit.h the di"r·.ralll 

cnlculations. 

5.1 EiJlstein Anomaly 

Let us consi'\cr 0. sy~lcll1 of n Icft-lmll,lr(1 chirnl frrlllion int.rrndillg wit.h 

nn exlcrnnl grnvitation,,1 field. It is descrihed hy n ~Ylllmdrizc,1 Lagraflgian 

i - --
[, = - e c,,"( ",..,6 D.,'" - IJ.,'I'-("') 

2 

wlrcre e"I' is 1\ vierhcin firld nml 

(5.1 ) 

~ .. "" 1 ~ '1 '-' == ~h.'l . 

(5.2) 

Since ill two '\illlcnsi(>l1~ we have ('Inly one iJldl'pen,lcnl. E"" whidl is I'ro 'POf-



· tional to )'6, the terlll which contains lhe Cartlln-\Veyl conncction w,.be in 

(5.1) is proportional to b",)'6} which vltnishes. Therefore (5.1) becomes 

simply 

i _ ..... 
[, = :2 c e,,"(1/J-y" a" ..p), where (a a,. b) == aUJ,.b) - (a,.a)b. (5.3) 

Under the Einstein transformation, I.he vierbein allli the connection trnlls-

form as 

{ 

6e e,," = {"opc,," + D"{,,e/ ' 
(5.1) 

s(r",," = €pupr",." -I- lh{"l'p,." + D,.epr~p" - r",;Dpe" - u).D,.€" . 

Let 115 treat e,,", 1\,.", -D,,{" 8.5 matrices E, 1\, and A respectively, 

i.e., 

(5.5) 

and decompose 6e into two parts 

(5.6) 

such that 

{

LeE = {"apE 

L(r:~ = {"apl\ + D ... {prp , 
(5.7) 

and 

{

S"E = -AE 

6"1',, = D"A = D"A -I- r"A - Ar" . 

(5.8) 

We notice that L( is It Lie derivalive wilh E as It scalar and 1'" ItS It covariant 

vector. 6" is the sallie as a Yang-Mills gauge transformation with 1\ fl., a 

Yang-Mills gauge fielt!. Repeated applications of 6" E in (5.8) give 

(5.9) 

47 ·18 

for a finite transformation. (:'.!l) rcmin'ls us or (2. In) in dmpler 2 all,1 will 

he used when we f, .. lve an anomaly eqllat.ion in section 5.2. 

As in the Yltng-~lills gauge lheory euse, we have 1\1\ IInomuly equul ion 

(!i. 10) 

where HIe is nn effeclive adion whirh gives rise lo lin Einslein anornn Iy lle 

under lhe Einstein trnnsforll1alion "e. Then frolll 

(5.U) 

where 

(5.12) 

we get i\ consistency condilion 

(5.13) 

llaf(leen lind ZlIlllino showe(1 that the Einstein anomaly which iq the 

solution of (5.13) is given hy the same function as that of a Yang-Mills ,~allge 

theory by rephlc.ing A, F hy 1', R respectively (13). Therefore from (2.Pi) we 

have the two-llimensi"nal Einstein anolJlaly as 

[2·di",. Einstein Ano.) ()( f5.H) 

However, the lIofllmlizution fador is different from lhat of the Ynng Mills 

gange anomllly. The Atiyah-Singcr index of the I lirae operator ill the s~ stern 

(5.1) is given hy the integration of the Oirac germs ,1(JIf) as (IB,I!!) 

i~.15) 

.. 



where 

• ../2 (x;/2) 1 1 2 
J1(M) = II --;--- = 1 - --PI + -{7(pJ) -1I'2} -1-.... (!l.W) 

bl slllh(x;/2) 21 5760 

Then in four-dimcnsions, where we started to get the two-.Jirnen~ional 11011-

Ahelian gauge allomaly, 

1 'i = -1--
2 

1r (R 1\ R). 
2 ·811" IIr 

(5.17) 

III (5.17) we hnve an nddilionnl fadoro£(-1/21) compared with (-1/811"')Tr(F2 ) 

in (2.11). Therefore, with the correct norlllalization fadur we ohtain the two-

dimensional Einstein anomaly as 

[2-dim. Einstein Ano.) = (-.!..)( -.!.. )Tr J d'x ADpr\EP
), 

21 111" 

= _l_Jd':J:(A) "8 (r,\) "E"). 
9611" I' ~ " 

= __ I-Jd2:J:8,,~VDpr).':·E").. 
9611" 

(5.1R) 

4!J 

5.2 Solution or the Alloll1::lly Eqll<1tion - gn"cctive Ac-

tion 

The allolllaly cqual.inll f(If tlw Eillst.cin allolllaly is ,:;i\'clI hy 

f f~~W( = 1I( 

\11( -co _.;;;,;;.r ,Px D,.~··Dpl\,.'·EP\ . 

First lel liS consi,lr'r ollly I,h~ F,~ part of F,( = C( + f,~ in (5.li), Frolll (;',8) 

f F,~:\ = n.l /\ +- 1\/\ - /\1\ 

\ e" -= c-~ e" I 

Fi.20) 

where we lIsr'd the m:ll,rix lIotal,ion of (;,,;,) all" 

(:'.21) 

Lrt liS also wrile tile Rllfl111al}' f'flllatioll (;'.I!'!) lIsing ollly F,,,. It will be 

~hown laler thallhe snlllti"n of "1i~ 111f),lific.1 anolllnly p(!,lnti,," hn.q 7.('1'1 Lie 

t\('fimtive. 

f .~" a'( "'" lIE 

\1I( :-= 0.\;; f rfT 1'r(/\Opl\EP\) . 
ri,22) 

\Ve lIotice lhat the firsl ("\,lnl,ion in (;,.20) is the same as the Yanr,·r.lills /!,'lugc 

trnnsforrnation, 11.11,1 the sCC<.'IId c'llIal.ion in (5.20) is a nom-lillenr lrnt"fnr-

111nli(III like (2.19). Thrro·f.~ff'", wc ohtnin a solutioll of (5.22) in nnalnr,y wilh 

(2.20) 11:1), 

"'dr. II) = -~-. J rfx t .It Trl( -11)[)"I\(t)~"·\) , 
!'!(.11" 10 ( ',.2:1) 

whcre 

(".,2,') 
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Let us ~how that the Lie derivative of wdr, II) in (5.23) is 7.ero. (5.7) says 

that B is a scalar under 0. Lie derivative, so II is also a scalar. (5.7) al~o SIl)'S 

that I'>. is 0. covariant vector, then r>.(t) in (5.2·1) is also 0. covariant vector, 
2p_ .... jE:,-P. 

and then upr>.(t),"" in (5.23) is a scalar density. Therefore the int.egrand DC 

IVdr, II) in (5.2:1) is a product of a scalar and a scalar density, i.e., a scalar 

density. Therefore, Fig.1 Fcynman rule: Take Tr ! (~~2' and attach ( - ) sign for a fer mion loop. 

Then multiply the symmdry factor 1l;(I/n;!) for an effective n·:tion. 

where M = 1/90rr J~ tit 1'7'[( -ll)Dpr,,(t)t:p,,) is a scalllr density. Then 

Then 

Combining (5.22) and (5.25), we have 
(5.20) 

(5.21) and 

Thus it has heen shown tlmt (5.23) is a solution oC the original anomnly 
e = del(c,.") = det(1 + II) "" exp{Tr[ln(l + II) J} = 1 + haa + O(ft2) . (5.30) 

equation (5.19). 

Using these expansions, we have the illteraction Lagrangian 

5.3 Comparison with Diagram Calculations 

As we ho.ve shown in section 5.1, our systcm is descrihed by the La-
(5.31) 

grallgian Then we obtain the Feynrnan rule given in Fig.l Cor one-loop dingr;'flIs in 

• 0,,- .... 
L = 2 e e V"Ya D" '" , (5.27) the SRme way I\S in section 2.3 oC cllapter 2. 

where (1 + '"'(5)';' = 0, i.e., '"'(_ '" = 0 . Let us linearize the vierbein with the Using the Fcynman rule in Fig.l we get the following amplitude CI'r Dia: 

symmetrized h,,,, n..~ 

e,," == Ii,." -I- h,," . (5.28) 

'. 



k+p 

Fig.2 Diagram [5.1) 

gram [5.1). 

J dk+ dk_ 
Amp. = - (211')2 {(2k + p)+h __ (p) - (2k + p)_h+_(p)} 

X {(2k + p)+h __ ( -p) - (2k + p)_h+_( -p)} 

X !{ l}{ 1 
4 k_ + i~/k+ (k + p)_ + i~/(k + ph} 

i I}3 = --21 tih __ (l')h __ (-p) + (local terms). 
1I'p_ 

(5.32) 

In the above calculation we followed the same procedure a.q that for (2.50) in 

cbapter 2. We attach the symmetry fl\c~or (1/2!) to (5.32) I\nd ml\lch this 

to ilVI , 

1 J cPp p3 
WI = - 4811' (211')2 d'q52(p+ q){p~ h __ (p)h __ (q) 

+ a p!I&_-(p)I&_+('1) + h p_p+h __ (p)I&++(q) (5.33) 

In (5.33) we added a general local functional which is Lorentz inVtll'ilUlt (12). 

In order to show that the dil\gram calculation gives the 51\me anom1\ly I\.S 

that obtained by the differential geometric method, let us try to I\lljust the 

coefficients a, h, c and d such that the variation of (5.33) gives rise to the 

.. 
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0(1t) tefm of (:'.IR). Firslw ... ('xp"n.J (!i.IR) for cOInp"lison, 

[2·,lim.Eillsldll Allo·1 

'VIICII the syslem is nsslllncll In hn,'c 10c1\1 Lorenl7: il\'1\£i,,"C(', wc C"" usc 

lhe loc,,1 ,,(,relit?: If,,nsff'flll,,l.ioll n.' n resloring trnnsfnflll"tion to kc('1' tIll' 

symmdrized ",on SYIIUII('lric nlltler the Einstdn trnnsformatioll ill the fnllow. 

ing W"Y. From c,,,, == ",'" + It,on.' IIn.Jer the genuine Einstein lrnllsfonnal.ion 

rlus the .Iocal Lorelltz lrnllsforlll"li0n, 

where e.~(:r) i~ I\n nnlisynllndric I'"r"mder funclion for the I"cnl Lor"nlz 

trnllsforrnnlinn. Then \'y choosing O.~ n... 

(r'. :lli) 

we IlI\ve 

(:' :li) 

Since the variatirm in (!i.:li) is sYlJ1mdric, h, .. i~ kept symmetric IIII.I ... r the 

trallsfonn"tioll if we slnrt ... ,1 with 1\ s}'lmnctric h,,,,. E;\(:h comp"lIent of ",,,, 



(a) (b) 

Fig.3 Diagrams of the order of 0(112) 

transforms as follows lip to the lowest order in h, i.e., 0(110
): 

{ 

c5(h++{p) = ip+e+(p) 

c5~h_+(P).= ~(p+e-CIJ) + p-e+(p)) 

c5(h __ {p) - ,p-e-(p) . 

x 
(c) 

(5.38) 

It can be shown that WI in (5.33) with the following assignment of a, b, c 

and d gives rise to (5.3,1) under c5~ given by (5.38), 

___ l_J d'p , 2. cl. 
WI - 4811' {211')2 d qc5 (p .. q){p_ h __ {p)h __ (q) 

- 3P!h __ (p}h_+{q) + p_p+h __ {lJ}h++{q) (5.39) 

Therefore, it has been shown up to O(h) in the anomaly that the anomaly 

(5.18) whicl. W:lS obtained by the differential geometric method agrees with 

the result of the Feynman diagram calculation. III the above diagmm calclI-

lation we did not include the diagram in Fig.3(a) whicli is the same order in 

h as the dingram in Fig.3(b) since this dingram would give a local functional. 

Actually in our systein the vertex in Fig.3{c) does not exist when we expand 

the Lagrangian (5.27) using (5.28), (5.29) and (5.30). Then the diagrllm in 

Fig.3(a) does not exist. 
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( 
( a) (b) 

(c) 

Fig.4 Diagram~ of the order of 0(1&3) 

+ (p ......... q) 

r=-(p+q) 

Fig.S Diagram [5.2J 

tet U9 now show lIHlt diagram calculations IIgree with (5.18) lip the ned 

order, i.e., 0(1&') in the allomaly. For this we need to calculate ol1ly the 

diagralll in Fig.4(a), since the diagram ill Fig.4(b) docs not exist LeC'lt\se of 

the absence of the vertex in Pig.3(c), and the dil\gram in Fig.'I(c) wou"l give 

rise to a local funeliollalto the elTeclive aelion. 

Applying the FeynmlUl rule in Fig.l, we have the amplitu,le for Dil\grllm 



5R 

[5.2]. 

1 J cl
2
k Amp. = _(2)3 (21rp[(2k - 1')+"--(,J) - (2k - 1')-"+-(1')] 

x [(2k + qhh __ (q) - (2k + q)-" .. -(q)) ('1.'12) 

x [(2k -IJ + qh"--(r) - (2k -1' + q)_h .. _(r)] 

x{ l}{ 1 }{ 1 } 
k_ + i~/k+ (k + '1)_ + i~/(k + q>+ (k - 1')_ + i~/(k - IJ)". 

+ (1' +--~ '1) . 

(5.'10) 

(5.40) contains the Collowing four cnses for the combh'1I1tions of the extcn",1 
Followillg n ~il1liJl\r I'rncr{Jllrc ns from (5.J;') to (;'.3i) wc nJ.lllin 

h fields. 

(ca.~c 1) (h __ , ,, __ , h __ ) 

(case 2) (/,-_ , ,'-_ , h+_) 
I I lid ' - 1(D,"~ II,,, ... Dn~ It,",) - 1( ~",'I'n'" Den"'''') 

(5.41 ) 
(calle 3) (/,-_ , h+_ , h+_) ... 0("') . 

(ca.'le 4) (11+_ , 11.,._ , "+_) . U~ing (r..43), (2.1:') nlHl the corre~p(lr\{lcnce "<:twcen (D,.) nlld (iT' .. ) M 

explnined Rbove (2.5(,) in c1lnl'lcr 2, we hnvc the follnwillg 0(1t') ter"l~ of 

As we did beCore, we integrRte (5.40) first ovrf k_ by using the residue 

method and then over k+. After these intcgrntiorrs we find thnt (mIJe 3) I\m1 

(caIJe 4) give rise to locn1 Cuneliorrals fOf the effeclive nelion which enn be 

ignored since the effeelive nelion is nmbiguo"s by n locn1 C""elionnl. (ca.,e 1) 



fi!J 

2 i J ,[2" d
2
q 2 2 h~(WJ + W2)[O(h )) = -- --- -- d ,. b (p + q + r) 

!lG1I" (211")2 (211")2 

x {h __ (l')h __ (q)e+(r)(p! -I- 31)~qd 

(5.44) 

Since we used tile !igM-cone coordinates Cor the diagram calculations, llll'se 

cnlcull\tiollS I\re IIol covariant and fairly complicated. Arter lengthy calcu-

laLions it can be shown that (5A4) becomes the sl\me I\S the 0(112) terms 

of (5.18) by adding the following Lorentz invariant local functional We to 

i J d2" ,Fq 2 2 
IV c = -- -- -- tl r fJ (1' + q -I- r) 

!JG1I" (211")2 (211")2 

x {h-,-h')/L,(q)h++(r)(-~)(T'~ -I- 8T)~q+ + q~) 

+ h+t(T,)It+t(q)/L._(r} ~ (1'~ -I- 41'_q_ + q~) 

+ L+(1')ItH (q)h_+(r)2 hJ~ -I' p-q- - q~) 

.. 
+ ILl (l')L+(q)/Ldr);) (2p-l'~ + p-q+ + l'+q- + 2q-q.f)} . 

U',·'15) 

Therefore it has been shown thal (5.18) agrecs with the diagram calcl1bl ions 

up to the secolld nOli-trivial ortler, i.e., 0(112) in the anomaly, That is, ill this 

section we showcd, "I' to the second non-trivial order, tlmt the pllrely I;.nvi-

talional anomaly ohll\ined by the difTcrenlinl geometric melhod ngrees with 

the variation of IV ohtnined hy diagrnm cnlculations by ndding nppr0p' iat" 

local counter terms. 

GO 
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SUPERSYMMETRY ANOMALY SIIper5Yl1IIIldry n.n0lJlnly in the \Vc5s-Znrnino P'II1Jgc is nlso c"lIccle,1 'Hlt.O-

In this chapter we study supersymlllclric Yang-l\lills g,\\Ige theory in lIlat.ically. 

which the slIpersYll1lT1ef.ry is a rigid synunclry {52J. We can think of two FllrUH'rfll0re, we old.ain the '''I'',rsyrrllllclric exlcnsion or the \\"'ss-Z"lIlinn 

kinds of supersymmell'Y anomalies. The first is on anomaly of 1\ slIl'ersyrn- lerm following \"ess an,1 ZlIIlIino's original mdhOfI in slIpersp""c [!1,5:lJ \Ve 

mcLry transformation in 0. /mpcrficld formulalion without fixing 1\ specific l!Iorliry this extension 5 • .,.1t lhnt il depends ollly Oil lhe ,"edor 1III1II.il'lr.-t. T"i, 

gauge. \Ve will call this trnnsformation a genuine supersymmclry t.rnnsfor- ('xlen,lc,1 \\'e5s-7,lIIllillo t('fm'~ g:\1Ig~ nll<l slIpersYIllIlld.ry ,"ari"lif)Jl~ r,iv .. ris .. 

malion, an,1 this anomaly a gelluine supersynulletry anomaly respeclively. to the g:l1Ige nn<l sllprrs~'''l1ndry nnoll1nlics ill the \VCSS·7,lIIl1illo gnlll:'~ re-

The second is an anomaly of a supcrsymmclry transfornmtion in the \Vess- Rpeclivdy. 

ZUlllino gauge which is composed of two steps of transformations, i.e. 1\ g~n- In 5ect.ion G.t we present tw(.-dilnellsional ~nperfidrls nnd lh"ir RllpCI 'YIII-

uine sllpersymmetry transfornll\tion I\nd a restoring supersymmetric gauge tIIetry nnd gnllge trnllsformntions. In sedio" 6.2 we oblain a slll'ers),lIl11'dric 

transformation. We will call this anomaly 0. supersymmetry anomaly in the gallge nnomaly nn,l grl1lg'! nnd slIpcrs),lTIl11dry nnomalies in the \Vcss-Z'"llino 

Wess-Zumillo gauge. gAllge. In seclion 6.3 we ohtain the Rllpersymll1etric extcnsion of the 'Vess-

\Ve find 1\ supersymmeLric extension of 1\ gauge anomaly which we will 7,lIlI1ino term. 

call a supersymmetric gauge anomaly. This anomaly is then used to ob-
G.l Two-dimcnsionnl SlIpcrspncc nllli Supcdields 

tain a gauge anomaly and a supersymmeLry anomaly in the \Vess-Zllmino 
JII twn-dimensionnl slIl'ersl'aee we lll\vc two rcal spnce-tiltlc u)orcli"ates 

gauge, which satisfy the mixed consistency conditions. In this derivation it 
:r.0 , :r.' And two rrnl spinDrial cnorclinnf.cs (J" (J2. The cOIl\·cllt.inns whie-'I we 

is transparent that the slIpersymmetry anomaly in the \Vess-ZIII"ino gange 
will lise IlTe gi veil I,y 

originates only from a restoring supersymmetrie gauge transformation, not 

from a genuine slipersymmdry transformation. This indicates thnt there is 
{,",l'r,} =:7 2,I"V, _1,00 = I,ll I, ,.,01 = ,.,10 = 0, 

no genuine supersymmetry anomaly [481. This situation can be guessed from 0 .., = Co :) 1" C :) , 
l'K = 1'01" C -~J ! G.I) 

the fnct that the genuine supersymmetry transformation is 0. rigid hans- Th,! rest of 0111' ('ol1\'C'lItions nll,I thciT proper tics arc r,ivrn ill AI'I'Cllrli)( A. 



A scalar superfield is given by 

- i-' 
5 = A -I- iOV' + -001" , 

2 
(6.2) 

whcre 0" = On:?a is I1lincar combination of 0" '5 and is not indcpendcnt of the 

o,,'s. Thc supersymmetry transfollnation of 5 is given by using a gcncrator 

as 

Q 8. "OD " = - DO + .-yab b " 

" 

50 5 = [5,oQ) : 

{

M =io..p 

5~, = D"A,,),"a + Fa 

5F = iii")'· a..p . 

(G.3) 

(G.1) 

A spinor superfiehl or 11 vector multiplet \1." which is realllnd contains a 

gauge field A,. as one, component field, is givcn by [52) 

(6.5) 

Its supersymmctry transformation is given by 

G3 

j 
fJ€ = ,,),'·nA,. + ,,),5n Af + aN 

5A" == ~o")' ... ")',.D"~ -:- ~~)".( 

5M =: _~o")'5)'. De - ~a")'5( 

I ('N == ~ij)'. De - ~ij( 
_ I' " 5 " . " h( - -")' ")' oD,.A., -)' ")' aD,.M - ")' aD,.N . 

(fl.G) 

III orelcr to have a gaugc slructurc, wc let a set of scalar supcrficlth form 

a rcpresentalion of 1\ gauge group such that 5 = {5;} transforms lIIulcr a 

finite gauge transforru'\tion 1\5 

(fl.7) 

or 1IJ1(ler an infinitesimal transformation as 

(6.8) 

where I\. = 1\.;1i , 1\.;'5 Rre real scalar superfields which arc supcrsymlllctric 

gauge trflllsformation p'Hameters, i.e., 1\.; = tli -I- iOX; + fOO Ii anel T's Rre 

anti·herrnilian gauge group gcncralors which salisfy [7i. Tj) = I;j~ 7" 
\Ve gr.uge covRriantize 

(6.9) 

to 

(6. to) 

by requiring V" = \~iT; to transform tlntler a gauge transformatir:lII as 



is, under a finite transformation 

or under an infinitesimal t.rasforllllltion 

In terms of the component fields, (G.12) becomes 

j
6e = x+ [e,a] 

SA,. = a,.a -I- [A,., a] + ~~-y!,X + x-y,.e). 

6M = [M,a] + He-y&x + X-y50 

lliN = 1+ (N,a] -I- H-h+xO 

6( = -'1' aX + [Cal + [e,/] - [A, .. 'Y"x] - [M,-y5 X]- [N,x) . 

(G.II) 

(G.12) 

(6.13) 

When we have the gauge symmetry (6.12) or (6.13), we CI\l1 choose the 

Wess-Zumino gauge in which e = 0, N = 0 in the following way. Let u!! start 

with e = 0, N = 0, then we have the following transformations of e amlN. 

Genuine supersymmelry trn.nsformalion for e and N : 

1
6e = 'Y"aA" + 'YsaJII 

5N=-~o(. 

Supersymmdric gauge transformation for e and N : 

1
5e = X 

5N=I· 

(G.H) 

(G.15) 

A!! we see in (6.14), even thouGh we start with e = 0, N = 0, these 

component fields become non-zero afier Il genuine slIpersymmelry trftllsfor-

malion. Bllt we can come back to e = 0, N = ° by performing Il rrstoring 
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g'Ulge trnnsrorrnntion wllich i, giv~n hy th~ rollowing g:Ulgc transrorlll:ttinll 

p'lramclcr /\Ila as ("0.11 h~ Sr.(:11 in (G.t!). 

~II';V = i/}/\na + (V, /\Ilal 

with /\ne : 

J
"=O 

X = ---y"aA" - -y~nJH 

l f = ~(i,\ 
whNC 

,\ = ( + -y . De . 

Therefore the sII,""rsyrn'llclry !lnd g!luge lrallsforrnalions In the \\'ess-

hllrnino gauge !lre given \.y 

1
6SIWZ) = 6Gl;N. S/I.f;Y + fi llc 

IiG1WZ ) = 6.~ur. GAUGf: with /\e: tl = tl, X = 0, f -= 0 , 

where IiCF-N. SI!SY, lill<; 1\I,d lisur. CAliaI': In .. all g"'\IIinc sup"rsynulldry, rc·:tor-

ing g:\IIge alld supcrsYllllllclri<: gauge tr!lllsfnrlll!ltinlls respectively. "fter-

wauls, we will writ,. IiSI'vz) !lnd IiG1U'z) simply n..~ 6s !lnd IiG . tlllder' hese 

lr!ln,formatinrl', lI,e o:ompolI('nt fid,ls A, .. lIf, ,\ in the \\'css-Z'm,ino /!'IIIr,~ 

tr!lnsform I\~ 

{ 

6.~A,. = -- ~(.-y",\ 

6s !If = -- ~ (iI's .\ 

lis'\ ,= -y"-y"aF,,,, I- 2-y"-y5 0 (,')"M I- [A, .. !If» , 

fiG 



where F"v = D"A" - lJ"A
" 

+ A"Av - A"A
" 

, 

{ 

OGJI" = 8"a -I- [A,II ,,) 

oGM = [M,a) 

oG>' I>', a) . 

(6.19) 

Note that ill two dimensions the \Vess-Zllmino gauge has a psellclo-scnlnr 

field /0.1 as well as A" alHl >., in contrast to the fOllr-dimensionnl case in 

which there is no AI [52). 

For reference we write down the following slIpersymlllelry and gnllge 

tro.nsforlllations of a scalar multiplet in the \Vcss-Zumino gauge. 

where 

l

Ost/> = i°tP 

6~;tP = "("o.Dllt/> + ,,(50 Mt/> + oF' 

osF = iO-yI'D"tP + io"l MtP - ~o>.t/> 

D,• = 8
" 
+ A ... 

1

0Gt/> = -at/> 

6GtP = -atP 

6G F = -nF. 

0.2 Anomalies 

(6.20) 

(6.21) 

First let us find a snpersymmetric extension of a gauge anomnly which 

we will can a slIpersymmetric gauge anomaly. A vector multiplet given 1,y 

(6.5) gives rise to 

(6.22) 

(,7 

Then with II = a -I- iOX -I- ~7JO /, we have 

(G.23) 

Since the first terlll 011 the right hand side of (G.23) is jnst. nn ordinary 

non-sllpersymrnelric gauge anolllnly, it fieelllS I'lnusil.le that (G.23) is a su-

persYllllnelric gau~~ nnomaly. In order to confirm t.his we should fihow that 

(G.2·1) 

sntisfleR the consistency conditioll 

(6.21» 

where 6" v.. is ~iven in (G.12). 

Let liS fihow this. 

= II.(VU)II, - IIIU(DII 2 ) - 1I,(DII 2 )U - 1I,1I 2(OU) , 

(r,.26) 

From (G.2G) we II/we 

(';.27) 

Since the secon,l terlll 011 the right f,nml sidc of (G.27) i~ a totnl (Ieriv;·ti\·c, 

it vnnishes under the intf'grntioll f rP;r dO dO. Thu9 by taking I tPz dO riO on 

both sides of (6.27) wc ohtain (G.25). Of coursc, (G.25) is alsl) satisriecl with 

" 
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an arbilrary normalization factor ill (6.21). \Ve can show the above in a more 

elegant, but equivalent way which is given in Appendix n. 

The super~ymmetry and gauge tran~formations in the \Ve!>s-ZulI1ino 8'lUge, 

i.e., (6.18) and (G.19) satisfy the Illgebra: 

{ 

[Os (13) , os(a») = oG( -2i(a-yI·J3)A,. - 2i(a-y6!3)M) + 2(o-y'·J3)i8,. 

[c5G (b), oo(a») = oo([b, a)) 

[oG(a), os(u)] = 0 . 

(6.28) 

Then a 'mpersymmelry Ilnomilly 6 s (a) and a ga\lge anomaly 6 G(I1) in 

the \Vess-Zumino gauge satisfy the consistency conditiolls: 

{ 

os({3)6s(a) - os(a)6s({3) = 6 G( -2i(o-yl·{3)A,. - 2i(o-y6{3)M) 

oG(I,)60(a) - oG(a)6G(b) = 6G([b, a)) 

oo(a).6.s(a) - os(a).6.o(a) = 0 . 

(G.2!J) 

The term 2(u-Y'·{3)i8,. in (6.28) did not contribute to (6.29), since the 

vacuum fUllctionnl is invarinnt under translation if we impose the condition 

that a surface integral vanishes. 

The interesting thing is thnt we call obtain .6..o;{a), 6G{a) which satisfy 

(6.29) by usillg the slIpersymmetric gauge anomllly (6.21) in the following 

way. Let tiS rewrite (6.24) with nn arbitrary normnlizntion factor as 

.6.(A) = -icTr J d2:cd28(AD~6V) 
= cTr J d':c (al!:''''8 .. A" + ~X-y5,\ + fM) 

(6.30) 

G!J 71l 

where J ' I J -,l 0 0=- 4" dO dO stich that. J ,fo 00 0-= I . 

At first wc obtain (I,(~(n.) frolll (6.:10) hy tnkin/; a = a, X -= 0, f ~ 0 

~ince "Gin (G.1.7) Of (G.I!l) wn..~ givell l,y thi!> Ils!>igl1tncnt. of 1\, i.c., II G . 

Ncxt., in order to ol,["ill l\.~(rt) we nhSPT\'C lhat c5s in (11.17) Of (G.I!!) I!> 

cOlJlpo!>c,1 of two st,:p!>, i.e., '~GF.N. S'JSY nlHl "nG . lint we eX(l"ct that. the 

Or.EN. SUS}' ~t.cp will not pro,I1",c nny anomaly ~incc litis trnnsfnrrllati"l1 is a 

rigid transformation. Theil w(' exped t.hat 6(A) with A = A/IG ill (G. III) will 

give rise to L\s(r:r) ['I~J. Thnt is, we expect the folk""ing to bc the solnlion 

d (G.2!l). 

L\G(a) = 6(1\r.: a = n, X = 0, f -= 0) 

'I' Jd2 ''''r)'' == c r xnt. (,.It .. t 

i 
L\5(0) = 6(I\IIG: a'= 0, X == -,),"('01,. - ')'5 0 U, f = 2u'\) 

(II 32) 

= ic Tr Id2x(~A,.u-y"')'5,\ I- Ua'\) . 

We have confirme.llhat thes" 6r.(a) alit! 6$(0:) ~atisfy (6.2!l) byel<plicit. 

npplication or (6.18) nnd (G. I!). Thrrefore we havc fl"lIId thnt th" Sllprf~'''II1' 

mdry anomaly in lh(' \\'e~~,ZlIIllinn ,;allgc originates from the Sll I'crs)'!1II lid· 

ric gange anomaly. Tllis ilH1icntr~ thnl lhere is 110 genuine sUI,,·rsYIIIIII.try 

nnomaly. This nlso shows that wl ... 11 the gmt!;e nllollll1ly is cRllceled, the 

I 
"

11 1.11<' \\'e.<s·Zulllinf) gall"c is al~,) cnllccletl n .. to-slIl'ersymmetry nnomn Y h 
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G.3 Supcrsymmetric Extension of the \Vess-Zumino Any gauge invarinnt functional can hc added ill (G.:J.I), so (G.31) is f\ parti,'ulnr 

Term solution alld is called lhe Wess-ZlIITlillo term. 

'Vc will find 1\ supersymmelric extension of the Wcss-Zumino term which Now wc nrc intercste,l in hflving n solution lV[A) as n functional of 'lilly 

depcllds ollly on componcnt fields of a vector nlllltiplct. This vacuulll func- A •• without the indepcIHlent rr. This cnn he nchic\'l~,1 by replacing tile ill,lc-

tional gives rise to gnuge and supersymmetry anomalics by gauge ali(I su- 1'<'lIdcllt rr hy a fllnclioIl1l"(A) which trnnsforms as (6,3;') when A,. transf"tms 

persymmelry variations rcspectively. In order to IIl1dcrstall,1 the derivation ns a ga"ge fiel,l, if wc enn fin,l such 1\ f"nction (27). 

better, let liS review bricny the familiar non.supersYllllTlctric gaugc theory III the Ahclian cnse we find such n rr(A) easily as 

case [8,9). 
rr(.4) = ~1 a •• A" , where 0 == a,/Y' «(;,37) 

An cffcctive action can he obtaillcd by solving an nnomaly equation 

sillce 6",\" = a"a, 6"rr(A) = ~('),.(D"n) = a . 

(6.33) 
Then 

whcre G;'s arc anomalics. 'Vess Illld Zumino solved this equiltion Ilnd ob- W[AI = J d2
z J tit (-a-fJ"A")G(A(t» 

taincd the solution 

(6.31) 

I I . 
= J d'z l (It( o 8" A") 2'rr avjh(t)~"~ 

. I I 
= ~ J d'z { til { 0 ,')"A"),'),,(A,\ - tD,\rr(A»~"'\ 

211" 10 

(r: 38) 

where the 11"; 's Ilre a sd of fields \V hich transforms as 
= 2irr J d'z { ~'D,.A'·)8,,/h~"'\ , 

fOf the quantulTI ('ffcct of a Icft-hamlcd chirnl fcrlllion. 'Ve use tJll~ COllvcl,l.ion 

(6.31;) ~IO = _~OI = I, ~~'- = -~-+ = -I . Our convcntiolls are sllll\\I1luiz(',1 in 

amI AppclUlix A. 

(6.36) 
In tile lighl-conccoor"inates, Id us use the ftnomnly in the (orm -(i/1IID'I,A_ 

which is equivl\lcnt to (i/21r)a".1~I!:"~ in (G.3R), since they diff"r by a • nri-
where 

at ion of a local functionnl (i/2rr) f d2 z A,. A" . (D,.) in the coor,JiJlntc space 
(& = aiTi , 11" = 1I"i7i, A" = A"iTi • 

corresponds to (-iI' •• ) in lhe momentullI splv:e, since we will lake ('xll-rnnl 
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momcnla as oul-going. Then l-V[A) cau be writtcn as Thc solution of I.he ('1)1I5i51,ellcy ('ollliitiolls is givcn, in nnalngy with (';,3!) 

(6.3[) 
and «(j,32). hy 

after addillg all appropriale local fUlldiolm\ 1.0 (6.38) which i~ allowed ~ince 

W[A) is nmbiguous by a local fundionnl. 

In the llon-Abelial; case we can get n:(A) which trnn~fonns os (6.3:') by 

which 0\11 be ohtained from n slIl'crsYlllmct.ric Ahcli'lll g'ltlge nw,"mly 
inverting 

A,. = e-" v,.e" . (6.10) 
( J 2 , --. [\",,../ h) = d x,[ fI(h/J-y V) 

This inversion call be done as B power series of A,. and the lowest order t('rm 

has the same form os (6.37). Nole that even though we are inverting the pure 
through the snme procedure IL. thnt liSCO in ~edi<)fl 6,2 for llle nOll·Ah"linll 

gauge form (6.10). n(A) obLained by this procedure transforms M (6.35) for 
clL.e. In (G.15) we take 611e" a 1I0rmalization fndor for conv(,lIience. 

a gellernl AI' . That is. (6.10) is just a guide for obtaining n(A) for a general 
In the prescnt two-dimcnsional sIIpersYllllllclric cn...e. (6,3'1) is rcphe(~d 

AI' (27). Using this n(A) we can obtain W[A) as 1\ power series of A,. which 
hy 

starLs with the lowest order term similar to (6.38) or (6.39) I\lI 

(6.'11) 
where lIle 1I,'s lrnl1sfnrrn mld('r a 511pers),lIIl1lcl.ric g:lIlge trnn~f"rrll'lli"" as 

\Ve call use the above procedure to get a supersymmetric ext('nsion of 
II' 11" 

C = C e 

the Wess-Zumino term which gives rise to l:-.a(a). l:-.s(a) in (6.31). (6.32) by 
alHI 

h'G(a). h's(a) in (6.18). (6.19) respedively [53). First we will trent the Ahdinn 

case in ddail. 
Tile aJ,,,,'e f'ml1"la~ (G.o1r.). (G.17) nnd (6.'18) arc also vali,1 (.r t11<~ '1011-

The consistency conditions for the Abelian c:J$e are the same a.q (6.29) 
Abelian case where II = lI:li. h = h,T; nrc I.ie algd)rn vahw,l scala) SlI-

except thnt Ule second condition is replaced by 
perliele'!! nnd ':' "" \';,.7;. T"~ for","b~ ror the AilClinn case Me ~irnl"Y riven 

h'a(b)l:-.G(a) - h'G(n)l:-.G(b) = 0 . (6.'12) 



by omitting the 5um over the subscript i ill (6.16) anti IIsing the Abelian 

nature of II, A and Va. 

In the Ahelian case the gauge transformation given ill (6.12) hecomes 

(6.19) 

Then we find en.~ily that 

(6.50) 

transforms as (6.17) which is the Game 8S II' = n -I- A in the Ahelian case. 

The eXI)ression (6.50) means 

since 

Theil from (6.46) we get W[V) as a functional or Va only 

W(\') = -iJd2xteO (' dt(~ DV)(D)"5V(t» 
10 DD 

= -i J d2xd20 (I (It ( 2-VV){IJ-y5(V - tiDlI)} 
10 DD . 

J ,. 1--5 = -i d xd-O(VDDV)(D)" V) 

since IJ-y5D =0. 

(6.51) 

(6.52) 

Let us express (6.52) in terms of component fieltls in the Wess-Zumino 

gauge. 

( 

5 i-
V = ,)""OA,. -I- ')" OM + -00>' 

2 
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1 -- D,.A'· - i '"( . f)>' 
=-lJV = i--- + iO(----) 
DD 0 2 0 

and 

Using (6.53) nnd (r..51) we get 

I'''[V) . ''''J 12 (8~A"" A i, D,.>.) • = tt. (X DU,./I" - 4"")""0 . 

We Ilave checked explicitly that the variations of (r..;'5) give the anom·dir.s 

(6.'13) nnd (6.41). 

\Vhen we lise the light-cone coordinates ill (6.55), the terms flOm f:+- and 

f:-+ I\re equivalent to each other, since their variations give rise 1.0 nnonnlies 

which diITer by variatiolls of a locnl functional. Therefore we can r",,!nce 

(6.55) by twice lhe f:.- term in (6.55). Then we have W[v1 n.q 

(r. 56) 

by I\tlding an I\ppropriate local functional. Variations of (6.56) give ri~,~ 1.0 

8nol111llies of the form 

{ 

6G(a) = -2iJJ2xa8+A_ 

6s(0) = J d'x (A+o)"_>, - 111;:(,\) 
(n 57) 

which arc cquivalent to (6.4:1) /lnt! (6.41) sincc they differ by variat.ions 'If a 

local functional. 

In tile non-Ahelian case, in order to get a \v[V) depending only Oil v.. 

from (6.4G), we ~lccJ 1\ fnnction f1(V) which trnnsforms ft.q (6.47) whcH '"~ 



77 

transforms as (G.12). This can be obtained hy inverting 

«(i.58) 

in analogy with (GAO) in the non-supersYlllmdric non-Abelian case. JI(V) 

can he expanded in a power series of V and the lowest order term 11M the 

same form as (G.50) in the Abelian case. Using this fI(V) we can get W[VJ 11.~ 

a power series of V which stads wilh the lowest order term similar to (6.55) 

or (6.56) as 

" f cPp [p+ 1 1 -W[V) = c Tr -( )2 -A_(-p)k(p) - -4-~(-rh-~(1'») 
211' p_ p_ 

(G.(9) 

Appendix A 

Let U8 summarize our conventions and their properties. We lise I', 1/, 

A, ... for space-time indices, and a, b, c, ... for ~pinoril\l indices. 

{"Y", "Y"} = 2'1"". 

a"b,. = a "'+ -I- () -1,_ = a~I,_ -I- a_'" , 

n"n" ::-: 2n, ,.11- . 

~4- == _~-,- = _1':.,_ == ~_+ == -1. olher ~'5 == O. 

" ~ ~2(" +,'j ~ (: ~). ,- ~ ~2h' + ,'j ~ C 
1'+1'+ = 1'-1'- = O. 1'+1'- + 1'-1'+ = 2. 

a - 0 
--0&- ... < DO" -- 'no' 

- 1- --
0,,0& =c -OO,Sd~ (00 == 0,,0,,) • 

2 

a - D - -
-=(00) = 20", -(on) = -20" . 

c'JO" DO" 

7/l 
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Let liS show that (G.2'1), i.e., 

D - a .,. 0 - 0 a .-. 
o - - 80" - '"Yob bD" , Do = Dn,,,, = Do:. + IOnL.D,. , 

(B.3) 

Q _ a ." 0 a - 0 lJ .- 0 
o - - DO + ''Yob b , •• Q" = Qnb.. = -ao - IOb/b..a" . 

o 0 

satisfies (n .2). In the followillg expression, every term is 10 have 1',- in rrOllt, 
Fierz rearrangemcllt: 

i.e., we omit 1'r in front of every term for notational simplicity. 

O'YAf1 = Ii 'Y~ a (a, (J are real spinors) : 
= -A2 IJU - AV(AU) - AD(UA) (where U == .. lv. fj"y'D = 0 were IIsed 

( where slIperscript l' 
= -A2 i5U - A(lJA)U + AA(DU) - A(lJU)h + AU(DA) 

means TrrnlsllOse ), 
= (DA)AU - A(DA)U + AA(lJU) 

-
b""y")= b"'Y") , b 6-y"'Y")= -b6-y"-y") . That is, 

\\Fe take external momenta as ollt-going, therefore (D,,) in the coonlinate 

space corresponds to (-ip,.) in the momentum space. since the integrand is 1\ lotal derivative. 

Appendix D Appendix C Three-dimensional Supcrspacc 

Let liS show in onother way that (6.2·1) satisfies (6.25). lIere we trent A \Ve slllJlmarize the three-,Iimensional sllpersytntnd.ry for rcferenc.- he-

as a ghost and we tak,: tile following nRS transformation. calise of its similarity to the lwo·dimen~ional cnse. The Ulre(,-lliJllen~ional 

f SA = _A' 

1 sv;. = -WaA - A v;. - VoA. 
( D.I) 

slIperspace is descrihcd J.,y three real space-time coor.linates :r", rl, x' an" 

two real spillorial coordinates 01 , 0,. Therefore the structure of the spill')rinl 

Then (6.25) can he expressed simply as (8) 
coordinntes is the salJle I\S the two-dimensional one. Qn nntl Dn 'lav.- tlte 

Sb.{A) = o. (1l.2) 

l 
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same forms as (6.3) alld (6.9), 

Q 8. " 0 8 D a. " 0 a 
n = - 80

0 
+, "Ynb b '" 0 = - DOn - I'")'nb b " , I' = 0, 1, 2 . 

Our conventions nnd their properties are as follows. 

'")'0 = (0 1), ')'1 = (0 1), '")'2 == (1 0). 
-1 0 1 0 0 -1 

).o{1 (n «(I + cn c(l 
~ £).pv = -v,.. V., v., 0,.. . 

A vector multiplet is given by 

Genuine Gupersymmetry transformation: .5", v.. = (v... aQ) 

SlIperS},lIl1nclric gallge tmllsformaf.k'll: Ii" Vn = ilJ,,/\ -I- (\.~, /\1 

fie = x + [e,al 

6;1,. = a,.n -I- 1,1, .. al -I- ~(h,.x -I- :\'1'.,0 

hN = 1-1- IN,nll- ~(-h -l).'0 

he = -...,. ax -1-1(,01 -I- ICII- 1" ... 1"'xl-- IN,xl . 

III the ahove Vn == l':,;,/; , /\ = /\;7; ('Ii's arc anti-hermitian), .\; 

II, -1- {OX,, ~no I, . 

I" the \VC55-ZlIIllino g""ge, e = 0 , N = 0 , ,\ = e , 

with /\nn: 11 = 0 , X == -1"'0",. , I = ~ii,\ , 

"C(IY?) = "sur. GAUGr. 

with /\r:;: a = a , X = 0 , / = 0 . 

{ 

lis(n-}",. = - ~a'")',.~ 

6s(np = 1"'1'''0''; .. , , 

where F
"
" = a,.A ... - n.,A,. + A,.A ... - A.,;\,. , 

{ 

IiG(n)A,..= {J,.II -I- (A,,,n] 

ha(a)~ = [~,n) , 

whcre 65, lia mcall IiS(IV?), 6a (II'z) respcctively. They s:l.t.isry !.he r,.It"wing 

R2 



algebra. 

1

[65(.8) • 65(0)) = 6e( -2iQ)"'.8A,,) -I- 2(Q)"'.B)ilJ" 

[6G(b) , 6e(a)] = 6a([b , a)) 

[6G(a) , 65(0)J = 0 . 

An interesling feature of the tIaree·dimensional gange theory is thnt thele 

is a gauge invariant topological mass term [51). In the three·dimensional 

supersymmetric gauge theory, we -have the following snpersymmctric tol'o-

logical mass term [55]. 

Under 6a(a) and 55(0), 

{ 

6a(a)W = 4i Tr I cf'x 1!:""~a"(a(),,A~) 

65 (a)W = -2Tr I cf'XI!:,w~a,,(A,.(Q)'~.\» . 

Therefore when we assume that a surfnce integral is zero, IV is im'ariant 

under 6a(a) and 65(0). 
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CHAPTER 7 

Tn four dilllCIISiolls Ferrara allel 7,ulIlillO [r.r.] slt0weJ tltnt ),"5", 0,," and 

D"J:' are cornponenls of a \Vess,ZlIllIino tnultiplet (571 (where 5" is '1.1, im· 

proved supcrcllrrenl, and 0,,,. is all irnpr0ved ellergY'lllomenlum ten5(-r, alHl 

J~' is an axial vcctor cllrrent): Tlte correspoll<lin~ allomalies hnve heel! slll(l· 

ied in references [58.G2). 

III lhis chapler we fill<l in two ,lirnen~ions a vector I1lllltiplet which cf'tltnins 

D"J:' ,\lid D"J" I\S components (where J~' is all a,u,,1 vecl.or Cllrrent ,,, .. I J" 

is 1\ vector cnrrcnt), an.1 we find a corresponding anolllaly sUI'erficlrl. Then 

we confirm that tltis anolllllly snperfidd is realized I,y FeYJllnlln di'gram 

calculations. Tltese calculations Rhow clearly how corr('spon,lin~~ nll(l'nnlies 

(orm a superfield. \Ve sludy an i\ bdian case, hut the exten"ion to ., non· 

Abeliall case is not difftcult. 

In section 7.1 we review the gauge anomaly for /I. non.sllpersYlrJInelric 

theory. In section 7.2 we find n vector multiplet which contaills v".t!.' an(1 

8"J" I\S componellh, and a corresponding anomaly slll'erfie\cl. In Rcdi'll\ 7.:J 

we coufirm this anolll"ly slIperficld by Feynmnn diagram cnic.llirtli0l1s 

7.1 Review of Noil-Supcrsymmctric Case 

In this section we review the gnllge I\llomaly of a nOll,slIpersym'nelric 

theory. \Ve consicler a system oC a m/l.~sive Dirac fermion I\nd 1\ gnllg'" field, 
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which is descrihed by the following Lagrangian. (We omit writing the kinetic 
kf-p 

k I- P 

energy term of the gallge field.) 

L = -i~,"(8,. + ieB,.).p - im~"'. (7.1 ) 

Our conventions nre given by 
Fig.l n'''' nn,l !l" 

{,".,"} = 211''''. 
In Fig.l lhe <lon\'l,. wir.,gkd lin'! in n'''' corresponrls to lhe axial ''''dor 

( 0 1) . ..,0-
-1 0 

~lO = _I!:0l = 1 . (7.2) 
sirl,. or (7.5) is rcnli?:cd hy R'"' I\.~ 

And their useful properties are 

_ «k + p)' I- m')k,;} 

=-2el!:""j rPk { ___ l__ 1 (-2m'r)+r-~-~-"-"- -..5!-1 
(211")1 k' -I- ",' (k~· rF + 111' .. (k + 1'F ·1· m' - k' + 11\' 

(7.1) gives the following equations of motion. 
= -2r l!:'''''{-2rn'" f rPk __ l ______ .!..._· _ + ir~} 

. I' (211"pk'+m'(k+1,p+m' 411"' 

h"8,. -I- m -I- ie," B,,»/' = iJ • (7.6) 

(7.1) 
\ 

'fih"ii,. - m.- ie-y"1J,,) = o. wh,.re we used the cfJi"respondence V .. .... ip .. since r .. is an illcollling 1II0"l('n-

When we lise the equations of motion nnively. we get tUITl for the wiggled line. In the h.,t step of (7.6), we used the hd (:'1 

(7.5) 17.7) 

However, (7.5) is true only classically, and the qunnl.um corredion modifies 

it. This modification is called 1\11 anomaly. We can obtain the anomaly in 

the following way [1,5). 
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Lel liS regularize (7.6). 7.2 Supcl'ficld Extensioll 

ip"R''''(,·cg.) == {HIlS of (7.6)} - {RIIS of (7.6) wilh Tn -4 M} In this section we exlPIHlthe anomaly in (7.10) to an anornaly superl;dd, 

== 4I1t'e:''''11 cJ d
2
k __ 1 ______ 1 __ _ 

,. (2rr)2 k2 + m' (k + 1,)2 + m' 
(7.8) 

and find a superfield which c()lItains fJ,.(Vo-y'·-ysV') and fJ,.(-;j,-Y'·'/J) 8S COlllpO-

_ 411('E'''' , eJ d1k ___ 1__ 1 
1" (2rr)2 k2 + AI' (k + 1')2 + 11[2' 

nent~. 'Ve consider a vector lIIultiplet (a spinorial sllperfield) Vd which "on-

Lains a gnuge fiel,) H,. 8S a component, i.e., a sllpersymmetric exten,;jon 
The first term ill the lUIS (right hand side) of (7.8) is nothing hilt 2mll" in 

of a gallge field [52,(3). We use I', II, ~ •••• for sIHl~e-time indices, am) 

Fig.l, which corresponds to the RUS of (7.5), i.e., the naive classical resllit. 
a. b, c, ... for spinorial indices. 

Therefore the anomllly is given by the second term of the llli S of (7.8) when 

we renornllllize (7.8), that is, when we take the limit JIf -4 00. (i 1 t) 

The conventions in this chapLer arc Lhe sllllle 85 those in chnpter 6 '\IId 

. 1 1 It 1 
USlIlg k 2 + At' (k + 1')2 + J\,f2 = 10 dx [ll + 1.12 + p'x(l _ x»)" 1= k+l'(l-x) , SlIllllllariz('"d in Appendix A of that chapter. 

Using the supers)"lI1meLric derivative 

D 8. "0'" -n [) 0 .. == - -=- - l-Yn~ ~(J,., II == ~"(, •• ' 
DO .. 

(i 12) 

we have 

(7 13) 

e , • ..,. when M -4 00. -. -;e: tp,., 

(7.9) (7 14) 

Then IIsing the correspondence 8,. .-. ip,., we have from (7.8) and (7.9) where ~ == ( + ..., .8e . 

(7.10) '1'llI\t is, ~h5f)II(15i'5 \') composes 1\ spinorinl snpcrfield whose compoW'nts 

Therefore we ohtain the 1lI10maly as -(e/,rr)E'·"8"B". \Ve will generalize this 

to a 511perlield in t.he next section. 

(' 
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are givcn hy 

)
~" -po 

D,.: E""D"M 

M : E,,,,IY' ill.' (7.15) 

I:' ~lh"A)" 
Let us study thill supcrsymmetric elf.tenRion of the an'JIIH11y. An inler-

esting property of (7.15) is that the 1\1 componcnt iR the ordinary gauge 

anomaly, and the N component is zero. AllIo, we observe ill (7.11) that when 

!ll is a pseudoscalar, N is a scalar. Therefore we nrc led to expect that there 

cxisls n super/kid which has a,/fry",s"') os the M component and D,.("i{J,'·"') 

as the N component. Indeed, there exists such a superlield, which is given 

in lhe following. 

\Ve consider a complex scalar superfield 

- . i-
S = A + i01/d 200£0', 

s· = A· + iO",· + ~oor. 
2 

(7.Hi) 

After sludying the structure of the superlield and using trial and error, we 

oMain the following spinorial superlield which we expected to exist. 

8~1 

)

(n -2i(,/,P'-'VF) 

B,. : -1;J.5:.,/, - €, ... D'-(1o-yr.'/') I- 2i(8"A.P" - a" II , F)I 

M : n" (10"1""1" ,/') 

C" --2i!€· .. ·i},,(rr.t/,;J.-;\· -- 1r.'/"U,.A.) 1- o,,(,/,(J",\' - ,/,'D"/\)I. 

C;"·17) 

Theil we allliripat"lIoat the ~lIpcrlicld (7.1i) is suhjf'ct t0lhc ql\nlll,1II11 C0r-

rect.ion which gives ri~c lo the nnnlJ1'lly slIperlidd (7.1r.). IlIlhe nc)(t. sc' lioll 

we will confirm I.his rnet hy dingrnrn cnlculnt.iolH; simi1nr to lh'lt in sr"linll 

7 .1. 

7.3 Rcnlbmt.ioll by Dingrmn Cnlculatiolls 

\Ve have the following !"Irer.ymllll~tric extension or the Lnf,rnnginn f 7.1) 

(!i2). (We omit writing the kinct.ic energy term or v~ .) 

(1.18) 

wl1f~re the slIhsnipt F IIIcan~ the F component of n .calnr slIpnlid,l 0~ 1.1." 

ror," (7.16). Since /, in (7.IA) is the In..t component of 1\ !:lIrcrfi"'''. it is 

invariant nllder 1\ slIpersyllllllctry trnnsforlrll\li0n III' lo a lolal deri\"aliv.·. In 

(7.18) V'" ali(I V .. nrc cO\'nrinnt derivativcs 

(i .1 !l) 

ThclI (7. til) is im'ariallt nnder the supersymmelric gallge t.ransrnrm"tit'" 

( •. 20) 

!)o 



where A is a 6calar superfie\d which is a supersYllllnctric gaugc trnnsformation 

parametcr 

- t-
A = a + iOx + -00/. 

2 

(7.18) gives the equation of motion 

V"VS - 2imS = 0, i.e., 

(15 + eV)(D + eV)S - 2imS = 0, 

DDS - 2imS + c2Vv S + eV DS + c(DV)S -I- c(i5s)V = o. 

(7.21) 

(7.22) 

The Lagrangian in (7.18) is expressed in tcrms of component fie\,is of S 

and v.. as 

(7.23) 

Whcn wc oMained (7.23), we took the Wess-Zumino gnuge, i.e., e = f), N = 

O. \Ve can nnticipnte the realization of the anomnlies (7.15) in this special 

gnuge, since (7.15) depends only on the component fields inlhe Wess-Zumino 

gauge. 

As we obtained (7.5) for the ordinary gauge theory, we obtain lhe eor-

respontling 6upersynllnetric equntion from (7.17) by nsing the equntion of 

'-

!Jl 

given hy modifying (7.22) by the replacement of (e _., -c). 

- -- i __ 
i[J)"S(DlJS') -- DdS'(J)DS)] = {Normal Tenlls} -I- c2h s TJ) .. (fJ),Y) , 

(7.2·1) 

where {Normal Tefl"';} Inl"!ans the terms which arc givl"!11 J,y the n:,ive usc 

of the e'lualion of lIIotion sllch as 2mV;'Ys'p in (7.5). In (7.2") w" nd,led 

the nnomaly term like in (7.10) with a llormali7.nl.ion factor C which will he 

determined hy diagrnll' cnlculnl.ioll~. 

In collll'on';llts (7.24) is given hy lhe following equations. 

(n: -2i("JF'-""F)=2im("'N-"J'A)+c(-~~) 

n,. : -FFn;.v, - t,,,,D"(V;wl') -I 2i(D,.AF' - D"A' F») 

= (normal terms) -I- c(f:, .. ,D"}lf) 

~ (norm1l1 terms) + c( - b . D'\). 

(7.25) 

In (7.~5) we did not ",rite .Iown the normal teflnl for the n,. and ( .. "01ll1'D-

IIcnt equations since they nrc long and not int"f{ 6tillg in ollr stll'!Y. 

Now let us show U.al lhe anomalies in (7.2:') nrc realized by clingram 

cnlcllialions. The Lngrnngilln in (7.23) gives liS I he FCYlllnan rille!; 01 Fig.2. 

Let liS sl1l<Iy (7.25) COlllponent hy componcnl. 

First for lite eD ClllIponcnl e'lllation, we lise tlte eqll1ltil)ns or 'notion 

.. 
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Fig.2 Fcynman Rult'.lI 

2irn 

< 
p 

Fig.3 - 2iI/Jr 

M M . , -.. , .. 
'. ' /~ 

;1 ~ 
I' , 

P p' 

!):J 

F = -111.1 ;'11<1 P- = - mA- (or F' nnd ,...- in lI,c /. If S' (Ie(t IrnIHlqide). 

'1'1'(":11 lI,e dingrnlll ill Fig.:! is pot('llf.inlly "nomnlolls. III Fig.:! ti,e dnl\"'~ lillc 

represellts tire first. terlll I,f t.lre /.lIS of lI." en cr,mI'011ellt erl'Hll.ioll, ·.vhich 

will he delloted "r en(m). ThcII fr"", t.lre Fer",;",n r"lrs ill Fi~.2 wr I,..vc 

t 7.2r.) 

\\'e rrglllnri7.e this try slllrt.rnct.ing t.he P;'IIJi- ViJ\;,rs term. 

17.2i) 

The first tcrlll ill the UIIS of (7.27) is 1\ norlllnl term. We renortll"lize 17.27) 

by tnkillg /If -. 00. 

c t 
"" (IIorm;,1 term) - -( - -,\). 

11" 2 

t 7.28) 

For the n
" 

C01111"'llI:llt cII'I;,tion, the <Iingraills ill FigA nrc 1'0t"I,1 inlly 

I\nomnlolls. Ding.4A "",I ,Ill cOllie frolll tire lirst terlll, Ding.'lC nlHI ,II) frolll 

the secoml term, 1\011 Ding.,II': frolll the third term (,f the Lf{ 5 0f tl"~ fl" 

COillponcllt e'll1ation. IIm\'e\"cr, Ding.1D tllrns ollt to rWllllee 110 nlll"rnaly 

n",1 nnfJIllnlics from lJing.'lll nlHI H~ canrel ench other. Then .mly J)j"gAA 

!H 
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-I' 

k -I I' 

J)iag.4A ~(J~'" 

k ·1· P 

- ik,. 

I' 

Fig." 

kl- I' 

I>ingA II ~J .. ", 

k+p 

p 

- ik .. 

!I!i 

I' 

I' 

!Iii 

k+p A: I P 

. " 'I' .. ..., "ls 

I' (

-'\- ") ir .. ...,""ll 

• -.> •••• ~ • • ===1<~==O:: 

- P 't-y, k p 

~ 

',,1<1 .,C n.ml.ill'! I.n giv" ri~r. to nn """,,,al)'. 

f .{'Ic . . -ib' Ic I,,,,,,, - ill,) 
n,.(m) == (--2) x (·1) -----l1r{.C"ls----·---·---··--··-

(2,,), (k+p)' 1 ... 1 

-.ih . Ie -- ill,) 
)( (( -ik,,) ,. (_·r.'.'"ls)(-il.:·')I- 'G---'j" - ). 

f< I· III 

'1'1,,," "rtrr ~nlllr. rnlrlll"ti",,~. we Ilnve 

11,,( ... -n.) = lilll {Il,,(m) - IJ,,(M)) 
IU- .ro 

( I ) c .,' ,= .lOrllla krill - - (,.,'1' . 
If 

",.(,·rn.) .,., (IInnlllll tenll) - ~(~, •. D"M). 
If 

(7.29) 

(7.:10) 

(7.:11) 

For ti,'! "'I ':"''''''''"''"1 fO'I""li ... lI. ,linr,r"IIIs in I"ig.r. lUe 1'01.(,lIlin i ly II""",n-

I",,~. !I .. wrver, Ilhr,.r.n llllll~ nlll l" , ... "IIIc-" II" " """" .. Iy. Pin" r.:'\ i~ llll! 

~nll1" M thnl in "'i~. I in ~ .. di,," 7.\ whirl. gnvr. 11.1' rO:-~1I11 (7.1fI) Tltr.d .. rr. 

""(rrn.).,., (lIolll'l\llrnll) - ~«(,.)J"n"). 
If 

(7.:1·l) 

For tI,,, N C""'I'''''':lIl "'I',nlinn, II, .. Cl\lcll\ali(,"~ IIII' si",ilnr I .. 11,,,·;(, r"r 

th .. 1\1 c"",,'nllrlll r'III"lion. \)ing.r.n l"rll~ 0,,1 I •. ' 1'""llIcr II., n·""""ly .... 
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Diag.50, and Ding.6A gives 
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k + I' 

[)jag.60 
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ip,,"1" 

p 

ip"i(k + p)" 

< 
p 

N(m)=-B J ,pie Tr{i ,,-i(1'.Ie+1'.p-im)i . -ib·le-im)} 
"(211")' e-y (Ie + p)' + m' l' p Ie' + m' 

Then 

B J,ple (Ie + p)" k" 
=2c" (211"),I(k+p)'+m1 - k1 +m,J 

e . VB = -IP "I 
211" 

using (7.i). 

N(ren.) = lim {N(m) - N(JII)} = O. 
(If-oo 

Therdore 

e 
N(ren.) = (normal term) - -( 0). 

11" 

(7 Xl) 

(7.34) 

(7.35) 

c> 

Fpr the (n COIllPO"""!. "'lun!.inn, di"gmlll~ in Fig .• givc rise t.o an "". ·rtlnly. 

J 
,I2k 

("(m) = (--,Ii) (2;)2 [~'''·i,.,,i(kll')':)'s + il'"i(k I ,,)"j 

--i(-y.k.-im)." -·i 
y. -_· .. _-_·_·(-t-).\· __ ·_--. 

k 2 +m2 2 (k+l.)2+m 2 

(7.:11;) 

'1'11,,11 nft.rr ~r)ruc calculnt.io"s ~illlilar to those for (7.29), we I",,'c 

17.37) 

( " I ,,~ "Of mal trrrn) - -( --')" c'J.\). 
• 71' 2 

Therefofe by (7.2R, 31, 32, 3:') nnd (7.37) wc IH\\'e confifmrd (7."1) or 

(7.2f,) with c = -c/7I', that i~, 



CHAPTEIl 8 

CONCI~USI0N 

We studied various topics of anomalies in two dimensions. In c1li\pter 2 

we oblnined the g(lIIge anomaly including the normalization factor up to the 

sign by using the differential geometric melhod. We obtained the ~olution 

of the allomaly equtioll (the Wess-Zllmino term) ollly in terms of the gauge 

fields, without auxiliary fields. Then we showed, III' to the second non-trivinl 

order, that this solution agrecs with the Feynman (Iiagrnm calculaf,ions. This 

solution is interesting hecause it may be applicd as another approach to the 

effective theory. 

In chaptcr 3 we obtained the anomaly of D"J" from the Schwinger terms 

for the chienl Schwinger model and the non-Abelian chirnl gauge theory. This 

method provides a new way of calculating the anomaly of D"J" and shows 

clearly the intimate relation between the anomaly of lJ,.J'· and the Schwinger 

terms. Through this study we could also understand the (limculties in quan

tizing anomalolls gauge theories. 

In chapter 4 we showed in the Schwinger model that the point-splitting 

method disagrees with the loop-diagram method by the sign and by the factor 

1/2 for the anomaly of a,,J~' and for the Schwinger term of (J~(:I:), JO(Y»)ETC 

respectively. When we calculated the Schwinger term by the point-splitting 

method, we "sed a spatial splitting which is not covariant. This may he part 

of the reasons why the two methods disagrcc, since if we had "sed a spatinl 

!J!J 

splitting instead of a co\'ariant splitting for fJ,.J~· in sccl.ion 3.:1., Y:'e w, '1IId 

have got half of the result of section 3.2 fOf a"J~', However, this does not 

explain the disagreement.s completely, l,ecallse the two rnethclIls disagree.! hy 

the sign for D,.J~· e\'en t.hough we IIsed (\ covariant splil1.ing. 

In chapter !'i we obtainp.d the gravitational anomaly inchl<Jing the "or

malization faelor np to the sign by using the dilrNentinl geometric mell",,\. 

Using the light-cone coordinates, we calculated tlte FeynlT'an di"grnrns :md 

showed. np to the second non-trivinl order, th"t tlte anomaly ohtnined hy the 

diITerential geometric method ngrt:es with the Feynrnnn diagram calculati .. ns. 

In chnpter 6 we showed tlmt the origin or the slipersYlllmelry anomal;· in 

the \Vess-Znmino gauge is the supt:rs}'lIImc1.ric gnuge (ulOmaly. This illllic-·tes 

that there is 110 genuine slIpersYllllTlelry anomaly. This also show~ that when 

the gange anolllnly is canceled, the RlIpersymmetry II.nomaly in the \\"'55-

Zmnino gAuge is nlso cAncelc<1 II.ntolllatically. \Ve expect that the sitna'ion 

is the snllle in other supp.rsynllllctric gAnge theories which ha\'f~ snpcd;dd 

forlfllllations. However, in 1\ theory which hns no sllperfic1d fonnnlation, I\. 

different II.IJnlysis mny he necessary. \Ve have nlso ohtained til<' supers'. 111-

metric extension of the \\'ess-Ztllnino term in th.! forlll which drpp.n(ls (·nly 

on the external vector IlIIllli"lct. 

In c1l1lptcr 7 we obtained I\. spinorial slIperfic1d which contains {I"J~' nll<l 

lJ"J" as AI (psendosmll\.r) nnd N (scnlnr) components respedively. 'J his 

superfiel<\ is suhjed to the quanlum correction which givf's rise to an ananl'\ly 

lOll 



slIperfield, which has the ordinary gallg~ anomnly nnd 7.ero ns AI nlld N 

cOlllponell~s respectively. We confirmed lhis anomaly slIl'crfidd by diagram 

cnlculation!l' This result cOllld be expected since the Pnuli-Villars regulnt,or 

terms constitute a supcrfield. 
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