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MINC: AN APPROACH FOR ANALYZING TRANSPORT IN STRONGLY 
HETEROGENEOUS SYSTEMS 

T.N. Narasimhan and K. Pruess 

Earth Sciences Division 
Lawrence Berkeley Laboratory 
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ABSTRACT. We consider systems in which materials of low-diffusivity occur as islands 
in pervasive high-diffusivity materials. In these systems, global three dimensional tran
sport occurs in the high-diffusivity materials. Transport in the low-diffusivity materials 
is local and one-dimensional in nature. MINC (Multiple Interacting Continua) is a 
method for efficiently simulating transport in such systems. The Integral Finite 
Difference Method (IFDM) provides a convenient way for implementing MINC. Known 
information on the shape and the size of the blocks can be judiciously utilized to obtain 
improved accuracy in estimating transport into the islands. MINC permits handling of 
con tin ua at several hierarchial levels. 

1. INTRODUCTION 

In considering the transport of water or chemical species in groundwater systems, hetero
geneity is a rule rather than an exception. By the phrase, strongly heterogeneous, we 
refer to those systems in which materials with strikingly different diffusivities coexist. In 
particular we focus attention on systems in which materials with very small diffusivities 
occur as islands within those with very large diffusivities. As examples one may cite the 
following: transient transport of water in a fractured sandstone in which low-diffusivity 
rock matrix occurs as islands within the high-diffusivity fractures; water transport in an 
aquifer with lenses of clay or silt dispersed through the sand; the diffusion of chemical 
species into the solid matrix surrounded by aqueous phase; and so on. 

Under transient conditions, these strongly heterogeneous systems respond to of per
turbations in a manner quite different from the response of those systems with homo
geneous material properties. In a strongly heterogeneous system, a perturbation is ini
tially conveyed rapidly through the high-diffusivity material over relatively long dis
tances. Following this early-time response, the low-diffusivity material makes its presence 
felt over later times. Th us, the early-time behavior is dictated by the high-diffusivity . 
material and the late-time behavior influenced by the low-diffusivity material. The 
over-all response through all time preserves the effects of both the material components. 

Towards quantifying the transient behavior of this type of systems, Barenblatt et 
al. (1960) made an insightful advance by considering seepage in a fractured porous rock. 
The essence of the Barenblatt et al. contribution is that the system can be idealized in 



terms of two dynamically interacting continua, one representing the high-diffusivity frac
tures and the other, the low-diffusivity rock matrix. Although originally conceived as a 
description of isothermal groundwater flow, the approach of Barenblatt et al is also 
applicable to other transport problems involving multiphase fluids, heat and chemicals. 
For convenience, we will designate thee two ontinua by the abbreviations, RDC (high
diffusivity continuum) and LDC (low-diffusivity continuum). On a global scale, perturba
tions in the potential field are transmitted through the RDC, whereas the interaction 
between the continua occurs at a local scale. Broadly therefore, transport on a global 
scale occurs within the RDC in general three dimensions. Within this global framework, 
the interactions between the RDC and the LDC occur on a local scale and may be con
veniently idealized as a one-dimensional process. 

The practical utility of this approach in reservoir engineering was soon recognized 
in the U.S. by Warren and Root (1963), who elegantly analyzed the flow of oil in a 
naturally fractured reservoir, idealized as containing a set of discrete orthogonal sets of 
fractures in a porous host rock. Other applications by Odeh (1965), Kazemi (1969) and 
others followed and soon the new approach acquired the appellation, "double porosity 
concept. " 

Recognizing the power of integral numerical methods, particularly the Integral Fin
ite Difference Method (IFDM; Narasimhan and Witherspoon, 1976) in handling complex 
flow geometries, Pruess and Narasimhan (1985) showed that the double porosity idealiza
tion can in fact be be generalized to several interacting continua. Accordingly they 
coined the term, "Multiple Interacting Continua" (MINC) to characterize the new gen
eralization. The purpose of this paper is to outline the nature and the current status of 
the MINC methodology. 

2. TRE CONCEPT 

We consider systems in which a high-diffusivity material pervades the flow domain. 
Recall that diffusivity, by definition, is the quotient of conductivity (e.g., permeability, 
hydraulic cond uctivity, thermal conductivity, diffusion coefficien t) and storativity (e.g., 
specific storage, retardation factor, specific heat) of a material of interest. Within this 
pervasive continuum, a low-diffusivity material occurs as islands of arbitrary shape and 
size (e.g., polyhedra; spheres). As a result of the striking contrast in the magnitudes of 
diffusivity of the two materials, one could reasonably assume that the distribution of 
potential on the surface of anyone block of low-diffusivity material at a given instant 
will be reasonably uniform. Consequently, the surfaces of equal potential within the 
block at that instant could be expected to be surfaces that are mathematically similar to 
the outer surface of the block. Therefore, the potential at a given location within the 
block will be dictated by its proximity to the surface of the block. Within a small region, 
then, if we consider two blocks of iden tical shape and size, the poten tials at two similar 
locations within these blocks will be practically identical. Consequently, within this 
small region of interest, one could collect all points within identical blocks that lie within 
a certain proximal interval from the surface and assign these points to one continuum. 
In this manner, one could discretize the low-diffusivity blocks into one or more nested 
continua. Figure 1 from Pruess and Narasimhan (1985) illustrates a set of nested con
tinua in a two dimensional system representing an idealized square fracture grid, enclos
ing square blocks of porous rock. In this figure, the RDC is designated as continuum 1 
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and the remaining LDe continua are designated by numbers 2 through 6. As can be seen 
from this figure, global transport occurs exclusively through continuum 1 whereas local 

Figure 1: Schematic nested continua in a system in which the high-diffusivity 
material forms a pervasive contniuum in a square pattern (From 
Pruess and Narasimhan, 1985) 

one-dimensional interactions occur between continua 1 through 6. Note that there is no 
communication between neighboring blocks because the path of least resistance lies 
within the first continuum. This interrelationship between global and local flow patterns 
is schematically shown in Figure 2. 
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Schematic representation of interrelation between global flow pat
tern in the HDC and local one dimensional flow in the LDC (From 
Pruess and Narasimhan, 1985) 

We may now develop the governing equations for transient flow in such a MINC 
syst~m. As was shown by Pruess and Narasimhan (1985), the governing equations can be 
developed in general for advection as well as diffusion processes involving more than one 
fluid phase. Nevertheless, recognizing that the purpose of this paper is merely to review 
and describe the MINC concept, we shall restrict ourselves to the consideration of 
diffusion-type processes involving a single phase. Extension to advection and multiphase 
flow may be assumed to be evident in principle. 

3. GOVERNING EQUATIONS 

We consider a system defined by two state variables, an extensive quantity, M, and an 
intensive quantity,1/;. The extensive quantity could be mass of water (groundwater sys
tem), mass of solute (geochemical system), or heat (thermal system). The corresponding 
intensive quantity could be potentiometric head, chemical concentration, or temperature. 
For an elemental volume in such a system, one may combine the equation of state (relat
ing M and 1/; under conditions of mutual equilibrium), the equation of motion (expressing 
the movement of the quantity measured by M in response to spatial variations in 1/;) and 
the axiom of mass conservation to write the following equation for transient transport: 

JK ~1/;·ndI' = .i.. JMdV = V c a1/; 
r dt v at 
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in which, 

r 
K 

Ii 

V 

c 

t 

is the closed surface bounding the elemental volume, 

is the coefficien t of cond uctivity, 

is the unit outer normal to the surface segment df, 

is the volume of the element, 

. h ·fi . d fi d 1 AM d IS t e speci c capacitance e ne as ---, an , 
V A'l/J 

is time. 

The surface integral in (1) includes boundary conditions imposed on the external boun
dary of the system. For completeness one may add source or sink terms to (1). 

The expression in (1) is equally applicable to an element in the HDC or in the LDC. 
Let us follow the convention used in Figure 1, where the HDC is designated as contin
uum 1 and the LDC is discretized into continua 2 through L, where L is the total 
number of continua. Then, we may apply (1) to typical elements in the HDC and in the 
LDC and accou·nt for their dynamic interaction through their common interfaces Ar 
appearing in the surface integral. 

We now proceed to develop the appropriate conservation equations for elements the 
different continua. For the sake of clarity and simplicity we will assume in the following 
developments that all the blocks (or islands) of the low iffusivity material are of identical 
shape and size. Let n denote an elemental volume in the HDC over which the variation 
of potential is sufficiently smooth and gradual so that averages can be reasonably 
evaluated and defined. We assume that element n will be large enough to contain several 
blocks of the low-ditfusivity material. These blocks will all have identical average pro
perties. The number of blocks in element n is merely equal to the bulk volume of n less 
the volume of the high-diffusivity material divided by the volume of a single block. 
Under these conditions, the following conservation statements hold. 

For an element n in Continuum 1, 

where, 

(2) 

denotes the union of all surface segments bounding element n across 
which n communicates with another element in continuum 1 

is the conductivity of continuum 1 

is the union of all surface segments bounding element n across which 
element n communicates with continuum 2 
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KLDC 

V 

ClIDC 

is the conductivity of the low-diffusivity continuum 

is the bulk volume of element n, and 

is the specific capacitance of the high-diffusivity continuum 

In regard to KlIDC and clIDC we use the convention that they both represent aver
ages over the composite material. That is, 

where, 

Similarly, 

where, 

• clIDC 

(3) 

is the actual intrinsic conductivity of the material making up 
the HDC, 

are the respective areas over which element n communicates 
with other elements in continuum 1 

• 
clIDCclIDC 

clIDC = 
clIDC + cLDC 

is the actual specific capacitance of the material making up the 
HDC, 

(4) 

ClIDC and CLDC are fractional volumes of the two continua. 

In view of the foregoing, the following conservation equation holds for the j th con
tinuum in element n, 

where, 

rj_1,j and rj)+l 

(5) 

denote the total surface area between the respective con
tinua. This total area is equal to the corresponding area per 
block times the number of blocks in element n 
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v· J 
is the bulk volume of continuum j in element n. This bulk 
volume is equal to the product of the corresponding volume 
per block and the number of blocks in element n. 

Equations 2 and 5 provide a basis for implemen ting the MINC idealization through 
numerical models. Central to such an implementation is the task of efficiently evaluating 
the surface integrals on the left hand side of the two equations. In particular, the second 
integral on the left hand side of (2) and the two integrals on the left hand side of (5) 
relate to transport into the low-diffusivity blocks. Because of the MINC idealization, this 
transfer process is essentially one dimensional in nature and the shape and the size of the 
one dimensional channel are dependent on the shape and size of the blocks of low
diffusivity material. In practice, these integrals can be evaluated in one of two different 
ways. The first is to use analytical expressions that are applicable' to specific block 
shapes (e.g., cube, sphere). Such analytic expressions can be obtained for quasi-steady 
flow or for fully transient in cases where K LDC and cLDC have simple (linear) dependence 
on 'l/J. Analytical expressions for the blocks could be combined with numerical expres
sions for global transport in the implementation of the numerical procedure (e.g., Duguid 
and Lee, 1977). Or, one could handle the transport process in the blocks through a com
pletely general numerical procedure, using, in the evaluation of the integrals, information 
on the size and the shape of the blocks. The numerical approach is preferable when 
K LDC and cLDC depend on 'l/J in a non-linear fashion. 

4. DISCRETIZED EQUATIONS 

For numerical solution, the integral expressions in (2) and (5) may be discretized by the 
finite element method (FEM) or the integral finite difference method (IFDM). The two 
methods differ primarily in the ·manner in which they represent and process geometric 
information. The finite element method specifies coordinates of nodal points and finite 
elements of prescribed shape, defined by the nodal points occurring at their corners. 
Geometric quantities such as lengths, surface areas and volumes that are intrinsic to the 
evaluation of Equations 2 and 5 are generated implicitly through a weighted integration 
procedure. In the IFDM, on the other hand, the geometric quantities such as lengths, 
areas and volumes are explicitly provided as input information in the process of evaluat
ing the integrals in (2) and (5). 

In the case of a composite system that can be idealized by the MINC approach, we 
already know the shape and size of the blocks so that the volumetric and area terms 
needed for the evaluation of the integrals are known as accurately as w~ may desire. If 
one wishes to use the finite element method to handle the transport process in the block, 
one has to indirectly recalculate such information from nodal point coordinates by way 
of weighted integration. Instead, the IFDM enables one to directly handle the geometric 
information. For this reason it is quite convenient to describe the MINC method in the 
context of the IFDM. In the following pages, therefore, we will carry out all our discus
sions using the IFDM logic. An essential feature of the IFDM proced ure is that in discre
tizing the flow domain, nodal points and surface segments are so designed that the line 
connecting the nodal points of two adjoining elemental volumes is perpendicular to the 
surface segment that separates the two volume elements. This enables the direct 
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approximation of the potential gradient along the normal to the interface. 

In view of the foregoing, the conservation Equations (2) and (5) can be expressed as 
the following discretized equations. 

Element n 

(6) 

Continuum 2 within element n 

(7) 

Continuum j within element n, j> 3 

(8) 

In Equations (6) to (8) U represents conductance between adjoining elements and 'I/.J 
represents the time-averaged potential over a time interval of interest. The subscript m 
denotes an elemental volume in continuum 1 that adjoins and communicates with ele
ment n. Subscript nj' j > :2 denote the j th continuum within element n. 

In the context of finite differences, the conductance between element i and element 
k is given by, 

where, 

(9) 

is the mean conductivity at the interface 

is the area of the surface segment 

is the distance between the nodal points on either side of the inter
face. 

Also, the time averaged values of 'I/.J are defined by, 

(10) 

where 
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is the potential in element i at the beginning of a time inter
val, 

is a time-weighting factor, and 

~ 'I/J is the change in potential over the in terval of time. 

A choice of 0, 0.5 and 1.0 respectively for)' leads to the well-known schemes of for
ward differencing, central differencing and backward differencing. 

4.1. Two Special Features 

Two special features of the discretized equations are worth discussing. The first of these 
relates to the amenability to partitioning of the matrix of equations stemming from the 
discretized equations and the second relates to the possibility of improving the accuracy 
of the difference approximation. 

In the context of the IFDM (Narasimhan et aI, 1978), one may define a stable time 
step or, equivalently, a time constant, for an elemental volume. Such a stable time step 
is obtained by dividing the capacitance of the element by the total conductance of its 
bounding surface. The time constant is in fact a generalized diffusivity term which incor
porates the material properties of an elemen t as well as its geometric properties. It 
should be obvious upon a little reflection that the HDC elements will in general have far 
smaller time constants than the LDC elements which occur imbedded in them. Thus the 
:M1NC method may often lead to stiff matrices. One can take advantage of this wide 
disparity in the time constants by choosing a computational time step that is much 
larger than the time constants of the HDC elements, but which is smaller than the time 
constant for the LDC elements. Then, for the particular choice of the time step one 
could calculate the potential changes in the LDC elements using a simple explicit scheme 
(). = 0) and use an implicit scheme to obtain potential changes only in the HDC ele
ments for which the chosen time step exceeds the stable time step. Essentially, this 
mixture of explicit calculation in one part of the domain and implicit calculation in 
another amounts to partitioning a large matr.ix and obtaining the solution by solving a 
smaller matrix. This facility could be especially valuable in solving large three dimen
sional problems. For details of such a mixed explicit-implicit scheme, see Edwards {19i2}. 

Let us now look at the finite difference expression for conductance given in (9). This 
expression will be strictly accurate if points i and k are located at the ends of a tu be of 
uniform cross sectional area ~rik' Instead, if the flow lines between points i and k were 
to converge or diverge, then the conductance estimated by (9) will be in error. In situa
tions where the disposition of the flow channels is already known, one could make use of 
the known geometric information in accurately estimating the flux, rather than using an 
expression such as (9). Thus, according to Narasimhan (1985), 

(11 ) 

9 



where Q is the steady state flux through a segment of a stream tube bounded by equal 
potential surfaces at Xl and x2' If we apply this logic to estimate Buxes into the LOC, 
then, 

KLDCDo'¢ 
XII; 

J dy 
XI A(y) 

(12) 

where xi and xk denote the location of nodal points of i th and j th continua along a 
chosen Bow path. The significance of (11) and (12) is that the known geometry of the 
block enables us to devise a simplified numerical expression to simulate transport in the 
LOC. 

4.2. Proximity Function 

In order that the generality of the MINC approximation may be fully exploited, it is 
desirable to be able to compute the geometric parameters for arbitrary shapes and sizes 
of the LOC blocks. Towards such an end, Pruess and Karasaki {1982} introduced the 
notion of a proximity function. The proximity function represents the dependence of 
cumulative LOC volume on position along a path extending from the surface of the 
block to its core. Ideally, this path will coincide with a macroscopic Bow line. 

Obviously, the first derivative of the proximity function yields the dependence of 
cross sectional area of the block as a functio'n of position as one moves from the surface 
to the core of the block along a Bow path. Thus, if P{x) is the proximity function, then, 

~~ is A{x), the function which occurs in Equations 11 and 12. 

4.3. Interporosity Flow Parameter 

We now brieBy examine the transient interaction between the HOC and LDC. As a glo
bal perturbation migrates rapidly through the HOC, a block in the LOC will begin to 
react slowly. As this happens, a perturbation front will migrate into the block. At any 
instant in time during this front-migration process, the Bux into the block can be 
expressed by, 

-. Q = 
KLDCDo'¢ 

Xr 

J dy 
o A(y) 

(13) 

where xf is the distance to the front from the surface of the block and Do'¢ is the 
difference in potential between the surface and front. Equation (13), which is based on 
the concept of geometry imbedded Oarcy's Law (Narasimhan, 1985), should, at the 
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present time be considered an approximate expression. The motivation for writing (13) 
has been to take in to accoun t the fact that a diffusive front travels with a finite velocity. 
Further work is in progress. It is clear that even if fl.7/J were to be constant, the flux in 
(13) would still be a function of time as the front migrates in time because xf is a func
tion of time. Therefore, conductance is a function of time. 

After sufficient time, the front reaches the center of the block. Conceptually, the 
block may now be visualized as a one dimensional tube of variable cross section, open at 
one end and closed at the other. If such a tube were subjected to a constant flux condi
tion at the inlet, then the Bow system becomes quasi steady as soon as the front reaches 
the core. Under this condition, the gradients of potentials within the tube will be invari
ant in time, whereas the potentials themselves will be changing. Under the quasi steady 
condition, the conductance becomes independent of time. 

Using the quasi steady assumption, Warren and Root (1963) introduced an inter
porosity flow parameter a such that 

-* -Q = VaKLDC ( 7/Jn - 7/J ) (14) 

where Q* is the flux from3lement n in the HDC to a single block in the LDC, V is the 
volume of the block and 7/J is the "average" potential over the block. In view of (13) and 
(14), we may express a by the relation, 

a= 
I I 

V x dy 

£ A(y) 

(15) 

in which x is the location at which the "average" potential of the block occurs under 
quasi steady conditions. For a unit cube, the Warren and Root method yields a value of 
60 for a. Using the equivalence given in (15) Narasimhan et al. (1987) have recently been 
able to independently verify the estimate for a provided by Warren and Root. 

5. EXAMPLES 

We illustrate the use of the MINC methodology with the help of two examples. The first 
of these relates to the problem of reactive chemical transport in a groundwater system 
taking into consideration diffusion in the solid phase. The second concerns the transport 
of heat in a two-phase geothermal reservoir. 

5.1. Solid Diffusion 

In considering reactive chemical transport in groundwater systems, diffusion into the 
solid particles is usually neglected for the reason that for inorganic species, diffusivity in 
the solid phase at room temperature is known to be IO-24m 2 per second or less, whereas 
diffusivity in pure water is known to be of the order of IO-10m2 per second. However, in 
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strongly sorbing systems with very small particles, the very large surface areas available 
and the strong concentrations on the solid surface may provide enough driving forces to 
render solid diffusion a non-neglectable mechanism in certain field problems of interest. 

To gain insights into the potential importance of solid diffusion, Narasimhan and 
Liu (1987) investigated reactive chemical transport in a porous medium comprised of 
spherical particles. The processes considered included advection due to a steady fluid 
flow field, molecular diffusion and hydrodynamic dispersion in the aqueous phase, 
adsorption according to a linear isotherm and solid diffusion. In the simulation exercises, 
the aqueous phase was treated as the HDC. The solid grains are the HDC and these 
were divided into six interacting continua. The adsorbed material on the surface of the 
solid was assumed to be uniformly dispersed over a thin shell of the solid with a thick
ness of the order of a nanometer. The interaction between the HDC and the LDC was 
handled using this outer skin of sorbed material as an intermediary. The simulations 
were carried out using computer program TRUMP (Edwards, 1972). Parametric studies 
were carried ou t by varying particle size, diffusivity values, and other quantities of 
interest. 

In Figure 3 are presented the break-through curves for a one-meter column with 
different diffusivities and particle sizes. The results suggest that migration of chemical 
species into the solid phase could be significant and noticeable on a time scale of 103 to 
104 years. Such a time scale is quite important in geological problems. Such a time scale 
may also be of potential importance in radioactive waste disposal problems. 

5.2. Vapor-Dominated Geothermal Reservoir 

The Geysers geothermal field in Lake County, California is a system that produces 
almost pure steam at a temperature of about 2400 C. A hitherto unresolved issue about 
this reservoir relates to the source water that has been sustaining the steam production. 
One view proposed by Truesdell and White (1973) postulates a deep, boiling water table. 
Part of the reason for this suggestion is the assumption that the steam production is 
indicative of very low matrix saturation in the greywacke (a variety of sandstone) that 
constitutes the host rock. 

Pruess and Narasimhan (1985) investigated the mechanism of fluid production at 
The Geysers by considering radial flow to a well in fractured rock of very low matrix 
permeability. The results suggested that in a fractured porous medium it is possible to 
have relatively high water saturation in the rock matrix yet producing steam from pro
duction wells. When a well is opened in a fractured medium with two-phase (water
steam) conditions in the matrix blocks, initially water is produced from the the fractures. 
As the pressures fall rapidly in the low-storage fractures, boiling occurs and steam fills 
the fractures. Simultaneously, a temperature gradient and a pressure gradient is set up 
from the interior of the blocks to the fractures. If the permeability of the blocks is small 
(of the order of a few microdarcies), the conductive heat transfer from the blocks to the 
fracture will be sufficient to provide the latent heat to convert to steam the small quan
tity of water that moves from the blocks to the fractures. Thus, a steam front will form 
at the fracture-rock interface and migrate very slowly towards the block interior. It is 
in teresting that if the blocks have high permeability, then the conductive heat transfer 
cannot provide all the latent heat required and two-phase fluid will discharge from the ' 
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matrix blocks into the fracture. An important consequence of this mechanism is the 
suggestion that the fluid saturation in the blocks may be far larger than residual satura: 
tion. If this is indeed so, the longevity of the reservoir may be much greater than hith
erto assumed. 

Figure 4 from Pruess and Narasimhan (1985) is a plot of enthalpy versus time for 
the problem investigated using MINC. Note that the highest enthalpy associated with 
pure stea.m production occurs in conjunction with the lowest permeability. Note a.lso 
that a uniform porous medium cannot be used to simulate the pattern of behavior 
observed in strongly heterogeneous systems. 
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Most of the applications of the MINC-method to date have been made for geothermal 
reservoir engineering studies including fundamental studies of vapor-dominated systems 
(Pruess and Narasimhan, 1982; Pruess, 1985; Pruess et al., 1987) and heat extraction and 
reinjection of waste fluids (Bodvarsson et aI., 1985; Lam et al., 1985). The method has 
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also been applied to. the study of water flooding of petroleum reservoirs (Wu and Pruess, 
1986) and chemical transport in the context of underground waste isolation (Rasmuson 
and Neretnieks, 1984). 

It is appropriate at this juncture to discuss applications of the MINC not hitherto 
considered. Subject to the availability of data to characterize heterogenieties, the MINC 
idealization enables the consideration of several hierarchies and branches of continua. As 
an example, consider chemical transport in a fractured porous medium ta~ing into 
account advection and diffusion in the aqueous phase and diffusion into the solid phase. 
In this case, the first level of hierarchy is constituted by the aqueous phase transport 
process occuring in the fractures (HDC) and in the matrix block (LDC). Transport in the 
fractures occurs by strong advection and transport in the matrix blocks occurs primarily 
by molecular diffusion in the stagnant aqueous phase in the interconnected pores and 
perhaps by very weak advection. Within a matrix block we may define a second hierar
chy of continua constituted by the solid particles. Compared to the diffusivity in the 
aqueous phase, the diffusivity in the solid phase is extremely smalL Therefore, one may 
use the MINC idealization at a second hierarchial level to quan tify the in teractions 
between the stagnant aqueous phase and the solid phase on a very large time scale. 
Hierarchies of contniua may also be formed by fracture sets on different sclaes (Nelson, 
1987). 

Furthermore, at a given hierarchial level, one may have an ensemble of parallel sets 
of continua. As an example, consider a fractured porous medium in which all the blocks 
are not of the same size or shape. In this case, within a single HDC element n, we may 
define sets of parallel continua, each set being characterized by a particular class of 
blocks. 

Finally, one may also allow for spatial variations in the diffusivities of the HDC on 
a global scale. 

In the context of a flexible algorithm the handling of the various hierarchies and 
branches is merely a matter of detail. The real limitation is the availability of field data. 
Observations that have been forthcoming in the last few years, especially in relation to 
the migration of organic contaminants, suggest that breakthrough curves may exhibit 
characteristic slope changes at different time scales, suggestive of MINC type of systems. 
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