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ABSTRACT
Based on the microscopic cranking model, the moment-of-inertia parameter

Jo and the force constant CVMI associated with the variable-moment-of-inertia

' model are calculated microscopically for rare-earth nuclei. Higher-order

effects representing quadrupole and hexadedapole centrifugal stretching,
proton and neutron Coriolis-anti-pairing effects and fourth-order cranking
correction are included. The present calculations are able to reproduce

the trend and the magnitude of both Jo and C fairly well with discrep-

VMI

ancies ranging from 10 to 40 percent.

r— . ' —_
NUCLEAR STRUCTURE rare earth even-even nuclei, calculated
moment—oninertia and force constant. Variable-moment-of-

inertia model, cranking model. Coriolis-anti-pairing effect,

fourth-order cranking, centrifugal stretching.
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I, INTRODUCTION

It is now well established that the quasi-rqtational_spectrum plays a
central role in the excitations of even-even deformed nuclei.l’z The general
features: of the quasi-rotational states are as follows: 1) their spins and

+ o+
, 4,6, ..., and 2) their energies

+
parities follow the sequence of O , 2
deviate from the I(I+1)'rule a8 the spins increase. Recently, it was dis-
covered that at very high angular momenta, the rotational energies of some

12,3

nuclei may exhibit anomalous behavior, the so called back-bending. Ve

shall not discuss the back-bending phenomenon in this.paper, but

shall limit our calculations only'to those states with moderaté high spins,
There exist many two-parameter formulas which fit very well the energy levels
up to spin I~d2. Among them we may mention the cehtrifugal stretchihg model
of Diamond, Stephens and Sw:i.a.'c.ecki,4 (vhich was later extended by Soods), the
fourth order cranking model of Harris6, the variable moment-of-iﬁertié model
‘(VMI model) of Mariscotti, Scharff-Goldhaber and Buck7, and ﬁhe EXP.model of
Draper.8 Recently the VMI model has also been extended to high spins by

9,10

several authors to deal with the back-bending phenomenon. Compared to

the phenomenological'fits, the microscopical calculations of the nuclear

11-17 on the other hand, have only moderate success in

rotational energies,
reproducing the experimental data; For example, the authors of Ref. 11 to
Ref. 15 (Udagawa and Sheline; Chan and Valatin; Sano and Wakai; Bes, Landowne
and>Mariscotti; Krumlande) took into consideration the centrifugal stretching
and the Coriolié-anti—pairing eff‘ect]'8 (CAP effect) and obtained fairly good

16,17 have shown

?Bgreement with the experiment. However, other calcuiations
that the fourth-order cranking contribution is as important as the CAP effect
and the inclusion of the former makes the theoretical results much worse.

Indeed, Marshalek's calculationsl6 showed that in general the calculated
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values of the B coefficient associated with the 12(I+l)2 correction term in

an expansion of the rotational energies is about a factor of 1.5 to 3 too large
compared with the experimental date in the rare-earth regiOn, The calculations
by Ma and Ra.smussén17 were likewise only capable to produce results of the
right order of magnitude; however, the quantitative significance of their
results is subject to some_uncertainty due to the use of a simple basis where -
the single particlevangular momentum is kept as a good quantum number, More

19-21 have done Hartree-Fock-Bogqiiubov variational

recently, several authors
calculations to study the back-bending phenomenon at high spin states; which,
however, will not be discussed here. In summary, the abovejéituations indicate

that the microscopic calculation of the rotational energy deserves much further

study.

The present calculations are based on the cranking model of Inglis.22 We
follow closely thé formulations of Ma and Ra.smussen17 (hereafter referred to
as (I)), and make use of the single particle wave functions of Nilsson et gl,23
with the inclusion of both quadrqpole (‘2) and hexadecapole (ch) deformation.
Since it has been shown that most of the two-parameter formulas are related

7,17,2k we shall calculate specifically the parameters associated

to each other,
with the VMI model and the B coefficient connected with the 12(1+1)2 term.
The following section will briefly review the formulations'developed in

(1), the detailed calculations and formulas are given in Sec. TII, and the

last two sections will give the results and discussions.



-3- LBL-2347

II. REVIEW OF MICROSCOPIC THEORY

7 v
The VMI model can be expressed as follows:

1 2 I(I+l)
Er =7 C%m (JI Jo) + 23,
oE :
I
—= 0 (1)
BJI

where EI and JI are respectively the energy and moment~-of-inertia of the

excited state with spin I. The force.constant CVM and the ground state

I
moment-of-inertia Jo are the two parametérs which can be determined by a
least squared fit to the experimental energy levels. The VMI model is able
.to give very good fit for states up to spin I ~ 12, Recently Saethre et al.
:have improved ﬁhe fitting bf using a three-parameter and a four-parameter
crank;ng model formulas. The two-parameter VMI model has been sthnT to be
‘mathematically identical to the Harris fourth order cranking model; in addition,
Klein gE_§£:24 have proved that the VMI model and cranking model are»eqﬁivalent
to all orders. |

The microscopic derivation Qf the VMI model‘has been given in (I) and

will be briefly outlined below. One first expresses the total energy of a

rotating system as
7

I(I+1)

RS N B 1¢ 25 1)
E= 25 (x - x)) +2J(xfi)

~ 2 (2)
i

where the potential energy is expressed approximately as a sum of harmonic:

terms each of which represents contributions from various collective degrees

3 .

of freedom denoted here by X, . Ci is the spring constant associated with
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the i-th degree of freedom. The second term is thefkinetic energy. The
rotational solutions are obtained by minimizing Eq. (2) with respect to

various x; at a given value of spin I. In the present calculation we introduce
as collective degfees of freedom the quadrupole and hexadecapole shape deform—.
ations €_ and €

2 4

and neutron pairing correlation parameuﬁs'yp and Vn involved in the Coriolis-

involved in the centrifugal stretching effect; the proton

anti-pairing effect; and a new collective variable N = w2 involved in the fourth
order cranking correction where w is the angular velocity. Thus, we define

(see (I) for details)

{xl' le x3r x4r xs} {321 € vpr Vn: n} (3a)

4'

{cl, C,r C3/ Cy cs} = {022, c44., cvp, Cop cn} . (3b)

We have not included the asymmetric degree of freedom (gamma shape vibration),

since its contribution is rather insignificant as was shown by the calculations
6 '

of Marshalek.l

In the first order approximation, Eq. (2) can be reduced\to Eq. (1)

. . .1
through a normal coordinate transformation and one obtains

2
3J (x,) ' .
-1 _ -]-_- i .
Cour = :E: C, < ox., ) : (4)
1 1 1
{x, }

10

where X5 is the value of x, at the ground state, thus no = 0. The moment-

of-inertia J(xi) can be expressed as

J(xi) = Jo(xl, Xy X, x4) + 2C

n (xll le x3l X4)'T1 . (5)
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The first term is the ground state moment-of-inertia which can be calculated

. 22 26
by the well known cranking formula of Inglis » and Belyaev,

s 2
I<°" Ijxla)l 2

J = 2 _ (v ,v, =-v , U) (6)
3o Egr *Ey a a. oc_ a

a

wherewla ) is the deformed single particle state with d denoting the appro-
priate quantum nﬁmbers, ma,isrﬁheimagnetic;quantnmnnumber\along the:symmetry
axig, Ua and Vd are the probability amplitudes in the presence of pairing
interaction and Ea is the quasi-particle energy.

The Inglis and Belyaev éranking formula (6) is based on the independent
quasi-particle approximation. However, a recent calculation by Meyer, Speth
and ngeler27 showed that the two carrection terms arisihg'from the particle-
particle and particle—holé interactibns nearly cancel each other. It has also
been shown by Rich28 that correction due to particle—nuhber conservation is
also small. Thus it seems that the use of the cranking formula (6) is rather well
justified numerically.

The second term of Eq. (5) represents the.fourth order cranking
correction which was first studied by Harris6 and the fourth order cranking

6
constant Cn can be expressed as

v S la v )(.wmlelprwlexlwnMwnl.Jxlwo)

c =2 o x 2
T L €, - &) €, -¢€) (ep - &)
2, 2
-2 ' <wm|Jxlwo) -("Pn‘lel‘Po)

E - 5 - (7)
m,n (em_u—eo) (En -Eo)
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~

where the ground state wo is the quasiparticle vaccum state, wm and wn are
two-quasiparticle states and the intermediate state wp can be either two-
quasiparticle or four-quasiparticle excitations. The corresponding energies
are denoted by E;, eh, En and Ep. The “"prime" on the.sgmmation indicates
that the ground state is excluded from the summation.

It is obvious from Egq. (5) that

aJ

sﬁ = 2Cn .

Thus, the contribution of the fourth order cranking in Eq. (4) is simply 4Cn

while the contributions of the other degrees of freedom are given by

The B coefficient associated with the 12(I+1)2 term in the angular momentum

expansion of the rotational energy

g = L) o Pa? v @i ... (8)

I 2J
.o
can be expressed as

~ 1 33
B = —z 2 ( 'éx—') . (9)

i 8CiJo i {x. }
io

The value of the force constant C;;I or the B coefficient indicates the degree to

which the spectrum deviates from the I(I+l) rule. Both Egs. (4) and (9) show

that the contributions from various degrees of freedom are all positively added.
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A simple relation between C

VML and B can be obtained by combining

Eq. (4) with Eq. (9), which yields

4 v
8 B CVM: Jg = -1 . ' (10)
III. DETAILED CALCULATION AND FORMULAS

A. Single Particle Basis and the Pairing Problem

The deformed singie particle basis used in the present célcuiations
is chosen to be identical to that of Nilsson 93_21323 The diagonalization
is carried out over the space of 11 shells for proton and 12 shells for neutron.
The values of 82 and 84 of each nucleus ére takeﬁ from ﬁhe work of Nilsson
gg.gi. and are listed ?n‘Table I.

The pairing strength G is chosen to be a smooth function of A as

"suggested by Nilsson et al.

N-Z
. = + =2
G A . go gl A
9, T 19.2 MeVv |
g, = 7.4 MeV ' (11)

 with plus sign for protons and minus sign for neutrons. -They’also put in a

linear surface dependence of G, which may be important for large deformation.

/2 /2

' The BCS equation is then solved by including (15Z)l or (15N)l states above
and below the proton or neutron Fermi level. The pairing gap parameters'Apaaﬁd

An thus obtained are given in Table I.
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The enefgy of a quasiparticle can be expressed as

‘ 2 2 )
E = (g - N (U2 -v) + 209 G ,?:0 0y (12)

where ek is the single-particle energy and A is the chemical potential.
Following (I) we pérametrize the probability amplitudes {Uk’ Vk} by introducing

a pairing correlation parameter V

U

TSN

' €_ - A :
=1 [1 + X ] . (13)
v . J(e - A)z + V2 o |

. k :
If v = Av(thé_enérgy gap A is the equilibirium value of V at ground state),

Eqg. (12) reduces to the familiar BCS result

E = J(_e}; a2 % . e

In what follows we shall vary V to caiculate the correséonding derivatiwves of
moment-of-ine;tia as well as the pairing spring constant for a fixed pairing
strength G as dgiven by Eq. (11). Since for vV # A, the BCSvgap equation no
longer holds and Eq.'(l4) is nét valid. Thus, it is important to use Eq. (12)

rather than Eq. (14) as the expression for the quasiparticle energy.

B. Derivatives of the Moment-of-Inertia

We shall calculate the derivative of the moment-of-inertia Jo with
respect to the pairing correlation parameter V while the average particle

‘number n and the pairing strength G are held fixed. One obtains



aJo aJo aJo A .
)  =\& )t v (13)
n,G A,G v,G n,G »

where Jo is given by Eq. (6) and the average particle number n is given by

sz

k ) Ou

(16)

]
o}

It then follows

T\ . _ ) 2
AGlv =A k2 E_+E
. k L
(02 - v2) (Uu,+vVv.V,)/E
g T V! WU ViV /By
- 2U,V, (U V, - V.U,)
N I : ]: é kL. -z- > Umvm(ui_ - v:‘)z (17a)
k. T4 m)o '
<3J°) E |(kljx|—9,)|2 |
~— =2 (U V, - UV, )
Q}\ v,G|v=A ) Ek + EZ v k 2 Lk

¢ 2U Vg(U U,+ Vv Vl)/El

(UV}L-UV) 5

E + E

k L m)o

\

BA) T 2?2 - R Y3 y? :
LAY = = Ul v, (Ul -vk)/2 U v (17c)

. 2 2. G 22,2 2
ol [(UR vy) - auv, 3 ) u2v2 w? -__va (17b)

’
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Note that in taking the derivative, the quasipartiéie.energy is given by
Eq. (12). After the derivative is taken, its value at Vv = A is then
evaluated. |

The derivatives of Jo with re;pect to the deformation parameters 82
and €, are calculated by finite differences. ' The mesh pdint interval ig taken

4
to be 0.02 for both €_ and €,.

2 4

The various derivatives of the moment-of-inertia are listed in Table
"II. The derivative with respect to pairing are quite stable over the rare-
‘earth reéion of nuclei. For example, with respect to the neutron pairing,
the derivatives flﬁctuate around -(36 * 10) Mev-z, while the derivatives with
respect to proton pairing are roughly eqﬁal to -(19 * 3)-'MeV—2 for nuclei in the
region of A Vv 165 and -(11  2) MeV-2 for those in the region of A Vv 187. The
derivatives with respect to the deformation, on the other hand, are quite |
different as one goes from one nucleus to another. In the case of quadrupole
deformation (82), the derivatives are largest at the beginning of the rare-
earth region and generally decrease towards the end of the region; while in the'
case of heﬁadecapole deformatién (64), the derivatives ére strongly negétive
at the beginning of the rare-earth region and change to positive values néar
the end. A negafive value for the inertia‘derivative with réspect to hexa-
decapole deformation (é4) has some interesting consequences. The equilibrium

value of €, at a given spin I in first order approximation is given in (I) as

4
e =g 4 LIHL) 0J (18)
4 T40 20 J2 364 ,
44 :

whére € is the hexadecapole deformation at ground state. In the beginning

40
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of the rare-earth region, the values of both 640 and the inertia derivative

with respect to 64 are negative, thus, as the spin goes up, the hexadecapole
deformation will increase in magnitude which is just the familiar stretching
effect. However, for nuclei in' the middle of the rare-earth region, the values

of 0 become positive while in most cases the inertia derivatives with respect

€4
to 84 still remain negative. Thus, as the spin goes up, the hexadecapole

deformation will actually decrease.

Equilibrium values of quadrupole deformation 62 and of pairing

-

parameters V_ and vn at a given spin I can also be determined by equationsg

similar to Eq. (18) which then yield the quadrupole stretching and the

Coriolis-anti-pairing effect.

C. Pairing Spring Constant

The ground state energy can be expressed as

€ = Z &kzvi—s~z Ukvkz—c;'z V;i
% xdo ko " ko
: 3.3 2,2
DY UV, U vy Z U Vi (19)

k#% ) 0 k}o

where the first three terms are the BCS ground state energy, and the last

term approxiﬁately accounts for the fixed-particle-number correction.zgf30

The pairing spring constant Cv can be obtained by taking the second deri§ati9e

of eo with respect to the pairin§ correlation parameter v

| ( 3%
o)

a\)2

Cv =
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2

2
=(ae° .25 ﬂ) +(a_2fg ‘%)2
8V2 QXSV | oV n BXZ AV h
dE 2.1 - -
+ -579 (9—-%) .« ' (20)
v \ov n . :

"Bvaluation of the derivatives of eo with respect to A and V are straightforward
by using Eq. (19). The derivative of A with respect‘to V can also be easily
obtained in terms of Eqg. (16). The proton and neutron pairing spring constants
Cv§~and C\)n as calculated by Eq. (20) are given in‘Tablg III.

It is interesting to note that inclusion of the fixed-particle-number
correction in the ground state energy‘will in general increase the pairing
spring constant by about 20 percent, hence, reduces ﬁhe CAP efféct, Some
of the examples are given in Table IV.

A simple formula for C based on the continuous model is given in (I)

Vv

which reads

2
c,= (20 +3p (1 -p6) B 30

where p is the average nucleon orbital_level density. The épring constant
given by Eq. (21) (see Table I of (I)) are somewhat larger thénvthosg given by
the present calculations by about 5 to 15 percent in the case of proton and

10 to 25 percent in the case of neutron. In view of the tremendous nﬁmerical
work involved in Eq. (20), the simple formula Eq. (21) is indeed a very useful

approximation.
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D. 'Shape Spring Constant

The shape spring constants C22 and C44 associated with the quadrupole

¥ W

- 82 and hexadecapole 64 deformation degrees of freedom can be

obtained similarly by taking the second derivative of the ground state energy

7

e . - : ' ——
o with respect to 62 and 84 | R
2%, e,
C,, =~ ) C,, = ——= . (22)
22 382 44 382
- 2 4

In applying Eq. (22), the ground state energy Eo is calculated according to
the Strutinsky average prescription as described in Ref. 23 by Nilsson et al.
The C22 and C44 are then obtained by finite differences with _the mesh point

s interval taken to be 0.02 both for €., and 84; the results are listed in Table III.

2
The cusatures C22 and C44 at the ground state deformation are due to
contributions from the liquid drop energy part, the shell correction part and
the pairing energy part, which make up the potential energf surface. The shell
correction part gives the largest positive contirbution and in fact detefmines,
to the larger extent, the deformation of the ground state hucleus. The pairing
effect.tends to smooth out the level density and thus acts against the shell
" effect. It provides a negative contribution to the curvature. The liquid
drop energy part in general gives a small positive contributioh.
> " The Strutinsky normalization repl&ces the smooth part of the eigen-
energy summation by the liquid drop energy. Due to the inadeéuacy of volume
normalizatidn of the single particle potential weli, the former has a much

stronger curvature than that of the liquid drop part, as is obvious from the

fact that its value would be infinite at € = 1.5 (which is of course quite far
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away from the ground state deformation of € v 0.25), whereas the liquid drop
energy would be finite. Hence, one would expect the value of curvature

calculated in a scheme with the employment of Strutinsky normalization to be .
smaller than the value calculated without it. This is ihdeed borne out by our
detailed calculatibn which show that the Strutinsky normaligation generally ?educeé
the values by.about 20 percent.

On comparison with Table I of (I), our present results for C22 are
about 40 to 100 percent larger. The first reason is that we are currently
using a finer set of grids; Ae = 0.02, as compared with Ae = 0.05 used in the
older calculation. Thus, the new calcﬁlations are less likely to suffer from
the problem of anharmonic effects in the potential energy surface which, in
the present case, will tend to reduce the effective value of the curvature.

The second and probably the main reason behind the discrepancy is that tﬁe
older calculation used a surface-independent pairing force; wﬁereas the new
calculation has a pairing force dependent on the surface area. For most
properties of the nucleus near the ground state, this difference does not
present significant discrepancy. But for such higher-order effect as the
curvature, we find it does make a difference. When we caléulated the pairing
energy contribution, we found that the new calculation with a surface-
dependent pairing force gives a smaller negative value tﬁan the old calculation,

and the change is sufficient to account for the discrepancy between the two

23,34 on the choice of

results. A detailed discussion was made by ether authors
these two versions of the pairing force. We have not pursued the question regarding
-which is the more appropriate form of pairing force to be used. However, as will

be seen later, the contribution of centrifugal stretching effect to the VMI .
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force constant is very small when compared with the contributions from

Coriolis-anti~pairing and fourth-order cranking effect, so that either

choice of the pairing force will have little effect on our final results

and conclusions.

E. Fourth Order Cranking Constant Cn

The evaluation of the fourth order cranking constant Cn

given by

Eq. (7) is rather tedious, since now one has to calculate the contributions

from the four-quasiparticle intermediate states as well as those from the

two-quasiparticle states. Fortunately, we are able to reduce Eq. (7) to a

sum of quadratic’terms; as a resut, the numerical work is considerably

simplified. We shall quote the final result below while the derivation will

be given in the appendix.

cn=-4 z Z (E_ +E_,)-
: m)o t t, 9 4
p q, 9
m =m -1
q
m_,=m +1
Tq'Tp

E
) (EP + q) (Ep + Eq,)

-2 Y, (B +E -

v (U v -v u) (UV_ , -U_V )‘2
Y <l l@¢p]i |qv 2RI R A_Pd q p]
t x X

m=m JO t_ t_,
P P p, P
 Apls l@(p] UV -VU) (0. -V u )<
5 pli l@¢p sl v, pq.)(p.q %7
. tq ‘ (E +E)(E,+_Eq)

m =m *1
q p
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m)o t t, q g\t

j< , p
m =m -1

a p |
m_,=m +1

q' p
F (U V -VU) (UU,+VV,)"12

P9 PpP9g P g P9
E + E
P q
- )>

UV, -VU UuU +VV
-(Pq' pq')(pq p g
+ E + E

]
- P : J/
1
+2
E + E
m=m 20 t“t '
' p, o p p

Rz

S IEMEAS R F M

ug.v -V U Uuu +
'(p'q ‘)(pq

t
q
q P
(U -Vu U ,u_ +VY V)
i (‘pq g ¢ g p'q %)

v.V)
P g

E E

! q

+ p'q
+
p
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(23)

where mp is the magnetic quantum number of the particle in state IEQ, tP denotes

the quantum numbers other than mp and Ep is the corresponding quasi-particie '

energy. The first two terms represent the contributions from four-quasiparticle

intermediate states while the last two terms represent those from two-

quasiparticle intermediate states, as can readily be seen from the form of

the products of the U, V coefficients. The fourth order cranking constants
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Cn calculated in terms of Eq. (23) are listed in Table III. Our éalculatiqns
show that the two-quasiparticle contribution is always positive while the '
four-quasiparticle contribution is always negative. Furthermore, the former

is generally about three to four times larger than the latter in magnitude.

Some of the.examples are given in Table IV.
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IV. RESULTS AND DISCUSSIONS

A. Moment-of-Inertia

The ground state moment~of-inertia JO is calculated according to
Egq. (6). In addition, we have followed Nilsson and Prior31 and increased
the calculated values by 5 percent which represents apprbkimately the effects of the
coupling between the shells N and N # 2, due to the jx operator. This is
because the Nilsson wave functions of Ref. 23 aré expressed in the stretched
coordinates and the jx operator in these stretchgd coordinates will give rise
.to a term which will couple the shells N and N + 2. The resﬁlts are listed in
Table II and plotted in Fig. 1. From Fig. 1, it is séen that the trends‘of
the experimental moment-of-inertia are well reproduced by the calculations.
The calculated magnifudes, however, are generally too small by 10 to 40 percent,
the average discrepancy being 25 percent. This disagreementfin magnitude seems
to be somewhat too large compared to a similar calculation by Nilsson and Prior3
| where the calculated Jo are generally 10 to 30 percent too small, the average
discrepancy being 20 percent. But it'should be pointed out that in the present
calculation, the singlg particle states and the parameters G, 82, 84 are all
taken directly from the works of Nilsson 95_21:23 without any readjustment.
One may, for example, obtain very good_agreemeht with the experimental data by
choosing 9, = 18.0 MeVv instead.of 19.2 Mev in Eq. (11). We shall.return to

this question at the end of this section.

B. Force Constant CVMI

The force constant C;;I associated with the VMI model of Eq. (1) is
éalculated using Eq. (4) and the results are listed in Table V and'plotted in

Fig. 2. The contributions to C;;I from various sources are also given
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separatély in Table V. One notices first that éxcept for nuclei with neutron
number N = 90 and 92, both quadrupole and hexadecapole centrifugal stretching
contribute very little to the energy deviation from the I(i+l) rule. Typically
they amount to only a few percent of the total contribution and hence in most
cases can be entirely neglected. This result is consistent ‘with other micro-
scopic¢ calculations and also with experimental observations.32 It is important
to note that the contributions of hexadecapole étrefching are comparable with
those of quadrupole stretching. Hence they should both be taken into éccount

16 of change of nuclear

in other relevant analyses, such as the study
mean-square radiusbA ( r2 ) ar the study of the deviation of the trans-
ition probability from the rigid rotor formula.

It is shown in Table V that the neutron Coiolis-anti-pairing and‘the
fourth-order cranking corrections are the ﬁwo largest contributions and are
comparable with each other. The proton Coriolis-an£i4pairing term is relatively
smaller and amounts to about 10 to 20 éercent of the total contribution. 1In
general, the presént results are very different quantitatively - from those of
(I). However, many qualitative discussions of (I) are still valid.

We observe in Fig. 2 that except for nuclei with neutron number N = 90,

104 and 108, both the experimental trend and magnitude of the force constant

C are fairly well reproduced in general by the present calculation. In

VMI

most cases the discrepancy ranges:.from 10 to 40 percent; the average discrepancy

for all nuclei (excluding those with N = 90) is about 34 percent.
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"The large discrepancies of the éalculated force constants which
occurred at neutron number N = 90, 104 and 108 deserve more careful study.
~Perhaps the 90-neutron nuclei are so close to being shapé unstable that the

present model of stable deformation may be somewhat questionable. This
argument, however, cannot be applied to nuélei with N = 104 apd io08, ail of
which appear to be good rotors.. We then compare the calculated Nilsson
single neutron ievels arouhg N = 104 .and 108 with those deduced semi-empirically
by Ogle gg_g£.33 and are not surprised to find some discrepancies between

them. Consequently, we make the following preliminary neutron level shifts

’

[512, 5/2']n + 0.05 hw

Calculation B: ¢ [510, 1/2‘]n - 0.05 hw for A = 170

[512, 3/271 - 0.05 g - (24)
t | |

' . A
With the above neutron level shifts and assuming further that the

wave function and the quadrupole and hexadecapole stretching are the same,
we repeat the calculation on the moment-of-inertia and the'force constant
which will be célled calculation B while the previous caléﬁlation without
level shifts will be called calcﬁlation A. Théiresults\of»calculation B -
are listed in Table VI. In general, the results of calculation B are
similar to those of calculation'A except for nuclei around neutron number N
= 104 and 108. Note in Table VI that the moments-of-inertias from calculation
B change only slightly over the results of calculation A;' On the other hand,
the force constants of ca;culation E are considerably improved over‘the
~results of calculatiqn A around N = 104 and lOé, as éan be seen in Fig. 3.
The éerious discrebancies of calculation A which occurred at N = 104 and 108

are now much reduced; in most cases, both the trend and magnitude of the
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experimental force constants are now fairly well reproduced. However, in ad-

. . . . ) . 7 .
dition to the 90-neutron nuclei there still remain three nuclei (iogEr, i;:Yb

and leon) whose calculated force constants are a factor of 2 too large com-~

108 _
pared to the experiment. The average discrepancy for all nuclei (excluding
N = 90) is now 29 percent. Thus the agreement betﬁeen.the.theoretical and
experimental values of the force constant is comparable to that of the
moment-of-inertia calculations.

‘The above resultsbindicatg that the force constant CVMI which repre-
sents the higher-order effects in the rotational energy calculation is much
more sensitive to the single particle levels than the moment-of-inertia. We
have no intention here to do a detailed searching for better'single neutron
levels. Instead, the emphasis is to indiéaté that by reméving the discre-v
pancy of the Nilsson neutgon_levels_aroung N»= 104 ahd 108 (although only in

a preliminary way), the calculated results of the force constant C;;I can be

considerably improved.

C. B Coefficients

The B coefficient associated with the 12(I+1)2'term in an expansion
of the rotational energy can be evaluated either by Eg. (9) or in a more

straightforward way, since we already know Jo and C;l

MI; by Eq. (10). The

results of calculation B are given ih Table VI and plotted in Fig. 4. The
experimental B coefficients are obtained by a leasf-sqﬁared-fit to the first
three excited states by using the first three termsbip Eg. (8) Qitﬁ Jo taken ”
from Ref. 7. I£ is seen in Fig. 4 that the trend‘of the B coefficient'is'fairly.

well reproduced; the éalculated magnitudes, however, are generally too large

by a factor of 2 to 5. ‘Thus, the agreements are much worse than those of the
force constant C--1 although both of them represent the higher-order effects.

VMI

The reason is easy to understand, because the B coefficient depends on the-
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inverse fourth power of the moment-of-inertia Jo according to Eq. (10). Our

-1

calculated Jo are roughly 10 to 40 percent smaller while our calculated CVMI

are roughly 10 to 40 percent larger; so combined they yield the B values by a
factor 2 to 5 too large. |

Because of this J;4 dependence, it seems that in order to get reasonable
agreement for B'COefficient one probably should first fit the moment-of-inertia
as acéurately as possible. We have mentioned in the beginning of this section
that very good agreements of the moment-of-inertia could be achieved provided
one uses a réduced'pairing strength g, = 18.0 MeV instead of 19.2 MeV in
Eq. (11). The values of Jo' B and C;;I calcu}ated with 9, = 18.0 MeV and
without neutron levels shifts are listed in Table VII. In addition, the |
second set of resulﬁs of Jo and B of Marshalekl6 which are obtained by adjusting
the pairing strength so as to exactly reproduce the experimental moment-of-
inertia are aléo included for comparison. -Our results are roughly similar to those
of Marshalek at the middle of the rare-earth region, though discrepancies occur
at both ends of this region. Note also in Table VII that our B.values are
now improved over those obtained previously with 9, = 19.2 MeV, although fhey
are still too large by a factor of 1.5 to 3 in general. On thé other hand,

however, the force constants C;; in Table VII are much worse than those

I
obtained previously with 9, = 19.2 MeV.

We seem to be in a very interesting situation. On the one hand, our
calculation with pairing strength 9, = 19.2 MeV is able to reproduce fairly
well Jo and CVMI; however, it yields very poor B coefficients. On the other

hand, very good Jo and improved values of B (but still too. large by a factor

of 1.5 to 3) could be obtained from calculation with the reduced pairing
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strength 9 = 18.0 MeV, but now the C i becomes very poor. We feel that

M
an accurate microscopic theory should be able to reproduce both force constant
and the B coefficient correctly. For calculaﬁions involving as many approx-
imations as these, however, we suggest that the force constant cVMi is a‘more
meaningful quantity to be compared with. The reasons are as follow: .1) Because
of the J;4 dependence, the large discrepancy of the calculated B coefficient
may be misleading .since it may .essentially be a result of small to moderate
deviation in Jo. It is also probably misleading for ane ;o.obtain bettef B’
coefficient by adjusﬁing the pairing strength alone in o:der to reduce the
efrorAarisinq from the J;4 dependence, because in doing so; the force

constnat C. . will become unduly worse. 2) It is well known that the expansion
of the rotational energy in terms of the angular velocity w2 is much better

than the expansion in terms of the éngular momentum I(I+l)._ Thus, the force
constant Cvﬁi alsq appears to be a more physically significant parameter than

the B coefficient.
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V. SUMMARY

Based on the microscopicvcranking model, the present calculations are
able to reproduce fairly well the moment-of-inertia Jo and the force constant
CVMI associated with the VMI model with discrepancy ranging from 10 to 40
percent in general. On the other hand, the calculated B coefficients are
qﬁantitatively poor, which resemble the calculations of Marshale_k.16 However,
as we have mentioned, one must use care in intérpreting-thevlarge diScrééancy
of the B coefficient because of its J;4 dependence.

We have taken into accoﬁnt the fixed-particle-number correction for
the potential energy; obviously it will also affect the moment-of-inertia and
the fourth order cranking calculations. According to the calculation of Rich,28
the fixed-particle—number correction will reduce the inertia derivative with .
respect to pairing by 10 to 20 percent. Since the force constant C;;I is
proportional to the square of the inertia derivative, this will cause 20 to
‘50 percent reduction of the Corioiis—anti—pairing effect, which is in the
right direction of improvement. We feel that the present approach is not

-accurate enough to study nuclear rotation at very high spin; to do that, the

perturbation treatment on wa probably will have to be avoided altogether.
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APPENDIX

We firét express the Jx operator in the quasi-particle representation

as
Ix =911 * Y20 (a.1)
- with
<playyle> = <plilos (WU + V. V,) (A.2a)
mqf% | .
<o|J,,lpa> = (-1) <ol3 |-o (0¥, -‘vaq) | (A.2b)

where [0} is the quasi-particle vacuum state. Note that J_ only
operates between states with J, components differed by % 1.

Consider now the contribution of the four-quasiparticle excitations

to the first term in Eq. (7)

c. (4gp) = 1/8 - T | |

M ) / ' (pg)?l fit&%ﬂffi X
gp q g:i (Ep+Eq)
P.q
p#d#b #q

’ ! '
QQ'Jzoipq’ P a><pq,pa |'J20|plql> <plql!J20'o>

X (E +E +E_+E +)(E_+E_ )
pq p q Y
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where (pq)+l denotes a complete set of two—quasiparticle'states |pa>

with Jz component mp+mq = 41, Since Tor each |pg> there is a corréSponding

state |qp>, the factor 1/8 thus accounts for the double counting of pq,
p'q' and plql. Writing the non-zero terms of the above expression explicitlyv

one obtains

cp (MaP)= 52 «ﬂ%Jmpz«ﬂﬁdphS
| (pg)el 2
(p'a’ )%l (E+E )" (E_,+E_,)
pgagp'#a’| P 4 P4

<013yl pe> <013 0| p"a’> <ofJ,o|pa’> <ofd,o|p a>

(Ep+Eq)(Ep+Eq/?(Ep,+Eq)

<013,5lpa> <o|d,q|p'a’> <o]d,,|Pp’> <ofJ,,laa’>

(Ep+Eq)(EP+EP,)(Eq+Eq/)

We notice first that the constraint p # 9 # p' # q' can be dropped because
the additional terms thus created will cancel each other. Secondly, the.
third»term may be made equal to the second term by exchanging p' with q'.

It then follows

2 2
%(Mw)=%z <o|J,q|Pa>" <o0|d,4|p"a’>"

pg)£l 2
p'q’ )1 (Ep+Eq) (Ep;+qu)

<0]dpp!Pe> <0]d,5[p%a"> <o]Jpglpa’s <of7,0lp e (4.3)

1 E+E WE_+E +E E_,+E )
£ P q)( p’ Q'>(Ep q')( " q) :

_ )((EP+EP,+quEq/)
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The first term in this equation obviously cancels the second term in Eq. (7); we'

thus defined the full contributions of the four-quasiparticle excitations

as

Cn.(hQP) C% (4qp) + second term of Eq. (7)

second term of (A.3)

The summation of the second term in Eq. (A.3) can be separated into four

terms
T = T o+ % + T >
(pa)£1 (pa), (pa); - (pa)_q (pa)_;
[P A r ! r r 7 r
(p'a")sl (p’a”); (@'a"); (p'd") (p'a")_,
The first term yields
X = -5 % X <o|J20|pq> <o|J20|p'q$ <o|J20|qu><o|J20Lp’Q>
(pq)l mp:il/z,i3/2,... tp,‘p; Ry y X
‘ E_+E E_++E E_+E E_E
(p’a");  mye=my T Al T s B 2
qQ’q
=17 = -m +1 »
m =Ty / 5 X (Ep+Ep/+quEq,)

i
]

. | .
5 (£_+8,_ )z <0l920lPe> <0l3y0lp >
P’ D

>
m_=+1/2,43/2,... t , ,
+ E_+
P a (B, Eq)( o’ Eq)

m_,=m

m= -m +1
p

where we have applied the conditions
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The other three terms can be evaluated in a similar way, and we obtain

finally
Co(4QP) = -k x . (EpE) f5 <ola,glpas <old,glva’s Y 2
mwe’ - ‘q - q 20 20
m >O t ,t ’ t - -
P a4 P (E+E )E+E_,)
m = -m +1 P 4 p q
q P
m_s= -m -1
q P
. P 2
2% z (g5, [z <o}, ,|pa> <03, ,lp a>"
My #=Mp>0 Ty bps t
m = -m 1 (FptB)(Bpr+Ey)
4 P
(A.4)
Substitution of Eq. (A.2) into Eq. (A.4) then yields the first two terms
in Eq. (23).
The contribution of the two-quasiparticle excitations to the first
term in Eq. (7) is
. t ! YN ‘
o, (26p) = 1/8 - 2% <o|d,qlpe> <pafdy;lp’a’> <p’a’fay [pja>
(pq)+l ( Y ) X
‘ E +E NE_++E
(p'q’)o,x2 p ap e
(pqa; )+l
<19y |5l
(E_+E_)
Since LS

<pq|Jll|pfq'> = 6pp,<q|Jil|q’> + 5qq,<p|Jll[p’> - 5pq,<q|Jll[p’>

-6 I<P!J11IQ’>

ap
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one obtainkt:
’ . ’ ’
Cy (2QP)” = 2 *(;pq)ﬂ <old,glpa> <a|d 4 [a’> <q |J11|q1> <Pq1|_J20|o>
E +E NE +E +E
(pa’)o,+x2 ( P q)( P Q’)(EP ql)
(pa, )£l
42 ¥ <o|J,0lpe> <aldyla’> <play [p’> <p'd’ |3,4|0>
(pa)sl - " ’
+ E ' +E
(pa’)0,42 (Ep Eq)( p+Eq')(Ep' qr)

i

(p'a’ )1

Recalling that J _ only operates between states with J;-components differed

by %1, we get

Cp(2P) =52 +hz  +lkz -} X
| (pa);  (pa)y (pa)y
(pa”),  (pa’)y  (pa’),

(pay);  (pgy);  (pgy);

(Ep+Eq)(Ep+Eq,)(Ep+qu)
+ 4Lz r bz +Z } X.
(pa);  (pa);  (pa),

(pa')y (pa"),  (pa’),

(p'a"); (p'a’); (»'a’)

. ! , 1 -
x(<o|_J20!pq> <q!J11lq > <lell.lp'> <p q"_,lJzolo>)

(Ep+Eq)(Eq+qu )(EP’+E9.’ ) _ | (A- 5)
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where we have used the concise notation

S+ +2V(A) =ZA+ZT A+ A _
1 2 3 1 2 3 :

We regroup the third and the sixth term in Egqg. (A.5) where the FJZ

components of the two-quasiparticle intermediate states are mp +.mq, = 2,

and obtain

cp (2P) = 4 % z 1= <o|dylre <qlapgla’s 2

, P aq

m_, m. = -m +1
q = - _’*‘2 q P
b
s Uy z e 2 <0| 3,4l P> <aldy; |a’> -
/ 4 -
mp::};l/Z,ﬂ::%/Z,... tp,tql P q 'tq X C oE _Jx
= -m_+2 = -m +
mq’ mp+ v mq D P q

J

s <O|J201%q,>‘<p!Jll|q>

X[tg - ]
- E ,+BE

mq_mP 1 q a

The above expression can be rewritten finally as

2
c' (2 - 5 'Z 1 B (olJzolpd(qlJlllq.)"
' m 3/2 t t ap *Eq' |t
5~ 3/ p,a' B % | P9
‘m_,= -m +2 m = -m +1
q P , v
‘*Z (olJzoqu')(lelllq)
-t E , +E
- q q q
m =m 1—1
Q'%q~-!;;‘P~ J

" (A.6)
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We then regroup the remaining four terms in Eq. (A.5) where the g
z

components of the two-quasiparticle intermediate states are mp+mq,=o,

and obtain , : .

. ( ‘ | —2
Cr (2QP) = b g pa 1 (-z <o|J, P> <a|J 1q’>.J
m m =41/2,43/2,...% ,t + E_+E }“.[t 20 1L '
P P @- P 4 q E +F '
= - - U ’
mqr D mq—- mp+l P ,q .
4._[2 <o|d,,lpe> <a|a;,|a"> ] [ i <o|3,q|pe> <afJ ,]a’> ]
: EptPq meom 1 EpEg
-m +1 =
mq= D q P
+ [i <0 |Jpolpe> <q| 7y, a"> 11 z <o|J,019a"> <P|J11|q>']
| mq— -m +1 Ep+Eq - mq— m+1 Eq+E !
< p < "p d
. 7 ' 4
- [i <o|YJZO|PQ> <QIJlllq > ] [ };’" | <olJ20|qq > <p|Jll!q> -
q .
> E +E E +E
= «m +l = -1 ’
mq b _ P q mq mp qa q

which can be rewritten finally as 2
o (2ap) - 23 2 L [, s < ';\(V
n (2P} = | E+E s | <o| Jpolpa> <afdy;]a
>0 t,t.r "pq t :
oo Tprtat P q E +E
m ,= -mM m = -m *1 '
a'= p O 'p Pod
4
+ i | »<o‘J20qu > <q1Jlll.p>
q v
E +E
mq mpﬂ: ‘ o q » q )
—

(A.7)
Substitution of Eq. (A.2) into Egs. (A.6) and (A.7) then yields the last two

terms in Eq.. (23).
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Table I. The quadrupole and hexadecapéle deformation parameters 82 and 84

are taken from Ref. 23. The energy gap'Ap and An are calculated

with pairing strength G as given in Eq. (11).

Nucleus ‘ A A o
| 2 o (Mes)  (uev) n
sm 152 0.202 . -0.036 1.4 | o0.975
|15k . 0.227 -0.039 1.024 0.888
Gd134 - I 5.206 -0.029 1.101 1.001
156 | 0.233 . =0.030 - 1.020 - 0.935
158 0.2L5 - -0.024 | 0.980 0.895
160 0.255 -0.015 | 0.948 0.849
Ry 160 0.2k5 -0.015 0.988 | 0.93k
162 0.256 | -0.006 0.945 0.880
164 0.264 0.003 . 0.910 0.836
Er 162 . o.2s2 | -0.007 | 0.989 | 0.969
164 0.25k4 0.00L 0.981 | 0.906
166 0.261 0.010 0.898 0.861
168 0.272 0.020 __0.847 - 0.815
170 0.273 ~0.031 0.807 0.786
166 0.246 . 0.004 1.002 | 0.926
168 0.255 0.01k . 0.956 ~ 0.883
170 0.265 ~0.025 | 0.902 | 0.835
172 0.270 0.037 0.845 . 0.799
174 0.266 0.048 0.799 | 0.739
176 0.258 0.053 0.785 - 0.661
“HE 174, 0.258 0.03k 0.915 0.822
176 0.256 0.0k43 0.879 0.734
178 0.250 0.052 0.844 0.672
_180 0.243 0.063 - 0.808 0.561
w180 0.236 0.050 0.870 0.699
182 0.232 0.060 0.828 - 0.602
184 0.216 0.061 0.793 0.735
}86 0.197 0.060 0.777___ 0.790 -
Os184 0.213 0.053 0.750 0.690
186 0.198 0.055 0.665 0.780
188 0.178 0.055 0.592 0.819 .
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Table II. The moment-of-jnertia and the inertia derivatives, where D, 58%. 23,
. 1 :
Nuc'lgus Degl Dg‘_ll D\)p " wn '2Jp N 2Jn . Z:ro 3 ZJe?‘f_’l
(Mev ) |(MeVv ) [(Mev T) [(MeV ) |(Mev ) [(Mev 7) {(MeV ) |(MeV )
Sm 152 196 -266 |-16.68 |-32.35 | 13.62 | 24.84 | 40.38 | 46.8
154 163 2266 |-20.17 |-46.17 | 17.16 | 35.19 | 54.97 | 73.0
Gd 154 195 -236 |-15.51 |-29.85 | 13.26 | 23.14 | 38.22 | 46.6
156 168 -235 [-18.49 [-41.16 [ 16.33 [ 32.00 [ 50.75 [ 66.6
158 119 2176 |-19.88 |-37.59 | 17.45 | 33.27 | 53.26 | 74.8
160| 126 -150 [-20.98 [-40.19 [ 18.20 [ 35.40 [ 56.28 | 79.4
Dy 160| 131 -169 [-19.48 [-35.24 | 16.55 | 30.63 | 49.53 | 68.6
162 126 -137 |-20.55 [-38.17 | 17.60 | 33.33 | 53.48 | 73.8
164 94 -116 |-21.25 [-43.05 | 18.33 | 35.84 | 56.88 | 81.2
Er 162 148 -147 |-16.15 |-32.72 | 15.07 | 27.99 | 45.21 | 58.6
164| 134 -109 |-17.25 |-36.35 | 16.38 | 31.41 50.17 | 65.4
166 102 | -87 |-18.22 [-41.23 | 17.41 | 34.00 | 53.98 | 73.8
168 85 35 |-19.04 |-36.48 | 18.74 | 35.11 | 56.54 | 75.0
170 108 4 |-19.93 [-40.27 | 19.59 | 36.77 | 59.19 | 75.6
Yb 166] 154 -96 |-14.94 |-35.08 | 14.16 | 29.59 | 45.94 | 57.8
168| 135 -68 |-16.52 |-39.72 | 15.54 | 32.27 | 50.20 | 68.4
170| 118 ~19 |-18.14 |-36.34 | 17.20 | 33.76 | 53.51 | 70.8
172 124 7  |-19.70 |-39.98 | 18.75 | 35.96 | 57.45 | 75.8
174 89 -4 [-21.11 [-41.15 | 19.78 36.83 [ 59.44 | 78.4
176 49 11 [-21.87 [-31.59 [ 19.90 | 35.45 | 58.12 | 72.8
HE 174 141 -11 [-13.18 [|-37.80 | 14.90 | 34.40 | 51.77 | 65.4
176 108 -17 [-13.38 [-45.53 | 15.38 | 38.19 | 56.25 | 67.6
178 53 -7 |-13.68 [-35.14 | 15.74 | 36.42 | 54.77 | 64.0
180 15 35 [-13.88 [-33.54 | 16.18 | 39.02 | 57.96 | 64.2
W 180 63 3 | -8.69 |-36.56 | 12.34 | 35.26 | 49.98 | 57.6
182 21 52 ~-8.94 |-35.55 | 12.90 | 37.84 | 53.28 | 59.6
184 69 65 -9.91 [-28.92 | 12.88 | 31.00 | 46.07 | 53.6
186 89 74 |-10.87 |-22.25 | 12.55 | 24.76 | 39.18 | 48.6
Os 184 49 62 -9.25 [-36.92 | 11.92 | 34.35 | 48.58 | 49.4
186 79 68 |-10.75 |-29.99 | 12.62 | 28.53 | 43.20 | 43.0
188 86 68 |-12.97 [-22.67 | 13.29 | 22.64 | 37.72 | 37.4

X

io
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Table III. The spring constants associated with various degrees of freedom.

Nucleus C,, Cya Cop C. c, )
(MeV) (MeV) (Mev~1) (Mev—1) (Mev™3)
Sm 152 760 1205 3.67 3.88 1 27.32
154 " 966 1519 3.74 3.27 37.68
Gd 154 725 1222 | 3.72 3.93 23.61
156 899 1453 " 3.75 3.50 31.48
158 1019 1556 | 3.78 4.18 24.81
"~ 160 1092 | 1620 3.81 | 4.13 | 28.44
Dy 160 989 _ 1450 3.36 4.18 23.79
162 1108 1592 3.36 | 4.19 27.36
164 1215 1711 3.40 3.50 33.25
Er 162 926 1318 3.73 4.22 19.27
164 1043 1503 3.66 4.24 22.38
166 1175 1663 3.62 3.59 27.44
168 1205 1780 7 3.58 4.40 17.75
170 1181 2005 3.57  4.18 ©23.34
“Yb 166 | 956 | 1390 3.93 4.27 21.21
168 1064 1517 | 3.83 3.69 26.56
170 1097 | 1645 | 3.66 | 4.40 19.49
172 1113 | 1714 |- 3.46 4.25  25.66
174 1220 1710 3.34 4.03 30.56
176 1275 1709 3.39 5.20 19.89
HEf 174 1032 1637 4.10 4.56 20.90
176 1178 1643 4.20 3.71 31.15
178 1243 1603 4.29 4.92 | 21.16
180 1300 1600 4.39 2.19 14.27
W 180 1238 1600 4.15 4.76 18.34
182 1280 1595 4.18 2.49 | 12.16
184 1255 1450 4.37 . 5.25 | 15.29
186 1175 1225 4.60 5.37 | 12.46
Os 184 1280 1663 2.45 3.06 T 13.53
186 1225 1488 2.06 5.14 | 16.28
188 1188 1325 1.77 5.36 . | 13.12
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TABLE IV. The first four columns list pairing spring constants with and
" without fixed-particle-number correction (PBCS and BCS). The fifth
and sixth columns give separately the two and four quasiparticle '

contributions to the fourth-order cranking constant.

.cvpi(MeV-l) , Cyn Mev ™y <, (MeV )
Nucleus :

BCS PBCS BCS PECS 20.P. . 49Q.P.
D4sm | 3.17 3.74 3.07 . 3.27 49.8 -12.2
18z | 3.21 3.78 3.43 4.18 35.2.  -10.4
1620 | 3.07  3.36 | 3.0 a.19 37.7 -10.4
1665, | 3.09  3.62 3.36 3.59 37.7 -10.3
1700, | 3.18 3.66 | 3.60 4.40- | 28.8 -9.35
e | 3.4 4010 3.70  4.56 30.0  -9.06
180, 3.32 4.15 3.40 4.7 27.3  -8.97°
[*8%s | 2.45 2.45 | 2.89  3.06 223 -8.76
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TABLE V. The force constant C;;I and the separate contri?gtions from various
higher order effects. The experimental values of CVMI are taken from Ref. 7.
We define Kxi = (532 Jo)z/ci. All units are in MeV_3.
Nucleus Kéz ' K44 KVp Kvn 4Cn _ C;él CS&I
(Calc.) (exp.) |
Sml52 - 13 15 18.98 67.45 109.53 224.0 595
154 7 12 27.20 163.11 150.73 | 360.0 229
Gdl54 13 11 : 16.16 56.68 94.46 191.3 544
156. 8 10 22.78 121.15 125.94 287.9 | 338
158 3 5 26.13 84.55 99.24 217.9 245
160 4 4 28.85 97.89 113.76 . 248.5 215
Dyl60 4 5 28.25 74.28 | 95.15 | 206.7 | 219
162 4 3 31.43 86.97 | 109.44 | 234.8 | 195
164 2 2 33.23 . 132.55 132.99 302.8 238
Erle2 6 4 17.48 63.43 77.07 168.0 255
164 4 2 20.29 77.95 89,50 193.7 197
166 2 1 22,96 118.26 109.76 , 254.0 240
~le8 2 0 25.35 |.  75.57 70.98 173.9 110
170 2 0 27.80 96.92 93.36 220.1 132
Yblé66 6 - 2 14.19 - 71.98 84.83 179.0 || 255
le8 4 1 17.79 106.91 106.23 235.9 258
170 3 0 22,48 75.03 77.96 "178.5 160
172 3 0 28.05 93.90 102.64 227.6 213
174 2 0 33.33 105.01 | ‘122.26 ' 262.6 | 108
176 . 0 0 35.23 48.01 | = 79.57 162.8 128
Hf174 5 - 0 10.60 78.40 83.61. 177.6 215
176 2 0 10.66 139.57 124.61 276.8 170
178 1 0 10.90 62.80 84.66 | 159.4 135
180 0 0 10.97 128.56 57.06 '196.6 73
w180 1l 0 4.55 70.13 73.35 149.1 198
182 0 o 4.79 126.76 48,65 180.2 98
184 1 1 5.61 39.81 61.16 108.6 102
186 2 1 6.42 23.04 49.84 82.3 93
0s184 1 1 8.74 111.23 |  54.14 176.1 | - 180
186 1 1 14.04 43.71 65.11 124.9 162
188 2 1 23.82 23.96 52.49 103.3 196




Table VI. The results of calculation B where neutron levels have been shifted according to Eq. (24).

Nﬁcleus An 3'%;2J-92 C\m . Cn . \2Jn . 27, . C;;I_:; B theo BexP
(MeV) - (Mev ©) (Mev ) (Mev ") | (Mev 7) (MeV ) (MeV (ev) (ev)
bmis2 | 0.975 -32.35 3.88 27.32 | 24.84 | 40.38 | 224.0 169 | 195
154 | 0.888 ~46.17 3.27 37.68 | 35.19 54,97 353.0 77:3 | 14.9
Ga1s4 | 1.001 | -29.85 .~ 3.93 23.61 | 23.14 38.22 | 191.3 179 | 180
156 | 0.935 -41.16 3.50 31.48 | 32.00 50.75 287.9 86.8 | 33.8
158 | 0.895 -37.59 4.18 ' 24.81 33.27 53.26 217.9 54.2 | 17.5
160 | 0.849 -40.19 4.13 28.44 35. 40 56. 28 248.5 49.5 |11.8
py160. | 0.934 -35.24 4.18 23.79 30.63 49.53 206.7 | 68.7 |20.7
162 | 0.880 | -38.17 4.19 27.36 | 33.33 | 53.48 | 234.8 | 57.4 |12.0
164 | 0.836 | -43.05 3.50 33.25 | 35.84 56.88 302.8 57.9 | 12.0
Eric2 | 0.969 -32.72 4.22 . 19.27 27.99 45.21 | 168.0 80.4 |40.0
164 | 0.906 | -36.35 4.24 22.38 31.41 | 50.17 | 103.7 | 61.1 |19.9
166 | 0.861 -41.23 3.59 27.44 | 34.00 53.98 254.0 59.8 |17.4
168 | 0.815 -36.48 '4.40 17.75 35.11 | 56.54 173.9 34.0 |6.74
170 | 0.771 -44.06 3.48 25,57 38.84 61.35 271.7 38.4 |10.1
vbl66 | 0.926 | =35.08-. 4.27 21.21 20.59 | 45.94 179.0 | 80.4 |49.5
168 | 0.883 | -39.72 3.69 26.56 32.27 50.20 235.9 74.3 |22.9
170 | 0.813 -37.41 4.38 19.58 35.34 | 55.17 183.8 39.7 |12.7
172 |'0.786 -43.59 3.61 27.80 | 37.86 59.44 273.9 43.9 |10.4
174 | o0.789 | -36.41 4.70 26.46 | 34.99 57.52° | 211.6 | 38.7 | .31
176 0.746 -29.64 4,95 17,55 33.14 55.70 149.8 31.1 14;5
"(continued)

_‘6€_.
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Table VI. continued
Nucleus| Ap a;%'ZJO Con c, | 23 234 CG%I Bt ed -Bexp
(MeV) mev ®) | mevh|  mev) | mevh| mevh| mev| vy | (ew)
HE174 0.825 -41.11 3.98 22.85 35.61 53.04 213.2 | s3.9 21.0
176 0.803 ~39.93 4.42 26.53 35.30 53.21 208.9 | 52.1 14.7
178 0.770 -32.51 4.62 18.10 33.19 51.38 141.5 | 40.6 15.1
180 0,721 -30.89 3.68 13.82 33.48 52.13 131.0 | 35.5 6.36
W 180 | 0.795 -33.53 4.55 15.19 31.88 | 46.44 128.1 | s5.1 39.9
182 0.747 -31.94 3.84 11.13 32.48 47.65 115.7 | 44.9 16.8
184 0.749 -31.75 4.75 14.65 31.09 46.18 119.2 | 52.4 24.4
186 | 0.759 -27.98 4.78 14.91 26.98 41.52 109.8 | 73.9 34.2
0sl184 0.807 -32.37 4.08 11.75 29.71 43.71 121.9 | 66.8 59.2
186 0.809 -31.47 4.76 15.16 27.93 42.58 128.7 | 78.3 88.2
188 0.814 -26.63 5.09 14.92 23.84 8.99 121.3 |105 174

_Ob_
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TABLE VII. The moment-of~inertia, B coefficient and the force eonstant calculated
with g = 18.0 MeV in Eq. (11), the results of Marshalekl® are also
listed for comparison. :

This Caiculation : Marshalek
Nucleus ' 230 _B C;;I ’ 2J° | ' _B
R ' (Mev—3 1 (ev)
(MeV ) (ev) (Mev™™)
Sm152 55.57. ~ 99.8 476 46.77 221
154 | 78.02 | 50.4 934 72.31 | 37.5
Gd154 52.17 | 109 403  46.30 160
156 70.69 56.9 711 66.53  43.0
158 " 69.66 , 32.4 382 - 74.96 26.7
160 73.42 29.4 427 © 79.05 25.4
Dy160 66.06 42.7 . 407 , 68.45 . |  37.4
162 70.74 4.6 | 433 74.02 33.4°
164 78.00 - 39.6 733 81.37 . 26.0
Erle4 65.54 36.9 340 65.19 43.7
166 73.17 43.5 623 73.96 33.7
168 - 71.40 19.3 251 74.96 25.0
- 170 75.56 21.2 346 75.13 30.0
Ybl70 68.33 25.5 278 b 7082 31.8
172 73.90 . 25.0 373 75.93 30.0
174 76.61 28.1 485 5 77.82 o 27.8
176 71.03 - 20.8 265 72.46 27.7°
HE176 73.30 | 39.5 570 ' 67.43 42.6
178 66.44 26.1 254 . 64.10 ~ 44.0
W 184 54.67 29.8 133 : 53.48 68.5
186 46.41 50.4 | 117 . 48.40 99.1




=42- LBL-2347

FIGURE CAPTIONS
Fig. 1. The moment-of-inertia Jo. The theoretical values are calculatdd
with the single particle states and pairing strength (Eq. (11)) as given
by Nilsson gE_gl}Z3 The experimental values are taken‘:rom Mariscotti
et al.

Fig. 2. The force constant C-l

VML The theoretical values are calculated with

the single particle states and pairing strength (Eq. (11)) as’given in
Nilsson 32'51,23 The experimental values are takgn from Mariscotti.gg'gl:
Note the large_discrepancies.at«neutron number N = 90, 104 and 108.

Fig. 3. Same as Fig. 2, except in these calculations the neutron levels have
been shifted according to Eq. (24).

Fig. 4. The B-coefficient. The theoretical values are calculated with the
pairing strength as given in Eq. (11) and with the neutron levels shifted {

according to Eqg. (24).
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not Iinfringe privately owned rights.
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