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Projection-Space Iterative Interpolation for Limited-Angie Tomography 

Abstract 

in Parallel- and Fan-Beam Geometry. Part I. 

Kaarlo Heiskanen, Jong-Jin Wang,· and V. Perez-Mendez 
Lawrence Berkeley Laboratory, University of California 

Berkeley, California .04720 

'.' In computed tomography one reconstructs the image of an object from its projections. The 
limited-angle tomography problem arises when the number of projections available is too small, 
or the projections are not obtained from all angles around the object, evenly enough distri
buted. Such is the case, when the object moves while the projections are measured, for exam
ple CT - scanning the beating heart. Recently Kim et al. introduced a new algorithm, the 
projection-space iterative reconstruction-reprojection (pSIRR), ror estimating the missing pro
jection data from the known data .. Their method is valid . for parallel-beam projections only. 
In this paper their method is further modified and discussed. A similar iterative interpolation 
algorithm is derived ror estimating missing projection data in fan .. beam geometry. 

1. Introduction 

The limited angle problem in computed tomography arises, when the projections cannot be 
properly measured, perhaps because of the geometric configuration of the scanning device or 
the object, or the movements of the object during the scan, (such as imaging the heart). Gen
erally the difficulties are more severe if the data are missing in a large sector of contiguous 
view angles, than if the data are missing in smaller sectors distributed around the whole 360 0 • 

In imaging the heart the latter case is encountered. The mathematical work on limited-angle 
problem has generally been focused on the case of missing data in a sector of contiguous view 
angles, and in parallel-beam geometry only (see papers by Davison and Grunbaum[1,2j and 
Louis[3]). 

The Gerschberg-Papoulis iteration[4,5j was originally derived and proved for the extrapolation 
of band-limited one-dimensional signals, and later generalized to two-dimensional images in an 
application to tomography in parallel-beam geometry. A rigorous mathematical proof of con
vergence in the two-dimensional case, when the measurement data is obtained as divergent
beam projections, is yet to be done, however. While the proof in the parallel-beam geometry 
can take advantage of the projection or central-slice theorem, a similar theorem does not exist 
in the ran-beam geometry. In practice, a modified Gerschberg-Papoulis type iteration -
without the corrections .in the Fourier-plane - has been successfully employed in fan-beam 
geometry by a number or researchers.!6,7,8j 

In the original Gerschberg-Papoulis iteration, as applied to image reconstruction rrom projec
tions, one iterates between the image or the object and its two-dimensional Fourier-transform. 
At each step a correction is made. In the image space the correction includes applying a priori 
knowledge of the non-negativity and upper bound of the object density, as well as of the limits 
of its extent. Then the 2-D Fourier-transform of the image lscalculatedj the Fourier-transform 

• Present address: Tsinghua University, Beijing, China 
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is corrected applying the projection-theorem at the known projections, but leaving the 
Fourier-transform as it is in other parts. Inverse Fourier-transform gives a new image esti
mate. A modification, the iterative reconstruction-reprojection algorithm (mR) operates in the 
object and projection spaces: at each iteration step, the corrections are done on the image, and 
then new simulated projections at those view angles, where original data is missing, are 
obtained by mathematically calculating the line-integrals through the (discrete) image. Then a 
reconstruction algorithm is applied to obtain a new image estimate. 

The reconstruction or the image using the standard backprojection-of-filtered projections 
includes in principle two operations: i) filtering the projection data, and ii) the backprojection 
integral over the view angles. The projections or a (continuous) object are obtained using the 
Radon-transform . 

ffiR algorithm suffers rrom the ract that both the reprojection and the image reconstruction 
require interpolations, and the interpolation errors accumulate during iterations. This often 
may cause the iteration to diverge after a rew steps. Also, when the measurement data is 
noisy, the effect or noise accumulates in the iterations. Recently, Kim et al. introduced a new 
algorithm that combines the image reconstruction and the reprojection into one single formula, 
which eliminates the interpolationsl91• Their rormula, the projection space iterative 
reconstruction-reprojection in projection-space (PSmR), is valid ror parallel-beam projections 
only. In this paper some modifications of the method or Kim et a1. are presented and dis
cussed. Then a rormula for projection-space-iterative-reconstruction-reprojection in fan-beam 
geometry (PSIRRF AN) is derived. Similarly to the parallel-beam case, the formula combines 
the fan-beam Radon-transform, and the backprojection-oC-filtered-projections method for fan
beams into one integral. PSIRRF AN can be used to estimate missing fan-beam projection data 
through iterative interpolations on the known projection data. Computer simulations, the 
results of which will be published in a successor paper, have shown PSmR and PSmRF AN to 
converge rapidly, even when up to 70 .... 80% oC the projection data is missing, and the known 
data includes noise. In no tests did the PSIRRF AN iteration diverge. 

2. Projection-Space Interpolation Formulas 

2.1 The Projection Geometries 

The parallel-beam projections p(I,9) of an object f(x,y) are obtained from the Radon transform 
of the object, which is a line-integral along a straight line (see Fig. La): 

p(I,9) == f f f(x,y)6[1 - xcos9 - ysin9)dxdy == 
A (x,y) 

taa(I,B) 

f f(Icos9 + tsin8,lsin8 - tcos8)dt 
ta.{I,8) 

where A(x,y) is the area of support of the object: r (x,y) =F 0 for (x,y)fA(x,y) 
I is the distance of the line from the origin 
e is the angle between x-axis and the normal of the line 
t max , tmin indicate the size of the object along the line. 

(1) 

.. 

• l '. 
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p(J,9) 

Fig~ La) Parallel-:beam geometry. b) Fan-beam geometry. 

The fan-beam projections g(O';P) of an object f(x,y) are obtained from a modification of the 
Radon-transform~ sOmetimes ·called the x-ray transform or the divergent-beam Radon
transform (see Fig. 1 b): 

g(O',P) = f f f(x,y)8[D sinO' - xcos(O' + P) - ysin(O' + P)]dxdy 
A (x,y) 

trm:J.. (f ,fJ) 

f . f[ - D sinp + tsin(O' + 19), D cosP - tcos(O' + P)]dt 
tmJ. (f,fJ) 

where A (x,y) is the area of support of f(x,y): f(x,y) ~ 0 for (x,Y)fA (x,y), . = 0 elsewhere. 

P is the view angle that defines the location of the (x-ray) source: Pf[O, 21T]. 

0' is the fan-angle that specifies an individual ray, O'f( - ~,~). 
2 2 

D is the distance of the (x-ray) source from the origin. 

t~u.!) and t~~!) indicate the extent of the object along the ray (O',P) (see Fig. 1 b.). 

(2) 

The fan-beam projection is just a line-integral, with the line labeled with parameters 
D ,0' and P, instead of I and 8. These parameters give the equation of the exactly same line, 
when I = DsinO', and 8 = O'+p. In that case the projections p(l,O) and g(O',P) are identical: 

g(O', P) == p(l, 8) for 1 = D sinO', 8 = 0' + p. (3) 

2.2 The Parallel-Beam Geometry 

The most widely used method for image reconstruction, i.e., obtaining the inverse Radon
transform, probably is the backprojection-of-filtered-projections algorithm, which consists of 
two steps, filtering and backprojection: 

i) filtering (for 8 = const.): 

P(I,O) = p(I,O)' rl{ I WI I } = rl{ I WI I F{ p(I,O) } } (4) 



where 

• denotes convolution with respect to J. 
F -1 denotes the inverse Fourier-transform with respect to wI' 

F denotes the Fourier-transform with respect to J. 

p(l,O) denotes the filtered projection. 

ii) backprojection: 

f(x,y) = f p(xcosO + ysinO, O)dO 
o 

(5) 

In the ffiR-algorithm the discrete versions of (1) ... (3) are repeated in an iterative form, which 
requires interpolation in (1) and (3). Kim et a1. developed their method substituting (4) and (5) 
into (1), and assuming the area of support A(x,y) of the object f(x,y) to be a circle of radius L. 
However, it is easy to incorporate a priori knowledge of the size of the object in tmin{l,8) and 
tma.x{l,8). Then we get for a projection missing at (lm,6n) after .the ith iteration: 

t-a(1m,BD) 

pi+l(Jm,8n) = f f i(lmcos8n + tsin8n,lmsin8n - tcos8n)dt 
tma(1m,BD) 

t-a(1m,BD) 1(" 

f f pi [(1mcos{}n + tsin{}n)cos{} + (Imsin8n - tcos8n)sin8, 8]d{}dt 
tma(1m,BD) 0 

ta.a(1m,BD) 1(" 

f f pi[lmcos({}n - 9) + tsin({}n - 9), 9]d9dt 
tma(1m,BJ 0 

(6) 

Introducing a new variable, t' = Imcos({}n - 9) + tsin(9n - 9), and changing the order of integra
tion one gets the PSffiR-formula of Kim et aJ., with a priori information used in the limits of 
integration: 

(7) 

where: 

t'min(lm,8n,9) = Imcos(9n - 9) + tmin(lm,9n)sin(9n - 9) 

1\ 



\;1 

t'", 

(7) gives an iterative interpolation formula for approximating the values of missing projections 
p(lm,On) for any 1m and On' from the known projection values. No interpolation is necessary, 
when the formula is written in a discrete from. (Note, however, the singularity at e = On' 
which needs to be avoided in numerical calculations and that at 0 = en, t'min = t'max.) In [Q], 
the convergence of (7) with noise added in the data, is shown in computer simulations. 

We can modify (7) further including the integration over t' already into the filter function. 

Consider the integral 

t 

r(t) = !h(t')dt'. 
-00 

We know that [5, pAO] if H (w) = F h(t) then 

F r(t) = R(w) = [1I"c5(w) + (iwtl] 

and the integral over t' in (7) becomes 

t/au 

f pi(t', O)dt' = pl(t'max, 8) - pi(t'min' 8) 
t/am 

Eq. (7) can then be written in the simple form: 

,. - i( t' 0) _ - i( t' . '0) 
pi+l(Jm' On) = f PI max: (0 PI

O
) mm' dO 

o ,sm n - . 

where 

t'min = Imcos(On - e) + tmin(lm,On)sin(On - 8) 

and PIi is obtained from. (10). 

(8) 

(10) 

(11 ) 

One can derive yet another form of PSIRR, if one uses the Hilber~transform version of the 
inverse Radon-transform: . 

(11' ) 



e 

This form of PSIRR is numerically unstable, however, because of the singularities in the 
integrand, as is typical of the Hilbert-transform. 

The geometric meaning of PSIRR is explained in Fig. 2. 

y 

Fig. 2 The geometric meaning of PSmR. 

In (7), for each value of e, one integrates over the filtered projection 'P{I,e) between t'min and 
t'max which, as indicated if Fig. 2, depend directly on the known outer boundary of the object 

as given by tmin,tmax. Each sum is multiplied by the weight Sin(e: _ e) , the absolute magni

tude of which is always greater than or equal to one. 

PSIRR can be written in operator form as: 

where R denotes the Radon-transform and R-1 its inverse. For PSIRR the operator RR-l is 
modified and simplified. RR-1 includes the filtering selected for the reconstruction; obviously 
the faster the convergence of PSIRR, the better the filter selection was. Thus PSIRR offers a 
simple, quantitative way of evaluating the quality of one's filter selection for any particular set 
of projection data. 

One of the difficulties in Gerschberg-Papoulis-type iterative reconstruction-reprojection algo
rithms has been how to know when to end the iterations. In PSmR this problem is simply 
overcome, as one can use PSIRR to calculate estimates at a number of projections, which actu
ally were measured, and use this error behavior as the criteria for iterations. 

{\ 
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Obviously PSffiR achieves the best results when the measured data is available as complete 
projections (see Fig. 3a), which are more or less evenly distributed over the range of (h [,rrj. 
The convergence is slower if the missing data belong to one sector of contiguous angles; then 
the iII-posed nature of the limited-angle data is more pronounced (Fig. 3b). In some. applica
tions the missing projections are located on sinusoidal curve(s) in the projection space (Fig. 3c, d) 
In thi~ case all projections are influenced by the missing data, and thus all the filtered projec
tions required in PSffiR will be distorted and need to be updated at each iteration cycle. 

'or fJ 'or fJ 'or fJ 'or {J 

( 

1 
I 

a) 
I or (7 

b) I or (7 c) 
I or (7 d) I or (7 

Fig. 3. Examples of missing projection data. a) Complete projections missing in a sector of 
contiguous view angles, 8,<8<82• This is the standard "limited-angle" situation. b) Complete 
projections missing at random view angles, or otherwise distributed over the whole range [0, 1r] 
of" the view angle. This kind of situation may arise, for example, in EKG-gated imaging of a 
moving heart. c) Missing projection data distributed over sinusoidal curves. This situation 
will arise, when using a fixed system of six, fiat detectors as in some positron emission tomo-

f'" graphy designs. d) Missing projection data distributed over one sinusoidal curve Examples 
of the latter case include imaging a moving heart, if the missing data consist only of the 

\, line-integrals that pass through the heart 



8 

2.3. The fan-beam projections 

As in the case of parallel-beam projections, the most widely used image reconstruction method, 
i.e., obtaining the inverse x-ray transform, is the backprojection-of-filtered projections algo-
rithm [see 10, pp. 400-405]. It has two steps, similarly to the paraHel beam case: filtering the r'~ 
projections and back projection. 

i) filtering (for {3 = const): 

1 CT 2 
g(er,/3) = [Dcosug(er,{3)]* [-2 (-. -) h(er)] 

siner 
(12) 

where * denotes convolution with respect to er 

h(<1) = F -l{ I w.1 l inverse Fourier-transform of the "magnitude omega" filter. 

ii) backprojection: 

21r 
f(x v) = J 1 g(er,/3) I d/3 

,. 0 L2(x,y,/3) (1 == cI(x,y,/3) 
(13) 

where: 

, L (x,y,,B) is the distance from the source point (-Dsin{3, Dcos{3) to the point (x,y) 

cI (x,y,B) is that fan-angle at which the ray from source at (-Dsin,B, Dcos/3) passes through 
the point (x,y). 

It can easily be seen that: 

L 2(x,y,/3) = D2 + x2 + y2 + 2D(xsin/3 - ycos/3) (14) 

[ 
xcos/3 + ysin/3 ] 

cI(x,y,{3) = arctan D . {3 /3 + XSIn - ycos 
(15) 

For the projection-space-iterative-reconstruction-reprojection in fan-beam geometry 
(PSIRRF AN), equations (12) and (13) are substituted directly into (2) in an iterative form. 
Thus an estimate of the fan-beam projection g«(1m,{3n) at coordinates (erm,/3n)' after ith itera .. 
tion, is obtained as: 

.'\ 



" 
t.a..( (7 m. ~Il) 

gi+l(Om,.8n) = J Ci(x(oDl,.8n,t),y(om,.8n,t,)dt 
tmin((7ID~) 

(16) 

~.J where 

r . I 

(17) 

Using the coordinates (17) in (14) and (15) we get: 

L2(x(om,.8n,t),y(om,.8n,t},.8) = 2D2 + t2 - 2DtcOSO'm - 2D2cos(.8 - .8n} + 2Dtcos(.8 - .8n "-0m) (18) 

(IQ) 

Formula (16), as well as (13), has an inbuilt inaccuracy. In real life one is dealing with discrete 
data, obtained at discrete values of the fan-angle 0 and view angle.8. The value of fan-angle 
d, as calculated from (15) or (IQ), does not usually coincide with any of the discrete measure
ment angles 0, and thus interpolation is necessary. In PSIRRF AN this inaccuracy is removed 
by a change of variable. 

According to (IQ), let the new variable of integration in (16) be d. From (IQ) we get: 

t = D --:--~--'-' ~-~----:'~~----::--~ 
[ 

sin(p - .8n} - (1 - cos(.8 - .8n))tand 1 
sin(.8 - .8n - om) + cos(.8 - .8n - O:m)tand 

dt - D(1 + tan2d )(sinom + sin(.8 - .8n - om)) 

dd = [sin(.8 - .8n - om) + cos(.8 - .8n - om)tand ]2 

(20) 

(21) 

(22) 
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(22)) 

A priori information about the size of the object is thus directly included in the limits cil 
integration, 0' min and 0' max-

Next substitute (20) into (18). After lengthy but straightforward trigonometric manipulatiom., 
one can show that: 

1 ( dt) - 1 1 
L2(x(0' ),y(o' ),.8). dol = D . sinom + sin{,B - Pn - om) 

(28)'1 

i.e. the dependence on 0' cancels out. The change of variables in (16) must be preceded by 1; 

change in the order of integration 

2~ 

i + 1(0 .8) - J J 1 - i(o .8) I dtd.8 
g m' n - 0 taD L2(x(t),y(t),.8) g, ° = 0' 

- 1 - i 0' dt do' d 2l1'tlDal[ ( ) ' - ! JrdA L2(x(0' ),y(o' ),.8) g ( ,.8) do' .8 
(24): 

and, substituting (23) into (24) finally gives the PSIRRF AN-formula: 

2l1' tlaax 

gi + l(om,.8n) = J ~ [sinom + sin(.B - {3n - 0m)]-1 J gi(o' ,{3)do' d,B 
o tI_ 

(2i)~ 

where gi(o', .8) is calculated from (12), for any i, and 0' min' 0' max are given in (22). 

PSIRRF AN, as given by eq. (25), is an iterative formula. The iteration starts from the know]) 
projection data, where the missing data can be set to zero originally, or for faster initial COD-' 

vergence, to some positive starting values. Each projection is filtered using the standard filter-
ing methods used in the reconstruction of images. The filtering typically includes a window or 
smoothing window function. 

Each filtered projection is integrated with respect to fan-angle, between limits 0' min and 0' ma.x-. 
These limits of integration depend on the angles .8m and on of the missing ray, and the extern, 
of the object along the missing ray, tmin and tmax (see eq. (22). The projection data g(O',,B) 'ir 
measured at discrete points OJ, Pj and the limits of integration, 0' min and 0' max' will have values 
that fall somewhere between two measurement points 0j'O'i + 1. This is a very minor inaccura~ 
and does not necessitate interpolation. 

The limits of integration, 0' mjn and 0' max' include a priori information of the extent of the 
object directly, in tmm and t max. The other a priori information about the object, namely 
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positivity and upper bound of density f(x,y), cannot be used as directly. We can demand, how
ever, that the projection values are to be non-negative and less than some known or guessed 
maximum value. Also, for any ray that does not go through the object, the projection must be 
zero. Any assumptions of the smoothness of the object are included in the filter selection. 

Fig. 4. the geometric meaning of Eq. (25). The ray symmetric to g(om,j9n) is 
g(-am,j9n + 7r + 20m), 

Fig. 4. shows the geometric interpretation of eq. (25). 

The weight function is: 

Since W comes from W = ~2 • (d~ ), and ~2 is positive, the sign of W is defined by the 

sign of (d~ J. For ( d~ ) negative, W is negative, but also "min (associated with tmin) is 

larger than t:I ma.x (associated with t max ). This is evident in Fig. 4. Thus, when the limits of 
integration, Gmin and O'mu are changed over, the product of the weight function and the 
integral becomes positive. 

\ 
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There are two singularities in W, namely fJ = fJD, which represents the missing ray itself, and 
fJ = fJD + 20m + 71', which represents the symmetric ray (see Fig. 4.). At these singularities, 
d min = d max. and the inner integral becomes zero. If the symmetric projection 
g( - 0m,fJn + 20m + 71') of the missing projection g (om,fJn) was measured, we substitute its value 
directly for g(om,fJn); if it wasn't, we skip over the singularity at fJ = fJn + 20m + 71'. (Substi-
tuting the symmetric projection for the missing one is sometimes called a "reflection method" \,) 
[7]. 

In Fig. 5a.) ..... d) some examples of the values that the weight function and the limits of v 
integration that 0' min and 0' max' may assume are given. The limits of integration depend on 

. the size of the object f(x,y)j here for simplicity, the object was assumed to be circular with 
radius 0.75 times the radius of the x-ray source path; The curves are evaluated in terms of 
~f3 = f3 - f3n where t:Af3 = 0 ..... ±,271'. The figures correspond to values om = 0 0

, 20 0 and ± 
30 0

• 

The highest value of the weight function depends on the sampling rate in the angle fJ. In Fig. 
2 a sampling interval of 1 0 was used. The maximum value of the weight function then is 
around 20; then the integration interval, 0' max - 0' min' approaches zero however. 

Although PSmRF AN, in principle, is similar to PSmR, there are some differences. One arises 
from the fact that the symmetric rays are distributed differently in the fan-beam geometry 
than in the parallel-beam geometry, and typically for any missing fan-beam projection, some 
symmetric rays were measured in other projections. Thus the distribution of the missing pr<r 
jections over the range of fJ([0,271') carries a different significance. Computer simulations are 
under way in which the the influence of the distribution of the missing projections will be esta
blished. 

3. Discussion 

The iterative reconstruction-reprojection (ffiR) algorithm, which originated from the 
Gerschberg-Papoulis algorithm, has been applied by several authors in limited-angle tomogra
phy, both in parallel- and fan-beam geometry. In principle, IRR works~ but in practice there 
are several limitations and difficulties involved. Especially: i) the convergence of IRR is sensi
tive to noise in the measurement data, ii) interpolation and roundoff errors may tend to accu
mulate during the iterations, and together with the influence of noise, often cause the iteration 
to diverge after a few iterations, iii) the computational demands can be overwhelming, when 
the number of pixels in the image is large, iv) there is no simple criteria for stopping the itera
tion, as the correct image, of course, is not known. 

PSffiR (and PSIRRF AN) remove most of these basic weaknesses of ffiR. The interpolations 
necessary in both the reconstruction and the reprojection stage of ffiR are not needed in 
PSIRR. The computational requirement in PSIRR is related to the number of missing projec
tions, not to the - usually much larger - number of pixels in the image, as in ffiR. (Actually, 
evaluating the estimated value of one missing projection, using PSffiR, requires ~oughly the 
same computational effort as reconstructing the value of the image in one pixel.) Also, PSIRR 
includes naturally a criteria for stopping the iteration, as the algorithm can be used to obtain 
estimated values for projections for which the measured values also exist. 

~\ 
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PSIRR (and PSIRRF AN) is a two dimensional interpolation in the projection space. As an 
interpolation method, PSIRR differs from other methods, being based directly on the properties 
of the Radon-transform and its inverse. For interpolation, PSIRR uses all the relevant projec
tion data, not just some nearest neighbor data. Also, PSIRR is used iteratively, unlike other 
interpolation methods. 

Because both PSffiR and PSmRF AN operate on filtered projections, they are best suitable for 
situations where at each view angle, the projection is either completely known or completely 
missing. H the missing data is distributed so that at each view angle some rays are missing, w 
the corresponding filtered data cannot· be calculated accurately. 

The influence of noise, as well as the distribution of the missing data, on the converge and 
accuracy of PSIRR and PSIRRF AN will be assessed in a future paper. 

t This work was supported by the Director, Office or Energy Research, Office or High Energy 
and Nuclear Physics, Division or High Energy Physics, and Office of Health and Environmental 
Research, Division or Physical and Technological Research or the U.S. Department or Energy 
under contract #DE-AC03-76SF()()()g8. 
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