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1. Introduction 

LBL-2352 

Coriolis effects are not very common in our normal experience. Perhaps 

the most familiar object where these effects are large is the gyroscope or the 

"top", as the toy version is usually called. The sidewise precession of a 

leaning top under the influence of the downward pull of gravity is indeed a 

striking behavior, and one whose mystery testifies to our unfamiliarity with 

Coriolis effects. A less common example, but one much more analogous to the 

nuclear effects of interest here, is a ship's gyrocompass. In this case the 

tendency of a spinning gyroscope (whose axis is kept in the plane of the earth's 

surface) to align its axis with that of the rotating earth, is used as a navi-

gational aid. A particle in an orbit of a rotating nucleus has a similar 

tendency. In the case of rotational nuclei, Coriolis effects are much more 

apparent than in our everyday experience, and it is the purpose of these 

lectures to examine what is known about such effects. 

It is easy to estimate the maximum Coriolis energy of a particular 

particle in a rotating nucleus. For a particle orbit having angular momentum, 

j, in a nucleus with spin, I, and moment of inertia, Ct,this energy is given by: 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
"Based on lectures given at Rudziska, Poland, August 1972, and Munich, Germany, 
August 1973~ 
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(1) 

2 
In rare-earth nuclei there exist orbitals with j as large as 13/2, and h /2V 

.is around 0.01 MeV. Thus when I is only 7/2, the maximumCoriolis energy is 

almost 0.5 MeV, or quite comparable with the energy separations between 

particle states in such a nucleus. This indicates that for these favorable 

cases the Coriolis effects can be expected to affect the nuclear structure 

significantly even for such low spins. Equation (1) also shows that these 

effects become larger with increasing spin and also with decreasing moment of 

inertia. 

In the present paper, Coriolis effects in nuclei will be reviewed 

beginning with cases where they are relatively small; that is, good rotational 

nuclei (small h 2/2 if ), low-j orbitals, and relatively low spin values. An 

example of this type is the famous case of 183W• Then some intermediate cases 

will be discussed; where j is large, I is moderately large, but h2/2~ remains 

small (rotational nuclei). These cases are 23~u and the odd-mass Er nuclei. With 

these as background, two situations will be considered .where it appears that the 

Coriolis effects have changed the nuclear structure in a major way. The first of these 

2 is the case where j is large, I is ~dera1:ely large, and h /2 Cf becomes large; 

that is, in the more "vibrational" nuclei. Under the proper conditions, odd-

mass nuclei of this type seem to correspond surprisingly well to a new 

coupling scheme characteristic of the Coriolis interaction. The other situation 

is that of a very large I (~O) in rotational nuclei, where these effects can 

be shown to provide one possible explanation for the peculiar behavior called 
. 

backhending. Throughout these discussions the physical effects occurring 

L 
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will be emphasized rather than the mathematical detail, although some of the 

latter will be essential. 

It is important to keep in mind tbat in all cases just ~ physical system is 

treated, a particle (or two) coupled to a core that is deformed (with axial symmetry) and 

can rotate. In the fir~t cases, the deformation of the core is large and the 

particle is strongly coupled to it; so that as the core rotates, the particle 

follows. The Coriolis effects are then a perturbation on the rotational 

spectra. In the last cases, the coupling to the deformed shape is weak and/or 

the rotational frequencies are large, so that the particle cannot foltow the 

core rotation, resulting in Coriolis effects that can completely obscure the 

familiar type of rotational bands. It is certainly true that at some point, 

as the coupling decreases (S gets smaller), this rotational model will cease 

to apply to nuclei, but in order to find that point, the model must be under-

stood clear down to the limit of zero coupling. Furthermore, there seems to 

be experimental evidence accumulating that suggests the model applies rather 

well at surprisingly weak couplings for at least some special states • 
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2.1. 

2. Coriolis Effects as Perturbations in Rotational Spectra 

Two-band mixing in l83W 

1 A. Bohr discussed Coriolis effects in his original paper on nuclear 

2 
rotation in 1952, but it was some four years later before A. K. Kerman 

183 
applied these ideas to a specific case, namely W. This case will be 

briefly reviewed, both because of its historical interest, ·and because it 

illustrates the effects in a simple case where only two bands are involved. 

The basic equations necessary to understand nuclear Coriolis effects are 

very simple. Provided a rigid, axially-symmetric deformed core is assumed, 

the Hamiltonian of the system can be written: 

H = H + H prot 
(2) 

where H· is the Hamiltonian of the particle in the absence of rotation (a 
p 

Nilsson3 Hamiltonian for example), ;;1 is the moment of inertia of the core, 

-+ 
and R is the rotational angular momentum of the core (rotation is not allowed 

around the symmetry axis). A coupling between the particle and the rotation 

comes about through the sharing of the total angular momentum between the 

particle and the core. This can be expressed by: 

-+ -+ -+ 
R = I - j (3) 

One should clearly distinguish between the particle-rotation coupling which 

in H . 
P 

is considered here, and the particle-core co~pling which is contained 

(The major part of the particle-core coupling is spherically symmetric' and 

of no interest here; however, if the core is deformed, then there is also a 

coupling to the deformation, which was discussed at the end of the previous 

<'\ 

~ 
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section. ) putting Eq. (3) into Eq. (2) gives the usual expression for a 

rotational nucleus: 

h2 
[I(I+l) - K2] h 2 

[<12
> - ~l) (4 ) H = H + 

2~' 
+ H + 2a' p c 

where n=j and K = I . (the two are equal ,for an axially-symmetric core ), and 
z z 

h2 h 2 
H = -2 2- [I j + I j ] = - 2"" [I+j + I j+J (5) c ~ x x y y w - -

This term, Hc, is conventionally called the Coriolis coupling term, though it 
contains parts of both the Coriolis and centrifugal energies. 
These are the general equations which will be used repeatedly later on, but 

for the present case of good roational nuclei they can be simplified. For 

such cases, n is nearly a constant for a given band, as is <j2>. These terms 

may therefore be included in H , giving: 
p 

h 2 
H = H~ + 2';Y [I (I+l) J + Hc 

The matrix elements of H can be written: 
c 

<I,n±I IH II,n> = 
c 

(6) 

(7) 

where the matrix element, <n±llj±ln> , must, in general, be calculated from 

the detailed (e.g. Nilsson) wave functions. For the special case where j is 

a good quantum number, these can be written: 

(8) 
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Generally, Hc is non-diagonal, connecting bands that differ in n by one unit. 

However, as is well known, there.is a diagonal contribution to bands with 

n = 1/2. These rather simple basic equations will be used to treat all the 

cases of Coriolis coupling mentioned. 

The 183wcase treated by Kerman involved only two bands with n = 3/2 

and n = 1/2, and is shown in Fig. 1. The initial bandheadenergies, H'" Kerman 
p 

took as parameters, as he also did the initial h2/2~ value for each band. 

In addition he took the n = 1/2 band decoupling parameter to be adjustable. 

For a given value of these five parameters he could calculate the initial 

energies of the levels in each band. For the parameters of his final fit, 

these are shown in Fig. 1. Taking as a sixth parameter the value of 

< n = 3/21 j + 1 n = 1/2 >, Kerman diagonalized the 2 x 2 matrix for each spin, 

giving the shifts shown in Fig. 1. As is usual, the levels repel each other; 

levels of a given spin moving equal distances up and down. The experimental 

energies are listed at the edges of Fig. 1, and it can be seen that the fit 

is indeed excellent. Kerman also considered some 20 Ml and E2 transition 

probabilities, achieving reasonable success at the expense of five additional 

parameters. 

Subsequent work4 ,5 on 183W has tended to confirm the basic principles 

of Kerman's analysis, though some problems have arisen~ -4" . _ 
Rowe showed that 

various rotation-vibration (~ = ±2) admixtures of the type found in even-even 

nuclei in the region of 183w permitted one to obtain fits as good as Kerman's 

over a rather broad range of the parameters (though he obtained better fits 

for two particular sets of parameters). 5 
Brockmeier ~ ale later showed that 

including other Nilsson states could also significantly affect the fit. To 

; f. 
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summarize these analyses, it seems clear that there is a significant Coriolis 

mixing of these bands; however, the details of this mixing are probably not 

very well determined due to the many parameters involved, and the possibility 

of contributions from a number of additional effects. 

There are many other cases of moderate Corio lis mixing of two or even 

three close-lying bands. The single-particle transfer reactions have proved 

to be a powerful method for such studies since theY,give more direct evidence 

on the wave functions of the observed bands. However, such detailed analyses will not 

be_pursued-further here. The purpose of discussing this case was to display 

the analysis of Coriolis effects in a simple case and to show that even for 

2 
low h /2~ , j and I, appreciable Coriolis effects occur. Other 

examples will now be considered where the effects are larger and, at the same 

time, the calculations are much less ambiguous. 

2.2 • I 'b d " , 235 Mu t~ an m~x~ng ~n U 

The unique-parity high-j orbitals within each major shell provide 

much the best cases to observe and understand large Coriolis effects in nuclei. 

It is essential to appreciate the reasons for this. The most obvious factor 

is that the Coriolis matrix elements increase approximately proportional to 

j for low values of n, as shown by Eqs. (7) and (8). For the j15/2 orbital, 

which is involved in 235u, this implies matrix elements around five times 

183 
larger than that found by Kerman for W. This situation is typical for 

all the high-j orbitals, and leads immediately to the conclusion that any 

study of the largest Coriolis effects ~ill involve these orbitals. The 

second reason for choosing high-jorbitals is that their properties can be 

reliably calculated. These orbitals are well separated from any others of 
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the same parity, so that, to a very good approximation, j is pure. This can 

be verified from the Nilsson wave functions of: i) thehll/ 2 orbital in the 

50-82 shell, ii) the i 13/ 2 orbital in the 82-126 shell, and iii) the j15/2 

orbital in the shell beyond 126. This means that pure-j estimates for roost 

of the properties of these states are nearly correct, and since the properties 

of these states are not much affected by the small admixtures of other j-values, 

they are not sensitive to the exact size of these admixtures. Yet another 

favorable aspect for Coriolis calculations in the component states of a high-

j orbital is that these states do not Coriolis mix very much with states from 

other orbitals. This is both because of the pure j-value and because these 

other orbitals are at least one major shell removed in energy. The properties 

of the high-j components can be summarized as: 1) they comprise a closed set 

of states whose Coriolis interactions among themselves are the largest possible; 

2) they have very weak Coriolis interactions with states from other j-shells; 

and 3) their properties can be calculated with the highest reliability of any 

states in deformed nuclei. 

One aspect of the point about the reliability of calculated properties 

is illustrated in Fig. 2. Here the components of an hll/ 2 0rbital are shown 

as a function of deformation. 3 These components would be one of the closed 

sets of levels mentioned above.- Since they all belong predominantly to the 

same orbital (hll/ 2), their relative energies are nearly independent of the 

shell model parameters in the calculation, and depend only on the energy 

splitting of this orbital with deformation. This gives much more reliable 

relative energies than would otherwise be the case. The energies of the 

components in a particular'case are read off at the appropriate deformation. 
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As an example, a line has been drawn on Fig. 2 at 13 = 0.275 to show these 

energies. In addition to 13, the location of the Fermi surface, A and the 

pairing gap, 2~, are needed in order to calculate these energies as they 

might be expected to occur in a particular nucleus. The appropriate equation 

for the observed energy E(n) in terms of the eigenvalues from Fig. 2, En' is: 

(9) 

There is also a UV-factor6 to be included on the Coriolis matrix elements 

due to the pairingi but that is a small correction. 

If a Fermi surface is chosen near the n = 7/2 level and Eq. (9) is 

applied to the Nilsson eigenvalues of the j15/2 orbitals at 13 = 0.275, the 

bandhead energies shown in Fig. 3 result. Rotational bands are then con-

structed on all these bandheads according to Eq. 6, where HI has generated 
p 

the bandhead energies, E(n). The first few rotational levels are shown for 

each band in Fig. 3. The matrix elements, < n±llj±ln >, as calculated from 

the Nilsson wave functions are also shown on Fig. 3; and, by comparison with 

Eq. (8), they can all be seen to be within 10% of the pure-j values. The 

procedure then is to pick out from each band the state of a particular spin, 

I, and diagonalize the resulting matrix. For the j15/2 shell this will be an 

8 x 8 matrix if I > 15/2, and smaller if I < 15/2. 

Three things should be especially noted on Fig. 3. First, a pattern 

... ' . \ 

much like this results from any high-j orbital. An hll/2 orbital, for example, would 

have two fewer bands en = 13/2 and 15/2 would be missing). and '"'"30% lower matrix 

elements, but otherwise would be very similar. The second thing to note is that Coriolis 

effects are much bigger for the low-n bands. Not only are the energy 
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separations of the bands smaller here, but also the matrix elements are 

largest. Thus, the very largest Coriolis effects will occur in low-n bands 

of high-j orbitals. Finally, the n = 1/2 band has very anomalous spacings. 

Large decoupling factors always occur in these high-j orbitals, so this is a 

general feature. These anomalous energy spacings are transmitted to the 

n = 3/2 band in the mixing process, and then on to the n = 5/2 band in a 

higher order process, etc. The resulting anomalous spacings in the higher-n 

bands are a very characteristic and important feature of the mixing described 

here. 

There are three favorable circumstances that make 235u a very good 

case for studying such Coriolis calculations. The level scheme worked out 

from Coulomb excitation studies7 several years ago is shown in Fig. 4. The 

first favorable feature is that many levels are observed in the j15/2 

component bands. Three band, n = 5/2, 7/2, 9/2, are seen ,and there are a 

total of 15 rotational spacings in these bands (bandhead energies are not 

included in the analysis in this case). A second advantage is that anomalous 

spacings coming from the mixing with the n = 1/2 band are observed in both 

the n = 5/2 and 7/2 bands. This information alone tells Some rather specific 

things about the Coriolis matrix elements. Finally, the B(E2) values between 

the n = 7/2 ground'band and both the n = 5/2.and n = 9/2 bands were determined. 

If one assumes that these B(E2) values result only from collective E2 trans­

itions introduced by the mixing, then they give immediately the admixed 

amplitudes, and hence the Coriolis matrix elements involved. The assumption 

that the non-collective B(E2) values can be neglected is very likely to be 

essentially correct, but effects; of 20% or so in the deduced mixing amplitudes 

cannot be excluded. Consideration of these features, and the observed E2 
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235 . 
and Ml relative intensities, makes the U case a good test for calculations 

of Coriolis effects. 

The details of the calculations for 235u will not be given here, 

but rather an indication of the kind of results obtained. Figure 5 shows 

the results for the rotational energies in the case where only one adjustable 

parameter was used. This plot is designed so that it give a straight line for 

a rotational band if the band follows the equation, 

(10) 

where the value of the ordinate at I = 0 would be A and the slope would be 

B. This plot is used because it can show the rotational energies on a suf-

ficiently sensitive scale to see easily the anomalies in the n = 5/2 and 

7/2 bands. In the calculation all bandhead energies and matrix elements 

were taken from the Nilsson wave functions except the matrix elements, 

< 5/2Ij_17/2 > and < 7/2Ij_/9/2 >, which were determined from the B(E2) 

values as described above. 2 The one parameter was h /2 tI, which comes into 

all the rotational energies (Eq. (6» and matrix elements (Eq. (7» except 

the above two. The results clearly show the correct anomaly coming from 

the n = 1/2 band into the n = 5/2 and 7/2 bands. However, the final effective 

h 2/2;V values for the n.= 5/2 and 9/2 bands are not correctly given • 

The results of a three parameter fit are shown in Fig. 6. Here the 

matrix elements, < 5/2Ij_17/2 > and < 7/2Ij_19/2 >, were allowed to vary 

from the values indicated by the B(E2) values but their ratio was held 

constant, and the matrix element, < 3/2Ij_15/2 >, could vary. The former of 

these went up by 20%, and the latter went down by 20%. The fit here is excel-

lent (note the expansion of the ordinate scale). Also the known relative Ml 
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and E2 transition probabilities were adequately given by these wave functions. 

This agreement is a very strong indication that this kind of calculation is 

rather well understood. One puzzle emerges, whose solution is not at present 

understood. The matrix elements, < 5/21 j -' 7/2 > and < 7/21 j -' 9/2 >, have values 

only ,about half as large as expected. This result comes from the measured B(E2) 

values almost completely unambiguously. This kind of effect on the Coriolis 

matrix elements near the Fermi surface is observed in essentially all other 

similar cases, and has been the outstanding mystery in such calculations. 

Resently Ring et al. 8 have shown that this discrepency does not occur if the self-

consistent cranking model is used instead of the particle-pIus-rotor model. The 

exact cause of the problem in the latter model is not yet fully understood, 

however. 

The 235u case has been discussed in some detail to show rather carefully 

how one treats a unique-parity j-shell, and also to illustrate that one-does 

know how to make these calculations. In the next section cases will be con-

sidered where the effects are larger, but the data more meager. 

2.3. The Odd-mass Er Isotopes 

The calculated and experimental levels in three odd-mass Er isotopes
9 

are shown in Fig._ 7. These data are for ~~e ~~we~t pos~t~ve~parjty b~nd in 

these Er nuclei, and this band is clearly composed of heavily admixed components 

of the i l3/ 2 neutron orbital. There is a reasonably normal n = 5/2 band in 

165Er ; a band with rather large anomalies in 163Er ; and, in 161Er , a band with 

such large anomalies that some level-orders are inverted. The calculations 

shown in Fig. 7 were similar to those described for 235u, except that no data 

were available on higher bands. Nevertheless, the three parameter fits shown 

are impressive, and leave no doubt that the spectra are basically correctly 

.. , 

:.--' I 
I 

:'f 
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interpreted. Figure 8 shows the rotational-energy plots like the ones dis-

235 . 165 l'k h ·f· 235 cussed for U. The plot for Er looks much 1 e t at 0 U until one 

appreciates the ordinate scale. These effects are much larger than those in 

235u, and become still larger in 163Er and 161Er • In the last case, the 

inverted levels show up as negative points on such a plot. It is not difficult 

to understand why these effects are large and get larger with decreasing mass 

number in these Er nuclei. The rotational constant, h2/2~ , which comes into 

the Coriolis matrix elements (Eq. (7», is about twice as big here as in 235u 

and is increasing with decreasing mass number. 

In these Er nuclei, the Coriolis effects are producing large distortions 

in the rotational bands. These effects can be calculated, as has been shown, 

but it now seems more useful to broaden the perspective on this problem, 

rather than to study such fits in detail. There is no difficulty in solving 

Eq. (4) for any deformation (except exactly zero) and it seems essentialto' 

understand, in a general way, the nature of these solutions. If they contain 

some new regularities, then it is necessary to know just what these are so 

that they can be recognized if they occur in the Er (or other) level schemes. 

Along the same line, it would be interesting to understand the physical process 

occurring in these distorted bands. These questions will be taken up in the 

next section, and in Sec. 3.2, these Er nuclei will be examined again from a 

somewhat different viewpoint. 
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3. Coriolis Effects in Nuclei with Small Deformation 

Whether the Coriolis effects will be large or not in a particular 

case depends on the relationship of the Coriolis energy, given approximately 

by Eq. (I), and the energy separation between interacting states, that is, 

the splitting between components of the j-shell of interest. This relationship 
, 

can be easily estimated, provided some simple approximations are made. The 

first objective of the present section will be to extend the mathematical 

framework in order to show explicitly this relationship and some of its 

consequences. 

3.1. Calculations in Nuclei with Small Deformation 

In cases where the Coriolis effects are large, Eq. (4) must be used 

rather than the simplified Eq. (6). There is some problem here, as the so 

2 -+2 2 
called "recoil term", h /201 [<j > -r.l ], may already be partly contained in 

the empirical evaluations of H. However, the simple limiting solutions are 
p 

not reached if the recoil term is not taken explicitly into account, so that 

in this section, at least, the full Eq. (4) will be used. If j is a good 

-+2 
quantum number, < j > is just j(j+l), and only shifts all levels by the 

same energy. This assumption is reasonably good for the high-j orbitals, 

so that the effects of including this term come mainly from the r.l2 
part (in 

the odd-mass case considered here). 

The quantity H can be expressed by giving the energy of the system' 
p 

as a function of r.l~ that is, as a function of the orientation of j to the 

symmetry axis of the core. Under the conditions that j is a good quantum number 

and that the single-particle Hamiltonian is associated with a quadrupole field 

oriented along the symmetry axis (the usual Nilsson3 potential), H can be 
p 

written: 

\ \ 

Ii 
I 

" 

" 
"I 

." 

"I 
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(ll) 

where e. and e! do not depend on n. 
J J 

The coefficient, C,determines how 

widely the n-components of the j-shell are split apart on the Nilsson 

diagram, and its relationship to the rotational constant, A = 1'12/2';1, determines 

much of what happens at the lower spin values. This relationship is 

essentially the one mentioned at the beginning of Sec. 3, and an expression 

for its numerical value will be given later. It can be shown (see Fig. 2 ) 

that Eq. (11) is in good agreement with the exact Nilsson solutions for the 

unique-parity orbitals when lsi ~ 0.3. 

Substitution of Eq. (11) into Eq. (4) gives: 

H = e. + A[I(I+l) + j(j+l)] + (C-2A)n2 + H 
J c 

(12) 

For a given situation (I, j and S) the first two terms of Eq. (12) are 

diagonal and the solution of the particle-pIus-rotor mod~l consists of 

diagonalizing the last two terms. When S is large, C is large and A is 

small, so that H is small. If H is negligible, then the solutions are 
c c 

eigenfunctions of the n 2 term, which are clearly states with sharp n values, 

and the deformation-aligned (strong) coupling scheme is applicable. This 

coupling scheme is sketched in the upper part of Fig. 9, and the usual 

deformed wave function is also indicated. However, C and A are not functions 

of I, whereas H increases with Ii so that, eventually the opposite situation 
c 

must occur. That is, 2 
at sufficiently large I, the n term will be negligible 

compared with H , and the solutions will be eigenfunctions of H. It has 
c c 
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been shownlOthat these eigenfunctions correspond to a new coupling scheme (rotation­

aligned) where cx.,the projection of j in the direction of I (the total angular 

momentum of the system), is a good quantum number. The 'rotation-aligned wave functions, 

the approximate eigenfunctions of H , -·a~e giuen in the lower part of Fig. 9 
c 

and this coupling scheme is also sketched. For large I values, this rotation-

aligned coupling scheme should be generally valid. When a is very small, 

Eq. (11) shows that H is nearly constant. 
p 

It can be seen directly from Eq. 

(2) that when H is nearly constant (diagonal), the weak coupling schemi l 
p 

with sharp R values will apply. The present case would correspond to a 

quadrupole-quadrupole particle-core interaction and core states with the 

rotor energies. These general regions of applicability of the three coupling 

schemes are clear. 

However, the rotation-aligned region is extended even to low-spin 

2 
states when (e - 2A), the coefficient of n , approaches zero due to the 

cancellation of the two terms. Since A is always positive, this occurs when 

e is positive; that is, for prolate deformations in the one-particle H given 
p 

in Eq. (ll). For a one-hole H , the sign of k in Eq. (11) is reversed and 
p 

cancellation occurs for oblate deformations. Both of these conditions amount 

to requiring that the Fermi surface be near the low-n orbitals of the j-shell. 

If reasonable numerical estimates are made·fore and A-around mass 130 with. 

j = 11/2, then the region where e = 2A occurs for a ~ 0.18. However, for a 

considerable region (~a ~ ±O.OS) on either side of this value, (C -2A) is 

small and the rotation-aligned scheme is approximately applicable. Many 

"vibrational" nuclei lie in this region, and much of the interest in this 

coupling scheme stems from the fact that some regularities in the observed 

levels of nuclei in this region of a correspond to those expected from the 

rotation-aligned scheme. 

/ 

II 
, I 
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Exact solutions to Eq. (12) can be obtained by diagonalization and 

these will be discussed later in this section. However, simple approximate solutions 

can also be found for the rotation-aligned region in the case of one particle (or hole) 

in the j-shell, and it seems useful to discuss these first in order to have available a 

convenient expression for the levels , and also to give some physical insight 

into the process occurring. 

Consider first the normal strong-coupling (adiabatic) wave function 

with the single-particle space limited to one j subshell, which is a satis-

factory approximation for the unique-parity case considered here, 

./I]' ]' I 
't' = Xn D,.r\ MQ H !"JJl~ 

1 The diagonal energies of H (Eq. (12» in this representation are: 

E(IjQ) 

(13) 

The rotation-aligned case occurs when C ~ 2A, so that the n2 term 

in Eq. 12 vanishes, and the eigenfunctions of Hare just those of H (since 
c 

j is taken to be diagonal). It has been pointed out above that the approximate 

eigenfunctions of H for I > j are: 
c 

(15) 

where the d function is the usual rotation matrix and a is the projection of 

j on I. The approximate eigenvalues of H were shown in Ref.lD to be -2Ala, 
c 
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but this can be improved by using 1+1/2 rather than just I as the value of 

11(1+1). The diagonal energies of H in this representation are then approximately: 

EO (Ija) = e j +A [I (1+1) + j (j+l) - 2a (14)] = e, + A [(I-a) (I-a+l) + j (j+l) - a 2]. (16) 
J 

This equation should only be used when I > j, and a is restricted by the symmetry 

conditions so that I - a must be even. The general features of the spectrum can 

be seen from the right side of Eq. (16). For each a value, a band occurs con-

taining every other spin value (I-a even) and having the core energy spacings. 

The highest-a bands lie lowest in energy (but a cannot exceed j), and, furthermore, 

the same I values are separated by higher core spacings in lower-a bands. The 

lowest-lying band has a=j, spins I=j, j+2, j+4, ••• , and the core energy spacings; 

this band has been called the decoupled band. When I < j, a better approximation can 

be derived involving K instead of a, where K is the projection of I on j. Since 

H is symmetric in I and j, the expression for I < j is obtained from Eq. (16) by c 

interchanging I and j and replacing a with K. Only half the K values are allowed, 

since j-K must be even, but every I value is allowed in a K band, and these have 

relative energy spacings given by AI(I+l). 

It is not difficult to improve this approximation significantly. In the 

rotation-aligned scheme there is symmetry about the rotation axis (take this to 

be the x axis), so that <,2> J y 
This leads to the" relation: 

(17) 

2 
This value can be used in the n term of Eq. (12) to take account of small 

deviations from the point of exact cancellation. Also a better approximation 

to the eigenvalues of His: 
c 

Iii , 

If 

t: 
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1 

H ~Ij ~ _ 2Aa[I(I+l) _ n(n+l)]2 ~Ij 
c Ma Ma 

-2 
~ _ 2Aa[ (I~) _ Q ] ~Ij 

2 2(1+1/2) Ma (18) 

where n is some average value'of Q for each a value. 
-2 Again, the Q in Eq. (18) 

can be estimated using Eq. (17). Putting Eqs. (17) and (18) into Eq. (12), 

and rearranging terms gives: 

E (Ija) = e j + A { (I-a) (I-a+l) 

+ [2~ + 2I~1] [j (j+;l) _a
2

] } (19) 

Again, Eq. (19) applies when I > j, and I - a must be even. Compared with 

Eq. (16) ,the only change is that the coefficient of the [j (j+l)_a2] term is 

just the rotational constant, A. This affects mainly just the separation of 

When I < j, one can again interchange I and j in Eq. (19) , and replace a by 

where j - K is even. 

For convenient'evaluation, A can be related to S using the empirical 

, 12 
connection between B(E2;2~0) and E2+ pointed out by Grodzins; 

1225 
E2+ = 6A -..A 7/3 S2 MeV 

where..A.. is the mass number of the nucleus. 

C 
2A 

= 
0.379.iS

3 

j (j+l) 

(20) 

This leads to the expression: 

(21) 

no 

the 

K, 

longer 

a bands 
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which gives 180133 for C/2A when A = 130 and j = 11/2. Equation (19) is rather 

accurate under some circumstances, as will be shown below, however, it is not very 

suitable for comparison with experimental data, due to restrictions in the model. 

The relaxation of one of these (restriction to axial symmetry) has been studied by 

13 Meyer ter vehn who has shown that axial asymmetry reduces both the higher-spin 

energies in a band and the separation between bands given in Eq. (19), in accord 

d 
14-16 

with the the known ata. It has not yet been possible to incorporate these 

effects into a simple expression for the level energies. 

The quality of the approximations in Eqs. (16) and (19) can be seen 

in Fig. 10. The solid lines there are a few of the exact solutions of Eq. (12), 

plotted relative to the lowest I = 11/2 solution in units of the adjacent 

even-even 2+ energy. Equation (16) should be valid when C = 2A, which occurs 

for S = 0.18 when Jt= 130 and j = 11/2. The dots on Fig. 10 show the energies 

given by Eq. (16), plotted at the appropriate a value . The ex = 11/2 (decoupled) 

band is given quite accurately, but the lower ex (or K) values are not so good. 

';he dashed lines show the diagonal energies of H (Eq. (12». for the wave 

functions given by Eq. (15), and the low-spin analog, 

lJJIj 
MK 

= (22) 

These were evaluated numerically, however, Eq. (19) gives results within a 

line width or two for all the states shown, and the dependence on S given by 

Eq. (19) is exactly that for the dashed lines for Fig. 10. It can be seen 

that Eq. (19) is extremely good for 0.15</3<0.2 and is reasonably good for 

~a= ±O.OS as measured from the point where C = 2A. Neither Eq. (16) nor (19) 

would be very good for the ,lower ex or K values; however, such high~energy 

bands are not likely to be observed. 

The region of validity of the three coupling schemes mentioned 

earlier can be seen in Fig. 11. Here the energy (in units of E
2

+) of the 

,~ 
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lowest 11/2 state in each scheme is plotted against the deformation, 6, for 

a core with one particle in the hll/2 j-shell. For the weak coupling scheme, 

H is zero for R = 0, and it is also easy to show that H for this state is 
rot p 

just e:, which we also take to be zero. The energies for the 11/2 state in 
J 

the n = 1/2 and 11/2 bands of the strong coupling scheme (shown as the lighter 

solid lines) can be obtained from Eq. (14) where e. is given by: 
J 

e. 
J 

, j (j+l) 
e j - C 3 = e.' _ S1.SS 

J A l / 3 

I Again e. is taken to be zero. Similarly the 
J 

(23) 

11/2 state in,the a = 1/2 

and 11/2 bands are plotted as dashed lines. These were evaluated from the 

wave functions (Eq. (15», but the a = 11/2 value obtained from Eqs. (19) and 

(23) would be indistinguishable on Fig. 11. The a = 1/2 value is not adequately 

given by these equations. It can be seen that for lsi ~ 0.1, the weak-

coupled R = 0 configuration lies lowest. On the oblate side the n 11/2 and 

a = 1/2 states cross below the R = 0 state, but n = 11/2 always lies well 

below a = 1/2, resulting in nearly normal rotational bands for B < -0.1. On 

the prolate side n = 1/2 and a = 11/2 cross below R = 0, and a 11/2 is 

lowest for 0.1 ..;; s~ 0.3, and thereafter n = 1/2 becomes lowest. The exact 

energies of H are shown as dots in this figure. The close correspondence of 

these dots with the lowest lines in Fig. 2 indicates the adequacy with which 

the three coupling schemes represent the exact solution of H in Eq. (4). The 

rotation-aligned coupling scheme is seen to have a rathex; broad region of 

applicability connecting the weak-coupling region with that of the defofmation-

aligned coupling scheme on the side where low-n orbitals occur near the Fermi 

surface. 
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The exact solutions of the particle-pIus-rotor model can be obtained 

by diagonalizing Eq. (4) and are shown in Fig. 12 for theyrast states up to 

spin 23/2 coming from the hll;2 orbital. At each f3 value. the lowest I = j 

state is taken to have E = 0, and all energies are in units of the corresponding 

even-even first-excited state energy (E2+). In this calculation the Fermi. 

surface was always well below the entire hll/2 orbital, so this is a true 

one-particle case. Pairing was included in the BCS approximation, and 

Eq. (20) was used to relate A to f3. The calculation in Fig. 12 is again 

for the mass 130 region. 

The three c9upling-scheme regions discussed above can be readily 

identified. The nearly degenerate multiplets near f3 = 0 are clearly those 

of the weak-coupling scheme, where one expects such multiplets centered on 

the core energies. The range where they can be identified is approximately 

-0.1 ~ f3 ~ 0.1; however, this corresponds roughly to E2+~ 1 MeV, and in 

such cases it is doubtful that any collective model should apply. Thus, in 

the present context, it is not clear that this weak-coupling.scheme will be 

valid anywhere. The strong-coupling scheme is valid for large f3 

values and is characterized by normal rotational bands. On the oblate side 

of Fig. 12, the n = 11/2 rotational band is res:ognizable" !'Then .f3 is only'" -:-0_.1, 

and is rather well developed by f3 = -0.15. On the prolate side the anomalous 

n = 1/2 band develops quite slowly, and is not yet very'pure even at f3 ='0.3. It has 

been shown above that the rotation-aligned scheme gives energies very close to the 

exact solutions for 0.15 ~ f3 ~0.2, and is a reasonable approximation for 

0.13 ~ f3 ~ 0.23. An outstanding regularity of this coupling scheme is the 

occurrence of the decoupled band 
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(defined following Eq. (16». The darkened lines in Fig. 12 are these states, 

and this band is seen to persist across the whole prolate side with very 

nearly the core energy spacings (identifiable at /3 = O). The weak-coupling 

scheme gives the same energies for this band, but requires in addition that 

other states, /R - j/ ~ I ~ R + j, coincide with them. Note that Fig. 12 
t! 

is correct for one (or a few) particles in the hll/2 orbital; whereas, for 

one (or a few) holes the particle-pIus-rotor model would give exactly the 

same results except that the sign of /3 would be reversed. 

The levels that would be populated following a (HI,xny) reaction can 

be predicted rather unambiguously from Fig. 12. These would be the lowest-

lying high-spin states. On the prolate side this is thedecoupled band, and 

one expects to see stretched E2 transitions and even-even core spacings. The 

unfavored high-spin states (j + 1, j + 3, ••• ) lie considerably higher in 

energy and will be more weakly populated, if at all. For oblate deformation a 

normal rotational band (j, j + 1, j + 2, .•• ) develops at quite low deform-

ations, and a series of Ml + E2 cascade transitions with E2 cr·oss-overs should 

be seen. At very low deformations (/3 - 0.1) the favored and unfavored yrast 

states lie close together, but the order of favored lowest on the prolate 

side and unfavored lowest on the oblate side is always preserved. For hole 

states (nearly full j-shell), all these predictions should occur for the 

opposite sign of /3. 

It is now of interest to look at some odd-mass nuclei in order to see if the 

features described above occur. Many studies have now been made of levels in 

odd-mass nuclei located in the "vibrational" regions (0.1 ~ //3/ ~ 0.25). 
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, 14-16 l' h 
Rather unambiguous decoupled bands have been seen in the Au reg10n, .. the 19 t 

17 , 18 19 , 20 21 
Gd-Yb region (Sec 3.2), the La reg10n ' (Sec 3.3), and the Ru-Pd reg10n.' The 

,13 22 
alternative rotational-bandlike levels have been seen in light Tt nucle1 ' 

and in the light Ce-Nd nuclei.
23 

There is already some evidence that both 

"" types of band occur in lighter nuclei,24,25 but mo~e data are needed in these 

regions. It seems that a rather large amount of evidence has already been 

accumulated showing that the expectations outlined above do seem to occur 

rather often in nuclei. Some examples of these data will now be considered, 

beginning with the Er nuclei described in Sec. 2~3 

3.2 The Light Odd-Mass Er Nuclei 

There are two reasons for discussing the light odd-mass Er nuclei 

here. The first is that they show very clearly the transition from a strong-

coupling r~gion to a rotation-aligned region. The second is that they are 

involved in some of the arguments about even-even nuclei which will be made 

in the next section. 

h 2 
In Fig. 13 the energy-level spacings, in units of 2';1' are shown for 

a decoupled band and for a strongly-coupled rotational band based on the i
13

/
2 

orbital. The rotational spacings shown on the left are independent of ~ 

except for 1/2); and also, the existence of possible lower band members is 

irrelevant to the present arguments. It is apparent that the decoupled band 

is very heavily compressed (by the Coriolis interactions), and 

this compression could serve as a measure of the extent of decoupling. If an 

h 2 
average E

2
+ (6 ~) is determined from the adjacent even-even nuclei, then 

the 17/2 - 13/2 spacing divided by this E
2

+ would be 1.0 for a decoupled band, 

and 5.3 for a rotational band. Comparing the 21/2 - 17/2 spacing ,with the 

I j 
I 
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even~even 4 - 2 separation would give 1.0 and 2.9 for the two types of band. 

Thus an estimate can be made at any spin value of the extent of decoupling 

in an observed band. 

A plot of this odd-A-to-average-even-even transition energy ratio is 

shown in Fig. 14 for the lowest band based on the i 13/ 2 orbital in the odd-­

mass Er isotopes. The decoupled-band limit for this ratio is always 1.0; 

whereas, the rotational band limit varies from about 5 to 2. For the 17/2 

- 13/2 energy spacing, the observed rato drops monotonically from 3.6 for 

l67Er (S ~ 0.33) to 1.0 for l57Er (S ~0.2). This is just the trend expected; 

and it is caused both by the decrease in B and by a decrease in the Fermi level 

with mass number toward the n = 1/2 state (the one-particle situation). The 

other important trend is with spin, I, and it is clear that the extent of 

decoupling increases with increasing I, as expected. It can be seen, however, 

that the higher-spin states at the lower mass numbers approach 1.1 or 1.2 

rather than 1.0. The reason for this is not entirely clear, but could indicate 

a lower moment of inertia for the core in the odd-mass nucleus due to the 

blocked i
13

/ 2 level. The i 13/ 2 bands in these Er nuclei show very clearly 

a transition to the rotation-aligned coupling scheme. Note that l57Er and 

159 
Er have essentially pure decoupled bands even for the lowest-spin members 

(I= 13/2). 

3.3. The La-Ce Region 

Only one "vibrational" region will be discussed, and the La-Ce region 

was somewhat arbitrarily chosen. A portion of the Nilsson diagram for protons 

is shown in Fig. 15, where some of the orbitals have been fully drawn, and 

.others have not. For the La nuclei, with 7 protons beyond the closed shell 



-26- LBL-2352 

at 50 (at B = 0, this closed shell is at the bottom of Fig. 3) and deform-

ations 0.15 - 0.25 (for mass numbers 137 - 125), the hll/2 orbital is essentially 

empty in all cases. Thus, the simple one-particle calculations of Fig. 12 

should apply, and for prolate shapes (anticipating the results), decoupled bands should 

occur for all these La nuclei. Now consider the situation for the 77th and 75th 

,135 137 133 135 . neutron 1n Ce, Nd and . Ce, Nd, respectivelY,where B - 0.15-0.20. Figure 15 can 

also give an estimate for neutrons in this region; the 82 closed shell comes 

between the h9/2 and sl/2 orbitals. If the nuclei are prolate, the N = 77 

cases (with 5 holes in the 82 closed shell) will have one hole in the hll/2 

orbital, so that Fig. 12 should be applicable, except with the sign of S 

reversed. Thus, normal rotational-bandlike levels are expected, with a 

tendency for the levels, after the first one (I = j), to be paired: j + 1 

and j + 2; j + 3 and j + 4; For the N = 75 nuclei (7 holes in the 82 

shell) , the Fermi level has dropped to around the 9/2 component of the hll/2 

orbi tal. This gives three holes in the hll/2 orbital and Fig. 12 does not 

apply. Appropriate calculations show that one expects a perturbed n = 9/2 

rotational band, where the j, j + 2, j + 4, ••• levels again lie anomalously 

low. Thus for prolate deformation, a unique set of predictions can be made, and 

an equally unique and opposite set would apply - for the oblate· case. -

h t " 18,19 T e nega J.ve-parJ.ty La levels are shown in Fig. 16, where they 

are compared with the levels in the even-even Ba isotope with one fewer 

proton. The correspondence in energy of the odd-mass and even-even levels is 

remarkable, and comprises the first, and still perhaps the best, example of 

decoupled bands. Other features of these bands support this interpretation. 

The lack of population of other negative parity states argues against the 

weak-coupling scheme, which could otherwise explain these energies. The 
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spectroscopic factors for population of the 11/2 state in the (a,t) and 

(3He ,d) reactions vary from about 1.0 in 139La to 0.4 in 131La , in good accord 

with calculations
19 

like those of Fig. 12. Also the dramatic drop in energy, 

as the mass number decreases, of the 11/2- state relative to the positive 

parity states (ds/ 2 ,g7/2) in the La isotopes can be understood in this inter­
/ 

pretation. All the known characteristics of these La levels support their 

assignment as decoupled hll/2 bands. 

. 23 135 137 In Fig. 17 the levels recently determ1ned for Ce and Nd are 

shown. The normal rotational-band order of the negative"";parity levels is ' 

seen, but the perturbations favoring the j, j + 2, ••. , levels are quite strong. 

This is qualitatively what is expected for a prolate shape; however, 

quantitatively the observed spacings are somewhat less regular than calculated. 

This is in the direction that might be expected if there were some shape (y) 

13 
asymmetry, or softness toward such asymmetry, and the low-lying second 2+ 

state in the adjacent even-even nuclei show that this is very likely to be 

the case. Additional evidence that these nuclei are prolate comes from the 

large negative A2 coefficients (~-1.0) in the angular distributions of the 

Ml + E2 gamma rays in the 11/2 band. This implies a negative sign for 6, 

the mixing ratio, and therefore a positive Q
O 

(prolate), since gK-gR will be 

negative for the hll/2 neutron and the sign of 6 (and also of A2 for an 

I+I-l transition) is determined by the sign of (gK - gR)/QO. This rule has 

26 
been discussed recently by Nakai. A similar, very useful, rule can be 

formulated for the rotation-aligned scheme, which applies to either I+I-l or 

I+I+l transitions between the unfavored (a = j-l) and favored (a = j) bands. 

In this case the sign of A2 in the mixed Ml+E2 transitions should be 

opposite to that of the ratio, gj-g~ QO• Such transitions have not yet been 
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, 14-16 observed in the La nuclei, but have been seen in Ir, AU, and Hg nucle~, 

with angular anisotropies in accordance with this rule. The level schemes for 133ce 

d 135 d h ' , 18 an N are s own ~n F~g. • They are also rotational-bandlike, have 9/2 for 

the lowest spin rather than 11/2-, show more regular energy spacings than the 

previous set, and also have the large negative A2 coefficients for the Ml + E2 

transitions. All of these are in accord with expectations for a prolate shape, 

and show that these odd-neutron nuclei are behaving much as the particle-plus-

rotor model would predict. 

A question arises as to why a simple axially-symmetric particle-pIus-rotor 

nndel should work so well in this La-Ce (or any other similar) region. It seems 

likely that many other features are involved in the core states; vibrational 

nntion, asymmetric shapes, shape changes, sizeable individual 2-particle amplitudes, 

t ,27 h 'd th f h h" e c. Gre~ner as pol.nte out at part 0 t eanswer to t ~s quest~on may be 

that so far, due to the experimental circumstances, only the yrast states (mainly 

just the decoupled bands) have been studied. These states are the most likely to 

show simple rotational features, and the lower-spin states, Greiner suggests, may 

be much more complex. It is therefore, of considerable interest to study other 

states based on the same j-shell in nuclei where decoupled bands occur. Members 

, 14-16 of the unfavored (ex =j-l) band have been seen in Au,Ir, and Hg nucle~, and 

also a few other lower-spin states were identified in the Au nuclei. 14 These states 

seem to be in general agreement with the model, but also suggest that it is important 

to include effects due to the asymmetric shapes in this region. 13 More data are 

needed on levels of this type. It would also be of interest to study the 

states from lower-j orbitals where additional features (especially large j-

mixing) may occur. 

", 
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4. Coriolis Effects in Even-Even Nuclei 

There are some indications that the Coriolis effects in high-j 

orbitals also play an important role in the high-spin states of even-even 

nuclei. It is not difficult to see that this might be the case. If one 

considers the question of which two-quasiparticle (2qp) states of an even-

even nucleus are likely to lie lowest in energy at spin 20, then the maximum 

Coriolis energy given by Eq. (1) becomes an important factor. If both 

particles are in a high-j orbital, then Eq. (1) applies, approximately, for 

each particle, and gives a total energy lowering of 5 MeV for 

i 13/ 2 particles. Such an energy is very significant when compared with the 

amounts that might be gained from other processes (pairing, shape distortion, 

etc.) at this spin value. While it is clear that the yrast states in even-even 

nuclei around· spin 20. are not yet fully understoodh tl:lis r9ugh estimate ~~. 

supported by detailed calculations, suggests that they could well be strongly 

influenced by Coriolis effects. The present section will begin with a summary 

of the experimental data bearing on high-spin states in even-even nuclei, and then 

continue with a discussion of two-particle Coriolis calculations and their appli-

cation to. these data. 

• 4.1. Experimental Data from Even-Even Nuclei 

Of the two types of data bearing on the question of very high-spin 

states in even-even nuclei, the older one has to do with the de-excitation 

cascade in product nuclei following heavy-ion compound-nucleus (HI,xn) 

reactions. This information has recently been summarized and some of its 

'1' , ab h t f h h' h' d' d 28 ~mp ~cat~ons out t e na ure 0 suc ~g -sp~n states ~scusse. The 
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gamma-ray spectra from these product nuclei almost invariably consist of a 

set of discrete lines on a continuous background. In rotational and vibra-

tional nuclei, the lines correspond to the transitions in the ground-state 

collective band (gSb),t and represent the last steps of the de-excitation. 

Thus the gamma-ray transitions between the highest-spin states are in the 

continuous background. -Up to now very few direct studies of this continuum 

have been made, so that the information about the highest-spin states is based 

on observations of the transitions between lower-spin states i.e., the 

discrete lines. The following points, made in Ref. 28, are relevant to the 

present discussion: a) the maximum spin observed in the :gsb ranges from 

arourid 20 for rotors to around 10 for vibrators and this maximum is 

characteristic of the particular nucleus (not of the reaction); b) however, 

when heavy ions are used to produce the compound nucleus (bringing in high 

angular momentum) then the gsb is fed mostly at or near the highest observed 

level, whereas with light projectiles, the feeding pattern is related to the 

distribution of angular momentum brought in by the projectile; c) the mean 

time interval between the reaction and population of the gsb in rotational 

nuclei is very short, < 10 psec; and d) very high-spin isomers--I > 20 h--

have never been observed. It should be emphasized that these _are features_ 

observed in (especially) rotational and vibrational nuclei, and would not 

apply, without modification or qualification, to closed-shell or near-closed-

shell nuclei. 

t The gsb refers to the collective band based on the ground-state configuration 
of a particular nucleus. For the even-even nuclei considered here, this is a 
completely paired configuration-- no quasiparticles--, and the levels of this 
band are the yrast levels at low spin values. 
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To understand these four points, the de-excitation was described in 

Re,f. 28 as consisting of three cascades, whose existence had been previously 

29 
proposed by Grover based on numerical studies of the process. These are 

schematically indicated in Fig. 19. Since the initial energy (20 MeV) and 

level density are high, a statistical cascade (I) consisting mainly of high-

energy dipole transitions is expected to occur first. This carries off 

around half the excitation energy but very little angular momentum and is 

terminated by coming into a region where the level density is no longer high. 

This region is located just above the yrast levels and would be ~O MeV at 

i ~ 35 for the example in Fig. 19. At this point the cascade is forced to begin 

carrying off angular momentum and follows, more or less closely, the yrast 

levels down in spin. This is called the yrast cascade (II). At some spin, 

the yrast levels become those of the gsb and an energy gap develops between 

these levels and others of the same spin. At this point the population shifts 

rather suddenly into the gsb through which it cascades (III) to the ground 

state. For lighter projectiles, where less angular momentum 

is brought in, the length of the yrast casca~ shortens, until it is essentially 

4 
absent in reactions induced by He. 

Two interesting conclusions were drawn aboutth~§ de-excitation. 

First, the very short feeding times and absence of isomeric 

states with high spin indicate that energies in the high-spin yrastregion 

must be very smooth and the transitions between these levels must be enhanced 

over the single-particle value if they are E2. (Other choices for the pre-

dominant multipolarity turn out to be much more difficult to explain.) Further-

more, to avoid the generation of discrete lines in this region, the population 
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must be spread over several (> 5) levels. 
28 

It was suggested that the 

presence of rotational bands admixed by the strong Coriolis force present 

at these high spins might produce such features. 
.. 30 

Mottelson has pointed 

out that the spectrum of an asymmetric rotor is a particularly simple one 

fulfilling these requirements of the yrast cascade, and models for the de-

. 31,32 
excitation based on this suggestion have recently been g~ven. The second 

conclusion was that the feeding point of the gsb was near its 

intersection with other levels. No other way could be found to explain the 

population patterns. This intersection implies a major change in the nature 
\ 

of the yrast levels above this spin value. 

An interesting effect has recently been observed around I - 16 in 

the ground-state rotational band (yrast states) of some even-even rare-earth 

nuclei. 33 It is called "backbending", and an illustration of what this name 

represents is given in Fig. 20. The main plot shows theyrast states of l62Er 

on an energy ~. 1 plot, and al~hough this looks rather ordinary, the slope 

has some distinct changes around I = 16. The insert shows the currently 

popular way to plot these data: as (essentially) the moment of inertia, ~ , 

(defined from the transition energy) vs. the square of the rotational 

frequency, W. The rotatioEal frequency is pr9portional to th~ slope of the 

main curve, and it is approximated as one-half the transition energy in Fig. 

20. The slope changes appear clearly on this plot, and the origin of the name, 

backbending, is obvious. The effect is not a very dramatic one on the main 

plot but, on the other hand, hw (the transition energy) is directly measured, 

so that the backbend is unmistakeable and quite likely indicative of some 

interesting phenomenon. 
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Many backbending nuclei are now known in the rare-earth region, and a 

few outside it. Several recent review articles on this subject are available. 34 

In order to give an impression of the data in the rare-earth region, the known 

yrast levels of even-even nuclei are shown in Fig. 21 in standard Cf vs. u? 

plots. The backbefiding is quite pronounced in the light Er region, and also 

in some of the Os nuclei. It appears to be less pronounced, if not absent, 

in the middle and lower-right portions of Fig. 21, 

but more data are needed to be sure of this point. This neutron-rich region 

is not accessible to the HI,xny reactions, and hence data on high-spin states 

are sparse. 

The above discussion shows that there is good evidence for a major 

change in the nature of the yrast ,levels below I = 20 in at least some of the 

rare-earth nuclei; and furthermore, that at higher spin values a new very 

regular structure develops. Three types of explanations have been proposed 

for these (or parts of these) experimental results. The essential features 

35 ' . 36 
of these explanations are 1) pairing collapse, 2) rotation al~gnment, 

. 37-39 and 3) centrifugal stretch~ng. It is not the purpose of the presen,t 

discussion to compare these various proposals. Rather, the applic~bility of 

rotation alignment to this problem will be described; first, in terms of a 

general band crossing; then, more specifically for a particular rotation-

aligned band; and finally, as to the expected trends in the behavior of even-

even (and odd-mass) nuclei. 
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4.2. General Features of Band Intersection 

The main features of the population patterns and level spacings 

described in the previous section can be explained in terms of the ground 

band crossing another band, with very little detail necessary as to the 

nature of the other band. It is useful to examine first~ese.general 

properties of band intersection. 

In the case where the ground band intersects another band, many 

features of the rotational-level spacings can be characterized in general 

36 terms. Figure 22 shows the simplified situation of two bands with constant--

but different--moments of inertia around their intersection point at I (16 in this 
c 

case). The yrast states are those of the lowest band, and if there is no 

interaction between the bands, they simply change suddenly from one to the 

other at I • 
c 

2 When plotted as if ~. w , this makes a discontinuity as shown 

by the dashed line in Fig. 23. This discontinuity causes lower values of w2 

above I if ~2/C1.l > (I +2)/I. This might generally be the case around 
c c c 

I = 20 since (I +2)I is then only - 1.1. As an interaction is introduced 
c c 

between the bands, the discontinuity is rounded, first into an S-shaped 

curve like A in Fig. 23, and then with increasing interaction, like Band 

finally c .. This range covers the- observed behaviors, ·thosein the light 

Er (and Os). region being of the S-shaped variety (A orB in Fig. 23); where-

as, the lower-Z neutron-rich rare-earth nuclei appear to be more like C. For 

intersecting barids, the occurrence of S-shaped curves depends on two factors: 

(1) the difference between the effective moments of inert;ia of the two bands 

at their intersection point, which determines the transition to be made, and 

(2) the strength of the interaction between the bands which determines how 

sharply this transition is made. 
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The population patterns following the (HI,xny) reactions in deformed 

nuclei can also be shown to come from rather general band intersection 

arguments. Consider the case where there are many quasiparticle states, 

each of which has a rotational band built on it. If a perturbing inter-

action (Coriolis force, for· example) is introduced among these bands, then 

a matrix would have to be set up and diagonalized for each spin value, I. 

In Fig. 24 the lowest few solutions from this diagonalization have been 

indicated and labeled m = 1, 2, etc., according'to the final energy. The 

same is done for spin I + 2, with n as the labeling index. If the perturbing 

interaction varies slowly with I, then ~he main difference between the matrices 

for I and I + 2 is that the initial energy of each state differ,S by the 

increased rotational energy. Thus, the main difference in the solutions will 

be this difference of a rotational energy, which is quite smooth with I. 

To higher order, if the interaction is increasing with I (the Coriolis inter-

action increases approximately linearly with I) then in the energy region of 

interest, the I + 2 states will be lowered with respect to the I states, and 

the mixed band will be compressed in energy over the input bands. Since the 

difference between the I and I + 2 matrices is small, the lowest solution with 

spin I will have a wave function similar to that of the lowest solution with spin 

I + 2, etc. 

Now consider the B(E2) values between the states indicated in Fig. 24. 

The wave functions for a given solution, /IM,m >, can be written: 

/IM,m > = 2: (24) 
K 
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where the a~(I} are the 

input configuration and 

calculated amplitudes, ~K s~gnifies a particular 

the :s~ is the usual rotational wave function. The 

B(E2} value between two such states can be written: 

B(E2 ; I + 2,n -+ I,m) (25) 

where M(E2,1l) is the usual E2 operator. In evaluating Eq .. (25) the B(E2) 

values between components ~K and ~KI are of single particle strength or 

smaller unless K = KI, in which case they are the enhanced rotational values, 
2 5 QO• Keeping only the enhanced terms gives: 

1611' 

B(E2;I+2,n + I,m) (26) 

For large I the above Clebsch-Gordon coefficients are virtually independent 

of K, and approach the limit, 13/8. Equation (26) can then be written: 

( 2 2 > '"" 3-5 Q2 [ ~ a.~(I) an
K

(I+2)] 2 BE; I+ ,n -+ I,m - 8-1611' 0 ~ K (27) 

The remaining summation in Eq. (27) looks like the one occurring in an 

orthogonality integral ,which wouldbewri tten: - -

o 
m,m l 

(28) 

Since it has been argued above that the states n look much like the states 

m for n = m, it follows from Eqs. (27) and (28) that 

B(E2; I+2,n+ I,m) (29) 
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that is, the transitions having solid lines in Fig. 24 have the full rotational 

strength, and those with dashed lines vanish. It is easy to see that transi-

tions of the type I+2,n + I+2,n ' also vanish, since in this approximation 

the Clebsch-Gordan coefficient again factors out and the sum in Eq. (19) now 

really is the orthogonality integral. These are precisely the selection 

rules needed in Sec. 4.1. to bring the population down in spin very quickly, while 

keeping it spread over several bands. The population then feeds rather 

sharply into the ground band at a critical spin value. The reason for this 

is that the ground band intersects the 2qp bands rather sharply near this 

spin value and the assumption that the matrices look nearly the same for 

adjacent spin values is then not valid, particularly relative to the ground 

band. Thus, at the point where the ground band intersects other bands, not 

only does the developing energy gap (with decreasing I)' favor population of 

the ground band, but the B(E2) values for this population also peak in just 

this region. This seems to provide a very general explanation for rapid 

population of the ground band near this point, in accordance with the 

observations. 

From the preceeding discussion it seems that the presently known 

features of the high-spin states of the gsb can be accounted for rather 

t 11 ' b d ' " I f t ' 1 54G-d d 156D there na ura y 1n a an -1ntersect1onp1cture. n ac, 1n an y, 

, d' '1 'd 40,41 th h d b d d h 1S 1rect exper1menta eV1 ence at t e groun an oes cross anot er 

band around I = 18, producing a backbend in the yrast states. However, the 

fact that the upper band is populated sufficiently to be seen in these cases 

makes them atypical, and one cannot, therefore, be sure that this is the 

process occurring in the heavier backbending nuclei. 
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If band intersection is the general explanation of these high-spin phenom­

ena, the intersting physics involved is in what kind of band is crossing the ground 

band. Within the rotation-alignment model, the answer for the light Er region 

is clear - a 2qp band based on i
13

/
2 

neutrons. In the Os region this is not so 

clear, since other orbitals could be more important. It may be that the 

pairing collapse and centrifugal stretching models can ,also be expressed in 

band-intersection terms; however, that is not clear at present. The 

next section will take up in some detail the 2qp rotation-alignment calculations 

for the Er region. 

4.3. Rotation Alignment in 2-quasiparticle States 

The small extension of the mathematics used in the even-even case will 

first be discussed to give a more specific idea of what is involved. In Fig. 

25 the coupling scheme is indicated, where two particles with angular momentum, 

j, couple to a total J, which then couples with R to give I. The projections 

of the two j values on the symmetry axis are labeled, n
l 

and n
2

• Figure 26 

shows the lowest few i 13/
2 

component levels, in a situation where A is between 

the 3/2 and 5/2 components. The left side shows the main configuration of the 

even-even ground state, and the right side shows a 2qpstate of the type under 

discussion. This state has K = 1, and is connected to, the ground state by a 

large Coriolis matrix element of the type considered for the odd-mass nuclei 

in Secs. 2 and 3. From the lowest three levels in Fig. 26, n = 1/2, 3/2, 

and 5/2, all the 2qp states possible have been generated, giving the spectrum 

shown in Fig. 27. The Fermi surface was assumed to be between the n = 3/2 

and 5/2 states in this figure. All the non-zero Coriolis matrix elements 

have been shown as lines between the connected states. One sees that with 

"IJI 
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only these three n values, a complicated pattern develops. However, this 

system can be diagonalized in just the previous way; and, in fact, the full 

i
13

/
2 

orbital has been studied,36 including all possible (49) 2qp states. Also, 

the lowest four Q-levels have been used to construct all possible 2qp and 

4qp states, and this system was also studied; so that, a reasonable idea 

exists of what to expect from the calculations in these even-even cases. It 

-+ 
should perhaps be noted that Eq. (4) applies to such a system if J is sub-

-+ 
stituted for j, and one needs only the additional relationship: 

-+ -+ -+ 
J = j (1) +j (2) (30) 

The reliability of these 2qp calculations is not expected to be much worse 

than that of the one-particle case (Secs. 2 and 3). 

A general view of the energies resulting from these 2qp calculations 

is shown in Fig. 28 where the lowest two solutions (with the Fermi surface 

located as in Fig. 26) are plotted for three different S values: S = 0.3, 

solid line; S 0.2, dashed lines; and S = 0.1, dotted lines. The S = 0.1 

case should not be taken too seriously, since the model is not so likely to 

apply here, but it was included to show the trends. In ail three cases, the 

2qp state begins at I = 0 as a normal band with K = 0 and E ~2.5 MeV; 

however, it initially gains Coriolis energy so fast from mixing, that its 

total energy remains rather flat out to I ~ 12, and then (now a rotation­

aligned band) goes up with about the ground-band h2/2~ value. In all cases 

it crosses the ground band; however, for the S = 0.3 case, the crossing is 

very smooth, and not so apparent since the levels repel each other and do not 

get closer together than about 1 MeV. 
2 

Nevertheless, plotted on an ~ ~. w 

plot, the ground-band line in Fig. 28 does have a typical "kink" in it (not 
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quite an S-shape). The earlier intersections in the S = 0.2 and 0.1 cases are 

caused mainly by the wider ground-band spacings which are due to the 

larger h2/2~ value. (Note that in the 2qp~band, the wiQer spacings are 

compensated up to ! ~_ 12 by. the increased Coriolis effects.) One sees that 

the kink, which was not visible for S = 0.3, becomes large for S = 0.2, and 

even produces anI = 12 isomer for S = 0.1 (though this is not at all reli-
t 

able). The numbers on Fig. 28 are the calculated total populations passing through 

each yrast state. These are obtained from the (collective) B(E2) values 

and energies obtained from the calculations, where equal initial population 

was assumed in all (50) levels at I = 30. The calculated populations look 
\ 

very much like the experimental ones, in general. The feeding in all cases 

comes in around the intersection point, as discussed in Sec. 4.1. 

Figure 28 shows that an intersection of the gsb with a rotational-

aligned 2qp state based on i
13

/ 2 particles can, in general, explain the observed 

features in the light Er region. To compare in more detail with specific 

nuclei is not so easy, since there are potentially many parameters entering 

such calculations. At this point it is useful to remember that most of the 

parameters entering into the 2-quasiparticle calculation for even nuclei 

-also enter" in much -the same way into the l-quasiparticle" calculation-·of -the· 

lowest i l3/ 2 band in an odd nucleus. Such bands are observed throughout the 

rare earth region and it seems clear that backbendingin the even nuclei 

should be related to the characteristics of these bands in the adjacent odd 

nuclei if the rotation-alignment model is correct. A one-to-one relationship, 

however, should not be expected since other factors, particularly the ground-

band energy spacings and the pairing gap, also influence the backbending. 
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A comparison of odd-mass and even-even Coriolis effects is shown in 

" 2 h f" hI" b d" 161E d 171 f d Fl.g. 9, were l.ts to t e owest l.13/2 an l.n ran H were ma e, 

and then the identical parameters were used in calculations
42 

for the adjacent 

162Er and 172Hf . There were no adjustable parameters for these even-even 

calculations, though some quantities that are not relevant for the odd-mass 

nuclei do enter. The agreement in Fig. 29 seems excellent, and suggests 

that calculations of this type might be able to account for some of the 

details of the backbendingin even-even nuclei. " 43,44 More general calculatl.ons, 

including these rotation-alignment effects as well as pairing and deformation 

changes have recently been made, and seem to bear out this rotation-alignment 

explanation of backbending in the Er region. 
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4.4. Backbending in Odd-mass Nuclei 

It has been pointed out that decoupled bands have energy spacings 

identical to those in the adjacent even-even nuclei, and that the bands 

based on i
13

/ 2 states in the odd-mass nuclei of the light Er region tend to be 

decoupled. It would seem to follow that these bands in the odd-mass nuclei 

should backbend like their even-even neighbors. However, the situation is 

more complicated if the decoupled odd particle is also one that is involved 

in the 2qp rotation-aligned state in the even-even nucleus. The recent 

studies of such effects seem to shed considerable light on the cause of the 

backbending, and a brief account of th~s work
45 

will be given. 

An explanation for the backbending in even-even nuclei is illustrated by the 

solid lines in Fig. 30. The ground-state band, labeled as the paired vacuum state 10 >, 

is shown to be crossed by another band. The band indicated here is the 2qp rotation­

aligned one, where the first quasiparticle has the maximum angular-momentum 

projection on the rotation axis, a = j = 13/2, and the second quasiparticle 

has the maximum remaining projection on that axis, a = j - 1. This is 

written in the usual second-quantization notation as t t - t 
a13/2all/210>, where a 

is a creation operator for quasiparticles and the subscript refers to the 

rotation-aligned quantum number called (somewhat unfortunately in this context) 

a~ Adding an odd particle to each of these states (dashed lines) raises both 

of them by the energy, ~, due to pairing effects; but this can be ignored 

since only the relative energy (crossing point) is of interest. The one-

quasiparticle 'state then coincides in energy with the paired vacuum state as shown 

in Fig. 30. However, the same rotation-aligned two-quasiparticle state involved 

in the even-even case cannot be made in the odd-mass case due to the Pauli 
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principle. The odd neutron is already occupying the a = 13/2 state. The 

most favorable states available to the broken pair are then a = 11/2 and 

a = 9/2; so that, the three-quasiparticle state becomes: 

The energy difference between the one- and three-quasiparticle state is larger 

than that between the zero- and two-quasiparticle states because (1) the a 

= 9/2 state is less favorable energetically than is the a = 13/2 state, and 

(2) the additional angular momentum gained by breaking the pair is only 10 h 

rather than 12 h, so that 2 h more of core rotational angular momentum is 

required. The sum of these two effects can be estimated to be about 1 MeV, 

so that the intersection should come at higher spin and rotational frequency 

as shown in Fig. 30. Thus, backbending in such a nucleus would only occur at 

higher spin values, if at all. Note that if the decoupled odd particle in 

this example were an hll/2 proton instead of an i 13/ 2 neutron, the above 

interference would not occur, and the decoupled hll/2 band would be expected 

to backbend like its even-even neighbors. 

The above situation is of particular interest since it seems likely 

that the odd-mass nuclei would behave differently according to other back-

bending models. The prediction of the pairing-collapse model about backbending in a 

decoupled i
13

/
2 

band can be stated very simply. An odd particle reduces the pairing cor­

relations due to blocking effects, and thus the pairing might be expected to collapse 

at a lower rotational frequency. This statement can be illustrated in Fig. 31. 

The solid lines again show the even-even situation based on this model: the 

paired vacuum state intersecting the unpaired vacuum state. The dashed lines 

show the odd-mass situation. For the unpaired case, the one particle state, 

a{3/2 10> , and the even-even vacuum state, 10>, coincide as shown, provided: 
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1) the vacuum is assumed to be the average of the two nuclei adjacent to the 

odd-mass nucleus; 2) the decoupled i
13

/ 2 state lies exactly at the Fermi 

surface, and 3) the level density is reasonably large. However, in the paired 

case, the one-quasiparticle state always occurs higher in energy than the 

vacuum state by the odd-even mass difference, 6. The dashed line in Fig. 31 

for the odd-mass band with pairing is, therefore, raised in energy by this 

amount - taken to be 0.8 MeV. As a result, the intersection with the unpaired 

band is seen to occur at lower spin and also at lower rotational frequency 

(earlier). Note that the size of the backbend could be smaller in this case, 

due to the reduced pairing; but, nevertheless, the moment. of inertia should 

reach its upper limit (unpaired value) earlier. 

The experimental evidence on backbending in the odd-mass nuclei in 

. the light Er region is rather clear. In the odd-neutron nuclei, the decoupled 

i 13/ 2 bands do not backbend like their even-even neighbors; whereas, the odd­

proton hll/2 bands do. The evidence45 on 157,159Er compared with 156,158,160Er 

is shown in Figs. 32 and 33, where the spacings in the odd-mass decoupled band 

are treated exactly like those in the even-even gsb. It is apparent that the 

odd-mass bands neither backbend nor approach the 2~/h2 value of the even­

even nuclei after their ba-ckberid. On -the other hand, 157,159 ,161Ho are shown 

in Fig. 34 to backbend much like their even-even neighbors. At low spin values, 

the Ho points are below the even-even ones because these hll/2 bands are not 

completely decoupled (The lowest point or two for 159Er also shows this.). 

This means that the cf values obtained do not represent core values, but it 

cannot change the conclusion about backbending, which comes directly from the 

... 



-45- LBL-2352 

transition energies. These data on odd-mass nuclei support the rotation-

alignment interpretation of backbending in the light Er region, and also 

suggest a general means to determine where this model is applicable, and 

which particles are involved. This could be useful in the Os region, 

for example, where it is not clear if rotation alignment is involved, and 

if so, whether i 13/ 2 neutrons or h9/2 protons are mainly responsible for 

the backbending. '. 
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5. Conclusion 

Coriolis effects in nuclei have been traced from the point where 

they are small perturbations in good rotational spectra, to the point where 

they apparently .dominate the low-energy spectrum. The situation for a 

particular case depends on the relationship of the rotational energy to the 

energy coupling the particle to the non-spherical part of the potential. If 

the latter energy is much larger, good rotational spectra exist, whereas if 

it vanishes, the system is spherically symmetric leading to a spectrum with 

no energy splitting of the multiplets formed by coupling a particle to a core 

state. With the assumptions and simplifications made in Secs. 2 and 3, it 

is easy to make calculations anywhere between these limits. Adjacent to each 

limit, one finds regions where a perturbation treatment could apply. This 

would be a particle-core weak coupling model near the spherical limit, and 

a Coriolis perturbation approach near the good rotational' region. If the 

Fermi surface is near high-r.l levels, these two perturba,tion regions merge into 

each other, and one changes rather suddenly from a spherical region into one 

of reasonably good rotors. But if the Fermi surface is near low-r.l states, 

then there is a broad region where neither of these schemes is very good. Due 

to a cancellation of terms in this region, the solutions are approximately 

eigenfunctions of the Coriolis operator and these correspond to a third 

coupling scheme where the particle angular momentum has sharp values, a, along 

the rotation axis. Such a rotation-aligned coupling scheme has been discussed 

and seems to describe rather well the yrast states in many odd-mass nuclei. 

This coupling scheme might also apply to non-yrast states, and it is at 

.present a challenge to see how far the model can be extended in this direction. 
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In the even-even nuclei, the rotation-aligned scheme may also play an 

important role. It has been suggested that backbending in the light rare­

earth region may be just the intersection of the ground banq with such a 

rotation-aligned two-quasiparticle state composed of i 13/ 2 neutrons. The 

observed backbending in odd-mass nuclei, suggests that this explanation is 

correct in the light Er region. Whether this will prove to be the case in 

other regions is not yet clear. 
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FIGURE CAPTIONS 

Fig. 1. h 183 '1 b d t t d b K . T e W rotat1ona an s as rea e yerman. 

Fig. 2. The solid lines are the Nilsson solutions for the hll/2 orbital 

as a function of deformation. The dashed lines are the energies given by 

Eq. (11). The vertical line marks S = +0.275, and its intersections with 

the Nilsson lines represent the relative energies of the various component 

levels at that deformation. 

Fig. 3. The j15/2 bands in 235u (as calculated from Eqs. (6) and (9» prior 

to the Coriolis diagonalization. The matrix elements of the operator j± 

as calculated from the Nilsson wave functions are also shown. Only a few 

rotational levels of each band are indicated. 

Fig. 4. Levels Coulomb excited in 235u. 

Fig. 5. 
235 

Rotational spacings of bands in U. The points are the experimental 

data, with the height of a point covering the error limits, and the lines 

correspond to the spacings obtained from the one-parameter Coriolis calculation. 

Fig. 6. This plot is like Fig. 5, except (1) the lines correspond to the three-

parameter Coriolis calculation, and (2) the ordinate scale has been doubled. 

Fig. 7. Th 't 1 d 1 1 t d 't' 't 1 1 ' 161,163,165 e exper1men a an ca cu a e POS1 1ve-par1 y eve s 1n . Er 

according to Ref. 9. 

Fig. 8. Rotational spacings of the positive-parity band in the three Er nuclei. 

Some other bands in these nuclei have been plotted on this figure, which is 

also taken from Ref. 9. 

Fig. 9. Schematic vector diagrams illustrating the strong-coupling scheme (above) 

A 

and the rotation-aligned coupling scheme (below). The 3 axis is the nuclear 

symmetry axis, and the vertical axis is taken to be the rotation axis, located 

in the 1, 2 plane 
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Fig. 10. The exact solutions to Eq. (12) (solid lines) are compared with the 

diagonal energies for the wave functions given by Eqs. (15) and (22) 

(dashed lines). Equation (19) gives results essentially identical to the 

dashed lines. The ordinate is the difference in energy between the state 

having spin I and the lowest I = 11/2 state for the respective type of 

solution, in units of the even-even I + 2 energy. The exact solutions 

shown are for a one-particle case (the Fermi surface is always below the 

entire j-shell), pure j = 11/2 wave functions, and no pairing correlations; 

however, the results are not very sensitive to any of these conditions. 

The dots show the energies as given by Eq. (16) at the appropriate S value. 

-Fig. 11. The energy of the lowest I = 11/2 state (in units of the even-even 

I = 2+ energy) is shown for three different coupling schemes (lines) and 

for the exact diagonalization of Eq. (12) (dots). The conditions are the 

same as those for Fig. 10. The inserts show schematically vector model 

A 

schemes for the lowest-lying configurations, where the I-axis is taken to be 

the rotation axis, and the multiple-pronged arrows indicate mixtures of states. 

Fig. 12. The results of diagonalizing Eq. (12) for the hll/.2 orbital at various 

S values showing all the yrast states up to I = 23/2 (the second-lowest 

I = 11/2 state is also shown). The ordinate isthe'differencebetween-the-

eigenvalue and that of the lowest I = 11/2 state, in units of E
2
+. The Fermi 

surface, A, is below the entire hll/2 orbital for all the S values shown. 

Fig. 13. Level spacings, in units of h2/2e1, for an i
13

/
2 

particle in a normal 

rotational band (left) and in a decoupled band (right). 

Fig. 14. The ratio of ~E(I + 2 + I) in an odd-mass nucleus divided by the average 

of the corresponding transition energies in the adjacent even-even nuclei 

~(I + 2 - j + I - j), is plotted against mass number for the light Er nuclei. 

The rotational-band and decoupled-band limits are shown, together with the data 

for the first four such transitions in the. lowest-energy i
13

/
2 

band. 
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Fig. 15. A portion of the Nilsson diagram for protons, where only the high-j 

orbitals have been fully drawn. At S = 0, the 50 closed shell is at the 

bottom of the figure, and the 82 shell comes between the sl/2 and h9/2 

orbitals. 

Fig. 16. A comparison of the negative parity bands in the odd-mass La 

isotopes with the ground band in the neighboring Ba nuclei. In most cases 

(energy zero in parentheses) the La 11/2 level is not the. ground state and 

its energy has been subtracted from all levels shown for that isotope. 

. 135 137 
Fig. 17. Energy levels ~n Ce and Nd. The transitions in the 11/2 bands 

are shown as solid; whereas, the others are open. The width of the arrows 

indicates the amount of population following the (HI,xny) reaction. 

Fig. 18. Energy levels in 133ce and 135Nd . The transitions in the 9/2 bands 

are shown as solid; whereas, the others are open. 

Fig. 19. Excitation energy is plotted against angular momentum in a nucleus 

40' 
(with mass around l60) that is the product of an ( Ar,4n) reaction. The 

populated energy and angular momentum range is shown, together with the 

proposed cascade pathway to the ground state. 

Fig. 20. A plot of energy ~. I for the ground-band rotational levels in l62Er • 

The insert shqws the same data in the type of plot generally used to, show 

backbending behavior. 

Fig. 21. Ground-band level energies in even-even rare-earth nuclei. The plots 

give the moment-of-inertia (1 versus the square of the rotational frequency 

2 
W , both quantities derived from the transition energy. In a few cases 

where more than one possible choice exists, the lowest-energy transition is 

always used. Tentatively assigned band members are indicated by an omitted 

dot. The compression factors C and the contour line for C = 0.45 are 
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. + + 
der~ved from the 17/2 + 13/2 level spacings in the lowest i

13
/

2 
band 

observed in the odd-N nuclei, and from mean value E(2+0) of the 2+ energies 

in the adjacent even nucleLThe value of C varies from 1. 0 to 0.18 as 

the band changes from rotational to decoupled. This plot is taken from 

Ref. 42. 

Fig. 22. The solid lines show the energies of two rotational bands as a 

function of I. The bands have different moments of inertia (h2/2~1 15 keV, 

h
2
/2 cl2 = 10 keV) and are arranged to intersect at I = 16. The dotted and 

dashed lines show the energies of the mixed bands resulting from cases B 

and C, respectively, in Fig. 23. 

Fig. 23. The ratio EI/;;! 2 is plotted ~.' (J} for the two bands in Fig. 22. The 

horizontal lines connected by a dashed line correspond to no mixing between 

the bands, C corresponds to interband matrix elements comparable to the 

maximum gsb-2qp ones used in the Corio1is calculations of Ref. 36, B to 

matrix elements three times smaller, and A to ones ten times smaller. 

Fig. 24. A schematic illustration of the lowest three solutions for spins I and 

I + 2, with some of the interconnecting E2 transitions indicated. 

Fig. 25. The coupling scheme discussed in the text. It should not be inferred 

from this sketch that all these quantities have sharp values simultaneously. 

Fig. 26. Placement of particles in the states based on the i
13

/
2 

orbital in an 

even-even nucleus with a Fermi surface, A. The left side of the figure 

represents the most probable situation for the gro~d state, whereas the 

right sideshows a low-lying 2-quasipartic1e state. Many levels from other 

orbitals would be intermixed with these, but for simplicity are not shown. 
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Fig. 27. The ten states possible considering only 2qp states in the ~ = 1/2, 

3/2, and 5/2 components of the i
13

/
2 

orbital plus the ground state (Oqp). 

The interconnecting lines show the locations of non-zero Coriolis matrix 

elements. 

Fig. 28. The lowest two solutions of the even~even case for ~ = 0.3 (solid 

lines), a = 0.2 (dashed lines), and a = 0.1 (dotted lines). The numbers 

represent the total population passing through 'each level. 

Fig. 29. A comparison of experimental (dots) and calculated (lines) properties 

of levels in the pairs of nuclei 161,162Er and 171,172Hf • The left side of 

the figure shows the fits obtained for the lowest i
13

/ 2 band in the odd 

nucleus of each pair, and the right side shows the results for the even-

even nucleus calculated using the same parameters. 

Fig. 30. This plot shows the intersection points, based on the rotation-

alignment model, of the ground band with the broken-pair excited band in: 

1) an even-even nucleus (solid lines) and 2) an odd-mass nucleus with a 

decoupled i
13

/ 2 odd particle (dashed lines). The subscripts on the quasi­

t particle creation operators (a ) refer to the rotation-alignment quantum 

number, a. 

Fig. 31. This plot shows the intersection points, based on the pairing-collapse 

model, of the ground band with the unpaired excited band in: 1) an even-

even nucleus (solid lines) and 2) an odd-mass nucleus with a decoupled i
13

/ 2 

odd particle (dashed lines). Note that the subscript on the creation 

t t operators (a or a ) refers to the rotation-alignment quantum number,a. 

156 158 
Fig. 32. Conventional backbending plots for ' Er, and for the decoupled band 

. 157
E 1.n r. The following expressions have been used: 

and hw = (E
I

-E i _
2
)/2, where I' = I for the even-even nuclei and I' = I - j 

for the decoupled band in the odd-mass nucleus. 
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Fig. 33. Conventional backbending plots for l58,l60Er and for the decoupled 

band in l59Er . See caption to Fig. 32. 

F ' 34 "f b kb d' , 157,l59,l6lH 'h' h ' 19. . A compar1son 0 ac en 1ng 1n 0 W1t ' ,t e1r even-even 

neighbors. The even-even curves are the usual ones of this type, and 

the odd-A bands are treated as described in Fig. 32. 
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r------------------LEGALNOTICE--------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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