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1. Introduction

Coriolis effects are not very common in our normal experience. Perhaps
the most familiar object where these effects are large is the gyroscope or the
"top", as the toy version is usually called. The sidewise precession of a
leaning top under the influence of the downward pull of'gravity is indeed a
striking behavior, énd one whose mystery testifies to our unfamiliarity with
Coriolis effects. A less common example, but one much more analogous to the
nuclear effécts of interest here, is a ship's gyrocompass. In this case the
tendency of a spinning gyroscope (whose axis is kept in the plane of the earth's
surface) to align its axis with that of the rotating earth, is used as a navi-
gational aid. A particle in an orbit of a rotating nucleus has a similar
tendency. 1In the case of rotational nuclei, Coriolis effects are much more
apparent than in our everyday experience, and it is the purpose of theée
lectgres to exaﬁine what is known about such effects.

It is easy to estimate the maximum Coriolis energy of a particular
_ particlé in a roﬁating nucleus. For a particle orbit having angulaf momentum,

j,4in a nucleus with spin, I, and moment of inertia, &J,this energy is given by:

*Work performed under the auspices of the U. S. Atomic Energy Commission,
‘Based on lectures given at Rudziska, Poland, August 1972, and Murich, Germany,
August 1973. ' ' :
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E (max) ¥ 2 5513 . ' ' (1)

In raré—eafth nuclei there exist orbitals with j as large as 13/2, and h2/2€1
is around 0.0l MeV. Thus when I is only 7/2, the maximum Coriolis energy is
almost 0.5 MeV, or quite comparable with the energy separations between
particle states in such a nucleus. This indicates that for thgse favorable
cases the Coriolis effects can be expected to affect £he nuclear structure
significantly even for such iow spins. Equation (1) also shows that these
effects become larger .with increasing spin and also with decreasing moment of
ineftia.

In the present paper, Coriolis effects in nuclei will be reviewed
beginning with cases where they are relatively small, that‘is, good rotational
nuclei (small h2/2€7 ), low=j orbitals, and relatively low spin values. An
vexample'of this type is the famous case of 183W. Then some intermediate cases
will be discussed; where j is large, I is moderately large, but h2/2y' remains
small (rotational nuclei). These cases are 23$U and thé odd—mass Er nuclei. With
‘these as background, two situations will be considered.wherevit appears that the
Coriolis effects have changed the nuclear structure in a major way. The first of these
is the case where j is large, I is moderately large, and ﬁ2/227 bgcqmes-large;
that is, in the more "vibrational" nuclei. Under the proper conditions, odd-
mass nuclei of this type seem to correspond sﬁrprisingly wéll to a new
coupling scheme characteristic of the Coriolis interactiqn. ‘The other situation
is that of a very large I (~20) in rotational nuclei, where these effects can

be shown to provide one possible explanation for the peculiar behavior called

backbending. Throughout these discussions the physical effects occurring
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wiil be emphasized rather than the mathematical detail, although some of the
latter will be essential.

It is important to keep in mind that in all cases jusf ggg_physicai system is
treated, a particle (or two) coupled to a core that is defqrmed (with axial symmetry) and

can rotate. In the first cases, the deformation of the core is large and the

‘particle is strongly coupled to it; so that as the core rotates, the particle

‘follows. The Coriolis effects are then a perturbation on the rotational

spectra. In the last cases, the coupling to the deformed shape is weak and/or
the fotational frequencies are large, so that the particleAcannot follow the
core rotation, resulting in Coriolis effects that can completeiy obscure the
familiaf type of rotational bands. It is certainly true that at some point,
as the coupling decreases (B gets smaller), this rotational médel will cease
to apply to nuclei, but in order to find that point, the model must be under-
stood cleér down to the limit of zero coupling. Furthermore, there seems to
be experimental evidence accumulating that suggests the modei applies rathér

well at surprisingly weak couplings for at least some special states.
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2. Coriolis Effects as Perturbations in Rota;ibnal Spectra
2,1. Two—bahd ﬁixing in 183w
| A, Bohrl'discussed Coriolis effects in hié origihal paper on nuclear
rotation in 1952; but it was some four years later befor§ A. K. Kerman2

183W.. This case will be

vappiied these idéasito a specific case, namely
briefly reviewéd, both because of its historical interesﬁ,fénd because it
illustrates the effects in a simple case where only two bands are involved.
The basic equations necessary to understand nuclear Coriolis effects are
very simple. Provided a rigid, axially-symmetric defo:m¢d core is assumed,
the Hamiltonian of the system can be written: |

h2 ) 1

2 2
= o= + = + — + R 2
H=H +H  =H +55 K =H +35 (R, y) ' (2)

where Hé is the Hamiltonian of the particle in the absencetof rotation (a
Niléson3 Hamiltonian for example), 3 is the moment of ingrtia of the core,
and'ﬁ is the rotapional angular momentum of the core (rotafion is not allowed
_around the symmetry axis). A coupling between the particle and the rotation
comes about thréugh the sharing of the total angular moméntum between the
" particle and the core. This can be expressed by:

> > >
R=1I-3

. o (3)

One should clear;y distinguish between the particie—rotation coupling which
is considered here,.and the particle-core coupling which is contained in Hp.
(The major part of the particle-core coupling is spheriéaliy symmetric: and

of no interest here; however, if the core is deformed, then there is also a

coupling to the defbrmation, which was discussed at the end of the previous

by
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section.) Putting Eq.'(3)(into Eq. (2) gives the usual expressidn for a

rotational nucleus:

2

v ) S '
h 2 h +2 2
= -—= - + == [<37> -
H=H +35 [I(1+1) - K7} + H_+ 5% [<] €1 (4)
where Q=jz and K = Iz‘(the two are equal for an axially-symmetric core ), and
' 2
. 12 h |
= - — 3 3 = - . + o
He 2y gt Iy]y] 7y Ldo+ 1.3

. (5)
This term, H., is conventionally called the Coriolis coupling term, though it
contains parts of both the Coriolis and centrifugal energies.

These are the general equations which will be used repeatedly later on, but

for the present case of good roational nuclei they can be simplified. For
. . +2
such cases, Q is nearly a constant for a given band, as is <j >. These terms

may therefore be included in H_, giving:

. h2
H = Hé + 2—5, [I{(T+1)] + HC

(6)

The matrix elements of Hc can be written

<I,Qt1 IHCII,Q> = - f-zl—s V(IFK ) (T*K+1) <Qtlljil§2> , (7)

where the matrix element, <Qil|j+|Q> , must, in general} be calculated from

the detailed (e.g. Nilsson) wave functions. For the épecial case where j is

a good quantum number, these can be written:

.

<j 'Qillji|j19> = -\[(3;9) (in+l) .

(8)
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Generally, Hc‘i$>poh—diag§na1, connecting bands thatldiiféi in © by one unit.
'HOWéver, as_iS'Well known, there .is a diagonal contribution'to bands with
Q =,l/2' These rather simple basic equatiéns will be gsed to treat all the
cases of Coriolisicoupiing mentioned. | |

Tﬁe ;83ﬁ'case treated by Kerman involved only twﬁ.baﬁds with Q = 3/2
and Q =.1/2, and:ié shown in Figqg. 1. The initial bandheadienergies, Hé,, Kerman
tobk as parametefs, as he also did the initial h2/29' vaiue for each band.
In addition he took the Q = 1/2 band decoupling parametei to be adjustable.
For a given value of these five parameters he could caiculate the initial

energies of the levels in each band. For the parameters of his final fit,

these are shown in Fig. 1. Taking as a sixth parametef_the value of

< 9=_3/2|j+|9 = 1/2 >, Kerman diagonalized the 2 X 2 matrix for each spin,

giving the shifts shown in Fig.‘l. As is usual, the levels repel each other;
levels of a giveh spin moving equal distances up and dowh.l The experimental
energiés are listed at the edges of fig. 1, and it can be seen that the fit
is indeed excelient. Kerman also considered some 20 Ml and E2 transition
probabilities, achieving reasonable success at the expense of five additional
parameters.:

vSubsequent—work4'5 on 183W has tended to cqnfirm‘the basic principlés
of Kerman's _Véﬂalysis, though some problems have arisen. RbWé4“shdwed that ~
various rotation-vibration (AK = *2) admixtures of the type found in even-even
nuclei in the‘region of 18-3W permitted one to obtéin fits as good as Kerman'é.
over a rather broad range of theipar;méters (though he obtﬁined better fits

for two particular sets of parameters). Brockmeier et EL.Svlater showed that

including other Nilsson states could also significantly affect the fit. To

o
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summarize these analyses, it seems clear that there is a significant Coriolis

miking of these bands; however, the details of this mixing are.probably not
very well determined due tovthe mény parameters involved, and the possibility
of contributions from a number of additional effects.

There are many other cases of moderate Coriolis mixing of two or even
three close-lying bands. The single~particle transfer reactions have prdved_
to be a powerfﬁl method for such studies since they give more direct evidence
on the wave functions of the observed bands. However, suéh detailed analyses
be pursued  further here. The purpose of discussing this case was to display

the analysis of Coriolis effects in a simple case and to show that even for

low h2/2? , J and I, appreciable Coriolis effects occur. Other

examples will now be considered where the effects are larger and, at the same

time, the calculations are much less ambiguous.

2.2, Multiband mixing in 235U

The unique-parity high-j orbitals within each major shell provide‘

will not

much the best cases to observe ang understand large Coriolis effects in nuclei.

It is essential to appreciate the reasons for this. The most obvious factor
is that the Coriolis matrix elements increase approximately proportional to

j for low values of {2, as shown by Egs. (7) and (8). For the j15/2 orbitél,

235U, this implies matrix elements around five times

larger than that found by Kerman for 183W. This situation is typical for

which is involved in

all the high-j orbitals, and leads immediately to the qonclusioh that any v
study of the largest Coriolis effects will involve these orbitals. The
second reason for choosing high-j orbitals is that their properties can be

reliably calculated. These orbitals are well separated from any others of
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the same parity, so that, to a very good approximation, j is pure. This can
be verified from the Nilsson wave functions of: i) th_e,_hll/2 orbital in the

50f82 shell, ii) the i13/2

orbital in the 82-126 shell, and iii) the j15/2
orbital in the shell beyond 126. This means that pure-j estimates for most
éf the éroperties of these states are nearly correct, énd since the properties
of these states are not much affected by the small admixtutes of other j-values,
they are not sensitive to the exact size of these admixtu;és. Yet another
favorable aspect for Coriolis calculations in the compdnent states of a high-
3 orbital is that these states do not Coriolis mix very much with states from
othér orbitals. This is both becaﬁse of the pure j-value‘and because these
other orbitals are at least one major shell removed in energy. Thelproperties
ofﬂﬁhe high-j components can be summarized as: 1) they comprise a closed set
of states whose Coriolis interactions among themselves a?e-the largest possible;
2’ they‘havé very weak Corioli; interactions with state§ from other j—shells;

~and 3) fheir properties.can be calculated with the hiéhest reliability of any
states in deformed.nuclei.

One aspect of the point about the reliability of calculated properties
is illustrated in Fig. 2. Here £he components of an hll/é orbital are shown
as a function of'deformation.3 These componénts would be one of the closed
7sé£s of levels mentioned above. Since they all belong éreaominantly to the-
same orbital (h11/2)' ﬁheir.relative energies are nearly independent of the
_shéll model parameter; in the calculation, and depend only on the energy
splitting of this orbital with deformation. This gives much more reliable

relative energies than would otherwise be the case. The energies of the

components in a particular' case are read off at the appropriate deformation.

'
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As an example, a line has been drawn on Fig. 2 at B = 0,275 to show these
energies. In‘éddition to B, the location of the Fermi sﬁrface, A and the
pairing gap, 27, are needed in order to calculate these energies as they
might be éxpected to occur in a particular nucleus. The appropriate equation

for the observed energy E(f2) in terms of the eigenvalues from Fig. 2, EQ, is:

EQ) = W/(eﬂ—x)z T | - (9)

There is also a UV-factor6 to be included on the Coriolis matrix elements
due to the pairing, but that is é small correction;

If a Fermi surface is chosen near the Q = 7/2 leVel_and Eq. (9) is
applied to the Nilsson eigenvalues of the j15/2 orbitals at B = 0.275, the
bandhead energies shown in Fig. 3 result. Rotational bands are then con-
structed on all these bandheads according to Egq. 6, wherevHé has generated
the bandhead energies, E(fl). The first few rotational levels are shown for
each band in Fig. 3. The matrix elements, < Qilljilﬁ >, as calculated from
the Nilsson wave functions are also shown on Fig. 3; and, by comparison with
Eg. (8), they can all be seen to be within 10% of the purefj values. The
procedure then is to pick out from each band the state of a particular spin,
I, and diagonalize the resulting matrix. For the j15/2 shell this will bé an
8 x 8 matrix if I > 15/2, and smaller if I < 15/2.

Three things should be especially noted on Fig. 3. First, a pattern

much like this results from any high-j orbital. An h orbital, for example, would

11/2

have two fewer bands (2 = 13/2 and 15/2 would be missing),and ~30% lower matrix

elemehts, but otherwise would be very similar. The second thing to note is that Coriolis

.effecfs are much bigger for the low-{ bands. Not only are the energy
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separations of the bands smaller here, but also the matrix elements are

largest. Thus, the very largest Coriolis effects will occur in low- bands

of high-j orbitals. Finally, the £ = 1/2 band has very anomalous spacings.

Large decoupling factors always occur in these high-j orbitals, so this is a
general feature. These anomalous energy spacings are trahsmitted to the

Q = 3/2 band in the mixing process, and then on to the Q = 5/2 band in a

-higher order process, etc. The resulting anomalous spacings in the higher-Q

bands are a very characteristic and important feature of tbe mixing described
here. |

There are three favoraﬁle circumstances that make 2350 a very good
case forvstudyihg such Coriolis calculations. The level scheme worked out
from Coulomb excitation studies7 several years ago is sﬁown in Fig. 4. The

f

first favorable feature is that many levels are observed in the jiS/Z
component bands. Three band, § = 5/2, 7/2, 9/2, are seen and there are a
total of 15 rotational spacings in these bands (bandhead energies are not
included in the anélysis in this case). A second advantégevis that anomalous
spacings coming from the mixing with the = 1/2 band aré_bbserved in both

the € = 5/2 and 7/2 bands. This information alone tells some rather specific

things about the Coriolis matrix elements. Finally, the B(E2) values between

the 2 = 7/2 ground band and both the  =.5/2 and Q ='9/2 bands were determined.

If one assumes that these B(E2) values result only from collective E2 trans-
itidhs introduced by the mixing, then they give immediately the admixed
amélitudes, and hence the Coriolis matrix elements involyed. The assumption
that the hon-collective B(E2) values can be neglected is very likely to be
essentially correct, but effects. of 20% or so in the deduced mixiﬁg amplitudes

cannot be excluded. Consideration of these features, and the observed E2
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and M1l relative intensities, makes the 2350 case a good test for calculations

of Coriolis effects.

2350 will hot be given here,

The details of the calculaﬁions for
but rather an iﬁdication of the kind of results obtainédf .Figure 5 shows
thé results for thé rotational energies in the case where only one adjustable
parameter was used. This plot is designed so that it give a straight line for
a rotational band if the band follows the equation,

E=E, +A I(I+1) + B 12(1+1)2 ' | ' (10)

where the value of the ordinate at I = 0 would be A and thé slope would be
B. This plot is used‘because it can show the rotational energies on é suf-
ficiently sensitive scale to see easily the anomalies in the Q = 5/2 and
7/2_bands. In the calculation all bandhead energies aqd métrix elementsj
were taken from the Nilsson wave functions except the maﬁfix elements,

< 5/2|j_|7/2 > and < 7/2|j_|9/2 >, which were determined from the B(E2)
values as described above. The one parameter was h2/2?f, which comes into
all the rotational energies (Eq. (6)) and matrix elements (Eq. (7)) except
the above two. The results clearly show the correct anOmaly coming from
the Q = 1/2 band into the § = 5/2 and 7/2 bands. However, ﬁhe final effective
h2/2E7 values for the .= 5/2 and 9/2 bands are not correctly given.

_The results of a three parameter fit are shown in Fig. 6. Here the
matrix elements, < 5/2|j_|7/2 > and < 7/2|j_|9/2 >, were allowed to vary
frém'the values in@icated by the B(E2) values but their ratio was held
constant, and the matrix element, < 3/2|j_|5/2 >, could vary. The former of
these went up by 20%, and the latter went down by 20%. The fit here is excel-

lent (note the expansion of the ordinate scale). Also the known relative M1
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and E2 transition probabilities were adequately given by these'wave functions.
This agreement is a very strong indication that this kind of calculation is
rather‘well understood. One puzzle emérges, whose soluti¢n is not at present
understood. The métfix elements, < 5/2|j_|7/2 > and < 7/2[j_[9/2 >, have values
only about half és large as expected.- This result comes ff6m the measurea B(Ez)
Qalues almost completely unambiguously. This kind of effgct on the Coriolis
matrix elements near the Fermi surface is observed in essentially all other
similar cases, and hés been the outstanding mystery in such calculations.

Resently Ring gﬁ_gl,s have shown that this discrepency does not occur if the self-
cbnsistent crankiné model is used instead of the particle—pius—rotor model. The

exact cause of the problem in the latter model is not yet fully understood, -

however.

The 2350 case has been discussed in some detail to show rather carefully

how one treats a unique-parity j-shell, and also to illustrate that one-does
know how to make these calculations. 1In the next section cases will be con-

sidered where the effects are larger, but the data more meager.

2.3.__ The Odd-mass Er Isotopes

The calculatea and experimental levelé in three‘odd;mass Er isotopes9
are shown in Fig. 7. These data are for the lowest pos%t{vefga;}ty band in
these Er nuclei, énd this band is clearly composed of heavily admixed.compoﬁents
of the i13/2 negtron orbital. There is a reasonably normal £ = 5/2 band in
165Er; a band with rather large anqmalies in 163Er; and, in'lGlEr, a band with
such large anomalies that some le§el-orders are inverted..AThe calculations
shown in Fig, 7 were similar to those described for 2350, except that no data

‘were available on higher bands. Nevertheless, the three parameter fits shown

are impressive, and leave no doubt that the spectra are baéically correctly

w
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intérpreted. ‘Figufe 8 shows the rotational-energy plots like the ones dis-

235 165 235

cussed for U. The plot for U until one

Er looks much like that of
appreciates thé ordinate scale. These effects are much larger than those in

235 61Er.,-In the last case, the

U, and become still larger in l63Er and 1
'inverted levels show up as negative points on such a plqﬁ; It is'not difficult
to understand why these effects are large and get larger-with decreasing masé
number in these‘Er ﬁuclei. The rotational consténﬁ, h2/23', which comes into
the Coriolis matrix elements (Eq. (7)); is about twice as~bi§ here as in 2350
and is increasing with decreasing mass number.

In these Er nuclei, the Coriolis effects are producing large distortions
in the rotational bands. These effects can be calculated, as has been shown,
but it now seems more useful to broaden the perspective on this problem,
rather than to study such fits in detail. There is no difficulty in solving -
Eq. (4) for any deformation (except exactly zero) and it seems essential to
understand, in a general way, the nature of these solutions. If they contain
some new regularities, then it is necessary to know just what these are so -
that they can be’reéognized if they occur in the Er (or otﬂer) level schemes.
Along the same line, it would bé interesting to understand the physical process
occurring in these distorted bands. These questions will be taken up in the

next section, and in Sec. 3.2, these Er nuclei will be examined again from a

somewhat different viewpoint.
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3. Coriolis Effects in Nuclei with Small Deformation. -

Whether the Coriolis effects will be large or not in a particular

]

case depends on the relationship of the Coriolis energy, given approximately

by Egq. (1), and the energy separation between interacting'states, that is,

the splitting between components of the j-shell of interest. This relationship

can be easily estimated, provided some simple approximations are made. The
first objective of the present section will be to extend the mathematical

framework in order to show explicitly this relationship and some of its

consequences.

3.1. Calculations in Nuclei with Small Deformation

-In cases where the Coriolis effects are large; Eq. (4) must be used
rather than the simplified Eq. (6). There is some problem here, as the so
called "recoil.term", h2/227 [<§2> —92], may already be partly contained in
the empirical evaluations 6f Hp' However, the simple limiting solutions are
not reached if the fecoil term is not taken explicitly into account, so that
in this section, at‘least, the full Eq. (4) will be used. If j is a good
guantum numbef, < 32 > is just j(j+1), and only shifts all levels by the
same energy. This assumption is reasonably good for the high-j orbitals,
so that the effects of including this term come mainly fxdm the 92~par§_(ip‘
the odd-mass case considered here).

The quantity Hp can be expressed by giving the,enérgy of the system’

as a function of Q; that is, as a function of the orientation of j to the

- symmetry axis of the core. Under the conditions that j is a good quantum number

and that the single-particle Hamiltonian is associated with a quadrupole field

oriented along the symmetry axis (the usual Nilsson3 potential), HP can be

written:
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Hé = e% + kB [3924;(2(3 I)l)] = ey + , :*. | (11)
where e. and e'! do not depend on . The coefficient, C}vdetermines how
widely the {-components of the j-shell are split apart.on~the Nilsson

diagram, and its relationship to the rotational cOnstaﬁt;.AI= h2/257, determinés
much of what héppens at the lower spin values. This relétionship is

essentially the one mentioned at the beginning of Sec. 3; and an expression

fok its numerical value will be given later, It can be shown (see Fig. 2.)

that Eq. (11) is in good agreement with the exact Nilsson solutions for the
unique-pafity'orbitals when |BI ?o0.3.

Substitution of Eq. (11) into Eq. (4) gives:
H= e, +AILIHL) + 3G+ + (2000 + H, . (12)

For a given situation (I, j and B) the first two terms of Eqg. (12) are
diagonal and the solution of the particle-plus-rotor mpdel consists of
diagonalizing the last two terms. When B is large, C is lérge.and Avis
small, so that Hc is small. If Hc is negligible, then théyéolutions are
eigenfunctions of the QZ term, which are clearly states_witﬁ sharp ) values,
aﬁd the deformation-aligned (strong) coupling scheme is applicable. -This
coupling scheme is sketched in the upper part of Fig. 9, aﬂd the usual
.deformed wave function is also indicated. However, C and A are not functions
of i, whereas Hc increases with I; so that, eventually the opposite situatioﬁ
must occur. That is, at sufficiently large I, the 92 termvwill be negligible

compared with HC, and the solutions will be eigenfunctions of Hc. It has .
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| been shownlothét these eigenfunctions correspond to a new coupling scheme (rotation-

aligned) where o, the projection of j in the direction of I (the total angular
. momentum of the system), is a good quantum number. TheifOtation-aligned wave functions,
 the approximate ‘eigenfunétionsQf Hc,~are giwven in the lqwé; part of Fig. 9 X
and this coupling scheme is also sketched.v For large I values, this rotation- v
aliQned qoupling'scheme should be generally valid. Whep B is very small,
Eq. (11) shows that Hp is nearly constant. It can be seen directly from Eq.
(2) that when HP i; nearly constant (diagonal), the weak coupling schemell
- with sharp R values will apply. The present case would_correspond to a
quédrupole—quadrupole particle~core interaction and core states with the
rotor energies. These general regions of applicability of the three coupling
schemes are clear. |

However, the rotation-aligned region is extended even to low-spin
states when (C - 27A), the coefficient of 92, approaches zéfo due to the
cancellation of the two terms. Since A is always positive, this occurs when
C is positive; that is, for prolate deformations in the one-particle Hp given
in Egq. (11). For a one-hole Hp, the sign of k in Eq. (11) is reversed and
cancellation oécurs for oblate deformations. Both of these conditions amount
to requiring that the Fermi surface be near the low-§ 6?bitéls of the j-shell.
vareasonable numerical estimates- are made-for-c and A-around mass 130 with
j = 11/2, then the region where C = 2A occurs for B =~ 0;18. However, for a
considerable region (AB v *0.05) on either side of this value, (C -2A) is
small and the rotation-aligned scheme is approximately épélicable. Many
"vibrational" nuélei lie in this region, and much of the interest in this.
coupling schemé stems from the fact that some fegularities-in the observed
levels of nuclei in this regiop{of B correspond to those'e#pected from the

rotation-aligned scheme.
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Exact solutions to Eq. (12) can be obtained by diagonalization and
fheée will be discussed later in this section. However, simple approximafe solutions
can also be found for the rotation-aligned region in the case of one particle (or hole)
in the j-shell, and it seems useful to discuss these first in order to have available a
conyenient_expression for the levels , and also to give som; physical insight

into the process occurring.

Consider first the normal strong-coupling (adiabatic) wave function

with the single-particle space limited to one j subshell, which is a satis--

factory approximation for the unique-parity case considered here, : oo
15§ . K .

The diagonal energies of H (Eq. (12)) in this representation are:!

| . I+, 1.
E(1) = ) + AIT(IHD) + 3G+ + &g 1 (=) (14 (41 + (€ ~2m)@® . (14)

. The rotation-aligned case occurs when C ™ 27, so that the 92 term
in Eq. 12 vanishes, and the eigenfunctions of H are jusf-thosé of H_ (since

j is taken to be diagonal). It has been pointed out above that the approximate

eigenfunctions of H, for I > j are:

Iy _ j oo LI .
Vi é s X dup - ‘ (15)

where the d function is the usual rotation matrix and o is the projection of

j on I. The approximate eigenvalues of Hc were shown in_Réf.lO to be -2AIq,
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but this can be ihproved by using I+1/2 rather than just I as the value of
vI(I+l). The diagonal energies of H in this representation are then approximately:

Eo(Ija) = e, +A[I(_i+1) + j(3+1) - 2a(14—12—)] = ej + A [(I-0) (I-a+l) + j(3+1) - a2]. (16)

This equation shoﬁid only be used when I > j,'and o is restricted by the symmetry
conditions so thét I - o must be even. The general features of the spectrum can
be seen from the rightvside of Eq. (16). For each « valﬁé, a band occurs con-
taining every othéf spin value (I-0 even) and having the core energy spacings.
The highest-0 bands lie lowest in energy (but d cannot-éxceed j),_and, furthermore,
the same I values are separated by higher core'spacingé_in lower-0. bands. The
lowest-lying band has 0=j, spins I=j, j+2, j+4, ..., and the core energy spacings;
this band has been called the decoupled band. When I 2 j,'é better approximation can
be derived involving K instead of a, where K.is the projection of I on j. Since
‘Hc is symmetric in I and j, the expreséion for I < 3j is obtained from Eq. (16) by
intercﬁanging I and j and replacing o with K. Only half the K values are aliowed,
since j-K must be even, but every I value is allowed in'a K band, and these have
relative energy sbacings given by AI(I+1).

It is not'difficult to imérove this apptoximatioﬁ significantly. 1In the

rotation-aligned scheme there is symmetry about the rotation axis (take this to

2
z

be the x axis), so that <j§> = <35 = <92>; This léads to the relation:

2 1..,. 2 '
<> = 5[3 (j+1) - a”} . (17)
This value can be used in the 92 term of Eq. (12) to take account of small

deviations from the point of exact cancellation. Also a better approximation.

to the eigenvalues of Hc is:

~
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1
15 o _ ’ & Ea1112 I
< Yo 20 [T(I+1) - Q(@+1)]7 Yo
x _ 1, _ ___il_.__ 13 B
~- @y - st e - (18)

. =2
where { is some average value of {) for each & value. Again, the {" in Egq. (18)

can be estimated using Eq. (17). Putting Egs. (17) and (18) into Eq. (12),

and rearranging terms gives:

E(Ijo) = ej + A{ (I-a) (I-a+l)

o o o 2 '
g+ 57 ] [J(Jf,l)‘“]} . L (19)

Again, Eq. (19) applies when I > j, and I - O must be even. Compared with

. s 2 .
Eq. (16), the only change is that the coefficient of the [j(j+l)-0"] term is no longer
just the rotational constant, A. This affects mainly just the separation of the & bands

Whén I< j, one can again interchange I and j in Eq. (19), and replacé a by'K,

where j - K is even.

For convenient-evaluation, A can be related to B using the empirical

' ' L. 12
connection between B(E2;2%0) and E2+ pointed out by Grodzins;

}32+ = 6A. =v4$-‘;ii—§-—§- MeV ’ : - (20)
_ 8 _ _

where 4 is the mass number of the nucleus. This leads to the expression:

3
c _ 0.37988
28 T 3(3+1) ' (1)
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which gives 18063 for C/2A when A = 130 and j = 11/2. Equation (19) is rather

accurate under some circumstances, as will be shown below; however, it is not very

suitable for comparison with'experimental data, due to rest?ictions in the model.

The relaxation of one of these (restriction to éxial syﬁme;ry) has been studied by
 Meyer ter Vehn13 who has shown that axial asymmetry reduces both the higher-spin

energies in a band and the separation between bands giVen in Eq. (19); in accord

14-16

with the the known data.- It has not yet been possible to incorporate these

effects into a simple expression for the level energies.

The quality of the approximations in Egs. (16) énd'(l9) can be seen
.in Fig. iO. The soiid lines there are a few of the_exacf'SOlutions of Eqg. (12);
plotted relative to the lowest I = 11/2 solution in units‘of the adjacent
even-even 2+ energy. Equation (16) should be valid when C = 2A, which occurs
for B = 0.18 when A = 130 and j = 11/2. The déts on Fig. 10 show the energies
“given by Eq. (16), plotted at the appropriate B value.. The o = 11/2 (decoupled)
" band is given quite accurately, but the lower & (or K) values ére not so good.
The dashed linés show the diagonal energies of H (Eq. (125) for the wave
functions given bj Eq. (15), and the low—spiﬁ analog,
wDI,ﬂj( = édién/z)"'xgjz Byo . o (22)
These were evaluated numerically; however, Eq. (19) gives results withiﬁ a
line width or two for all the states shown, and the dependéhce 6n B given by
Eq. (19) is .exactly that for the dashed lines for Fig.'ld.‘,It can be seen .
that Eq. (19) is extremely good for 0.15<B<0.2 and is reaSonably good for
AB = £0.05 as meésured from the point where C = 2A., Neither Eq. (16) nof (19)
would be very good for the .lower O or K values; however,4sﬁch high-energy
bands are not likely to be observed.
The region of validity of the three coupling schémés:mentioned

earlier can be seen in Fig. 11. Here the energy (in units of E2+) of the

1




-21- . LBL-2352

lowest 11/2 state in each scheme is plotted against the deformation, B, for
a core with one particle in the h11/2 j—shell. For the wéak coupling scheme,
Hrot is zero for R = 0, and it is also easy to show th;t’Hp for this state is
“Jjust e{, which wé‘also take to be zero. The energies for the 11/2 state in

the 2 = 1/2 and 11/2 bands of the strong coupling scheme Kshown as the lighter

solid lines) can be obtained from Eg. (14) where ej is given by:

. I+ . N
e =o' -cdiGHy) _ . _5L.58 , (23)
i) 3 3 j JL}/3 o
Again e; is taken to be zero. Similarly the . 11/2 state in,the o = 1/2

and 11/2 bands are plotted as dashed lines. These were evalﬁated.from thé

wave functioﬁs (Eg. (15)), but the d = 11/2 vaiue obtained frém Egs. (19) and
(23) would be indistinguishable on Fig. 11. The o = 1/2 value is not adequately
given by these equations. It can be seen. that for ]BI < 0.1, the weak_
cbuéled R = 0 configuration lies lowesﬁ. On the oblate sidé the ) = 11/2'and
o = 1/2 states cross below the R = 0 state, but Q = 11/2.always lies well
below o =v1/2, resulting in nearly normal rotational bandswfor g < -0.1. On
the prolate side ; 1/2 and a = 11/2 crosé below R = O,.ahd o= 11/2 is

lowest for 0.1 < B?g 0;3, and thereafter = 1/2 becomes lowest. The exéct
energies of H are shown as dots in this figure. The close correspondence of
these dots with the lowest lines in Fig. 2 indicates the adequacy with which
the three coupling schemes represent the exact solutién of H in Eq. (4). The
rotation-éligned coupling scheme is seen to have a rathe£ broad region of
applicability connecting the weak—coupling region with fﬁéf of the deformation-
aligned coupling scheme on the side where low-(} orbitals occur near the Fermi

surface.
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The exact solutions of the particle-plus-rotor model can be obtained
by diagonalizing Eq. (4) and are shown in Fig. 12 for the yrast states up to

spin 23/2 coming from the h orbital. At each B value.the lowest I = j

11/2
state is taken to have E = 0, and all energies are in units of the corresponding
even-even first-excited state energy (E2+). In this calculation the Fermi

surface was always well below the entire h orbital, so this is a true

11/2
one-particle case. Pairing was included in the BCS approximation, and
Eq. (20) was used fo relate A to B. The calculation in Fié. 12 is again
for the mass 13Q region. o
The fhree épupling-scheme regions discussed above cén be readily
identifiéd. The nearly degenerate multiplets near B = d‘are clearly those
of the wéak-coupling scheme, where one expects such multiplets centered on
. the core energies. The ranée where they can be identified is approximately

' -0.1 < B <0.1; however, this corresponds roughly to E.. .21 MeV, and in

2+
such cases it is doubtful that any collective model shouid apply. Thus, in

the present context, it is not clear that this Weak—coﬁblihg.scheme will be

valid anywheré. The strpng-coupling scheme is ?alidvfor large B

.valués and is chafacterized by nofmal rotational bands. vOn the oblate side

of Fig. 12, the Q = 11/2 rotafional,band is”regognizablé;whenms is only ~-0.1,
and is rather well developed by B = -0.15. On the prolate side the anomalous
'Q'=.1/2 band develops quite slowly, and is not yet vVery pure even at g ='0.3. It has
 been ShQWH above that the rotation-aligned scheme gives energies very close to the

'exact solutioné.for 0.15 <§B < 0.2, and is a reasonable approximation for

0.13 <S8 <0.23. An outstanding regularity of this coupling scheme is the

occurrence of the decoupled band

I
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(defined followiﬁg Eq. (16)). The darkened lines in Fig. iz are these states,
and this band is seen to persist across the whole prblate side with very
nearly the core energy spacings (identifiable at B = 0). The weak-coupling
scheme gives the same energies for this band, but requires in.addition that
other states, |R - j| SI < R + j, coincide with them. Note that Fig. 12

3

is correct for one (or a few) particles in the hll/2

one (or a few) holes the particle-plus-rotor model would give exactly the

orbital; whereas, for

same results except that the sign of B would be revefsed.

The levels ﬁhat'would be populated following a_(HI,knY) reaction can
be‘predicted rather unambiguously from Fig. 12. These would be the lowest-
lying high-spin states. On the prolate side this is the decoupled band, and
one expects to see stretched E2 transitions and even—evenicbre spacings. The
unfavored high-spin states (j + 1, j + 3, ...) lie considerably higher in
energy and will be more weakly populated, if at all. For oblate deformation a
normal rotational band (3, J+1, j + 2, ...) develops at quite low deform-
atioﬁs, and a series of Ml + E2 cascade transitions with E2‘cross-overs should
be seen. At very low deformations (B ~ 0.1) the favored and unfavored yrast
states lie close together, but the order of favored lowest on the prolate
side and unfavored lowest on the oblate side is always preserved. For hole
states (nearly full j-shell), all these predictions should occur for the
opéosite sign of B.

It is now of interest to look at some odd-mass nuclei in order to see if the
features described above occur. Many studies have now been made of levels in

‘odd-mass nuclei located in the "vibrational" regions (0.1 < |8] <o0.25).
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' . o . 1l4- .
Rather unambiguous decoupled bands have been seen in the Au region, . the light

18,19 20,21

Gd-Yb regionl7(Sec 3.2), the La region (sec 3.3), and the Ru-Pd region. The

' . . 13,22
alternative rotational-bandlike levels have been seen in light T{ nuclei !

and in the light Ce-Nd nuclei.23 There is already some evidence that both

24,25

. v
but more data are needed in these

typés of band occur in lighter nuclei,
regions. It seems thét a rather large amount of evidence has already been:
accumulated shbwing that the expectations outlined above do seem to occur

rather often in nuclei. Some examples of these data will now be considered,

beginning with the Er nuclei described in Sec. 2.3

3.2 The Light O0dd-Mass Er Nuclei

There ére two reasons for discussing the light odd—mass Er nuclei
here. The first is that they sho& very clearly the transiﬁion from a strong-
coupling région to é.rotation-aligned region. The second is that they are
involved in some of the argumeﬁts about even-even nuclei which will be made

in the next section.
‘ ‘ 2
In Fig. 13 the energy-level spacings, in units of'EEw are shown for

a decoupled band and for a strongly-coupled rotational band based on the 113/2

orbital. The rotational spacings shown on thq‘;eftigrg_igggpenQent of
except for 1/2); and also, the existence of possible lower'ﬁand members is
irrelevant to the present arguments. It is apparent thatﬂﬁhe decoupled band
is very heavily compressed (by the Coriolis interactioﬁs), and

this compression could serve as a measure of the extent of decoupling. If an
2

average E (6 351) is determined from the adjacent even-even nuclei, then

2+

the 17/2 - 13/2 spacing divided by this E would be 1.0 for a decoupled band,

2+

and 5.3 for a rotational band. Comparing the 21/2 - 17/2 spacing with' the
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eveneeven 4 - 2 separation would give 1.0 and 2.9 for the two types of band.
Thus an estimate can be made at any spin value of the extent‘éf aecoupling:
in an observed band.

A plot of this odd—A—to-avefage-even-even transition energy ratio is
shown in Fig. 14 for the lowest band based on the ilS/é orbital in the odd—
mass Er isotopes. The decoupled-band limit for this ratio is always 1.0;
whereas, the rotational band limit varies from about 5 to 2. For the 17/2
- 13/2 energy spacing, the observed rato drops monotonically from 3.6 for
167Er (B "~ 0.33) to 1.0 for 157Er (8 v0.2). This is just the trend expected;
and it is caused both by the decrease in B and by a decrease in the Fermi 1e§el-
with mass number toward tﬁe 2 = 1/2 state (the one-particle situation). The
other important ﬁrend is with spin, I, and it is clear that the extent of
decoupling increases with increasing I, as expected. It can be seen, however,
that the higher-spin states at the lower mass numbers approach 1.1 or 1.2
rather than 1.0. The reason for this is not entirely clear, But could indicate
a lower ﬁoment of inertia for the core in the odd-mass nucleus due to the

blocked i level. The i bands in these Er nuclei show very clearly

1372 & 13/2 '

4 transition to the rotation-aligned coupling scheme. . Note that 157Er and
lngr have essentially pure decoupled bands even for the 1dwest-spin members
(1= 13/2).

3.3. The La-Ce Region

Only one "wvibrational" region will be discussed, and the La-Ce region
was somewhat arbitrarily chosen. A portion of the Nilsson diagram for protons
is ghown in Fig. 15, where some of the orbitals have been fully drawn, and

others have not. For the La nuclei, with 7 protons heyond the closed shell
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~

at 50 (at B = 0, this closed shell is at the bottom of Fig. 3) and deform-

ations 0.15 - 0.25 (for mass numbers 137 - 125), the h "orbital is essentially

11/2
empty in all cases. Thus, the simple'éne—particle calculations of Fig. 12
should apply, and for prolate shapes (anticipating the resﬁits), decoupled bands should

occur for all these La nuclei:. Now consider the situation for the 77th and 75th

v neutrbn'in 135Ce, l37Nd and l'_33Ce, l35Nd, respectively,whére B ~ 0.15-0.20. Figure 15 can

also give an estiméte for neutrons in this region; the 82 closed‘shell comes
9/2 and sl/2 orbitals. If the nuclei are prolate, the N = 77

cases (with 5 holes_in the 82 closed shell) will have one hole in the h

between the h
. ‘ 11/2
6rbital, so that Fig. 12 should be applicable, except with the sign of B
re&ersed. Thus, normal rotational-bandlike levels are expected, with a
"tendency for ﬁhe levels, after the first one (I = j), to bé'paired: j o+ 1
énd-j + 2; j+3and j+4; ... . For the N = 75 nuclei (7 holes iﬁ the 82
shell) , the Fermi level has'dropped to around the 9/2 component of the h

11/2

orbital. This gives three holes in the h orbital and Fig. 12 does not

11/2 v

apply. Appropriate célculations show that one expects a perturbed {2 = 9/2

rotational band, where the j, j + 2, j + 4, ... levels agéin lie anomalously

low. Thus for p?olate deformation, a unique set of predictions can be méde, and.
| an equally'unique and oppositevéet would apply - for the oblate  case. - -

The negative-parity La levelsla’19

are shown in Fié.'l6, where they
are compared with the levels in the even-even Ba isdtopevwith one fewer
proﬁon. The correspbndence in energy of the odd-mass and'éven—even levels is
. remarkable, and comprises the first, and still perhaps the best, example of
découpled bahds. Other features of these bands support this interpretation.

The lack of population of other negative parity states argues against the

weak-coupling scheme, which. could othe;wise explain these energies. The
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spectroscopic factors for population of the 11/2 state in tﬁe‘(a,t) and

139 131

(3He,d) reactions vary from about 1.0 in La to 0.4 in

La, in good accord
with calculatiOns19 like those of Fig. 12. Also the dramatic drop in energy,
as the mass number decreases, of the 11/2— state relatiVe to the positive

parity states (4 ) in the La isotopes can be understood in this inter-

5/2'97/2
/ ' : N '
pretation. All the known characteristics of these La levels support their
assignment as decoupled h11/2 bands.

v 23
In Fig. 17 the levels recently determined for 135

Ce and 13'Nd are
shown. The normal rotational-band order of the negatiyeéparity levels is *
seen, but the perturbations favoring the j, j + 2, ..., levels are quite strong.
This is qualitatively what is expected for a prolate shaée; however,
quantitatively the observed spacings are somewhat less regular than calculated.
This is‘in the direction that might be expected if there were some shape (Y)
asymmetry,13 or softness toward such asymmetry, and the low-lying second 2+
state in the adjacent even-even nuclei show that this is very likely to be

the case. Additional evidence that these nuclei are prolaté comes from the

large negative A, coefficients (v -1.0) in the angular distributions of the

2

Ml + E2 gamma rays in the 11/2  band. This implies a negative sign for 6,
the mixing ratio, and therefore a positive QO (prolate), since Ix~9Rr will be

negative for the h neutron and the sign of § (and also of A_ for an

11/2 2

I*I-]1 transition) is determined by the sign of (gK - gR)/Qo. This rule has
been discussed recently by Nakai.‘26 A similar, very useful, rule can be
férmulated for the rotation-aligned scheme, which applies‘to either I+I-1 or"
I4I+l transitions between the unfavored (a = j-1) and favored (o = j) bands.
In this case the sign of A_ in the mixed M1+E2 transitions should be

2
opposite to that of the ratio, gj—gR/ Qo. Such transitions have not yet been
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observed in thé La nuclei, but have been seen'in_Ir, Au,_aﬁd Hg nucléi,l4-16
with angular anisotropies in accordance with this rule. The level schemes for 133Ce
" and 135Nd are shown in Fig. 18. They are also rdtational-bandlike, have 9/2  for

the lowest spin rather than 11/2-, show more regular energy spacings than_the

previous set, and also have the large negative A coefficients for the M1 + E2

2

transitions. Allléf these are in accord with expectations for a prolate shape,
and show that these odd-neutron nuclei are behaving mucﬂ as the particle-plus-
rotor model would'predict.

A question arises as to why a simple axially-symmetric pafticle-plus-rotqr
model sh§uld work so well in this La-Ce (or any other Similar) region. It seems
likely that many other features are involved in the core~§tates; vibrational
motion, asymmetfic.shapes, shape changes, sizeable individual 2-particle amplitudes,
etc. Greiner27 has pointed out that part of the answer tg this question may be

. that so far, Aue ﬁo tﬁe experimental circumstances, only the yrast states (mainly
just the decoupled bands) have been studied. These states>are the most likely to
show simple rotational fegtures, and the lower-spin states, Greiner suggests, may
be much more complex. It is therefore, of considefable.interest to study-otﬁer
states based on the same j-shell in nuclei where decéupiéd bands occur. Members

l4_l6 and

of the unfavored (a =j-1) band have been seen in Au,.Ir,“and Hg nuclei,
also a few other lower-spin states were identified in the A; nuclei.14.These_states
seem to be in general agreement with the model, but also suggest that it is important
to include effects due fq the asymmetric shapes in this‘region.13 More data are -
needed on levels of thi§ type. It would also be of intereét to study the

states from lower-j orbitals where additional features (especially large j-

mixing) may occur.
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4. Coriolis Effects in Even-Even Nuclei

There are some indications that the Coriolis effects in high-j-
orbitals also play an important role in the high-spin states of even-even
nuclei. It is not difficult to see that'this might be the case. If one
considers the question of which two-quasiparticle (2qp5 states of an even-
even nucleus are likely to lie lowest in energy at spin 20, then the maximum
Coriolis energy given by Eq. (1) becomes an important factor. If both
particles are invé high-j orbital, then‘Eq. (1) applies;_approximately, for
each particle, and gives a total energy lowering of 5 MéV for
113/2 particles. Such an energy is very significant when compared with the
émounts that mighf be gained from other processes (pairing, shape distortion,
etc.) at tﬁis spin value. While it is clear that the yrast states in even-even
nuclei around-spin 20:are not yet fully understoodygthis_rgugh estimaté}j
supported by detailed célculations, suggests that they ¢opldAWell‘be strongly
influenced by Coriolis effects.v'The present section will begin with a summary
of the experimental data bearing on high-spin states in even-even nuclei, éhd then
céntinue Qith a discussion of two-particle Corieolis calculationé and their appli-

cation to these data.

4.1. Experimental Data from Even-Even Nuclei

Of the two types of data bearing on the question ;f very hiéh-séin‘
stateé in even-even nuclei, the 6lder one has to do with the de-excitation
.cascade in product nuclei féllowigg heavy-ion compound-nucleus (HI,xn)
reactions. This information has recently been summarized»and some bfvifs

impiications about the nature of such high-spin states di_scussed.z8 The
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jamma—ray spectra from these product nuclel almost 1nvar1ably consist of a
| set of discrete lines on a continuous background. In rotatlonal and vibra-
tional nuclei,'the.lines cortespond to the transitionsxin the'ground—state
collective band'(gsb),+ and represent the last steps of.thé de-excitation.
Thus thé'gamma;ray transitions between the highest-spin states are in the
continuous background. -Up to now very few direct studles of this continuum
.have been made, so that the information about the hlghest spin states is based
on abservations pf the transitions between lower-spin states i.e., the
disqrete lineés. The following points, made in Ref. 28, aré relevant to the
present discussion: a) the maximum spin observed in thelgsb ranges from
around 20 for rotors to around 10 for vibrators and this maximum isa
chara;teristic of.the particular nucleus (not of the raattion)} b) however,
when heavy ions arevused to produce the compound nucleusA(bringing in high
angular momentum)vthen the gsb is fed ﬁostlx at or near the highest observed
letel, whereas with light projectiles, the feeding pattern is related to the
distribution of angular momentuﬁ brought in by the projéctile; c) the mean.,
time interval bétween the reaction and population of the gsb in rotational
nuclei is very short, 2 10 psec; and d) very high-spin isomers--I 5 20 h-- -
have never been observed. It should be emphasized_that‘these_ate features
observed in (especially) rotational and ¥ibrational nuclei;‘and-would not
apply, without modification or qualification, to closed-shell or near-closed-

shell nuclei.

The gsb refers to the collective band based on the ground-state configuration
of a particular nucleus. For the even-even nuclei considered here, this is a
completely paired configuration-- no qua31part1cles-—, and the levels of this
v band ‘are the yrast levels at low spin values.~
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.To under#ténd these four points, the de—excitatiqn was described in
Ref. 28 as consisfing of three cascades, whose exiétence had been previously
proposed by Grove:29 based on numerical studies of the proéess. These are
schematically indicated in Fig. 19, Since the initial energy (20 MeV) and
level density are high, a statistical cascade (I) consisting mainly of high-
energy dipole transitions is expected to occur first. This carries off
around half the excitation energy but very little angular‘momentum and is
terminated by coming into a region where the level density is no longer high.

This region is located just above the yrast levelsand would be 10 MeV at

I ~ 35 for the example in Fig. 19. At this point the cascade. is forced to begin

'carrying off angular momentum and follows, more or less closely, the yrast

levels down in spin. This is called the yrast cascade (II). At some spin,
the yrast levels become those of the gsb and an energy gap develops between
these levels and others of the same spin. At this point the population shifts
rather sﬁddenly info the gsb through which it’cascades (III) to the ground

state. For lighter projectiles, where less angular momentum

is brought in, the length of the yrast cascades shortens, until it is essentially
absent in reactions induced by 4He.

Two interesting conclusions were drawn about this de-excitation.
First, the very short feeding times and absence of isomeric
states with high spin indicate that energies in the high-spin yrast region
must be very smocth and the transitions between these levels must be enhanced
over the single—particle value if they are E2. (Other éhoices for the pre-
dominant multipolarity turn out to be much more difficult to explain.) Further-

more, to avoid the generation of discrete lines in this region, the population
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> .28
must be spread over several (> 5) levels. It was suggested that the
presence of rotational bands admixed by the strong Coriolis force present
. - 30 . .
at these high spins might produce such features. Mottelson has pointed -

out that the spectrum of an asymmetric rotor is a particularly simple one

fulfilling these requirements of the yrast cascade, and models for the de-

31,32

excitation based on this suggestion have recently been given. The second

conclusion " - . was that the feeding point of the gsb was near its
intersection with other levels. No other way could be found to explain the
population patterns.\ This intersection implies a major:ch;nge in the nature
of the yrast leveis above this spin value.

An intéreétinq effect has recently been observed around I ~ 16 in
the ground-state fotational band (yrast states) of some even-even rare-earth
nuclei.33 It is called "backbénding", and an illustration of what this néﬁe"
represents is.given in Fig. 20. The main plot shows thei§rast states of 162Er
on an energy vs. I plot, and athough this looks rathe#xordinary, the slope
has some distinct changes around I = 16. The insert shqws the currently
éopular way to ploﬁ these data: as (esséntially) the mpmént of inertia, & ;
(defined from the transition energy) vs. the square of the rotational o
frequency, w. The rotational frequency is proportional to the slope of the .-
main curve, and it is appro#imated as one-half the trapéition energy in Fig.
20. The slope changes appear clearly on this plot, and the.origin of the name,
. backbending, is Qbyious. Thé effect is not a very dramatic one on the main .
plét but, on the other hand, ﬁw {the transition energy):is-direétly measured ,

so that the backbend is unmistakeable and quite likely indicative of some

interesting phenomenon.
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Many backbending nuclei are now known in the rare-earth region, and a

few outside it. Several recent review articles on this subject are available.

In order to give an impression of the data in the rare—eafth region, the known
yrast levels of even-even nuclei are shown in Fig. 21 in standard‘?’YE, w2
plots. The backbgﬁding is quite pronounced in the 1igh£ Er region, and also
in some of the Os’nuclei. It appears to be less pronounced, if not absent,

in the middle and lower-right portions of Fig. 21,

but more data are needed to be sure of this point. This neutron-rich region
is not accessible to the HI,xnY reactions, and hence data on high-spin states

are sparse.

The above discussion shows that there is good evidence for a major
change in the nature of the yrast levels below I = 20 in at least some of the
rare-earth nuclei; and furthermore, that at higher spin values a new very
regular structure develops. Three types of explanations have been proposed
for these (or parts of these) experimental results. The essential features

' e - 35 Lo 36
of these explanations are 1) pairing collapse, 2) rotation alignment,
: . 37-39 . '
and 3) centrifugal stretching. It is not the purpose of the present
discussion to compare these various proposals. Rather, the applicability of
rotation alignment to this problem will be described; firsp, in terms of a

general band crossing; then, more specifically for a particular rotation-

aligned band; and finally, as to the expected trends in the behavior of even-

“even (and odd-mass) nuclei.
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4.2, Genéral-Féatures of Band Intersection

The main features of the population patterns aﬁd"}ével spacings
described in tﬁé‘prévious section can be explained in‘téfms of the ground
band crossing another band, with very little detail neéeésary as to the
nature of the other band. It is useful to examine firéf‘éhese,general
properties of band intersection.

In the éase where the>ground band intersects anotﬁer band, many
features of the rotational-level spacings can be characterized in general
'terms.36 Figure 22 shows the simplified situation of two bands Qith constant--
but different--moments of inertia around their intersection point at Icth in this
case). The yrast states are those of the lowest band, ahd if there is no
interaction betweén the bands, they simply change suddeniy from one to the
ofher at Ic. When plotted as & vs. wz, this makes a d§SContinuity as shown
by the dashed line in Fig. 23. This discontinuity causes.lower values of w2
above Ic if géAg& > (IC +2)/Ic. This might generally be the case arounq
I = 20 since (Ic +2)Ic.is then only ~1.1. As an inteiaction is introduced
between the band#, the discontinuity is rounded, first into anvs—shaped
curve like A in Fig. 23, and then with increasing interaC£ion, like B and
-finally C. . This range covers the observed behaviors, 1thoSé'in the light - SRR
Er (and Os).reéion being of the S-shaped variety (A or'E in‘Fig. 23); where;,
as, the lower-2 néﬁtron-rich rare-earth nuclei appear to be morellike C. For
intersecting bands, the occurrence of S-shaped curves depends on two factors:
(l) the difference between the effective moments of inértia.of the two bandé
at their intersection point, which determines the transiﬁién to be made, and
(2) the strength of the interaction between the bands thch determines how

sharply this transition is made.
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The population patterns following the(HI,#nY)_reacfions in deformed
nuclei can also be shown to come from rather general‘band intersection
arguments. Considér the case where there are many quasiparticle states,
each of which has a rotational band built on it. If a perturbing inter-
action (Coriolis forcé, for example) is introduced among these bands, then
a matrix would have to be set up and diagonalized for each spin value, I.

In Fig. 24 the lowest few solﬁtions from this diagonal;zation héve been
indicated and labeled m = 1, 2, etc., according to the fihal energy. The

same is done for spin I + 2, with n as the labeling index: If the perturbing
interaction varies slowly with I, then the ggig_difference.between the matrices
for I and I + 2 is that the initial energy of each staté differs by the
increased rotational energy. Thus, the main difference in the solutions will
be this difference of a rotational energy, which is quite‘smooth with I.
~ To higher order, if the interaction is increasing with I (the Coriolis intef-
action increases approximately linearly with I) then in'thé energy region of
intérest, the I,+ 2 states will be lowered with respect to the I states, and
the mixed band will be compressed in energy over the input bands. Since the
difference between the I and I + 2 matrices is small, the lowest solution with
spin I will have a'wave function similar to that of the'#dWest solution with spin
I+ 2, etc. |

Now consider the B(E2) values between the states indicated in Fig. 24.

The wave functions for a given solution, [IM,m >, can be written:

IM,m > = g a;:(I) ¢>K D;K , (24)
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where_the.a?(I) are the calculated amplitudes, ¢' signifies a particular

K
. . s ) I is the usual rotational wave function. The
input configuration and the JSMK o

B(E2) value between two such statesncan be written:

B(E2;I + 2,n > I,m) = Z |< M m|M(E2,W) |1 + 2 M,n> |? (25)

. uM. N : .
where M(E2,U) is the usual E2 operator. In evaluating_Eq,,(ZS)vthe B(E2)
values between components ¢K and ¢K' are of single particle strength or

smaller unless K ='K', in which case they are the enhanc¢ed rotational values,

~ 5 Qg. Keeping only the enhanced terms gives:
lem

B(E2;I+2,n + I,m) = To— Q3 [Z<1+2 K 20[142 2 T K > ap (1) a;(1+2)]2 . (26)

K

For large I the above Clebsch-Gordon coefficients are virtually independent
of K, and approach the limit, /37§: Equation (26) can then be written:
' ~ 3°5 2 ji: m n )
. -> DR
B(EZ, I+2,n > I,m  §eTer Q [ . a (I) ag (I+2)]° . (27)
The remaining summation in Eq. (27) looks like the one occurring in an
orthogonality integral, which would be written: - ot T m T o
m m' . o
Z ap(I) a, (1) = Gm’m, . : (28)
K .
Since it has been argued above that the states n look much' like the states
m for n = m, it follows from Egs. (27) and (28) that

15

B(E2; I+2,n > I,m) = To5m

,
2 Sm,n ' o (29)
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that is, the transitions having solid lines in Fig. 24 have the full rotational
strength, and those with dashed lines vanish. It is easy to see that transi-
tions of the type I+2,n + I+2,n' also vanish, since in_ﬁﬁis approximation
the Clebsch-Gordan coefficient again factors out and thgrsﬁm in Eq. (19) now
really is the ofthogonality integral. These are preciseiy'the selection
rules needed in Sec. 4.1. tolbring the population down in spin very quickly, while
keeping it spread over several bands. The popﬁlation then feedsvrather
sharply into the ground band at é critical spin value.  The reason for this
is that the grdund band intersects the 2gp bands rather sharply near this
spin value and the assumption that the matrices look néarly the same for
adjaéent spin values is then not valid, particularly relative to the ground
band. Thus, at the point where the ground band interseéts other bands, not
only does the developing energy gap (with decreasing I) favor population of
the ground band, but the B(E2) values for this populatiénvalso peak in just
this region. This ;eems to provide a very general expiahation for rapid
population of‘the ground band near this point, in accordance with the
observations.

From the preceeding‘discussion it seems that the presently known
features of the high-spin states of the gsb can be accounted for rather

. ' . 154 .-
naturally in a band-intersection picture. In fact, in 'Gd and 156DY, there

. . . . 40,41
is direct experimental evidence '

that the ground band does cross another
band around I = 18, producing a backbend in the yrast étates. However, the
fact that the upper band is populated sufficiently to be seen in these cases

makes them atypical, and one cannot, therefore, be sure that this is the

Process occurring in the heavier backbending nuclei.
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If band intersection is the general explanation of these high-spin phenom-
ena, the intersting physics involved.is in what kind of band is crossing the ground
band. Within the rotation-alignment model, the answer for the light Er region

is clear - a 2qpvband based on i neutrons. In the Os region this is not so

13/2
clear, since other orbitals could be more important.' It'may be that the
pairing collapse and centrifﬁgal stretching models'can’also be expressed in
band-intersection terms; however, that is not: clear at present. The

next section will take up in some detail the 2gp rotation—alignment calculations

for the Er region.

4.3. Rotation Alignment in  2-quasiparticle States

The smail extension of the mathematics used in the even-even case will
first be discussed to give a more specific idea of what is involved. 1In Fig.
25 the coupling scﬁeme is indicated, where two pafticléé'with angular momentum,
i, coﬁple to a tdtai J, which then coupleé with R to givé‘i. 7The projectioné
of the two j values on the symmetry axis are labeled.Ql and 92. Figure 26

shows the lowest few il3/2 component levels, in a situation where A is between

the.3/2 and 5/2 components. The left side shows the main configuration of the

even-even ground state, and the right side shows a 2qp'state of the type under

discussion. fhis stéte ﬁas K % l; énd is connectea to_tﬁéuéiéuﬁd géate 5§ ai
large Coriolis matrix element of the type considered for.thé odd-mass nuclei
in Secs. 2 and 3. From the lowest three levels in Fig. 26;'Q =1/2, 3/2,

and 5/2, all the 2gp states possible have been generated1 giving the spectrum
shown in Fig. 27. The Fermi surface was assumed to be bé£ﬁéen the § = 3/2
and 5/2 states in this figure. All the non-zero Coriolis ﬁatrix elements

have been shown as lines between the connected states. One sees that with
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only these three vialues, a complicated pattern deveiops. However, this
éystem can be diaéonalized in just the previous way; and, in fact, the full
il3/2 orbital hasvbeen studied,36 including all possib1é (49) 2gqp states. Also,
the lowest four  Q-levels have been used to construct:ali possible 2gp and
4gp states, and this system was also studied; so that, a reasonable idea

exists of what to expect from the calculations in these even-even cases. It

—>
should perhaps be noted that Eq. (4) applies to such a system if J is sub-

stituted for ;, and one needs only the additional relationShip:
> 7 >
J = 3(1) +3(2) . (30)

The rgliability of these 2qp calculations is not expected to be ﬁuch worse
than that of the one-particle case (Secs. 2 and 3).

A general view of the energies resulting from fhéseIqu calculaﬁions
is shown in Fig. 28 where the lowest two solutions (with the Fermi surface
iocated as in Fig. 26) are plotted for three different 6‘values: R = 0.3,
solid line; B = 0;2, dashed lines; and B = 0.1, dotted lines. The B = 0.1
case should not be taken too seriously, since the model is not so likely toA
apply here, but it was included to show the trends. 1In ail three cases, the
2gp state begins at I =0 as a normal band with K = O‘And E ~ 2.5 Mev;
however, it initially gains Coriolis energy so fast frém'mixing, that its
total energy remains rather flat ouf to I ® 12, and then (now a rotation-
.aligned band) goes up with about the ground-band h2/237 value. 1In all cases
it crosées the ground band; however, for the B = 0.3 case, the crossing is
very smooth, and not so apparent since the levels repel éach other and do not
get closer together than about 1 MeV. Nevertheless, plotted on an & Vs. w2

plot, the ground-band line in Fig. 28 does have a typical "kink" in it (not
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quite an S—shape). The earlier intersections in the B = 0.2 and 0.1 cases are
caused mainly by the wider ground-band spacings which are due tp the
laréer hz/zﬁ' value. (Note that in the 2gp-band, thé'wider spacings are
compensated up.té 1 z!lZ by. the increased Coriolis effects.) One sees that
the kink, which_was not visible for B = 0.3, becomes lérgg_for B = 0.2, and
even produces an I =.12 isomér for B = q.l (though this”is.not at all reli-
able). The numbers on Fig. 28 are the calculated total populations passing through
each yrast.state. These are obtained from.the(collegtivé) B(E2) vélﬁes
and energies obﬁained from the calculations, where equal»iﬁitial population
was assumed iﬂ all (50) levels at I = 30. The calculated pbpulations look
very much like the'experimental ones, in general. The feeding in all cases
~comes in around the intersection point, as discussed inHSeb. 4.1.
Figure 28 shows that an intersection of the gsb with a rotational-

aligned 2gp state based on i particles can, in general, explain the observed

13/2
features in the light Er region. To compare in more detail with specific
nuclei is not so easy, sinée there are potentially many paramefers entering
such calculatiéns. At this point it is useful.to remeﬁber7£hat most of the-
pgrameters enterihg'igto the 2-§uasiparticle calculation fér even nuclei

‘also enter in much the same way into the l-quasiparticle calculation of “the-
lowest i13/2 band in an odd nucleus. Such bandsAarebobsérved throughout the
rare earth region and it seems clear that backbending in the even nuclei
should be related to the characteristics of these bandé iﬁAthe adjacent.odd’
nuciei if the rotation—alignment model 1is correct. A one-to-one relationship,

however, should not be expected since other factors, particularly the ground-

‘band energy spacings and the pairing gap, also influence the backbending.




-41- - LBL-2352

A comparison of odd-mass and even-even Coriolis effects is shown in

Fig. 29, where fits to the lowest i13/2 band in 61Er-__and l7le were made,

. . 42 .
and then the identical parameters were used in calculations = for the adjacent

162p . ana *%ur

. There were no adjustable parameters for these even-even
calculations, though some quantities that are not relevant for the odd-mass
nuclei do enter. - The agréement in Fig. 29 seems excellent, and suggests
that calculations of this type might be able to account for some of the

. . . : . ‘ . 43,44
details of the backbending in even-even nuclei. More general calculations,
including these rotation-alignment effects as well as pairing and deformation

changes have recently been made, and seem to bear out this rotation-alignment

explanation of backbending in the Er region.
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4.4. Backbending in Odd-mass Nuclei

It has been pointed out that decoupled bands have energy spacings
identical to thoée in the adjacent even-even nuclei, and that the bands
based on i

13/2

decoupled. It would seem to follow that these bands in the'odd-mass nuclei

states in the odd-mass nuclei of the light Er region tend to be

should backbend like their even-even neighbors. However, the situation is
more complicated if the decoupled odd particle is also oﬁe that is_involved
in the 2gp rotation-aligned state in the even-even nucleus. The recent
studies of such effects seem to shed congiderable light'on the cause of the

backbending, and a brief account of this work45 will be given.

An explanation for the backbending in even-even nuclei is illustrated by the
solid lines in Fig. .30. The ground-state band, labeled as the paired vacuum state _8’>,

is shown to be crossed by another band. The band indiéatéd here is the 2gp rotation-
aligned one, where fhe first quasiparticle has the maximum angular-momentum
pfojection on the rotation axis, a = j = 13/2, and the second quasiparticle -

has.the maximum remaining projection on that axis, @ = j - 1. This is

to

~ +
>
13/2all/2|0 , where O

'Written in the usual second~quantization notation as o
is a creation operator for quasiparticles and the subscript refers to the
rotation-aligned éuantum_number called (somewhat unfortunately in this contéxt)

a} Adding an odd particle to each of these states (dashed lineé) raises both

of them by the energy, A, due to pairing effects; but ﬁhis can be ignored

since oﬁly the reiative energy (crossing point) is of interest. The one-
quasiparticle ‘state then coincides in energy with the péired vacuum state as shown

in Fig. 30. However, the same rotation-aligned two-quasiparticle state involved

in the even—evén case cannot be made in the odd-mass case due to the Pauli
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principle. The odd neutron is already occupying the a = 13/2 state. The

most favorable stafes available to the broken pair are'theh o = 11/2 and

to+ ot
%13/2%11/2%/2

o = 9/2; so that, the th;ee—quasiparticle state becomes;  IB;S.
The enefgy differéhce between the d;e— and three—quasipérticle state is lafger
than that between the zero- and two-quasiparticle states because (1) the o

= 9/2 state is iess favorable energetically than is the o = 13/2 state, and
(2) the additional angular momentum gained by breaking thejéair is only 10 h
rather than 12 h, so thét 2 h more of core rotational anéularvmomentum is
required. The sum of these two effects can be estimatea‘td be ébout 1 Mev,
so. that the interéection should come at higher spin and tétational frequency
as shown in Fig. 30. Thus, backbending in such a nucleus would only occur at

higher spin values, if at all. the that if the decoupled odd particle in

neutron, the above

this example were an h proton instead of an i

11/2

- interference would not occur, and the decoupled hll/2 band would be expected

13/2

to backbend like its even-even neighbors.
The above situation is of particular interest since it seems likely
that the odd-mass nuclei would behave differently according to other back-
. bending models. The’prediction of the pairing-collapse model about backbending in a

decoupled i band can be stated very simply. An odd particlé reduces the pairing cor-

13/2 v
relations due to blocking effects, and thus the pairing,miﬁht be expected to collapse
 §t a lower rotational frequency. This statemeﬁt can be iilus£ratéd in Fig. 31.

The solid lines again show the even-even situation based 6n this model: the

paired vacuum state'intersecting the unpaired vacuum state. The dashed lines

show the odd-mass situation. For the unpaired case, the'dne.particle state,

1..

'a13/2 IO> , and the even-even vacuum state, |0>, coincide as shown, provided:
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.l) the vacuum is assumed to be the average of the two nuclei adjacent to the

odd-mass nucleus; 2) the decoupled i state lies exactly at the Fermi

13/2 7
surface, and 3),the level density is reasonably large."However,_in the paired
case, the one—éuasiparticle state always occurs higher‘in energy than the
vacuum state by the odd-even mass difference, A. The @éshéd line in Fig. 31
for the odd-masé bénd with pairing is, therefore, raised'iﬁ energy by this
amount - taken to be 0.8 MeV. As a result, the interseétién with the unpaired
band is seen to occur at lower spin and also at lower rotational frequency
(earlier). Notetthat the size of the backbend could be smaller in this case,
due to the reduced p#iring; but, nevérthelesé, the moment,bf inertia should
reach its upper limit (unpaired value) earlier.

The expetimental evidence on backbending in the.éddfmass nuclei in

. v

- the light Er region is rather clear. In the odd-neutron nuclei, the decoupled

bands do not backbend like their even-even neighbors; whereas, the odd-

45 on 157,159E 156,158,160Er

11372

proton hll/2 bands do. The evidence

is shown in Figs. 32 and 33, where the spacings in the odd—mass decoupled band

r compared with

are treated exactly like those in the even-even gsb. it is apparent that the
odd-mass bandsvneither backbend nor approach the 2€f/h2 value of the even-

157"1'5971611-10 are shown

Ieven nuclei after their backbernd. On the othef hand,
in Fig. 34 to backbend much like their even-even neighbofs; At low spin values,
thé Ho points are below the even-even ones because these hll/2 bands are not
completely decoupled (The lowest point or two for 159Er alép shows this.).

This means that the & values obtained do not represent core values, but it

cannot change the conclusion about backbending, which comes directly from the
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transition energies. These data on odd-mass nuclei suppért the rotation-
alignment interpretation of backbending in the light Er'region, and also
suggest a generai means to determine where this model is aﬁplicable, and
which particleé are involved. This could be usefulxin the Os region,
for example, where it is not clear if rotation alignmént is involved, and
if so, whether i neutrons or h‘ protons are mainly'résponsible for

13/2 9/2
the backbending.

N
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5. Conclusioﬁ

Coriolié effects in nuélei have been traced from thevpoint where
they are small pérturbations in good rotational spectra, to.the point where
"they apparentli‘dominate the low-energy spectrum. The situation for a
particular case depends on the relationship of the rotational energy to the
energy coupling the particle tq the non-spherical part of’the potential. If
the latter eneréy is much larger, good rotational spectra. exist, whereas if
it vanishes, the>system is spherically symmetric leadiﬁé tq a spectrum with
no energy splitting of the multiplets formed by coupling:a‘particle to a core
state. With the assumptions and simplifications made inFSeés; 2 and 3, it
is easy to make calculations anywhere between these limits. Adjacent to each
blimit, one finds regions where a perturbation treatment couid apply. This
WOﬁid be a particie-core weak coupling model near the sphefical limit, and
. a Coriolis perturbation approach near the good rotationai’fégion. If the
Fermi surface is near high-Q} levels, these two pertﬁrbétion'regions-merge into
eaéh other, and one changes rather suddenlf from a'sphériéal regioh into one
of ;easonably good rotors. But if the Fermi surface is neaﬁ low-Q states,
then there is é broad region where neither of thése schéﬁes is very good. Due
to a éancellétion'éfrterﬁs inithis feéion, the solﬁéiogg ére.aﬁproxi;atel;- -
eigenfunctions of the Coriolis operator and these correspond to a third
éoupling schgme where the particle angular momentum has sharp values, 0, along
the rotation axis,'-Such a rotation-aligned coupling schehe has been discussed

and seems to describe rather well the yrast states in many odd-mass nuclei.

This coupling scheme might also apply to non-yrast states, and it is at

present a challenge to see how far the model can be extended in this direction.
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In the évep-even nuclei, the rotation-aligned scheme may also play an
important role. It has been suggested that backbendiné in the light rare-
earth region may be just the intersection of the ground bapd with such a
rotation-aligned two-quasiparticle state composed of ilé/z.neutrons. The
observed backbendihg in odd-mass nuclei, suggests that this explanation is
correct in the light Ex region._.Whether this will prove to be the case in
other regions is not yet clear. k
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FIGURE CAPTIONS
. 183 .

Fig. 1. The W rotational bands as treated by Kerman.

Fig. 2. The solid lines are the Nilsson solutions for the»hll/2 orbital
as a function of deformation. The dashed lines are the energies given by
Eg. (11). The vertical line marks B = +0.275, and i£s intersections with
the Nilsson liﬁes represent the relative energies of the various component
levels at that deformation.

Fig. 3. bands in 235U (as calculated from Egs. (6) and (9)) prior

The 315/2
to the Coriolis diagonalization. The matrix elements of the operator J4
as calculated from the Nilsson wave functions are also shown. Only a few

-

rotational levels of each band are indicated.

235U

Fig. 4. Levels Coulomb excited in
. . , . 235 , : ) '
Fig. 5. Rotational spacings of bands in U. The points are the experimental
data, with the height'of a point covering the error limits, and the lines
correspond to the spacings obtained from the one-parameter Corioclis calculation.
Fig. 6. This plbt is like Fig. 5, except (1) the lines chrespond to the three-

parameter Cofiolis calculation, and (2) the ordinate 5cale has been doubled.

Fig. 7. The experimental and calculated positive-parity levels in 161’16‘3’165Er
according to Ref. 9.
Fig. 8. Rotational spacings of the positive-parity band in the three Er nuclei.

Some 6ther bands in these nuclei have been plotted on this figure, which is
also taken from Ref. 9.

Fig. 9. Schematic vector diagrams illustrating the stxéng?coupling scheme (above)
and the rotation-aligned coupling scheme (below). Thé 3 axis is the nuclear
symmetry axis, and the vertical axis is taken to be the.rotation axis, located

A

in the i, 2 plane
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-Fig. 10. The egacf solutions to Eq. (12) (solid 1ines)”aré compared with the
diagonai eﬁergies for the wave functions given by Eqé. (15) and (22)
(dashed lines). Equation (19) gives results essentially identical to the
dashed lines.  The ordinate is the difference in eneréy.between the state
having spin I and the lowest I = 11/2 state for thenrgspective type of
solution, ih units of the eveﬁ—even I = 2+ energy. The exact solutions
shown are for a one-particle case (the Fermi surface is always below the
entire j-shell), pure j = 11/2 wave functions, and nd'pairing correlations;

+  however, the results are not very sensitive to any of these conditions.

The dots show the energies as given by Egq. (16) at £heﬂappropriate B value.

‘Fig. 11. The enefgy of the lowest I = 11/2 state (in upitsbof the even-even
I-= 2+ energy) is shown for three different coupling schemes ‘lines) and
for the exact diagonalization of Eq. (12) (dots). The.conditions are the
same as those for Fig. 10. The inserts show schematically vector model
schemes for the lowest-lying conf;gurations, where the T-axis is taken to be
the roﬁation.axis,'and the multiple-pronged arrows indicate mixtures of states.

Fig. 12. The results of diagonalizing Eg. (12) for the h orbital at various

11/2
B values showing all the yrast states up to I = 23/2 (the second-lowest

I = 11/2 state is also shown). The ordinate is-—the- difference between-the- - - -

eigenvalue and that of the lowest I = 11/2 state, in units of E The Fermi

2+°

surface, A, is below the entire h orbital for all the B values shown.

11/2

Fig. 13. Level spacings, in units of h2/227, for an i particle in a normal

13/2
rotationa; band (left) and in a decoupled band (right).
| Fig. 14. The ratio of AE(I + 2 + I) in an odd-mass nucleﬁs dividedbby the average
of the corresponding transition energies in the adjacént even-even nuclei
AE(I + 2 - j > I - j), is plotted against mass number for the light Er nuclei.
The rotational-band and decoupled-band limits are shown, together with the data

for the first four such transitions in the.lowest-energy i13/2 band.
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Fig. 15. A portien of the Nilsson diagram for protons, where only the high-j
orbitals have been fnlly drawn. At B = 0, the 50vclosed shell is at the
bottom of the figure, and the 82 shell comes between the sl/z.and h9/2
orbitals.

Fig. 16, A comparison of the negative parity bands in the odd-mass La
isotopes with the ground band in the neighboring Ba nuclei. In most cases
(energy zero in parentheses) the La 11/2 level is not the. ground state and
its energy has been subtracted from all levels shown for that isotope.

Fig. 17. Enexgy levels in 135Ce and 137Nd. The transitions in the 11/2  bands
are shown as solid; whereas, the others are open. The width of the arrows
indicates tne amount of population following the (HI,xny) reaction.

Fig. 18. Energy levels in 133Ce and 135Nd. The transitions in the 9/2  bands
are shown as- solid; whereas, the others are open.

Fig. 19. Excitation energy is plotted against angular mementum in a nucleus
(with mass around 160) that is the product of an (40Ar,4n) reaction. The
populated energy and angular momentum range is shown, together with the
proposed cascade pathway to the ground state.

Fig. 20. A plot of.energy vs. I for the ground-band rotational levels in 162Er.
The insert shows the same data in the type of plot generally used to.show
backbending behavior.

Fig. 21. Ground-band level energies in even—even_rare—earth nuclei. The plots
give the moment-of-inertia I versus the square of the rotational frequency
w2, both quantities derived from the transition enetgy.v In a few cases
where more than one possible choice exists, the lowesteenergy transition is

always used. Tentatively assigned band members are indicated by an omitted

dot. The compression factors C and the contour line for C = 0.45 are



-54- , . LBL~-2352

:derived from the 17/2+ - 13/2+ level spacings in the lowestvil3/2 band
observed in the édd—N nuclei, and from mean value E(Z*O).of the 2+ energies
in the adjaéent'even nﬁdlei. The value of C variéS'frqm 1.0 to 0.18 as
the band changes from rotation;l to decoupled. This plot is taken frém
Ref. 42.

Fig. 22. The sblid lines show fﬁe energies of fwo rotational bands as a
function of I. The bands have different moments of inertia (h2/2€7l = 15 kevV,
h2/2‘35 = 10 keV) and are arrénged to intersect af I = 16. The dotted and
dashed lines show the energies of'the mixed bands reéuiting from caées B
and C, respectiVely, in Fig. 23.

' Fig. 23. The ratio 51/512 is plotted ZEJ w2 for the ﬁwo'ﬁands in Fig. 22. The
horizontal lines connected by a dashed line correspond to no mixing between
the bands, C corresponds to interband matrix elements comparable to the
maximum gsb-2gp ones used in the Coriolis calculations_of Ref. 36, B to
matrix elements three times smaller, and A to ones ten times smaller.

Fig. 24. A schematic illustration of the lowest three SOIQtions for spins I and
I+ 2, with some of the interconnecting E2 transitions indicated.

Fig. 25. The coupling scheme discussed in the text. It should not be inferred

from this sketch that all these quantities have sharp values simultaneously.

13/2

even-even nucleus with a Fermi surface, A. The left side of the figure

"Fig. 26. Placement of particles in the states based on the i ‘orbital in an
" represents the most probable situation for the ground state, whereas the
right side shows a low-lying 2-quasiparticle state. 'ﬂany levels from other

orbitals would be intermixed with these, but for simplicity are not shown.
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Fig. 27. The teh states possible considering only 2gp states in the Q = 1/2,

3/2, énd 5/2 components of the i orbital plus the ground state (Ogp).

13/2
The interconnecting lines show the locations of non—;ero Coriolis matrix
elements.

Fig. 28. The loweét two solutions of the even-even caégffof B = 0.3 (solid
lines), B = 0.2 (dashed lines), and B = 0.1 (dotted linés). The numbers
represent the total population passing through -each level.

Fig. 29. A combarison of experimental (dots) and calcuiated (lines) properties

l6l,162Er 171,172H

of levels in the pairs of nuclei and

f. The left side of

the figure shows the fits obtained for the lowest i band in the odd

‘ 13/2
nucleus of each pair, and the right side shows the results for the even-
even nucleus calculated using the same parameters.

Fig. 30. This plot showé the intersection points, based‘on the rotation-
alignment nbdél, of the ground band with the broken-pair excited band in:
1) an even-even nucleus (solid lines) and 2) an odd-mass nucleus with a
decoupled i13/2 odd particle (dashed lines). The subscripts on the quasi-
particle creation operators (a+) refer to the rotation-alignment gquantum
number, O.

Fig. 31. This plot‘shows the intersection points, based on the pairing-collapse
model, of the ground band with the unpaired excited band in: 1) an even-
even nucleus (solid lines) and 2) an odd-mass nucleus with’a decouple§ il3/2

odd partiqle (dashed lines). Note that the subscript on the creation

operators‘(af or a+) refers to the rotation-alignment guantum number, Q.

Fig. 32. Conventional backbending plots for 156’158E

in 157Er. The following expressions have been used: 2 @th = (4I'°2)/(EI_E

r, and for the decoupled band.

I—2)

and hw = (EI_EI-Z)/z' where I' = I for the even-even nuclei and I' = I - j

for the decoupled band in the odd-mass nucleus.
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Fig. 33. Conventional backbending plots for 158,160

band in 159Er. See caption to Fig. 32.

157,159,161

Er and for the decoupled

Fig. 34. A compérison of backbending in Ho with ‘their even-even
neighbors. The even-even curves are the usual ones of this type, and

the odd-A bands are treated as described in Fig. 32..
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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