
·c· .

f .

LBL-23578

ITtI Lawrence Berkeley Laboratory
II;t UNIVERSITY OF CALIFORNIA

Materials & Chemical
Sciences Division

QUANTUM CHEMICAL METHODS FOR
MASSIVELY PARALLEL COMPUTERS

M.E. Colvin
(Ph.D. Thesis)

JUL 1 111987

Uf.'.fVUW "u'>iJ

socu:,i;~:NTS SECTION

,

" '" , . .;:,; 't!., .. ~ ~

TWO-WEEK LOAN C.OP~ ~
November 1986

-" ." ", ,,'

Prepared for the U.S. Department of Energy 'Jnder Contract DE-AC03-76SF00098

~~

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

"

Quantum Chemical Methods
for

Massively Parallel Computers

Michael Eric Colvin

Ph.D. Thesis

Department of Chemistry
University of California, Berkeley

and
Materials and Chemical Sciences Division

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

November, 1986

Quantum Chemical Methods
for

Massively Parallel Com pu ters

Michael Eric Colvin

Department of Chemistry

University of California

Berkeley, California 94720

ABSTRACT

1

For many years it has been recognized that fundamental physical con

straints such as the speed of light will limit the ultimate speed of single pro-

cessor computers to less than about three billion floating point operations per

second. This limitation is becoming increasingly restrictive as commercially

available machines are now within an order of magnitude of this asymptotic

limit. A natural way to avoid this limit is to harness together many proces

sors to work on a single computation problem. In principle the net process-

ing speed of such a system is limited only by the number of processors linked

together.

The usefulness of potentially unlimited processing speed to a computa

tionally intensive field such as quantum chemistry is obvious. Moreover, if

these methods are to be applied to significantly larger chemical systems,

parallel schemes will have to be employed. The work described in this thesis

represents a first step toward the development of a general system of parallel

quantum chemistry programs. Parallel algorithms have been developed for

several important quantum chemical techniques: integral evaluation, self con

sistent field calculation, integral transformation and second order Moller

Plesset energy calculation. These algorithms have been implemented and

2

tested on a 32 processor Intel Hypercube .
. -

The benchmark calculations indicate very good parallel performance for

all of these algorithms. The most computationally complex step, the two

electron integral transformation. exhibits nearly perfect parallel speedup.

That is, when utilizing n processors, the execution speed is increased by a

factor of n over the single processor implementation.

•

..

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my research director, Professor

H.F. Schaefer III for providing me with a stimulating research environment

and allowing me the freedom to pursue this and other wide-ranging research

projects. I would also like to thank the Schaefer group for help and

encouragement during my four years at Berkeley. Special thanks go to Curtis

Janssen who developed the communication routines for the Sun workstations

and shared my enthusiasm for the potential of parallel processors.

I greatly appreciate the help of Dr. Robert A. Whiteside at Sandia

National Laboratories who has played .an indispensable role in the work

described in this thesis. Without his guidance and expert advice though all

stages of this project it could not have been accomplished. I would also like

to thank Dr. J. Steven Binkley for providing me generous access to Sandia's

Hypercube.

Finally, I would like to thank Judy Yang who has given me support and

encouragement throughout my graduate career. Her love and companionship

have been an essential source of strength to me during the past four years.

Thanks.

This work has been supported by both the U.S. National Science

Foundation grant CHE-82l8785, and by the Director, Office of Energy

Research, Chemical Sciences Division of the U.S. Department of Energy

c under Contract Number DE-AC03-76SF00098.

ii

Table of Contents

1!

Acknowledgements 1

.I

Table of Contents 11

Chapter I: Introduction to Parallel Computers and Molecular Quantum·

Mechanics .. 1

Chapter II: Parallel Algorithms for Molecular Quantum Mechanics 19

Integral Evalulation ... 19

Self Consistent Field Calculation .. 27

Integral Transformation .. 35

Moller Plesset Perturbation Theory.. 45

Con figuration In teraction 51

Chapter III: Benchmark Results .. 53

Chapter IV: Conclusions and Future Directions .. 63

Appendix 1: Hypercube Benchmarks .. 73

Appendix 2: Benchmark Test Cases 76

Figures ... 78

References ... 109

.~

1

Chapter I: Introduction to. Parallel Computers and
Molecular Quantum Mechanics

INTRODUCTION

In 1946 shortly after the development of the first electronic computer John Von

Neumann was asked to consult the Office of Naval Research on whether enough

applications could be found for high speed computing devices to justify further fund

ing. Von Neumann concluded:

It is, furthermore, quite clear that there are many problems where the
length or the complexity of the problem is not sufficient to justify elec
tronic speeds. It is important, however, to point out that there are plenty
of problems which justify this speed, and, furthermore, the chances are
that if these speeds become available, we will come to discover more and
more how numerous these problems are. 1

In the forty years since Von Neumann made this comment computers have had.

a revolutionary impact on nearly all aspects of human endeavor. Today computers

are essential tools in many fields including business, medicine, publishing and

manufacturing. However no field has been affected more dramatically than scientific

research. Computers are a ubiquitous presence in the laboratory where they control

instruments and collect and analyze data. Yet the most important function of com

puters in science is that which Von Neumann originally predicted: as a tool for the

accurate theoretical modeling of physical systems.

The potential of such computational models was quickly recognized by scien-

tists and a number of significant research projects were carried out on the earliest

available computers.2,3 In the subsequent decades scientific computation has had a

history of impressive achievements and spawned the creation of many new fields of

2

theoretical research. A large factor in the increasing accuracy and utility of of

scientific computation has been the phenomenal growth of computer performance.

In the past forty years the instruction speed and memory capacity of computers have

increased by nearly six orders of magnitude.

Unfortunately single processor (or serial) performance will not continue to

'improve at this rate. Despite a thirty year history of a factor of ten increase in

instruction speeds every 5-7 years, the past decade has seen only a three fold

increase in the clock rates of high-end supercomputers.4 Moreover, fundamental

physical constraints such as the speed of light limit single processor computational

speeds to less than about three billion floating point operations per second5 which is

less than an order of magnitude' faster than currently available supercomputers.

Such a limitation would seriously impair many fields where the size and accuracy of

the systems modeled are severely constrained by available computer speeds.

A possible solution to this problem is to harness together many processors to

work on a single computational problem. In principle the net processing speed of

such a system is limited only by the number of processors linked together. The con

cept of so called parallel processing computers has been around since the earliest

days of automatic computing, and a number of experimental parallel computers were

proposed and built in the 1960's and 70's.6,7,8 Yet, parallel computers have

become commercially available only in the last few years with the development of

inexpensive and reliable processing elements. Currently there are more than a dozen

commercially announced parallel computers ranging from two processor machines

operating at less than a megaflop (million floating point operations per second)9 to

4000 processor machines operating at nearly a hundred gigaflops (billion floating

point operations a second).lO

The potential capabilities of parallel computers have stimulated tremendous

"

3

interest in the computer science community (illustrated by the fact that a 1983

bibliography on parallel computers contained a total of 5161 entries).11 Despite this

great enthusiasm among computer scientists, there has been relatively little interest

from the physical sciences. This lack of interest is due to the experimental nature of

most of the available parallel computers and the difficulty of programming

efficiently such machines. Nevertheless there have been a few significant efforts

worthy of note, all the result of collaboration between physical scientists and com

puter scientists.

One of the earliest such efforts was carried out at Carnegie-Mellon University

and involved the development of monte carlo and molecular dynamics algorithms for

the 50 processor CM* computer.12 Two large parallel computing projects are

currently underway at IBM and Caltech. The ffiM project is aimed at developing

quantum chemistry and molecular dynamics algorithms for parallel computers

involving relatively small riumbers of high-end processors.13 The Caltech project

involves the application of very large arrays of microprocessors to a wide variety of

problems in the physical and biological sciences. 14 In the near future the number and

magnitude of parallel scientific computation projects will certainly grow, as parallel

hardware and expertise become more widespread and the need for faster computers

more acutely felt.

COMPUTERS AND MOLECULAR QUANTUM MECHANICS

With the development of quantum mechanics in the 1920's it becam.e possible

In principle to predict theoretically any chemical property. Such a prediction

requires solving the molecular Schrodinger equation, a partial differential equation of

the elliptic type which is insoluble for all but trivial cases. Hence, for thirty years

theoretical chemists were limited to very small systems (such as helium atom15 or

4

hydrogen moleculel6) or to very simplified models of large compounds.!? The

advent of the electronic computer rapidly expanded the horizons of the quantum

chemist. In 1956 Boys reported the first quantum chemical calculation carried out

entirely on an. electronic computei3 and only three years later Robert Mulliken

predicted: "colossal rewards lie ahead from large scale quantum mechanical calcula

tions of the structure of matter."IS Since 1959 great strides have been made in this

direction. Theoretically predicted molecular properties are used routinely to aid in

the interpretation of experimental results, and there have been many instances where

discrepancies between theory and experiment have been resolved in favor of

theory. 19

Despite this history of successes, Mulliken's vision of obtaining" the electronic

eigenfunction and energy of every major type of molecule" has not been realized.

The problem is not that there are inherent limitations in the theoretical methods;

these methods could, in principle, be applied to macromolecules or solids. Instead

the . limitation is due to the inherent complexity and associated computational cost of

solving the molecular Schrodinger equation. Even the fastest available supercomput

ers are not sufficiently fast to allow the study of molecules with more than a few

dozen' atoms. Hence, the limitations on single processor performance discussed in

the last section will seriously constrain the size of systems amenable to study by

quantum chemical methods. If quantum chemical calculations are to be carried out

on significantly larger systems, parallel computers will have to be used.

The conversion of standard quantum chemical methods to parallel computers

will not be an simple task. Most of these methods require large data sets and

involve tightly coupled iterative algorithms not easily broken down into concurrent

procedures. Moreover, the quantum chemical procedures have been optimized to

make efficient use of single processor computers, further complicating the conver-

j)

5

sion to parallel machines.

A research group a mM under the direction of Enrico Clementi has success

fully implemented a parallel scheme for doing SCF calculations 20 and are currently

developing parallel algorithms for other quantum chemical techniques.21 However,

these algorithms are designed for parallel computers having ten or fewer very large

scale processors. In order to gain the very dramatic performance increases promised

by parallel computers, algorithms must be designed to run efficiently on arbitrarily

large arrays of processors. The work described in this thesis represents a first step

towards this goal. This work involved the design and implementation of parallel

algorithms for several major quantum chemical procedures. These algorithms were

implemented on a 32 processor Intel Hypercube, a prototype of the much larger

parallel computers that will be available in the next few years.

The remainder of this chapter is divided into three sections. The first is a

description of the met~ods and computational requirements of molecular quantum

mechanics. Following this is a brief overview of the types of parallel computers

now available and a description of the Intel Hypercube. The third section is a dis

cussion of general principles for parallelizing scientific programs. Chapter two con

tains a detailed description of the parallel algorithms, and the third chapter gives the

benchmark results and an analysis of the algorithm efficiencies. The final chapter

discusses quantum chemical methods and computer technologies that seem promis

ing for the future.

METHODS OF MOLECUlAR QUANTUM MECHANICS

The goal of molecular quantum mechanics is to calculate from first principles

the chemical properties of molecular systems. This amounts to solving the molecu

lar Schrodinger equation to determine the wavefunction of the molecule of interest.

6

From this wavefunction all observable properties of the molecule can be calculated.

The molecular Schrodinger equation cannot be solved exactly except for the

simplest systems, so that a series of approximations must be made. For most chemi

cal applications, relativistic effects are sufficiently small that they can be ignored. 22

Also. terms coupling nuclear motion to the electronic structure can be omitted from

the molecular Hamiltonian (Born-Oppenheimer approximation23) so that the prob-

lem reduces to determining the electronic wavefunction for a fixed nuclear frame

work.

In most quantum chemical calculations the electronic wavefunction is

represented by an antisymmetrized product of molecular orbitals (MO's) known as a

Slater determinant.

1
'II = _rt det(<I»l <1»2 •.• <1»11)

-vn!
(1.1)

These molecular orbitals are approximated as linear combinations of atomic orbitals

(AO's)

(1.2)

The matrix C relating the molecular orbitals to the atomic orbital basis functions is

determined by the iterative self-consistent field (SCF)24 procedure. The atomic orbi

tal basis functions are represented by analytic functions having the form of linear

combinations of gaussian functions:

~d f. m; 11; -a;r
XJ,.L = 44 i X 'y Z e

i
(1.3)

The contraction coefficients d are fixed before the computations begins. Typically a

quantum chemical calculation involves the use of 50-100 of these basis functions.

The SCF procedure is usually carried out in two steps. The first is the numeri-

,,,,.

7

cal calculation of integrals over the basis functions. The most time consuming of

these integrals has the fonn:

(1.4)

These integrals have an inherent 8-fold symmetry with respect to the permutation of

their indices:

(J..1VIAcr) = (VJ..1IAcr) = (AcrlJ..1v)

For a system with n basis functions there are n4/8 of these integrals, hence the com

putational complexity of this step is O(n4). The second step is the calculation of the

self consistent field energy and molecular orbitals. This iterative procedure requires

the repeated construction and diagonalization of a Hamiltonian matrix from the pre

calculated integral list. This Hamiltonian is called the Fock operator and has the

form:

(I.5)

where H is the sum of the kinetic energy and nuclear attraction integrals, and P is

the density matrix fonned from the SCF vector C. The complexity of this step is

also O(n4) since the integral list must be processed each iteration. An alternative

approach is used when there is insufficient memory to store the two-electron

integrals. In this strategy, known as direct SCF, the integral list is recalculated

every SCF iteration.

Although many properties calculated fonn the SCF wavefunction are quantita

tively accurate24 , it is often necessary to go beyond this first order approximation.

There are a variety of different methods for extending the accuracy of the SCF

wavefunction. The more widely used methods include: configuration interaction25,

Moller Plesset perturbation theory26, and coupled-cluster methods27. These

8

techniques have the common feature that they all require the AO integral list to be

transfonned into the MO basis. This transfonnation has the fonn:

(ijlkl) = LLLLCIJ.PvjCuCal(JlvIAO')
IJ. v A. a

(1.6)

where iJ,k,l, are MO indices, Jl,V.A,O', are AO indices, and C is the MO coefficient

matrix. As written above, this transfonnation has complexity O(n8), but it can be

rearranged into a series of partial transfonnations so that it has complexity O(n5).28

The two most widely used post-SCF techniques are configuration interaction

(CI) and Moller-Plesset perturbation theory (MPPT). Both methods have strengths

and weaknesses so that they can be used in complementary roles.

Moller-Plesset perturbation theory is standard perturbation theory approach

where the zeroth-order Hamiltonian is the Hartree-Fock wavefunction. The pertur

bation tenn is the difference between this approximate Hamiltonian and the full

molecular Hamiltonian. When the perturbation expansion is carried ou~ corrections

to the SCF energy and wavefunction to various orders are obtained. The energy

expressions have the fonn of sums of products of transfonned integrals and SCF

orbital energies. For example the second order energy correction is:

(1.7)

where Ea is the SCF energy of orbital a and <abllrs> are the so called super-integrals

fonned from the transfonned integrals as follows:

<abllcd> = (aclbd)--(adlbc) (1.8)

The energy corrections are routinely calculated to fourth order in quantum chemical

. calculations.

In the configuration interaction technique the molecular wavefunction is

approximated as a linear combination of Slater determinants. In general the

9

wavefunction of any molecular system can be written as

1<1» = col'P 0>+ Lc~I'P?+ L c~I'P~ ... (1.9)
ra a<b

r<s

where l'Po> is the Hartree-Pock wavefunction and I 'P~ represents the ground state

wavefunction with an electron excited from the occupied orbital a to virtual orbital

r.

The CI energies and wavefunctions are the eigenvalues and eigenvectors of the

CI Hamiltonian matrix:

<<1>IHI<l» (1.10)

where H is the molecular Hamiltonian and 1<1» is the wavefunction given above.

Since the number of terms in the CI wavefunction grows exponentially in the

Many interesting chemical properties depend not on the total molecular ener-

gies (calculated by the methods just described), but instead depend on the derivative

of this energy with respect to nuclear coordinates or some external field. Although

these derivatives can be approximated by finite difference techniques' from the

energy calculations, in the past decade more accurate and efficient methods have

been developed. These methods involve explicitly differentiating the energy expres-

sions and then evaluating these exact expressions. These so-called "analytic" deriva-

tive methods have been implemented for the first and second derivatives (with

respect to nuclear coordinates) for SCp29, CI30, and MPPf31 wavefunctions.

This thesis describes algorithms and implementation results for the integral

10

evaluation, SCF energy calculation, integral transfonnation, and second order

Moller-Plesset energy calculation. Additionally, an algorithm is described for a

parallel configuration interaction program.

Introduction to Parallel Processors

A 1985 survey by the Parallel Processing Research Council found more than 50

ongoing projects developing new parallel computer architectures.32 Although these

computers all involve the interconnection of many processors, the nature of the indi

vidual processors and how they are linked together vary greatly fonn design to

design. Despite the vast number of proposed designs it is possible to classify nearly

all parallel computers into a relatively small number of categories.

One broad categorization is made on the basis of whether the individual proces

sors carry out the same or different instruction streams. One design is labeled single

instruction multiple data stream (SIMD) and refers to computers where a number of

processing elements carry out the same instructions in lock-step on parallel streams

of data. SIMD machines are well suited for application such as numerical solution

of differential equations where the identical numerical computation is carried out on

each distinct grid point The classic example of a SIMD machine is the Illiac IV7

which contained an 8x8 grid of processors. A recent and more exotic SIMD com

puter is the "Connection Machine"33 which contains 65,000 one bit processors and

was designed for both scientific and artificial intelligence applications. The limita

tion of SIMD computers is, that they can be used efficiently only when the computa

tional problems well match the the unifonn structure of the machines.

The alternate category is the multiple instruction multiple data stream (MIMD)

computers. MIMD describes any linked collection of processing elements which are

not constrained to carry out identical instruction streams (as are SIMD machines).

,"'

11

To perform useful computation the processors have to be able to communicate, and

it is this communication scheme which defines the subcategories of MIMD comput-

ers.

The two most common communication strategies are for the processors to share
I

a common pool of memory (shared memory) or to communicate explicitly by send-

ing and receiving . message packets (distributed memory). Many of the proposed and

currently available MIMD computers use shared memory. In most shared memory

computers any processor can access any value in the common memory. This makes

programming shared memory computers relatively straight forward and for this rea-

son most research on automatic parallelizing compilers (Le. compilers which convert

serial programs to parallel) is targeting shared memory computers.

There is, however, a drawback to the shared memory architecture. As the

number of processors becomes large the communication with the shared memory can

become a bottleneck. It IS not yet known how restrictive this bottleneck will prove

to be, but most such machines have less than 20 processing elements. A possible

way to void the limitation is to have a hierarchy of common memories in which

small clusters of processors share a common memory and each cluster has a single

channel to a global shared memory.34 Of course, the introduction of such a hierar

chy is at the cost of programining simplicity which was the prime motivation for

using the shared memory architecture.

Distributed memory architectures have the advantage that there are in principle

no hardware bottlenecks since communication between one pair of processors is

independent of communication between another pair. The disadvantage of distri

buted memory systems is that it is more difficult to program since passing data

requires synchronizing both the sending and receiving processors.

An important design parameter of distributed memory computers is the connec-

12

tion topology of the processing elements--that is, the way in which the processors

are linked by communication channels. A large variety of communication topolo

gies have been studied. These are usually regular grids in one or more dimensions

(where the grid's vertices represent processing elements and the edges represent

communication channels). The conclusion of these studies has been that the optimal

processor connectivity is dictated by the computational problem at hand. 8 Hence,

one option is to build a special purpose processor for each problem to be solved. A

more practical alternative is to use a complex connectivity that has a large number

of useful sub-topologies.

An example of the second alternative are the hypercube architectures. In a

hypercube the processor connectivity is that of a n-dimensional boolean hypercube.

A hypercube of dimension n has 2" processors each connected to n neighbors.

Hypercubes of dimension 1, 2, 3, and 4 are shown in figure 1. This connection

topology allows the embedding of regular meshes of lower dimension than the

hypercube using a subset of the connections of the hypercube. Such mappings are

easily carried out using a technique known as Gray coding.35

The goal of the work described in this thesis is to demonstrate the feasibility of

very dramatic speedups through the use of parallel computers. Such performance

increases require the use of very large numbers of processors which are currently

available only in distributed memory computers. For this reason the algorithms

presented were designed with regard to the advantages and limitations of distributed

memory machines.

The implementation of the programs was carried out on an Intel IPSC parallel

computer (hereafter referred to as the Hypercube) located at Sandia National Labora

tory in Livermore, California. The Hypercube is a 32 processor distributed memory

computer with hypercube connectivity. In addition to these 32 "node" processors,

•

13

there is a host processor with a communication channel to each node processor.

Each processing node contains an INTEL 80286 CPU and an 80287 floating point

processor as well as 512 Kbytes of RAM. The host is an identical processing ele

ment with 2 Mbytes of RAM and access to a 20 Mbyte hard disk. The communica

tion links areethemet channels with a maximum bandwidth of 10 megabits per

second.

A series of benchmark calculations were run on the Hypercube to determine its

overall performance. These indicate that if all 32 processors are running at 100%

efficiency, the Hypercube operates at 0.62 million floating point operations per

second. The node to node communication rate to be 225 kbits per second for

. nearest neighbor nodes. Although it is possible to send messages between non

nearest neighbor nodes, this causes a significant degradation in communication

speed. Taken together, these results indicate that· a node can carry out 65 floating

point operations in the time it can transmit 1 Kbyte of data to the neighboring pro

cessor. The details of these benchmark results are given in appendix 1.

14

GENERAL PRINCIPLES FOR PARALLEL ALGORITHMS

Before discussing the quantum chemical algorithms it would be instructive to

outline some general principles for programming distributed memory computers and

to describe a few of the details involved in programming the Hypercube. When

designing an algorithm for a single processor computer, the key to efficiency is to

reduce the total number of operations. In contrast, for parallel algorithms the goal is

to divide the problem into equal sized tasks that can run concurrently. Unfor

tunately these two goals are often conflicting so that the best serial algorithm for a

given problem is not necessarily the best starting point for an efficient parallel algo

rithm.36 This means that it will often not be adequate simply to modify existing pro

grams. Instead, the problem should be carefully reconsidered with special attention

to how the task can be subdivided.

When dividing a problem into subtasks a number of constraints must be kept in

mind. Most importantly, each subtask must be nearly the same computational size.

That is, the computational load on each processor should be evenly balanced.

Another consideration is how much communication will occur between processors.

Obviously some communication must occur if a useful task is to be carried out, but

the time the processor spends communicating is wasted and will decrease the perfor

mance relative to a single processor algorithm. An additional consideration is that

communication should be carried out in an orderly, organized manner. This is to

avoid having one communication channel getting overloaded (thereby becoming a

bottleneck) and to insure against the more serious problem of processor deadlock.

Deadlock is the situation where a ring of processors becomes stuck because each

processor in the ring is waiting for a message from the previous processor.

Given these constraints, what is the best strategy for dividing a problem into

concurrent tasks? One alternative would be to write a unique program for each

•

.'"

15

individual processing element. However, this approach is unsatisfactory for a

number of reasons. One problem is that such an implementation will only work on

a fixed number of processors, so that the performance could not be improved by

adding more processing elements to the computer. Moreover, it would be prohibi

tively difficult to write separate programs for each of the tens or hundreds of proces

sors available in most distributed memory computers.

A better strategy for subdividing a problem is to have one "control program"

(usually running on a separate "host" processor) coordinating the activity of a single

"slave" program which runs on all of the remaining processors. This allows the use

of a flexible number of processors since at run time the host program can read in the

number of available processing elements and adjust the load on each processor

accordingly. Also, this requires the writing of only two separate programs.

The first step in this strategy is to find one or more "dimensions" along which

the problem can be divided. These dimensions are usually an adjustable parameter

of the calculation, such as the number of particles in a molecular dynamics problem,

the number of basis functions in a quantum chemistry calculation, or the order of the

matrices in a linear algebra computation. The subdivision of the task onto the pro

cessors then occurs along these dimensions. For example, if the problem involves

the construction of a large matrix where each matrix element is the result of the

same operations on different data sets, then the problem naturally divides up with

each processor computing a equal sized sub-block of the matrix (see figure 2).

Since most problems have a number of such dimensions careful thought should

be given to which are subdivided. The choice of dimensions requires consideration

of both constraints dictated by the problem, such as load balancing and communica

tions costs, and constraints dictated by the computer, such as the number and con

nectivity of the processors. For example, consider the simulation of the motion of a

16

set of mutually interacting particles. The problem can be divided so that each pro

cessor is assigned either to propagate a fixed set of particles (regardless of where

they are located) or to propagate all particles in a given region of space (regardless

of how many particles it contains). The latter strategy is best for cases with a rela

tively uniform particle density -- so that the computational load is balanced, and for

cases with short-ranged interparticle forces -- so that communication between pro

cessors is minimized. In order to avoid communication problems, however, this

strategy requires a processors connectivity that supports a regular three dimensional

mesh.

As can be seen from this example there is no simple recipe for devising an

efficient parallel algorithm -- each problem requires careful consideration of con

straints described above. In the following sections an effort has been made to clar

ify the steps in developing a efficient parallel algorithm by providing a step-by-step

description of the development of these algorithms.

PROGRAMMING THE HYPERCUBE

At the present time programming the Hypercube is much like programming a

serial computer. The programs for both the host and node processors are written in

either FORTRAN or C (all programs described in this thesis were written in FOR

TRAN). The interprocessor communication is facilitated by a set of routines which

handle all of the communication protocol. Most of ~e internode communication is

carried out by with four routines: send and recv for asynchronous communication

and sendw and recvw for synchronous communication. These routines take the same

set of arguments: a channel number, a message type, the starting address and length

of the message, and the destination node (or the sending node in the case of recv or

recvw). The message type is a user specified integer which identifies the message.

A message will be received by a processor only if its type matches that specified in

"

17

the recv or recvw call.

The synchronous communication routines (sendw and recvw) block the opera

tion of the program until the message has been received in the case of recvw or

copied out of the user space in the case of sendw. The asynchronous routine recv

simply queues a request for the receipt of a message. Similarly the send routine

simply initiates the transmission of a message before returning to the program. The

host communicates to the node processors via two synchronous communication rou

tines: sendmsg and recvmsg. Although the routines described here are specific to

the hypercube, they are sufficiently simple and general that similar routines will

probably be standard on future distributed memory computers.

The use of these routines is illustrated by the simple Hypercube program in

figure 3. The host program reads in the number of processors to be used (nproc)

and an array of numbers (x) equal in length to the number of processors. The host

then sends out each of these numbers to a separate processor. The nodes receive the

number, square it, and send it back to the host where the numbers from all the pro

cessors are summed together (total).

Finally, a few hardware features unique to the Hypercube should be considered

since they will affect the design of the programs to be discussed. Most important of

these is the limited memory available on the processing nodes. Although there is

512 Kbytes (thousand bytes) of memory available on each node, the node operating

system requires nearly 200 Kbytes leaving only 320 kbytes of usable memory.

Since the nodes have no access to mass storage and there is no provision for pro

gram overlay, all of the programs and data for a given calculation must fit into this

limited space. This limitation will be discussed further when the benchmarks are

presented.

A second item requiring special consideration is the Hypercube's very low ratio

18

of processing speed to communication speed (see appendix 1). In its standard

configuration, the Hypercube can send a word (8 bytes) of data in nearly half the

time it takes to carry out a floating point operation. This will clearly not be the case

for future distributed memory computers and a vector processing board is now avail

able for the Hypercube which boosts the processing speed by a factor of 100

(without increasing the communication speed). For these reasons the algorithms

were designed assuming a relatively high processing speed to communication speed

ratio.

19

Chapter II: Parallel Algorithms for Molecular
Quantum Mechanics

INTEGRAL EVALUATION

An important consideration in developing a package of quantum chemis

try programs is that most calculations involve running a series of these pro-

grams in sequence (for example, an integral evaluation followed by an SCF

~alculation). Hence, in order to optimize the efficiency of the overall compu

tation it is necessary to design the set of programs to facilitate the most com

putationally d·emanding steps. This can be complicated because it often

means ~hoosing less than optimal algorithms for the simpler· steps. The com-

putational complexity ofa number of common quantum chemical procedures

are given in the following table (n = number of basis functions).

Com pu tational com plexities

Procedure Complexity

Integral evaluation o (n4)

SCF o (n4)

In te gral tran sform ation o (n)

MPPT (second order) o (n4)

MPPT (third order) o (n 6)

MPPT (forth order) o (n 7)

CISD o (n 6)

20

The first step in most quantum chemical calculations is the numerical

evaluation of various integrals. There are three sets of one electron (two

index) integrals: the nuclear repulsion, kinetic energy and overlap integrals.

. n*(n+l)
Each of these sets contams . 2 integrals where· n is the number of

basis functions. The remaining integrals are the two electron (four index)

in tegrals (equation 1.4). This set is much larger than the one electron
4 .

integral sets, containing n8 symmetry distinct integrals. Since the calculation

of the two electron in tegrals vastly dominates the integral evaluation step, the

emphasis should be to parallelize this step. The computation of the one elec-

tron integrals will be carried out on the host processor.

In principle the parallelization of the two electron integrals is straight for

ward; each processor computes an equal sized subset of the total integral list.

However, the distribution of the integrals onto the processor is complicated

by considerations of how the integrals will be used in subsequent computa

tional steps. In the development of this integral program two common

sequences of quantum chemical computational procedures were considered.

The first of these (the most common of all quantum chemical computations)

is simply an SCF energy calculation. The second sequence is an SCF calcula

tion followed by a post-SCF procedure requiring an integral transformation.

I ntegral distribution for S C F calculations

The computational complexity of the integral evaluation and SCF steps

are the same, so neither step should be given dominant consideration.

Further, since an efficient SCF algorithm can be designed which will work

with arbitrary integral distributions, it is necessary only to focus on efficient

load balancing of the integral evaluation. The simplest method to distribute

21

equally the integrals is to have. each processor loop over all symmetry distinct

integrals and select a unique subset to calculate and store. This can be

accomplished by the segment of program given below:

[COUNT = 0
JCOUNT= 0
DO Jl = 1, NBAS[S

DO v = 1, Jl
DO A = 1, Jl

DO cr = 1, A (v if Jl= v)
[COUNT = [COUNT + 1
IF «MOD (ICOUNT ,NUMPROC».EQ.PROCjD) THEN
EVALUATEINTEGRAL(Jlv~cr)

END DO (cr)
END DO (A)

END DO (v)
END DO (Jl)

Each processing node has a unique identification number (PR OCjD) rang

ing from 0 to the total number of processors minus 1. An integral is

evaluated if the integral's cardinality (ICOUNT) modula the tot.al num ber of

processors (NUM PR OC) is equal to the node's identification number.

This scheme guarantees equal balancing of the total number of integrals

on each processor. A difficulty arises, however, since some basis function s

represent more complex atomic orbitals than others (p or d orbitals as

opposed to s orbitals) so that the computational cost for evaluating each

integral is not the same. This means that even though each processor has an

equal number of integrals, the net computational load may not be evenly bal

anced. Unfortunately a more exact load balancing would be very difficult to

achieve. Even if the exact computational cost of each integral type was

known in advance, equal distribution of the load would be an extremely

difficult computational task. (This task is equivalent to the "multidimensional

knapsack" problem which is in the class of NP complete problems widely

22

believed to have an exponential computational complexity).37

A possible alternative is to use dynamic load balancing. In this strategy a

certain number of integrals are held back and then are dealt out to the first

node processors to finish their initially assigned integrals. The decision was

made not to implement dynamic load balancing in the integral evaluation step

since it would greatly increase the complexity of the program and take up

much needed memory space. Moreover, the simple scheme proposed evenly

distributes both the computationally simple and complex integrals so that for

large problem sizes the load balancing should be quite good. (This is

confirmed by benchmark results given in the following chapter.)

I ntegral distribution for post-S CF calculations

If the two electron integrals are eventually to be transformed, a number

of complicated constraints are placed on the distribution scheme. The

transformation is simplified if the integrals are available in continuous seg

ments (rather than scattered as in the method previously described). More

over, the communication costs in the transformation step are greatly reduced

if some integral redundancy is allowed.

For reasons that will be explained in the description of the transforma

tion step, a good way to distribute the integrals is to map them onto a two

dimensional rectangular array of processors (a subtopology of the hypercube

connectivity). A simple way to carry out this mapping is to choose two of the

integral's four indices as the coordinates of the processing node which is to

evaluate the integral (figures 4-7). If there are more basis functions than

processors along one of the dimensions then more than one basis function

per processor is assigned along that dimension (see figures 6 and 7).

23

Due to 'the inherent symmetry of the two electron integrals, there are

only two symmetry distinct pairs of indices which can be chosen: the last two

indices A.,a , and the second and fourth v,a. The choice of which two

indices to use for the integral distribution is determined by what will be done

with the transformed integrals. Figures 4-7 illustrate these two possibilities,

both for the case where the number of basis functions matches the number

of processors in each dimension (figures 4 and 5) and the case where the

humber of basis functions exceeds the number of processors along each

dimension (figures 6 and 7).

These two distribution schemes involve the calculation of different

numbers of integrals. The first scheme easily allows the use of one of the

three index symmetries (permutation of the first two indices) so that there is

a four fold redundancy in the integrals calculated. The second scheme does

not allow the. easy use of any of the integral symmetries so that all N4

integrals are calculated. Of course the calculation of redundant integrals

means that the integral evaluation step is non-optimal; however, this integral

distribution will facilitate the more computationally complex integral transfor

mation and post-SCF steps. Both of these distribution schemes will give

good load balancing for sufficiently large problem sizes.

Two electron integral evaluation

Methods for the numerical evaluation of two electron integrals have

been the focus of intense research efforts for the past three decades38 and

are still a subject of much interest.39 The result of these efforts have been a

large number of computationally efficient methods for integral evaluation.

Although the integral evaluation scheme chosen for the Hypercube was dic

tated by memory considerations, the question of which methods are optimal

24

for parallelization should be addressed.

In the most efficient integral evaluation schemes two strategies are used

to improve performance. One is the precomputation of large tables of repeat

edly used numerical values. The other strategy is to compute the integrals in

large groups to eliminate the redundant computation of partial terms. Both

of these present special difficulties for parallel implementation,s which must

be carefully considered.

A potential problem with the precomputation of lookup tables is that it

does not use memory very efficiently since each of the processing nodes

would have to store a copy of the table. Another concern is the manner in

which the table is computed. It is obviously undesirable to have each proces

sor calculate the entire table; however, if each processor computed unique

segments, a large amount of communication would be required to fully distri

bu te the table.

The most common approach to the second strategy is to calculate the

in tegrals in complete shell blocks. A shell block is the set of all integrals

over common atomic shells. For example, a complete (<I>p <l>s I <l>s <l>s) block

contains the following three integrals: (<I>px <l>s I <l>s <l>s) , (<I>py <l>s I <l>s <l>s) , and

(<I> pz <I> s I <I> s <I> s) • The followin g table lists the sizes of other shell blocks.

Shell block SIze

25

The rationale for this strategy is that the mathematical expressions for

each integral in the shell blocks contain many common parts, so that if the

entire block is calculated at once, many potentially redundant steps are

avoided. This approach has proved to be very efficient on serial computers,

but a number of problems arise when attempting to construct a parallel ver

sion of this scheme. These problems stem from the fact that to be efficient,

the computation of the integrals in an individual shell block cannot be split

across processors. This leads to the possibility of very poor load balancing

due to the large discrepancies in the sizes of the shell blocks. A further

difficulty that arises if the integrals are distributed by shell block is that the.

resulting distribution will complicate subsequent integral transformation and

post-SCF steps. Despite the difficulties sited here, these two strategies poten

tially offer very large increases in the efficiency of the integral evaluation

step, so despite their drawbacks, these methods should be carefully con-

sidered in future implementations of parallel integral evaluation programs.

As mentioned earlier, the prime concern in developing an integral pro

gram for the Hypercube was to conserve memory (since a fast integral

evaluator would be of little use if there was no memory remaining to store

the integrals.) Hence the decision was made to write an new integral evalua

tion program rather than use one of the available programs. The expressions

used for both the one and two electron integrals are those derived by Taketa,

Huzinaga, and O-ohata.40 These expressions have the form of sums of pro-

ducts involving numerical constants, input values (angular momenta, internu-

clear distances), and the so-called associated F-function:

1

F m(t) = f t2m exp(- xt2)dt
o

(ILl)

26

An advantage of this method over the more efficient techniques is that the

expressions are completely general so that integrals can be calculated over

basis functions of arbitrarily high angular momentum.

In the implementation on the Hypercube, each integral is evaluated indi

vidually, so that no efficiency is gained by avoiding redundant computation.

The overall size of the two electron in tegral program based on this method is

55000 bytes. In comparison, a standard two electron integral package

(excluding lookup tables) requires nearly 800,000 bytes. For the simplest

two electron integrals, (<1>5 <1>5 1<1>5 <1>5), the Hypercube implementation is

about a quarter the speed of the larger program.

27

SELF CONSISTENT FIELD CALCULATION

The SCF procedure is more complex and less homogeneous than the

integral evaluation and hence a much more difficult task to parallelize. The

first step is to look in detail at the various steps involved and the associated

computationally complexity. The steps involved in an SCF iteration for a

closed shell system are listed below.

1) Generate initial guess for the density matrix.

2) Form two electron part of the Fock matrix:

1
F~v = LPA.CJ[(~v lA.cr)--(~A.lcrv)]

A.CJ 2
(II.2)

3) Add kinetic and potential energy one electron integrals:

F~v = F~v + K~v + V~v (II.3)

4) Transform the Fock matrix using the overlap integrals:

yt = S-1I2 F S-1I2 01.4)

5) Diagonalize the transformed Fock matrix to get the SCF vector C and

the orbital energies E:

6) Back transform the SCF vector:

c = S-1I2 C't

7) Form new density matrix (NOCC = # occupied orbitals):

NOCC
P~~ = 2 L C~i Cvi

i

(11.5)

(II.6)

(II.7)

Steps 2-7 are repeated until the density matrix is converged. The com

putational complexity associated with each of these steps is given in the fol-

lowing table.

28

Com uu tation al com ulexities
Step Comolexitv

1 0(n4)
2 0(n4)

3 O(n:':)
4 O(n.j)
5 O(n.j)
6 Oin.jl
7 0(n4)

It is obvious from the data in this table that for large problem sizes the SCF

computation will be dominated by step 2, the formation of the two electron

portion of the Fock matrix. This result is corroborated by actual timings on

serial SCF programs.

Hence, the logical starting point in the parallelization of the SCF pro

cedure is to distribute the computation of the two electron Fock matrix. The

two components required to form this term are the density matrix and the

two electron integrals. Since the two electron integrals have already been dis-

tributed onto the nodes by the integral program and these integrals do not

change with each iteration, a sensible procedure for forming the Fock matrix

is to distribute the density matrix to the nodes each iteration and then calcu-

late partial Fock matrices from the resident two electron integrals. These par-

tial Fock matrices are then summed toge,ther on the host processor where the

new density matrix is formed and broadcast back to the nodes. A flow

diagram of this procedure is given in figure 8.

The method used to form the partial two electron Fock matrices is

dependent on the integral distribution scheme used in the integral evaluation

step. If the integrals were distributed for just an SCF calculation the forma-

tion of the partial Fock matrices is straight forward since a nonredundant list

of two electron integrals is evenly distributed onto the processors. This pro-

cedure on each node involves simply looping over all of the resident integrals

29

calculating their contributions to the Fock matrix. Sinc~ only the symmetry

distinct integrals have been stored, each integral will contribute to between

one and eight Fock matrix elements. Figure 9 lists all Fock matrix element

contributions from symmetry distinct integral types.

If an integral transformation is to be carried out, the formation of the

partial Fock matrices is more difficult because of the more complex integral

distribution. The difficulty is that redundant integrals are stored so that spe

cial care must be taken that redundant contributions are not made to the par

tial Fock matrices. This consideration greatly complicates load balancing.

Since the integral distribution is determined by two of the integral indices,

most schemes for selecting symmetry distinct integrals will preferentially load

certain processors. However, a scheme which works well for most cases is

straight forward. Consider the simplest integral loading (as in figure 4) where

a processor with coordinates 1f.1 holds the integral block (ij Ikl) where

i ,j = I to n. If If < 1 the node processes all symmetry distinct in tegrals for

which i+ j is odd. If If > 1 then the node processes all symmetry distinct

integrals for which i+ j is even. Of course if If = 1 then all of the symmetry

distinct integrals must be processed. Hence this strategy will overload the

diagonal processors (If = 1), but since for most actual cases each node will

have many integral blocks (as in figures 6 and 7) this load imbalance should

not be serious.

As indicated in the flow diagram (figure 8), the SCF procedure requires

the communication of all of the partial Fock matrices from the nodes to the

host and the subsequent rebroadcast of the new density matrices. If all of the

communication were to be carried out directly between the nodes and the

host, the host's comm unication channels would be overloaded and become a

30

bottleneck. What is needed is to carry out as much of the communication in

parallel as is possible and to avoid having an individual processor sending or

receiving more than one message at a time. Fortunately there is a simple

scheme. utilizing a so-called broadcast tree which fulfills these conditions.

The broadcast of a message from the host to all of the nodes in a three

dimensional hypercube is shown in figure 10.

Basically, the scheme involves the sequential' broadcast of the message

from all of the nodes in a N dimensional hypercube to all the nodes in an

N + 1 dimensional hypercube. Hence, it takes a total of six communication

steps to broadcast a message to all of the nodes in a five dimensional (32 pro

cessor) Hypercube. (This includes the initial communication of the message

from the host to node 0.) Similarly, if a result is to summed from the nodes

onto the host, the reverse procedure can be carried out: each node in an N

dimensional cube receives a message, sums it into his own result, and broad

casts this message to the corresponding proce~sor in an N -1 dimensional

cube.

Although parallelizing the most computationally complex part of the SCF

procedure is clearly the first step, there are a number of reasons also to distri

bute the less computationally complex tasks. One obvious reason is that for

sufficiently large problem sizes, even the O(n3) steps iIl the SCF procedure

will take a prohibitively long time on the host processor. A second reason is

that for problems running on computers where the number of processors (m)

is comparable to the number of basis functions (n), the complexity of the

Fock matrix formation O(n 4/m) reduces to O(n3) so that the other O(n3)

steps will dominate the computation time. (This is the case for some of the

benchmark calculations on the Hypercube where the memory size severely

31

limits the number of basis functions.)

There are two types of 0 (n 3) steps occurring in the SCF procedure: the

matrix multiplications and the diagonalization of the Fock matrix. The

matrix multiplies are fairly easy to distribute, but the diagonalization is much

more difficult to parallelize efficiently. Although a parallel diagonalization has

not yet been implemented, the method for doing this is discussed here.

32

PARALLEL MATRIX DIAGONALIZATION

Due to their tremendous importance in a vast number of mathematical

and scientific applications, numerical methods for the computation of eigen

values and eigenvectors of symmetric matrices have been the subject of

intense study for more than century. A large, number of very efficient serial,

algorithms have been developed which are able to compute the eigenvectors

of an n x n matrix in 0 (n 3) time41 • Not surprisingly, in recent years a lot

of effort has been put into the study of parallel matrix diagonalization algo

rithms. One conclusion of this work is that the very best serial algorithms

(e.g. Householder tridiagonalization followed by QR iterations) are not as

well suited for parallelization as the older, simpler methods.

One very old algorithm which se,ems especially promising for parallel

applications is the Jacobi method (first described in 1846).42 In this scheme a

symmetric matrix A is diagonalized by a series of plane rotations. Each rota

tion is carried out such that it annihilates n (n;l) of the off diagonal matrix

elements. Since the zeroed off diagonal matrix elements will not necessarily

remain zero for successive rotations, the method is iterative. If m such rota-

tions are necessary to zero all of the off diagonal elements of A, then:

(II.8)

where U is the matrix of eigenvectors of A and Rm is the m th successive

plane rotation matrix. The eigenvalues are given by:

(II.9)

and the rotation matrix elements at each iteration are given by:

R.. = R .. = co s(a ..)
")) I) (IL10)

R·· = -R·· = sin(a.;}.)
'J J' •

where:
A··

tan(2a.jj) = 2-A-.. -_"'::"'~-..
U JJ

33

(11.11)

(II.12)

Since the computation of the eigenvectors simply corresponds to a series
.

of matrix multiplications, there are a number of possible strategies for paral-

lelization of the Jacobi algorithm. One approach has been investigated by

Sameh 43 and Whiteside, et al.44 This scheme is based on the observation

that there exist sets of plane rotations that each annihilate different matrix

elements without changing the values of the matrix elements annihilated by

other rotations in the same set. Since all rotation matrices in each set com-

mute with each other, the rotations can be carried out independen tly. For an

n by n matrix there are ~ rotation matrices in each of these sets so that ~

off diagonal elements could be eliminated simultaneously. Thus, this algo-

rithm could efficiently utilize ~ processors in parallel. For the SCF pro

cedure described here, - n 2 processors are used to form a Fock matrix of

order n. However, this diagonalization routine would only use - n proces-

sors. Hence, this algorithm is poorly balanced for the SCF procedure.

Fortunately another par~llel Jacobi diagonalization algorithm has recently

been developed which allows the efficient use of much larger numbers of pro

cessors.45 In this scheme the matrix is divided into 2 x 2 submatrices and

mapped onto a two dimensional square array of processors, so that an n by n

matrix would map onto an ~ by ~ array of ~rocessors (see figure 2). Dur

ing each iteration the diagonal processors (i.e. those containing diagonal

matrix elements) calculate the rotation matrix necessary to diagonalize their

resident 2 x 2 matrix. This rotation matrix is broadcast to the other

34

processors which carry out the necessary rotations on the off diagonal terms.

After one such complete rotation has been carried out, adjacent processors

exchange rows and columns so that the diagonal processors receive new off

diagonal matrix elements of the rotation is again carried out. The method

has been empirically found to require 0 (log(n)) such rotations with each .
rotation requiring 0 (n) computing time, yielding. a net computational com-

plexity of O(nlog(n)). Although this method has not yet been implemented

on the Hypercube, its low computation cost, orderly interprocessor communi

cation, and efficient use of - n 2 processors make it a good candidate for the

Fock matrix diagonalization.

35

TWO ELECTRON INTEGRAL TRANSFORMATION

The two electron integral transformation is the most computationally

complex of the steps so far considered. Hence, much of the concern in the

design of the algorithms for the previous two steps was to facilitate the

efficiency of this computation. This procedure involves the transformation of

all four indices of the two electron integrals. The most compact expression

for this step is:

(ij Ikl) = r,r,r,r,CJ,LiCVjCUCcrl(llvIAa)
J,LVA.cr

where the Roman letters represent MO indices and the Greek letters AO

4
indices. Since this 0 (n4) must be carried out for all of the n8 integrals, the

total complexity as written above is O(n s). However, this transformation

can be rewritten as a series of one index transformations (or "quarter

transformations"). For example, the transformation of the fourth index, a

can be carried out as an autonomous step:

(IlVIAl) = r,Ccrl(llvIAa)
cr

Each of these quarter transformations involve n 5 multiplications, so that the

entire sequence of one index transformations requires 4n 5 multiplications. If

the 8 fold index symmetry is exploited, this total can be reduced to ; n 5.

More sophisticated transformations have been developed which involve the

decomposition of each quarter transformation and require a total of only

~~ n 5 multiplications.46 However, as pointed out previously, the optimal

serial algorithms are usually too complex to be converted into an efficient

36

parallel implementation. Instead, it is usually better to begin with a simple

expression for the problem and to look for dimensions along which to divide

the task.

In the transformation step a natural choice for these dimensions would

be one or more of the two electron integral indices. The advantage of this

choice is that all of the integrals needed to complete a given quarter transfor-

mation would be present along a single processor or along a single dimension

of the processor array. To illustrate this concept consider the mapping of the

two electron AO integrals onto a one dimensional array of processors (Le. a

loop). (A three basis function example is shown in figure 11.) The integral

blocks are assigned to processors on the basis of their fourth index, cr. Each

integral block contains integrals for all symmetry distinct combinations of

~, v, and A: ~. v = 1 to n with ~ ~ v, and A = 1 to n. Note that only one

·of the three axes of integral symmetry is used. so that a four fold redundancy

of integrals is stored.

For this integral distribution, the first step is the transformation of the

indices local to each processor, ~, v, and A (step 2 in figure 11). For exam-

pIe, on the first processor this involves:

(ij Ik 1) = LLLC~jCvjCA.Jc(~vIA1)
~ v A.

(Of course in an actual implementation this would be carried out as three

quarter transformations.) Due to the integral distribution this step can be

carried out without any interprocessor communication.

All that remains is the transformation over the final index, cr. Since

each processor holds integral blocks with only a single value of cr and this

final quarter transformation requires a summation over this index, this step

37

will require interprocessor communication. Because of the distribution

scheme, this can be carried out in a series of orderly communication steps as

follows (step 3 in figure 11). First, each processor sends a copy of the par

tially transformed integrals to its neighboring processor. Each processor then

sums a contribution from the visiting integral block into a buffer:

(ij Ikires) = (ij Ikires) + C~:' (ij Ik avis)

where the subscripts res and vis indicate indices associated with the resident

and visiting integral blocks. Note the assumption that the processors will

retain the same AO and MO integral blocks: ires = .a res'

This step is repeated until the integral blocks have been passed com

pletely around the loop and have arrived at their initial nodes. At this point

the transformation is complete since each processor has received all the

necessary con tribu tions for the last quarter transform.

Obviously this one dimensional mapping could be extended to two,

three, or four dimensions by simply distributing more of the integral indices

in the way a was distributed in the one dimensional case. The choice of how

many dimensions to use is essentially that of the granularity of the parallel

ism.

The granularity of the parallelism refers to the amount of independent

computation that each processor performs before it must communicate with

another processor. If a large amount of processing is performed, for example

a pass through some outer loop of the program, then the granularity is

"course." If only a small amount of processing is performed between com

munication steps, for instance only a single arithmetic operation, then the

parallelism is "fine grained." Because of the relatively slow in terprocessor

38

communication channels on the Hypercube (probably this will be a problem

on all distributed memory machines) fairly course grained communication is

favored. Otherwise, the communication overhead will be much more time

consuming than the useful computations performed.

Other considerations in the choice of dimensionality are the number of

available processing nodes and the total amount of memory on each node. If

the integrals are mapped onto a one dimensional grid (see figure 11), the

largest number of processors that can be utilized is equal to the number of

basis functions, n, and each node must store - n 3 integrals. Similarly, for a

two dimensional mapping, the maximum number of usable nodes would be

n 2, with each node storing - n 2 integrals. The following table lists the

relevan t data for each of the possible mappings .

. Integral Distributions

Dimensions #. usable Integrals Operation s per

nodes per node comm unication

1 n n3 n 3

2 n 2 n2 n 2

3 nJ n n

4 n 4 1 1

For most chemically interesting problems, the number of basis functions

is not more than a few hundred. In comparison, the Intel Hypercube is avail

able with up to 128 processors and other computers are available with

thousands of processors. Hence, the one dimensional transformation scheme

would not be able to utilize fully the available hardware. However, the two

dimensional mapping would be able to use efficiently the large parallel

39

computers available in the foreseeable future while still maintaining a fairly

course grained parallelism.

A final issue is the topology of interprocessor interconnection assumed

by the parallel implementation. Although these programs are being imple

mented on a machine with hypercube connectivity, it is not necessarily pru

dent to assume the presence of that particular interconnection in this algo

rithm. If an efficient algorithm can be developed that requires only very sim

ple topologies, such as one or two dimensional meshes, the algorithms will

run on a wider range of parallel architectures.

On the basis of the considerations listed above, the two dimensional

transformation scheme was chosen for implementation. This choice clarifies

the reasons for the post-SCF integral distributions described in the integral

evaluation section (figures 4-7). The two indices which indicate the processor

coordinates are those which require interprocessor communication to

transform, (analogous to cr in the one dimensional case). The transforma

tion procedure for the two post-SCF integral distribution schemes, A.cr

(figures 4,6) and vcr (figures 5,7), are essentially iden tical, differing only in

the order in which the indices are transformed. Hence, in the algorithm

described here, only the A.cr distribution will be considered. Further, in the

following description the processing grid is assumed to be a square torus of

processors (m by m) where the number of basis functions, n, equals the

number of nodes along each dimension (i.e. m = n). These constraints are

not inherent in the algorithm which will work efficiently for any number of

basis functions provided (n ~ m) and on any torus supported by the inter

processor connectivity_ (In general a hypercube architecture has as a subto

pology a 2i x 2j rectangular torus where i+ j~ the total hypercube dimen-

40

sionality.) The extension to cases with rectangular processing grids and cases

where n > m is straight forward.

At the outset of the integral transformation the integrals are distributed

on to the processing nodes on the basis of their final two indices, Acr, as

shown in figure 4. The transformation matrix C is the final converged SCF

vector which is broadcast from the host to all of the nodes using a broadcast

tree.

The first step is the transformation of the first two indices, Jl and v

(figure 12). This step is carried out as two quarter transformations. If each

processor is assumed to hold only one Acr block and no integral symmetry is

considered, then each quarter transformation requires n 3 multiplications.

This yields a total of 2n 3 for this entire step. However, if the Jl v symmetry

is exploited then the number of multiplications is reduced to ; n 3.

The final two quarter transformations are more complicated since they

will require in terprocessor communication. Analogous to the transformation

over cr in the one dimensional case, these last two steps will require com

munication first across the processor rows (figure 13) and then down the pro

cessor columns (figure 14). Although these two steps are in principle straight

forward, a number of details must be carefully considered in order to use

efficiently memory and to avoid communication bottlenecks.

There are two general methods for carrying out the communication

steps. The processors could either pass around MO integrals (with initial

values of zero) that accumulate contributions from each of the other proces

sors as they circumnavigate the row, or they could pass around raw (half

transformed) AO integrals and accumulate MO integrals locally from each of

the AO integral subsets as they pass by. (The latter strategy was described

41

for the one dimensional example).

The chief distinction between these two strategies is the type of interpro

cessor communication allowed by each. In the first scheme all communica

tion must be synchronous. That is, communication is not carried out while

the nodes are involved in other computation. The reason for this is that each

of the MO integral buffers must remain on each node until all of contribu

tions from the resident integral set has been added in. Only when all of

these computations are completed is the integral buffer ready to be passed on

to the next proce.ssor.

In contrast, when the raw AO integral sets are passed, the processor

needs only to make a copy of the integral set before passing the integrals on

to the next processor. This second scheme is obviously more efficient since

it allows the overlap of communication and computation. However, the asyn

chronous scheme has some potential pitfalls. Since the integral buffers are

passed on by each processor immediately, slow processors could potentially

queue up many unreceived messages which can cause erratic behavior on .the

Hypercube. Nevertheless, in order to study the performance enhancement

gained by asynchronous communication the second scheme was implemented

in the final version of the integral transformation.

The code given in figure 15 summarizes the operations performed during

the third quarter transformation. The routine is passed the resident block of

half transformed integrals (xints), the SCF vector (C), the number of basis

functions (nbasis), and the value of the third integral index for the resident

AO (mylambda) and MO (k) integral blocks. Note that for the example in

figures 12-14, mylambda = k .

In order to allow asynchronous communication, the scratch array buf IS

42

divided into two segments, each able to hold a full integral block. Two vari

ables, outpoint and inpoint, hold pointers to the two halfs of buf. The half

indicated by outpoint holds the integral block about to be processed, and the

half indicated by inpoint receives the incoming integral block.

The subroutine begins by initializing the pointer~ and copying its

integrals from the array xints into the half of buf pointed to by outpoint ,

zeroing xints as it does. The MO integrals will accumulate in xints. The rou

tine then enters the main loop over the number of processors in each row,

which equals nbasis for this example. Then first step is to send off a copy of

the integral block that is about to be processed (stored in buf(outpoint)).

Next, recv is called to initiate the receipt of a new block of integrals which

will be stored in buf (inpoint) . After the communication steps are initiated,

the contributions from the integrals in buf (outpoint) are summed into xints.

Next the variable lambda is decremented in anticipation of the new integral

block. Since it is possible that this communication is not yet complete, the

routine calls waitchan which blocks execution until the integral block is com

pletely received. At this point the cycle is ready to begin again except that

the roles of the two halfs of buf are switched -- the newly received block of

integrals will be sent on and processed, and the previously processed block

will be overwritten by the incoming integral block. This switch can be

accomplished by simply swapping the values of the pointers inpoint and out

point.

After iloop has looped over all of the processors in the row, each proces

sor has received all of the necessary contributions for the transformation of

the third index. The only step remaining is the transformation of the final

index cr . This step can be carried out in a way exactly analogous to the

43

transformation of the third index, except that the interptocessor communica-

tion is down the processor columns rather than across the processor rows.

For clarity of presentation several important details have been neglected

in this description. For instance, the code as presented requires each half of

the buffer space but to be able to hold a full integral block. In fact, the

transformation can be carried out with a smaller buffer, it simply requires

more passes through a code similar to this, each pass completely transforming

only a subset of the integral block.

n 3 .
Each of the last two quarter transformations requires T operatIons on

each of the processing nodes. Since only n sequential communication steps

are required for each quarter transformation, communication time will not

dominate the execution time except for very small problem sizes. Each of

3
the n 2 processors carry out 3 n

2
operations for the first half transformation

over Jl and v and n 3 operations for the final half transformation over A. and (J'

. 3
, yielding a total computational complexity of 5 n

2
on each of the nodes for

the entire four index transformation.

As mentioned earlier, for problems where the number of basis functions

is not evenly divided by the number of nodes along each dimension of the

processor mesh, the number of integrals blocks assigned to .each processor

will be unequal and, hence, the computational load will be poorly balanced.

An extreme example is shown in figure 6 where four nodes must process

four integral blocks each and one node is assigned only one integral block.

Since the lightly loaded processors will eventually have to wait for the more

heavily loaded processors (during the third and fourth quarter transforma-

tions) the transformation of the N = 5 case will require the same amount of

44

time as the n = 6 case. Of course for larger problem sizes where the number

of basis functions is much larger than the number of ,nodes along each

dimension of the grid, this load imbalance will contribute a proportionally

very small contribution to the total running time. Nevertheless, it is worth

investigating methods to improve the load balancing.

45

MOLLER PLESSET PERTURBATION THEORY

The integrals produced by the transformation step have little intrinsic

scientific value. They are useful only as input to subsequent computations.

There are a large number of post-SCF procedures requiring the transformed

integral list. The two most commonly used methods are configuration

interaction and Moller Plesset perturbation theory. For reasons that will be

discussed shortly the perturbation theory calculations are easier to parallelize

so these were chosen as the first post-SCF methods to implement on the

Hypercube. Considerations for the parallel configuration interaction algo-

rithm will be discussed in a later section.

As described in the first chapter, Moller Plesset perturbation theory pro-

vides a series of additive corrections to the total electronic energy calculated

by the SCF procedure. For all orders of the perturbation theory, these

energy corrections have the same form: linear combinations of products of

super-integrals formed from the transformed two electron integrals and

coefficients formed from the SCF orbital energies (the eigenvalues of the

converged Fock matrix). In principle this step is easy to parallelize. Each

processor asynchronously forms contributions to the energy correction from

its resident list of transformed integrals. When completed, these partial con

tributions are sent back to the host processor where they are summed

together. The various details involved in this procedure will be covered in

the following description of the second order Moller Plesset energy correction

(£(2»). Extension to higher orders of perturbation theory is straight forward.

The standard expression for £(2) is:

ace vir I< ab I Irs > 12
£(2) = LL--------

Dabrs ab rs

46

This expression is meant to be used as a correction to unrestricted Hartree

Fock (UHF)24 energies and hence, the summations are over spin orbitals.

However, the SCF program implemented on the Hypercube carries out res

tricted Hartree Fock (RHF) calculations so that spin independent spatial orbi

tals are produced. (The relative merits of UHF and RHF have been exten

sively debated.47) The conversion of the Moller Plesset energy expressions

from spin to spatial orbitals is quite easy. The resulting E (2) expression for

closed shell systems is:

E(2) = ~i (ar Ibs)[2(ar Ibs)-(as Ibr)]

ab rs Dabrs

where the integrals are the standard transformed two electron integrals and

Dabrs is f?rmed from the final SCF orbital energies:

Hence, in order to form contributions to E(2) the nodes need access to the

transformed integrals and the orbital energies. Since the number of orbital

energies is the same as the number of basis functions « 150), it makes.

sense to send a separate copy to each of the nodes.

The transformed integrals are already distributed onto the nodes by the

transformation program; however, the formation of each term in E(2)

requires the presence of on a single processor of a pair of integrals

(corresponding to the pair of integrals required to form a single super

integral). These two integrals are related by the permutation of their second

and fourth indices. An important question is whether these pairs of integrals

will be available on the same processor or will interprocessor communication

be necessary to collect them. Of course the answer depends on the final

47

distribution of the transformed integrals.

As described in the previous sections two possible post-SCF integral dis

tribution schemes have been investigated. The first distributes the integrals

on the basis of their third and fourth indices (figures 4 and 6), and the other

distributes them on the basis of their second and fourth indices (figures 5 and

7). For the computational steps through the integral transformation the chief

difference between these two is that the latter requires an additional factor of

two redundancy in the computation, storage, and transformation of the

integrals. However, for the computation of £(2) these two distributions will

lead to very different algorithms.

For the first of these schemes, the appropriate pairs. of integrals will not

be together on the same processor. For example, in figure 4 the transformed

integral (33111) is assigned to the node in the upper left corner, while its

partner (31113) is assigned to the node in the upper right corner. This means

that if the calculation of £(2) is to be carried out, some interprocessor com

m unication will have to occur. The remaining question is whether this com

munication can be carried out in an orderly, efficient way.

In this integral distribution scheme a given node has MO integrals with

all possible values for the i and j indices and with values for k and I indices

determined by the processor's position in the grid. Since the integral pairs

are related by the perm utation of the second and fourth indices, an integral

block on a particular processor will have to access all blocks with the same k

index, but having all possible values for the I index. Due to the fact that the

I index is used to assign the integral blocks to processor rows, the necessary

integral blocks can be found on the other processors in the same column.

Hence, the comm unication is very similar to that required in the final quarter

48

transformation; buffers must be passed around the columns of the processor

grid.

To clarify this somewhat complicated explanation, consider again the 3x3

example used in the transformation section. After the transformation, the

integrals are distributed onto the processors as shown in figure 4 The node

in the upper right holds the integral block (ij 111) . In order to form the

corresponding block of super-integrals, this block will have to be combined

with all integrals of the form (ilI1j) with i ,j = 1,3. All of these integrals

can be found in the first column of processors. A remaining question is how

to assign E(2) contributions to the processors or, more generally, how to dis

tribute the super-integrals. Since the super-integrals are defined:

< ab I led> = (ae Ibd) - (ad Ibe)

a natural choice is to let the processor holding the first integral form and pro

cess t~e corresponding super-integral.

Note that for the calculation of the second and third order Moller Plesset

energy corrections not all the super-integrals need to be formed. For exam

ple, E(2) only has contributions from super-integrals of the form < ab I Irs>

with a ,b occupied orbitals and r ,s virtual orbitals. These constraints will

limit the number of integral blocks that need be sent around the processors.

The "driver" subroutine for the calculation of £(2) is given in figure 16.

Each processor loops over its resident integral blocks sending valid blocks

down the processor column. For the calculation of £(2) valid blocks are

th ose with k an occu pied orbital and I a virtual orbital. (If a processor has

no more valid blocks to send, it must still receive the remaining blocks being

broadcast by the other processors in order to finish the contributions to its

resident super-integrals.) After sending an integral block down the grid, each

49

node receives an integral block and immediately sends on a copy of this block

by calling the subroutine sendblkon. Next, contrb is called which generates all

super-integrals that can be formed from the resident and visiting integral

blocks. Once formed,· the super-integrals are not stored, instead they are

immediately combined with the appropriate D ijk1 elements (which are formed

as needed) and summed into the energy term. When all the nodes are

finished calculating the partial E(2) terms, hostsum is called to sum the terms

down a broadcast tree onto the host.

As mention.ed earlier, the alternative integral distribution leads to a very

different algorithm. In this scheme the integrals are assigned to processors

on the basis of their second and fourth indices. In the 3x3 example (figure

5) the upper left processor holds the integral block (i 11k 3) which is by sym

metry equivalent to (i31k 1). Hence, with this integral distribution, no com

munication will be necessary to form the super-integrals. The algorithm for

calculating E(2) is very simple. The routine ~imply loops over valid super

integrals, summing energy contributions into a buffer. When the loop is

complete, the partial terms are summed onto the host processor.

Each of the two integral distributions has merits and disadvantages. The

first allows efficient integral evaluation and transformation, but requires n

sequential communication steps to form the super-integrals. In contrast, the

second scheme allows the formation of the super-integrals without communi

cation, but adds a factor of two to the number of integrals which must be cal

culated and transformed. Which of these two scheme is ultimately the best is

dependent on the hardware being used. For some of the presently available

computers, on which communication and processing speeds are comparable

and on which memory is at a premium, the former scheme is best. How-

50

ever, for future parallel computers on which processing speeds will be much

faster than communication speeds and memory will not be a limitation, the

latter scheme will be optimal. Benchmarks results for both schemes are

given in the next chapter.

51

CONFIGURATION INTERACTION

Although Moller Plesset perturbation theory (MPPT) and configuration

interaction (CI) are both methods to correct for SCF's exclusion of instan-

taneous electron-electron correlation in the electronic wavefunction, the

actual computational procedures involved are very different. As discussed in

the previous section, the computation of MPPT energies involves summa

tions over the transformed integrals, -so the parallelization is fairly straight

forward. In contrast, CI calculations involve the formation and diagonaliza-

tion of the CI matrix < <1> IH 1<1» This procedure is computationally

difficult for both serial and parallel implementations since this matrix is very

large -- of order at least 100,000 for most systems of chemical interest. For-

tunately this matrix is sparse and only the first few roots are ever desired, so

that efficient iterative diagonalization methods can be used.

A commonly used iterative diagonalization method is that of Davidson.48

In this algorithm the true eigenvectors Cj are approximated by a set of k

basis vectors bi :

" C - = "" a.- -b·) ~ I) I

i

where k is much less than the order of the matrix. Each iteration involves

the construction and diagonalization of a k x k matrix P to form a new set

of coefficients a.jj • Additionally with each iteration a new basis vector b is

added to the expansion. The construction of the matrix P requires the mul

tiplication of each of the basis vectors by the matrix to be diagonalized.

Since a new basis vector is added with each iteration, this large matrix multi-

ply must be carried out each iteration.

52

While the Davidson procedure provides an efficient way to compute the

first few roots of the CI matrix, as described above it does not alleviate the

need to store the entire CI matrix. This can be avoided, however, by using a

method known as direct CI. In direct CI as each matrix element contribution

(a product of a transformed integral and a coefficient) is formed it is immedi

ately combined with the appropriate elements in the guess vector. In this

way when all of the CI matrix elements have been constructed the matrix

multiply is complete.

When the transformed integral list is evenly distributed onto the node

processors the direct CI method is well suited for parallelism. Each processor

calculates the coefficients for its set of transformed integrals. As each of

these partial matrix elements are produced, they are combined with the

appropriate elements in the guess vector. When the nodes have processed all

of their two electron integrals, the product vectors are summed together on

the host. The new guess vector is then generated and broadcast to the nodes.

Although the algorithm should be easy to implement it has the drawback

that each of the processors must hold a copy of the guess vector (which is the

same length as the CI expansion) as well as its set of MO integrals. Hence,

due to the limited memory currently available on the Hypercube the CI pro

gram has not yet been implemented.

53

Chapter III: Benchmark Results

INTRODUCTION

No matter how impressive the theoretical efficiency of an algorithm, the

true test is its actual performance when implemented on a real computer.

This is particularly true for parallel algorithms where unexpected bottlenecks

can drastically reduce the anticipated performance. In order to test the algo-

rithms presented in the previous chapter, they ·were implemented on a 32

processor Hypercube located at Sandia National Laboratories. Before

present~d the actual results, it would be worthwhile to describe briefly the

theory of measuring the efficiency of parallel algorithms.

The principle measure of performance is the· elapsed time necessary to

solve a real problem of interest. However, in evaluating parallel programs

the speedup gained by adding additional processors is often a more informa

tive measure. The speedup of a parallel program run on k processors, Sk is

defined by

where tk is the time necessary to complete the computation on a k processor

parallel computer, and fref is some reference time for the computation. It is

common to take fref to be the time necessary to perform the computation on

a single processor of the type used in the mUltiprocessor. Therefore, the

ideal case is Sk = k indicating that the computation runs a factor of k times

faster when running on k processors.

54

The first set of benchmark results are for the integral and SCF programs.

Results are given for both standard and direct SCF calculations. Next, the

results for complete integral, SCF, transformation, and second order Moller

Plesset energy calculations are given. Finally, the results are presented of an

extensive battery of benchmark calculations for the most computationally

complex of the programs implemented, the two electron integral transforma-

tion.

As mentioned earlier, the chief constraint on the problem sizes which

can be handled by the Hypercube is the relatively limited memory on each

processing node. In the standard configuration, each node has 512 Kbytes of

RAM. After the node operating system is loaded, 322 Kbytes remain for the

user programs and data. The node programs for the integral and SCF calcu

lations re-quire 81 Kbytes leaving 240 Kbytes. Since an n basis function prob-

4
lem requires the storage of - n8 in tegrals (each requiring 8 bytes of

memory), the maximum size SCF calculation that can be carried out using all

32 nodes is:

4..J 32 x 240000::: 50 basis functions

(Of course for a direct SCF calculation there is essen tially no limit on tbe

problem size since no integrals are stored.) The full set of node programs

(in tegral evaluation through Moller Plesset energy) require 119 Kbytes leav

ing 203 Kbytes for integral storage. The two integral distribution schemes

n 4

investigated require the storage of T and n 4 integrals, respectively,

corresponding to maximum problem sizes of 35 and 30 on a full 32 node

Hypercube.

55

This limitation can be alleviated by either adding more memory to each

node or by adding more processing nodes (so that each has a smaller fraction

of the total integral list). Both of these options are now available for the

Hypercube. The total number of processing nodes can be increased to 128,

and the memory per node can be upgraded to 4 M.bytes. All calculations car-

ried out for this thesis were on the standard configuration Hypercube.

In order to determine the program speedups it is necessary to run the

benchmark calculations on various sized subsets of the Hypercube processors.

The Hypercube allows the user to specify easily how many nodes to use for a

given calculation. A natural choice of subsets used for most of these bench-

marks are the "sub-cubes" of lower dimensions having 2n processors for

n = 0 to 5. However, using fewer than the. full 32 nodes decreases the total

available memory, so that the size of the test cases will be dictated by the

smallest processor array in the ~enchmark sequence.

In order to test the performance on both large and small cases two test

problems were chosen. The first is 24 basis function C2H2 for which a full

Moller Plesset calculation can be carried out on as few as 8 processing nodes.

The second test case is 13 basis function H20 which is sufficiently small to fit

on a single processing node. The details of these test cases are given in

appendix two.

SCF RESULTS

1 Since the host-to-node communication rate is about 3" that for node-to-

node, for calculation s in volving no post-SCF steps it is more efficien t to have

one of the node processors take the role of the host, receiving and diagonal-

izing the Fock matrix. (Note that this would be complicated for post-SCF

56

computations since the transformation requires a full rectangular grid.) This

strategy has been employed for the SCF benchmarks, and hence the proces

sor grids have size 2n_ 1 (n = 1 to 5).

The integral and SCF benchmark results for the C2H2 test case are given

in the tables in figure 17. Each of these tables has three columns of data.

The first contains results for the two electron integral evaluation. The second

gives results for the SCF step and the third lists results for the construction

of the partial Fock matrix.

The first table gives the total timings in seconds. Obviously the timings

in the second and third columns vary from node to node (unless load balanc

ing is perfect). The timings given are those fbr the slowest processors. The

second table lists the speedup ratios derived from the timings in the first

table. The values should· be compared with the numbers in the "ideal

speedup" column. These data show that the integral evaluation and Fock

matrix formation steps have nearly perfect speedups. The slightly super

linear speedups in the table are due to changing load balance for different

sized test cases.

Although the results for the Fock matrix formation step are very good,

the speedup for the full SCF calculation is not very encouraging. The

efficiency on 31 processors is less than 30%. Since the parallelized portions

show good speedup, the problem must be that the serial portion (the com

munication and diagonalization of the Fock matrix) must be dominating the

computation time. The communication benchmarks (appendix I) indicate

that the collection of the partial Fock matrices is rapid, so that the bottleneck

must be the diagonalization. For this test case (n= 24) this is not surprising.

As discussed in the SCF section, when the number of nodes (m) is com par-

57

able with the number of basis functions (n), the parallel Fock matrix forma

tion and the serial diagonalization steps have the same computational com

plexity. Although for much larger problem sizes (n > > m) the SCF

speedup should be good, it is clearly necessary to parallelize the diagonaliza

tion step in order to allow efficient use of large processor arrays.

The third table gives the percentage differences in the timings for the

fastest and slowest processors indicating the quality of the load balancing.

The results are quite good especially considering the small size of the test

case.

Figure 18 gives the same results for the 13 basis function H20 test case.

The results are pretty much the same as those for C2H2 except that the

smaller size of the ·problem leads to poorer speedups and load balancing on

large numbers of processors. A surprising and rather curious result is the

slight super-linear (i.e better than ideal) speedups seen for the first few.

numbers of processors. Since these speedups have been calculated relative to

single node timings this cannot be the result of poor load balancing in the

reference calculation (as was the case for the C2H2 benchmark). At this time

this anomalous result has not been definitely attributed to a specific cause. A

careful study of the algorithm has found nothing that would preferentially

degrade the single processor performance .. This indicates that some the prob

lem arises from some feature of the node hardware. A likely candidate is

associated with how the processor handles large data arrays. The size of the

data sets on each node is inversely proportional to the number of nodes parti

cipating in the calculation. Hence, if references into very large data arrays

are at all slower than references into small arrays, the algorithm's perfor

mance would be degraded when running on fewer processors. The fact that

58

memory access speed is inversely proportional to memory size has been used

as an argument for the possibility of super-linear speedups on parallel com

puters.49 However, more extensive benchmarks of the Hypercube would be

needed to verify that this is the phenomena being observed.

DIRECT SCF

The benchmark results for parallel direct SCF calculations on C2H2 and

H20 are given in figures 19 and 20. As before, these data are in three tables

giving total run times, speedups, and percentage load imbalance. Each of

these tables has two data columns. The first gives results for the complete

calculation while the second contains results for a single iteration the parallel

ized portion of the program. The parallelized portion involves both the

integral evaluation and the formation of the partial Fock matrix. As before,

the timings given are for the slowest processor. Note that the reference cal

culation for C2H2 was run on three processors (rather than one) due to time

limitations; memory is not a limitation for direct SCF calculations.

As might be expected from the previous results, the speedups are very

good. The parallelized portions show nearly perfect speedups over the entire

range of node configurations. The speedups for the complete calculation is

degraded on large numbers of processors (particularly for the smaller test

case) as the serial diagonalization step grows to dominate the computation

time. This problem can only be alleviated by parallelizing the diagonalization

step. Once again the results show slight « 5%) super-linear speedups for

small numbers of processors.

POST-SCF BENCHMARKS

..

..

59

This section describes benchmark results for the full Moller Plesset

energy calculations. This procedure involves four steps: integral evaluation,

SCF, integral transformation, and the E(2) calculation. Benchmarks calcula

tions were run for both the C2H2 and H20 test cases using both of the pro

posed Moller Plesset algorithms. These results are given in figures 21-24 in

the same format as the results in the previous two sections.

The integral and SCF results are very similar to those presented in the

previous sections. As anticipated the speedups and load balancing for these

steps is worse due to the more complicated integral distribution constraints

imposed by the transformation step. The particularly poor speedup for the

SCF step is due to the fact that a more lengthy matrix diagonalization pro

cedure is required since the transformation requires the full set of eigenvec

tors.

The speedup results for the integral transformation step are quite good.

For the larger C2H2 test case the speedups are ideal (or even slightly super

linear) for the entire range of processor configurations .. The reason for the

super-linear results are well understood. It is a consequence of the fact that

interprocessor messages are limited to 16 Kbytes on the Hypercube. When

small numbers of processors are involved in 'the transformation of a large test

case, many integral blocks must be assigned to each node. For sufficiently

large cases, the communication of the partially transformed integrals in the

final two steps of the transformation cannot be done in one message passing

step. Instead, the in tegrals must be passed in several comm unication steps

requiring extra overhead for the packing and sending of the message packets.

Since this multi-step communication is necessary only when a small number

of processors are being used, these cases will have degraded performance.

60

This suggests that the parallel transformation program does not yield good

few-processor reference timings. Instead, the speedups should be calculated

relative to a transformation program better suited for single processor opera

tion. This strategy was used for the more extensive transformation bench-

marks given in the next section.

As described in the previous chapter two different Moller Plesset algo-

rithms were investigated. One (type 1) involved interprocessor communica-

tion in the formation of the super-integrals. The other (type 2) required no

communication at the expense of an extra twofold redundancy in the number

of integrals evaluated and transformed. The type 1 results are given in

figures 21 and 23 and the type 2 results in figures 22 and 24. These results

show that the type 2 algorithm is 5-10 times faster than the type 1. Of course
.

the second order Moller Plesset calculation requires so little time that the

extra time spent in the integral evaluation and transformation steps far

outweighs any gain by using the type 2 algorithm. However, for higher ord-

ers of perturbation theory which have greater computational complexities

than the transformation the type 2 algorithm should be overall more efficient.

Note that the relatively poor speedups exhibited by the Moller Plesset

program are the result of the limited number of occupied orbitals in the two

test cases. Since t~e £(2) expression involves only integrals of the form

(ir Ijs) with i ,j occupied and r ,s unoccupied, the speedup is largely limited

by the number of occupied orbitals in the test case.

Load balancing data is not listed for the transformation and Moller

Plesset steps since these procedures involve explicit synchronization of the

processing nodes. Thus, overall load balancing would be difficult to measure.

61

TRANSFORMATION BENCHMARKS

The reason for developing these parallel quantum chemistry programs

was to be able ultimately to study very large chemical problems on the mas

sively parallel computers soon to be available. For such problems the compu

tational time will truly be dominated by the most computationally complex

steps. Hence it is important to benchmark carefully those steps which will

become future bottlenecks. For this reason an extensive series of benchmark

calculations were carried out on the two electron integral transformation. In

order to save the time and memory space required by the integral and SCF

calculations, the transformation was carried out on a set of "dummy" integrals

which were a simple function of the AO indices. The transformation matrix

C was simply a matrix with all entries equal to 0.5 to simplify the checking of

the results. Figure 25 summarizes the timings for various meshes and

numbers of basis functions.

In order to determine accurate speedups, a serial transformation program

was written. Since this program required too much memory to run large test

cases on a single Hypercube node, it was implemented on an IBM 3081 K at

the University of California, Berkeley. A series of benchmark calculations

revealed that the mainframe executed the transformation 103.5 times faster

than the Hypercube node. Thus, the speedup on k processors is defined

where tk is the computer time on k nodes and tref is the time for the serial

calculation on the IBM.

The speedups calculated in this way are given in figures 26 and 27. Fig-

ure 26 gives speedup curves for those basis sets sizes where the load evenly

62

divides onto the processor grid. The results for n=24 and n=32 are nearly

ideal. The curve for n = 16 shows some falloff, but the efficiency is still

greater than 90% on all 32 processors. For the smallest case, n = 8 there is

significant falloff indicating that the problem is so small that the communica

tion is becoming a bottleneck.

Figure 27 shows speedup curves for several problem sizes where even

load distribution is not possible for some of the meshes. Since the overall

speed of the transformation is limited .by the most heavily loaded processor,

these results are not as good as those for evenly loaded problem sizes. As

n = 24 is an evenly balanced case, n = 23 and n ='25 are two extremes in poor

load balancing. For n = 23 a few processors have less work than the majority,

so the speedup is not seriously degraded. However, for n = 25 only a few pro

cessors have extra work, but the remaining majority must wait for these to

catch up, leading to a more severe performance degradation. Nevertheless,

these results are still quite good considering the relatively small size or" the

test cases.

SUMMARY

Despite the constraints on problem size due to the limited memory on

each node, good performance speedups were found for the integral evalua

tion and transformation steps as well as the parallel portions of the SCF. The

SCF benchmarks clearly indicate the need to parallelize the diagonalization of

the Fock matrix. Although the test cases were too small to yield reliable

benchmarks for the Moller Plesset step, the speedup on smaller processor

meshes is encouraging.

Chapter IV:
tions

63

Conclusions and Fu ture D irec-

The work described in this thesis represents a first step in the develop

ment of a general system of quantum chemistry programs able to exploit the

capabilities of massively parallel computers. Just as the development of

efficient serial algorithms for quantum chemistry has taken many years, the

remaining steps will require the efforts of many researchers over a number of

years. Much of the remaining work has been alluded to in the preceding

. chapters. The following paragraphs will describe some of the continuing work

currently being pursued by the author and h,is collaborators.

As described in the previous section, most of the programs implemented

should give good performance on the parallel computers available in the fore

seeable future. A notable exception is the SCF step where the diagonaliza-

tion step can become a bottleneck on large processor grids. In· order to rec-

tify this situation work has begun in implementing the parallel diagonalization

algorithm described in this thesis.

A second direction of current work is to complete the implementation of

the third and fourth order Moller Plesset energy corrections. Once imple

mented, these methods will allow truly "state of the art" calculations to be

carried out in parallel.

Although not currently under development, the next logical step will be

the implementation of a general configuration interaction program. This

method has a number of advantages over Moller Plesset perturbation theory,

probably the most important being that it yields a variational upper bound on

64

the total energy. Additionally, the general methodology of forming and

diagonalizing a large Hamiltonian matrix is applicable to a large number of

problems in the physical sciences.

Finally, a straight forward but practically useful task will be the imple

mentation of programs to compute the first and second derivatives (with

respect to nuclear coordinates) of these various total energies (SCF, MPPT,

and CI). These procedures are well worked out for serial computers, and the

bottleneck steps involve the computation of large integral lists and the solu

tion of large systems of linear equations, both of which should easily parallel

ize.

Although the algorithms described in thiS thesis have been designed to

work efficiently on distributed memory parallel computers, they are

sufficiently general that they should provide good performance on a wide

range of parallel architectures. Work is currently under way to get these pro

grams running on two vastly different parallel computers.

The first of these is a ten processor Elxsi 6400 located at Sandia National

Laboratories. Although this computer has a shared memory architecture and

hence no explicit interprocessor communication channels, communication can

be mimicked by routines using the shared memory. Work is under way writ

ing Hypercube compatible communication routines. These routines will

require computational overhead to mimic effectively communication chan

nels, but this should not adversely affect the performance of the algorithms

since they were specifically designed for systems with relatively slow interpro

cessor communication. This suggests that all parallel algorithms should be

targeted for distributed memory computers since shared memory computers

can effectively mimic distributed memory architectures, while the converse is

65

not true.

A second type of parallel computer on to which these programs are being

implemented is not a tightly coupled set of homogeneous processors as are

the Hypercube or Elxsi. Instead, this "computer" is a large group of worksta

tions linked together by a local area network. Such collections of fairly

powerful workstations (each comparable to a DEC VAX 11/780) linked by

communication channel to each other and shared resources (such as printers

and disk drives) are becoming increasing popular and will soon be a ubiqui

tous presence in businesses and research institutions. Although these works

tations are individually too small to perform large scale scientific computa

tions, together they represent an enormous computing resource (especially

since they are. often idle during evenings and weekends). For example the

network of - 200 SUN 3/50 workstations currently in place at the University

of California at Berkeley is, as a unit, several times the power of the Cray X

MP at the central computing facility.

All that is required to use these large networks as a single distributed

memory computer is to write a series of Hypercube compatible communica

tion routines using the existing network protocols. The relatively slow net

work communication speeds should not seriously degrade the performance of

the algorithms described here. A set of preliminary routines have been writ

ten by Curtis Janssen at Berkeley. The speedup curve for a 26 basis function

integral and SCF calculation running on 1-8 SUN 3/50 workstations is given

in figure 28. Benchmark calculations will be carried out on much larger

arrays of workstations as soon as a more efficient set of communication rou

tines is com plete.

In addition to the development of parallel algorithms for the standard

66

quantum chemical methods, an important direction of study "is the develop

ment of entirely new approaches to molecular quantum mechanics which

involve inherently parallel techniques. One promising method which has

been developed during the past decade is Quantum Monte Carlo (QMC).50

The basic idea behind QMC is to recast the Schrodinger equation as a

diffusion equation which is then solved by a stochastic algorithm. This algo

rithm involves carrying out standard Monte Carlo updates on a large ensem

ble of possible configurations of the system (Le. trial wavefunctions). After a

certain number of generations, configurations are either discarded or repli

cated on the basis of a Boltzman weighting of their total energy. (This is

called the branching step.) Then the Monte Carlo procedure is again carried

out on the new ensemble of configurations. In this way, the ground state

wavefunction eventually evolves.

Since this algorithm involves the concurrent simulation ofa large ensem

ble of configurations it is ideal for parallelization. Each processor is assigned

a configuration or set of configurations for the Monte Carlo updates. Inter

processor communication is required only during the branching step. Unfor

tunately, there are still some problems using QMC on fermion systems

rela~ed to the selection and convergence of the wavefunction's nodal struc

ture. However, these problems are being addressed so that QMC should be a

very promising method for parallel implementation in the coming years.

Another potentially promising method involves the solution of the SCF

equations using pseudospectral methods originally developed for hydro

dynamic simulations. 51.52 The basis strategy is to construct different parts of

the Hamiltonian matrix (in this case the Fock operator) in different represen

tations. Certain parts of the Hamiltonian are best calculated in the spectral

67

(Le. basis set) representation. These terms include the kinetic energy terms

involving derivatives with respect to position. Other terms including the

electron-electron repulsion terms are best constructed in the spatial represen

tation (i.e. on a three dimensional grid). The collocation method is used to

transform between these two representations.

The net effect of this approach is that the number of two electron

integrals is reduced from n 4 to n 3 • This is potentially a big advantage for the

development of parallel implementations since the amount of memory on

each processor is one of the chief limitations on the size of problems which

can be studied.

Of course a lot of research on parallel processing is being carried out by

the computer science community. Of particular interest to computational

physical scientists is the work on software to parallelize automatically serial

programs. Ideally programs should not have to be specifically tailored to util

ize efficiently a particular computer. Instead the compiler should be able to

restructure the program for optimal performance regardless of whether the

architecture is scalar, vector or parallel.

Vector compilers have been under development for nearly a decade and

are now fairly adept at reordering loop structures to optimize vector perfor

mance. By comparison, automatic parallelization compilers are still quite new

and limited in capability. Those currently available seem capable of carrying

out efficiently very fine grained parallelization. More specifically, these sys

tems distribu te the program on an instruction by instruction basis, for exam

ple, distributing the successive cycles though a do-loop. While this approach

has proven successful so far, the fine grained nature of the parallelism

requires very high interprocessor communication rates and hence will be lim-

68

ited to relatively small numbers of processors.

In order to achieve the very large performance enhancements promised

by massively parallel computers much coarser grained parallelism will have to

be used. However, the automatic detection and exploitation of coarse

grained parallelism is very difficult. The problem is that this requires

knowledge of the control structure and data dependencies of the program,

and such information is very hard to extract from programs written in stan-

dard scientific programming languages such as FORTRAN. Unfortunately

this difficulty is not due to superficial features, but rather due to the funda-

men tal structure of these languages.

A particularly problematic feature of languages like FORTRAN is that all

variables point to memory locations ("pass by pointer"). While this has the

advantage of saving memory, it means that the input values to functions and

subroutines can (and often are) modified by the routine. Such modifications

are called sjde effects and they greatly complicate the problem of paralleliza

tion. For example, consider the following segment of code:

D = Juncl(A,B)

E = Junc2(A ,C)

Potentially June 1 and Junc2 could be evaluated in parallel. However since

June 1 may modify A , extensive analysis of June 1 is necessary before paral-

lelization can be implemented.

These difficulties are sufficiently serious that it is unlikely (at least in the

near future) that a fully automated compiler will be available that is capable

of restructuring efficiently a program for a distributed memory computer. Of

course many software tools will be available to aid in the development of

parallel programs, but the burden of determining how to distribute. the

..

69

program will still be on the programmer.

In order to overcome some of the difficulties associated with standard

scientific programming languages, computer scientists have developed a new

type of programming language known as functional languages.53 In these

languages the programmer works entirely with instructions that act like

mathematical functions, taking particular inputs and returning outputs. An

example of a simple function is sum (A ,B) which returns A +B . Note that

A and B are unmodified (Le. there are no side effects). From simple opera

tions such as sum the programmer constructs more and more complex func

tions until ultimately the program itself is defined in terms of these high level

functions. For example the following is a hypothetical SCF program:

sci _energy = sum (eieccenergy (nuc_coords ,basis) ,nucCenergy (nuc_coords))

where the total SCF energy is calculated as the sum of two functions calculat

ing the electronic and nuclear repulsion terms.

Such an approach has a number of useful properties. It produces well

structured, easy to read programs and it easily allows the construction of large

programs from sets of smaller programs. Further, functional programs are in

principle easily parallelized. The reason for this is that since the functions

have no side effects, all terms in a given expression can be evaluated con

currently. In the example given above, the functions eieccenergy and

nucCenergy can be evaluated simultaneously.

Despite these advantages, functional languages are somewhat difficult to

use and are inefficient on standard computer architectures. Hence, they are

still not universally advocated. Exactly how much of the task of paralleliza

tion will eventually belong to the programmer is still unclear; however, it is

likely that efficiently programming parallel computers may always be more

70

difficult than serial programming. Nevertheless, if large performance

increases are needed, this extra effort is justified.

A final question that should be addressed in this thesis is whether there

are ultimate limits on the speed and accuracy of scientific computation. This

question is more subtle than that of the limitations on processing speeds.

Parallel computers can in principle be made arbitrarily fast by linking together

arbitrarily large numbers of processors. Hence, the real limit is not the max

imum potential speed of the parallel computers, but instead the ultimate

degree to which scientific problems can be parallelized. Of course this largely

depends on the scientific problem at hand. Therefore, for simplicity consider

the numerical computation of the dynamics of a many-body system. Since

this computation is simply a direct simulation of nature, the limits on its

parallelizability are tied the deeper, more general question: to what extent are

natural processes parallelizable? That is, to what extent can nature be decou

pled into separate processes interacting only locally?

The difficulty with this decoupling is that at the scales nature is· usually

sim ulated, particles are assumed to exert instantaneous action at a distance.

Thus, for a system spatially mapped onto a grid of processors the motion of

particles on distant processors will to some degree be coupled. This coupling

will require interprocessor communication putting tight constraints on the

number of processors which can be efficiently used.

All natural forces attenuate with distance so that there is a cutoff dis

tance beyond which particles can be considered non-interacting. Therefore

the limit on the numbers of processors which can be efficiently used is deter

mined by the ratio of the distance of significant interactions to the size of the

system. For example, if the system being simulated is a relatively small clus-

71

ter of very massive particles, all particle motions will be tightly coupled so

that the system will not be amenable to massive parallelism. In contrast, sys

tems with no action at a distance such as continuum fluids and ''billiard-ball''

models are ideal for massive parallelism. For such systems the only limita

tion will be the communication required to calculate global system properties

such as energy, average momentum, and so on.

Since interprocessor communication limits the performance of parallel

computers, one strategy would be to shorten the message size and data

routes. This is the motivation for radical new computer architectures which

involve thousands of tiny few bit processors. Since the processors are very

small many can be fit onto a single integrated circuit so that the communica

tion channels are very short. Moreover, the processors are designed such

that the largest useful messages are only a few bits.

In order to use such machines efficiently, a very non-traditional approach,

'to scientific simulation is required.54 Rather than stylize large scale dynamics

into complex partial differential equations to be solved by numerical schemes,

the microscopic dynamics are encoded into very simple (few bit) rules

describing the local interactions of particles or small spatial regions. The

large scale behavior of the system is determined by studying very large aggre

gates of the in teracting sub-regions. Since the interaction rules are simple

and local, such algorithms are easily mapped onto these novel computer

architectures.

The first major application of this strategy has occurred only in the past

year when Pomeau and coworkers55 discovered that the large scale dynamics

of two dimensional incompressible fluid flow can be reasonably modeled by a

large ensemble of simply interacting point particles moving on a hexagonal

72

mesh. This so-called hexagonal lattice gas model is straight forward to paral

lelize and has already been efficiently implemented on a 65000 processor

Connection Machine.56 Despite its recent development this model has stirred

a great deal of scientific research and raised many fundamental questions

about hydrodynamics and . computational simulations.57 Work is currently

underway to extend this approach to more complex systems .including m ulti

componen t fluids58 and plasmas.59

Despite this success, it is still not clear whether these methods will be

applicable to strongly interacting, noncontinuum systems. Of course· the ulti

mate simulation of nature would be carried out at such a small scale that

instantaneous action at a distance would not occur--particles would interact

directly by exchange. of virtual particles. However at these scales the particles

themselves would be nonlocal wavepackets, leading to even deeper questions

about the simulation of fundamental interactions. Hence, the question of

whether there exist ultimate limits on the scale and accuracy of scien tific

simulations is not yet answerable; however, it is clear that the attempt to

reach this limit will uncover clues to the ultimate goal of science, an under

standing of the fundamental workings of nature.

73

Appendix 1: Hypercube Benchmarks

A series of benchmark calculations were carried out to test the process

mg speed and interprocessor communication rate of the Intel Hypercube.

The following table gives the timings for various operations on double preci-

sion real variables. These benchmarks were run on the processing nodes

using the system clock function to time the operations. The timing values

are in millisec and indicate the amount of time to carry 100000 repetitions of

the operation. In this table R indicates a double precision real variable, and

the final table entry is the overhead time for a do-loop of length 100000.

Floating Point Benchmarks

Operation Millisec per 10j Ops Ops per second

R*R 7728 12940

R*R*R 10304 9705

R+R 6624 15087

R
R

8144 12278

...JR 7440 13440

exp(R) 37056 2699

do-loop 2528 --

With do-loop overhead taken into account the processing speed of each node

is 19230 double precision multiplications per second. Hence if all 32 nodes

were used with 100 percent efficiency, the overall processing speed of the

Hypercube would be approximately .62 MFLOPS (million floating point

operations per second) or about the speed of 6 DEC VAX 11/780's.

74

Determining the interprocessor communication rates is a more compli

cated procedure. Since the clocks on the different nodes are not necessarily

synchronized, it is not possible to time directly the comm'unication of mes

sages between nodes. Instead, it is necessary to time the cycle of a message

from a node to its neighbor and then back to the original node again. Since

this round trip involves two complete message passing steps, the one way

comm unication rate can be calculated.

The following table gives the round trip communication times and the

derived one way message passing rates.

Node-to-Node Communication Rates

Message Size (bytes) Iterations Time (msec) Kbytes per sec

4 100 0.90 0.89

40 100 1.07 7.46

1000 300 4.32 138.9

1040 300 5.52 113.0

2040 300 5.87 208.4

2080 300 8.26 151.2

4080 300 12.26 199.7

4120 300 13.20 187.3

8160 300 322.64 216.3

8200 300 24.35 202.0

12280 300 33.39 220.7

12320 300 35.01 211.2

16000 200 42.91 223.7

75

The communication rate is plotted against the message size in. figure 29.

The asymptotic interprocessor communication rate is 225 Kbytes per second

for one-way, nearest neighbor message passing. The node to host communi

cation rate was calculated in a similar way and found to be 75 Kbytes per

second. Further, these results indicate that the net communication rate is

strongly dependent on the message size and that the messages are broadcast

in 1 kbyte chunks. Hence, when developing algorithms for the Hypercube,

communication overhead can be minimized by avoiding small messages or by

bundling them together into larger blocks. Comparing the node processing

speed of 19230 floating point operations per second with the maximum com

munication rate indicates that about 1.5 double precision numbers can be

passed between processors in the time that one operation can be carried out.

76

Appendix 2: Benchmark Test Cases

The parameters for the two benchmark test molecules are given in the

following tables. Note that the basis sets are fully uncontracted to simplify

load balancing.

Geometry

c- C 1.50 Bohr

C- H 0.75 Bohr

Energies .

SCF - 112.464174140 Hartrees

Moller Plesset (E(2») - .108571920639 Hartrees

Basis Sets

Carbon Hydrogen

Ang. Mom. Exponent # Ang. Mom. Exponent

1 S 42.4974 1 S 2.8992

2 S 14.1892 2 S 0.6534

3 S 5.1477 3 S 0.1776

4 S 1.9666

5 S 0.4962

6 S 0.1533

7-9 p 0.54424

..

77

Geometry

0- H 1.8523498 Bohr

H- 0- H 104.0330035 degrees

Energies

SCF - 63.195575507070 Hartrees

Moller Plesset (£(2») - 0.0694749326263 Hartrees

Basis Sets

Oxygen Hydrogen

Ang. Mom. Exponent # Ang. Mom. Exponent

1 S 5.0 1 S 0.5

2 S 1.0 2 S 1.0

3 S 0.5

4-6 P 0.75

7-9 P 1.25

• .'

1 2

L ./'

/' /'

3 4

Figure 1. Illustration of hypercubes of dimensions 1,2,3, and 4.
Vertices represent processors and edges represent direct
interprocessor communication channels.

78

A~ . A~: A~ A~: A~ A~
--------r-------r--------

A33 A34 A35

A~ A~, A~ A~, A35 A~
I I

--~-----r-------r--------

A54

AS2 A63 A64

Figure 2. Distribution of matrix elements onto a
3 x 3 grid of processors. Dashed lines indicate
indicate processor boundaries.

79

Program Host
c
C This program reads in a list of numbers, sends them
C to separate nodes for processing, and then sums the
C results together
C

c
Integer*4 ci,mtype,length,node,pid,rlength
Dimension x(32)

C Open communication channel
ci=copen(1)

C
C Read in the number of node processors

Read * ,nproc
C
C Read in nproc numbers

Read *,(x(i),i=l,nproc)
C
C Send these values to separate processors

mtype=1

C

length=4
pid=l
Do 10 i= 1 ,nproc
node=i-l
Call sendms g(ci,mtype,x(i),length.node,pid)

10 Continue

C Receive values back from nodes
total=O.O
Do 20 i=l,nproc
Call recvmsg(ci,mtype, value,length,rlength,node,pid)
total=total+value

20 Continue
C
C Print out result

Print * ,'Total =' ,total
End

Figure 3a. Listing of sample program for the host processor.

80

Program Node
C
C This program receives a value from the host, squares it
C and sends it back to the host.
C

Integer*4 host,pid,mtype,length,rlength,ci,copen
C
C Open communications channel

ci=copen(l)
C
C Receive value from host

mtype=l
length=4
Call recvw(ci,mtype, value,length,rlength,host,pid)

C
C Square this number

value=value*value
C
C Send new value back to host

Call sendw(ci,mtype, value,length,host,pid)
C

End

Figure 3b. Listing of sample program for the node processors.

81

I I I

- (Jl v 11 1) (Jl v 12 1) (Jl v I 3 1)

- (Jl v 11 2) (Jl v 122) (Jl v I 3 2)

- (Jl v I 1 3) (Jl v 12 3) . (Jl v I 3 3)

I I I

Figure 4. Distribution of two electron integrals for n = 3 on 3 x 3 grid of
processors. The Greek indices range over all symmetry distinct
values: Il,v = 1 to n, with Il ~ v .

82

~

-

~

v
I I 1

- (J.l 1 I'A. 1) (J.l2 I A. 1) (J.l 3 I A. 1)

(j

- (J.l 1 I A. 2) (J.l21 A. 2) (J.l31 A. 2)

- (J.l 1 I A. 3) (J.l 2 I A. 3) (J.l 3 I A. 3)

I I I

Figure 5. Distribution of two electron integrals for n = 3 on 3 x 3 grid of
processors. The Greek indices range over all values: ~,A = 1 to n.

83

-

r--

I 1 I
(~ v 11 1) (~ v 1.2 1)
(~v 14 1) Ol V 15 1) (~v 13 1) -
(~v 11 4) (J.l. v 124) (~v 13 4)

(~v 144) (J.l. v I 5 4)

cr
(~v 11 2) (~v 122)
(~v 142) (~v 152) (~v 13 2) -
(~v 11 5) (~v 125) (~v /3 5)
(J.1 v 145) (~v 155)

- (~v 11 3) (~v 12 3) (~v 155)
(~v 14 3) (~v 15 3)

I I I

Figure 6. Distribution of two electron integrals for n = 5 on 3 x 3 grid of
processors. The Greek indices range over all symmetry distinct
values: /..l,v = 1 to n, with /..l ~ v .

84

r--

r--

-

v
I I I

(Jl 1 / A, 1) (Jl2 / A, 1)
(Jl4 I A, 1) (Jl5 / A, 1) (Jl 3 I A, 1) -
(Jll / A, 4) (Jl2/ A, 4) (Jl31 A, 4)
(Jl4/ A, 4) (Jl5/ A, 4)

(J

(Jll/ A, 2) (Jl2/ A, 2)
(Jl4/ A, 2) (Jl5 / A, 2) (Jl3/ A, 2) -
(Jl 1 / A, 5) (Jl2/ A, 5) (Jl 3 I A, 5)
(Jl4/ A, 5) (Jl5 / A, 5)

..

- (Jl 1 / A, 3) (Jl2 I A, 3) (Jl5 / A, 5)
(Jl4 / A, 3) (Jl5 / A, 3)

I / I

Figure 7. Distribution of two electron integrals for n = 5 on 3 x 3 grid of
processors. The Greek indices range over all values: ~,A. = 1 to n.

85

f--

f--

f--

Host

Form one electron Integrals

Generate Initial
density matrix

Send Initial density
matrix to nodes

Receive and sum together
partial Fock matrices

Add one electron terms

Transform Fock matrix

Dlagonallze Fock matrix

Form density matrix

Nodes

Form two electron integrals

,Ir

----~----- ~ --Receive density matrix

, , , , , , , ,
~, , , , , ,

r

Form partial Fock matrix

"
Send partial Fock
matrix to host

-- ~

~

Figure 8. Flow diagram of integral and
SCF programs. Dashed lines indicate
interprocessor communication

86

87

Fock Matrix Contributions

Integral FQ4 F"" Fbb F"" Fcb Fet: FdtiJ Fdb FdI;

(aalaa) -.!P - - - - - - - -2 Q4

(balaa) P"" -.!P 2 - - - - - - -

(bblaa) Pbb .2.P"" PQ4 - - - - - -
2

(balba) .2.Pbb 2..P"" .2.p - - - - - -
2 2 2

(bblba) - 1 P
bb P"" - - - - - -

2

(cblaa) 2Pcb .2.p
2 ""

- ~P""
2

PQ4 - - - -

(calba) Pcb 2..p - 2..P"" ~P - - - -
2 "" 2 2

(cblba) - 2.. Pcb ~P ~Pbb 2..p - - - -
2 2 "" 2 2

(calbb) - ~Pcb 2P", Pbb .-:.!..P - - - -
2 2

(cclba) - Pet: - .2. Pcb
2

.-:.!..P
2 "" 2P"" - - -

(cblca) - .2.p - ~Pcb J..p P"" - - -2 cc 2 2 ""

(dclba) - 2Pdc - ...:.l.Pdb 2
...:.l.p
2 .. - ...:.l.Pcb 2

.2.p
2 "" 2P""

(dblca) - .-:.!..Pdc - 2Pdb ~P .. - ...:.l.Pcb 2P"" ..2.P""
2 2 2 2

(dalcb) - .-:.!..Pdc - ~Pdb 2PdtiJ - 2Pcb ...:.l.p ...:.l.PbtJ 2 2 2 "" 2

Figure 9. Symmetry distinct two electron integral contributions to the Fock matrix.
For example the integral (21111) has contributions to two Fock matrix elements:

1
P21 * (21111) to Fll and 2"P ll * (21111) to F21

Step 1

HOST

Step 2

Step 3

Step 4

;1~ ____,.7

3 1 ~ __ +-_-("

4!)-_-+-__ ..,6

3 1~ __ +-_~

!)-_-+-__ ..,6

~ ____ ...,.7

4!).-_-I-__ ...,I6

° "'-_ _--.;;;;2v

~ ____ 7

3 1 fC---+--.f'

'!J---+----.)6

Figure 10. Communication of message from host to all nodes using broadcast tree.

88

- (Il v I A 1) (Il v I A. 2) (Il v I A 3)

Step l:Initial distribution of AD integrals.

(Il V I A 1) (Il V I A. 2) (Il V I A. 3)

- l l l
(i j I k 1) (i j I k 2) (i j I k 3)

Step 2:In-place transfomlation of flrst 3 indices .

... -

resident: resident: fesident:
(ijlkl) (i j I k 2) (i j I k 3)

-
visiting: visiting: visiting:
(ijlk3) (i j I k 1) (i j I k 2)

Step 3:Transfonnation of final index requiring communication
around processor ring.

Figure II.Transfonnation of three basis function case mapped onto a
one dimensional grid of 3 processors.

89

-

f--

I

90

(J.l viII) (J.l v 12 1) (J.l V 1 3 1)

l t l
(i j I 1 1) (ijI21) (ijI31)

(J.l viI 2) (J.l V 122) (J.l V 1 3 2)

l l l
(ijI12) (ijI22) (i j I 3 2)

(J.l viI 3) (J.l V 1 2 3) (J.l V 1 3 3)

l l l
(ijI13) (i j 123) (i j I 3 3)

Step 1. In-place transfonnation of fIrst two indices.

Figure 12. Transfonnation for n = 3 on 3 x 3 grid of processors.

(

-

..

resident: resident: resident:
(ijI11) (i j 1 2 1) (i j 1 ~ 1)

.. ...
~

visiting: visiting: visiting:
(i j 1 3 1) (i j 1 1 1) (i j 1 2 1)

-...

resident: resident: resident:
(i j 112) (i j 122) (i j 1 ~ 2)

.. ~

visiting: visiting: visiting:
(i j 1 3 2) (i j 1 1 2) . (i j 1 22)

. -...

resident: resident: resident:
(i j 113) (i j 123) (i j 1 ~ 3)

..
visiting: visiting: visiting:

(i j 1 3 3) (ijI13) (i j I 2 3)

Step 1. Transfonnation of third index. Underlined numbers are
MO indices.

Figure 13. Transfonnation for n = 3 on 3 x 3 grid of processors.

91

r---

}

-

resident: resident: resident:
(ij 111) (i j I 21) (i j I 31)

visiting: visiting: visiting:
(i j 113) (i j 123) (ijl~3)

r 1,
"

resident: resident: resident:
(i j 112) (i j 122) (ijl~2)

visiting: ~ visiting: ~~ visiting:
(ijll1) (i j 12 1) (i j I 3 1)

" 1, " ..

resident: resident: resident:
(i j 11 ~ (ij 12 ~ (ij I ~ ~

visiting: visiting: visiting:
(i j 112) (i j 122) (i j I ~ 2)

I

Step 1. Transformation of fourth index. Underlined numbers are
MO indices.

Figure 14. Transformation for n = 3 on 3 x 3 grid of processors.

92

-

~

93

sul>routine trans(xints,buf,c,mylambda,k,nbosis)

comment: Perfonn the transfonnation on the index A, xinls
holds the integrals, but is a big scratch array, c is the MO coefficient matrix, mylambda is index of the
resident integral block. k is the index of the MO block to be fonned on the processor.

dimension buft.2,nbasis,nbasis), xints(nbasis,nbasis), c(nbasis,nbasis)

comment: initialize the pointers into buf .

inpoint=2
outpoint=l

comment: Copy the resident integrals into the first half of buf and zero
xinls.

do 1.1. = l,nbasis
do v = l,nbasis

bufl.outpoinl,1J., v)=xints(JJ., v)
xinl$, v)=0.0

end do(v)
end do(l.I.)

comment: lambdLJ holds the A value for the current integral block. Initially set to resident A.

lambdLJ = mylambdLJ

comment: loop over nu mber of processors in row (= nbasis). With each pass process the contents of the half
of but pointed to by outpoinl.

do i/oop = l,nbasis

return
end

comment: send the integral block about to be proceed to the neighboring
processor and initiate receipt of a new integral block.

call send(bufl.outpoinl»
call recv(bu.f(inpoinl»

comment: sum into xints the contributions from outpoinl half of but

do 1.1. = l,nbasis
do v = l,nbasis

xinl$,v) = xinls(JJ.,v) + C(k,lambda)*bufl.outpoinl,I.I.,v)
end do (v)

end do (1.1.)

comment: update value of lambdLJ to match incoming buffer.

lambda = lambda - 1
if (lambda.eq.O) lambda = nbasis

comment: Check to make sure new integral buffer has been .received.

call waitchan

comment: now swap values of outpoint and inpoint

call swap(outpoinl,inpoint)
end do(i/oop)

Figure 15. Fortran-like code for the transfonnation of the third index.

94

subroutine mp2(numk,numl,Llist,k_list,nblocks)

comment: This routine calculates the second order Moller Plesset energy from
transformed integrals distibuted on the basis of their third and fourth indices.
numl and numk contain the number of k and I index values for the integral
blocks located on the processor. k_list and Llist are arrays containing the lists
of k and I index values. nblocks contains the total number of valid integral
blocks in the column of processors.

dimension k_list(50), Llist(50)

comment: Loop over resident integral blocks, sending valid blocks down the
processor column.

do Icount = 1,numl
I=Llist(lcount)
do kcount = 1,numk

k=k_list(kcount)

comment: Skip this block if I is not an occupied orbital or k is not an
unoccupied orbital.

if (l.gt.nocc) goto 200
if (k.le.nocc) goto 100

comment: Send valid blocks to lower neighbor.

call sendblk(k,l)

comment: Receive a block from upper neighbor

50 call recvblk(owner,visiting_k,visiting_l)
nblocks=nblocks-1

comment: If received block is a resident block, make
contributions, but don't pass it on.

if (owner.eq.mynode) then
call contrb(visiting_k, visiting_I, value)

comment: If all blocks in column have been received, then quit.

if (nblocks.eq.OJ goto 500

comment: Otherwise send out another resident block.

goto 100

end it

Figure 16. FORTRAN-like driver routine for type 1 second order Moller
Plesset energy calculation

comment: Send visiting block to lower neighbor.

call sendblkon

comment: Calculate £<2) contribution from visiting integral block.

call contrb(visiting_k, visiting_I, value)

comment: Receive next block.

goto 50
100 continue

comment: Now all valid resident integral blocks have been

processed, but it is still necessary to wait for
contributions from other processors' blocks.

200 continue
call recvblk(owner,visiting_k,visiting_l)
call sendbikon
call contrb(visiting_k, visiting_I, value)

comment: Quit if last block has been processed.

nblocks=nbiocks-l
if (nblocks.eq.O) goto 500
goto200

comment: All that remains is to sum up the partial £(2) values on the host.

500 call hostsum(value)

return

end

Figure 16. continued

95

96

Total Execution Time (sees)

Nodes Integral SCF Fock Matrix

3 811.94 1289.20 7.86

7 352.06 706.21 3.14

15 158.66 479.92 1.49

21 79.14 378.62 0.70

Speedups

Nodes Integral SCF Fock Matrix Ideal

3 1.00 1.00 1.00 1.00

7 2.34 1.83 2.25 2.33

15 4.92 2.69 5.05 5.00

31 10.0 3.40 10.31 10.33

Load Imbalance (%)

Nodes Integral SCF Fock Matrix

3 1.4 -- 11.9

7 5.9 -- 4.9

15 9.1 -- 17.3

21 11.3 -- 14.6 .

Figure 17. SCF Benchmark results for 24 basis function C2H2

97

Total Execution Time (sees)

Nodes Integral SCF Fock Matrix

1 364.83 5167.36 2.05

3 116.42 2200.32 0.67

7 50.93 141.74 0.34

15 25.97 113.94 0.26

31 11.78 101.58 0.16

Speedups

Nodes Integral SCF Fock Matrix Ideal

1 1.00 1.00 1.00 1.00

3 3.13 2.35 3.05 3.00

7 7.16 3.65 6.10 7.00

15 14.05 4.535 8.00 15.00

31 30.98 5.09 12.80 31.00

Load Imbalance (%)

Nodes Integral SCF Fock Matrix

1 -- -- --
3 4.5 -- 7.1

7 15.0 -- 23.8

15 28.2 -- 56.3

21 16.8 -- 72.5

Figure 18. SCF Benchmark results for 13 basis function H20

98

Total Execution Time (sees)

Nodes Total SCF Integral and Fock Matrix

3 19623.50 838.99

7 8573.07 358.88

15 4232.83 170.42

31 2248.43 84.02

Speedups

Nodes Total SCF Integral and Fock Matrix Ideal

3 1.00 1.00 1.00

7 2.29 2.34 2.33

15 4.64 4.92 5.00

31 8.73 9.99 10.33

Load Imbalance (%)

Nodes Total SCF Integral- and Fock Matrix

3 -- 1.4

7 -- 8.0

15 -- 9.0

31 -- ll.l

Figure 19. Direct SCF Benchmark results for 24 basis function C2H2

99

Total Execution Time (sees)

Nodes Total SCF Integral and Fock Matrix

1 11555.23 368.90

3 3749.52 117.82

7 1691.25 51.52

15 909.34 26.27

31 479.1 12.37

Speedups

Nodes Total SCF Integral and Fock Matrix Ideal

1 1.00 1.00 1.00

3 3.08 3.13 3.00

7 6.83 7.16 7.00

15 12.71 14.14 15.00

31 24.12 29.83 31.00

Load Imbalance (%)

Nodes Total SCF Integral and Fock Matrix

1 -- --

3 -- 2.9

7 -- 14.9

15 -- 28.1

21 -- 19.9

Figure 20. Direct SCF Benchmark results for 13 basis function H20

100

Total Execution Time (sees)

Nodes Integral SCF Fock Matrix Transformation MPPT

8 1213.02 863.42 9.28 341.84 4.59

16 649.12 804.93 4.85 163.70 2.66

32 399.15 730.43 2.58 81.26 2.19

Speedups

Nodes Integral SCF Fock Matrix Trans. MPPT Ideal

8 1.00 1.00 1.00 1.00 1.00 1.00

16 1.87 1.07 1.91 2.09 1.73 2.00

32 3.04 1.18 3.60 4.21 2.09 4.00

Load Imbalance (%)

Nodes Integral SCF Fock Matrix Transformation MPPT

8 14.8 20.8 15.2 -- --
16 27.3 18.2 21.8 -- .. --
32 47.6 25.9 34.8 -- --

Figure 21. Type 1 Moller Plesset benchmark results for 24 basis function C2H2

101

Total Execution Time (sees)

Nodes Integral SCF Fock Matrix Transformation MPPT

16 1242.32 945.88 5.09 385.60 0.48

32 764.34 925.42 3.09 190.58 0.24

Speedups

Nodes Integral SCF Fock Matrix Trans. MPPT Ideal

16 1.00 1.00 1.00 1.00 1.00 1.00

32 1.63 1.02 1.65 2.023 2.00 2.00

Load Imbalance (%)

Nodes Integral SCF Fock Matrix Transformation MPPT

16 24.4 35.8 43.4 -- --
32 47.2 34.9 63.7 -- --

Figure 22. Type 2 Moller Plesset benchmark results for 24 basis function C2H2

102

Total Execution Time (sees)

Nodes Integral SCF Fock Matrix Transfonnation MPPT

2 698.03 325.66 3.55 76.96 3.76

4 341.22 266.11 1.78 38.69 1.92

8 190.99 257.78 0.96 21.41 1.87

16 109.66 227.94 0.56 12.18 1.14

32 60.00 209.66 0.32 6.26 0.88

Speedups

Nodes Integral SCF Fock Matrix Trans. MPPT Ideal .

2 1.00 1.00 LOO 1.00 1.00 1.00

4 2.05 1.22 2.00 1.94 1.96 2.00

8 3.66 1.26 3.70 3.60 2.01 4.00

16 6.37 1.43 6.34 6.23 3.31 8.00

32 11.63 1.55 11.10 12.30 4.27 8.00

Load Imbalance (%)

Nodes Integral SCF Fock Matrix Transformation MPPT

2 9.6 20.6 12.6 -- --
4 18.3 23.5 21.6 -- --
8 39.0 28.9 33.3 -- --
16 53.8 25.9 45.7 -- --
32 61.3 18.0 65.0 -- --

Figure 23. Type 1 Moller Plesset benchmark results for 13 basis function H20

103

Total Execution Time (sees)

Nodes Integral SCF Fock Matrix Transformation MPPT

2 1292.69 372.26 3.30 178.38 0.45

4 631.36 317.33 1.66 87.04 0.24

8 353.66 299.22 0.99 48.27 0.16

16 202.94 274.90 0.58 27.25 0.11

32 111.01 237.38 0.40 13.98 0.06

Speedups

Nodes Integral SCF Fock Matrix Trans. MPPT Ideal

2 1.00 1.00 1.00 1.00 1.00 1.00

4 2.05 1.17 1.98 2.05 1.87 2.00

8 3.66 1.24 3.32 3.70 2.80 4.00

16 6.37 1.35 5.72 6.54 4.00 8.00

32 11.65 1.57 8.24 12~76 7.00 16.00

Load Imbalance (%)

Nodes Integral SCF Fock Matrix Transformation MPPT

2 9.6 33.5 22.3 -- --

4 9.4 36.6 16.3 -- --
8 39.1 39.9 58.1 -- --
16 51.5 38.0 69.4 -- --
32 62.7 29.3 88.0 -- --

Figure 24. Type 2 Moller Plesset benchmark results for 13 basis function H20

104

Processors BaSIS FunctIons

1

2

2

4

4

4

8

8

8

8

16

16

16

16

16

32

32

32

32

32

32

Mesh 8 16 2U 23 :24 :2,) 32

:2xi. 11.Y1 -- -- -- -- -- --

lx2 6.06 175.65 -- -- -- -- --

2xl 6.05 175.70 -- -- -- -- --

lx4 3.20 85.18 267.57 -- -- -- --
2x2 3.14 84.51 265.76 -- -- -- --
lx4 3.20 85.22 267.63 -- -- -- --

lx8 1.82 43.04 159.09 277.23 321.44 -- --
2x4 1.71 42.19 128.94 284.54 315.87 -- --
4x2 1.74 42.14 128.88 277.06 315.89 -- --
lx8 1.92 43.14 159.26 272.06 321.49 -- --

lxi6 -- 23.68 107.46 185.41 216.53 260.46 --
2x8 1.17 21.81 77.47 140.24 155.65 263.63 --
4x4 1.12 21.44 64.00 136.00 154.10 246.13 --
8x2 1.18 21.66 77.54 137.38 155.65 254.14 --
16xl -- 23.25 107.65 182.21 216.98 260.27 --

lx32 -- -- -- -- -- -- 352.54

2x16 -- 12.35 53.01 95.14 105.81 132.75 327.73

4x8 0.90 . 11.34 38.80 68.61 77.65 139.36 320.56

8x4 0.86 12.08 38.80 68.61 77.62 139.25 320.54

16x2 -- 12.34 53.17 95.50 105.84 132.74 327.79

32xl -- -- -- -- -- -- 352.32

Figure 25. Summary of execution times in seconds for parallel transformation pro

gram.

105

40

p

Ideal
..........................

30
x 8 basis functions

0 16 "basis functions

C8l 24 basis functions
Co XK 32 basis functions ~

"'0
Q)
Q)

20
Co

C/)

10

o~--------~----------~--------~----------~
o 10 20 30 40

Number of processors

Figure 26. Speedup curves for test cases with even load balancing.

Co
::l

"'0

40

30

Q) 20
Q)

Co
(J)

10

Ideal

x 20 basis functions

o 23 basis functions

~ 25 basis functions

04-----------~--------~----------~--------~

o 10 20 30 40

Number of processors

Figure 27. Speedup curves for problem sizes with unequal load distributions.

106

107

a · a
,0

a · OJ

a
· CD

a · r--..

a
·

£L (0

::::)

O~
WlJ"l
W
£La
(j) •

~

a · n

a · N

26 BASIS FUNCTIONS
a IDEAL ·
a · a

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

NUMBER OF PROCESSORS

Figure 28. SCF speedup curves for a network of Sun Workstations.

o
o
If)
N

o .
If)
N
N

UO Wo
(j)0
",N
(j)0
W·
E--<l:C
>-<
[Do

~o
~ If)

Wo
E--< • celf)
n:::~

z~
DB
.................
E--<
ceo
u~
........... r--...
Z
~o
L .
L~
o
Uo .

If)
N

o .
o~ ____ ~ ______ ~ ____ ~ ____ ~ ____ ~ ______ ~ ____ ~ ____ ~

-0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

MESSAGE SIZE (BYTES)

Figure 29. Node-to-node communication rate vs. message size.

108

109

References

1 I. Von Neumann, transcript of talk given at the Institute for Advanced
Study, May 15, 1946, Office of Naval Research, Washington D.C.

2N. Metropollis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E.
Teller, I. Chem. Phys. 21, 1087 (1953).

3S.p. Boys, G.B. Cook, C.M'. Reeves and I. Shavitt, Nature 178, 1207
(1956).

4Prom the Cray-l at 12.5 nsec. In 1976 to the Cray-2 at 4.1 nsec. In

1985.

5B.L. Buzbee; Tech. Report # LA-UR-83-1389, Los Alamos National
Laboratories, (1983).

6D.L. Slotnick, w.e. Borck and R. McReynolds, Proc. Fall It. Comput
ing Conf. APIPS Conf. Proc. 22, 97 (1962).

7G.H. Barnes, R.M. Brown, M. Kato, D.I.Kuck, D.I. Slotnick and R.A.
Stokes, IEEE Trans. Computing C.17, 746 (1968).

8Many. refs. in Y. Paker Multi-Microprocessors (Academic Press, New
York, 1983).

90. Fiellant and D. Rogers, Electronic Design, (Sept. 1984).

10FPS T Series, Sales Brochure from Floating Point Systems, Inc., Box
23489 Portland, Oregon 97223.

llU. Bernutat-Buchmann, D. Rudolph and K.H. Scholtter, Parallel Com
puting Eine Bibliographie (Univ. of Bochum, Bochum, 1983).

12N.S. Ostlund, R.A. Whiteside and P.G. Hibbard, I. Phys. Chem. 86,
2190 (1982).

13E. Clementi, G. Corongiu, I.H. Detrich, L. Domingo, A. Laaksonen,
H.L. Nguyen and S.Chin, Tech. Report # POK-40, IBM, (1984).

14S. Otto, Callech/JPL Concurrent Computing Project Annual Report 1983-
84, vol. 2 Applications, (Caltech, 1985).

110

15E.A. Hylleraas, Z. Physik 48, 469 (1928).

16H.M. lames and A.S. Coolidge, I. Chem. Phys. 1, 825 (1933).

17I.H. Van Vleck and A. Sherman, Rev. Mod. Phys. 7, 167 (1935).

18R.S. Mulliken and C.C.I. Roothan, Proc. Nat. Acad. Sci. 45, 395
(1959).

19Many examples in H.F. Schaefer III, Science 231, 1100 (1986).

20E. Clementi, G. Corongiu, I. H. Detrich, S. Chin and L. Domingo,
Int. 1. Q. Chern. Symposium 18, 601 (1984).

21M. Dupuis, private communication.

22For examples where relativistic effects are significant: P.A. Christian
sen, W.C. Ermler and K.S. Pitzer, Ann. Rev. Phys. Chem. 36, 407
(1985).

23B.T .. Sutcliffe, in Computational Techniques in Quantum Chemistry,
edited by G .H.F. Diercksen, B.T. Sutcliffe and A. Viellard (Reidel, Bos
ton, 1975), p 1.

24A. Szabo and N.S. Ostlund, Modern Quantum Chemistry: Introduction to
Advanced Electronic Structure Theory (M acmilian, New York, 1982).

251. Shavitt, in Methods of Electronic Structure Theory, edited by H.F.
Schaefer III (Plenum, New York, 1977), p 189.

26J.A. Pople, I.S. Binkley and R. Seeger, Int. I. Q. Chern. Symposium
10, 1 (1976).

27R.I. Bartlett, Ann. Rev. Phys. Chem. 32, 359 (1981).

28C.F. Bender, I. Compo Phys. 9, 547 (1972).

29y. Osarnura, Y. Yamaguchi, P. Saxe, M.A. Vincent, I.F. Gaw, H.F.
Schaefer III, Chern. Phys. 72, 131 (1982).

30I.E. Rice, R.D. Amos, N.C. Handy, T.I.Lee and H.F. Schaefer III, I.
Chern. Phys. 85, 963 (1986).

31I.A. Pople, R. Krishnan, H.B. Schlegal and I.S.~ Binkley, Int. J. Q.

111

Chem. Symposium 13, 225 (1979).

32Responses to First Survey of Parallel Processing Projects, compiled by
Arvind, Laboratoty for Computer Science, MIT (1985).

33W.D. Hillis, The Connection Machine (MIT, Cambridge, 1985).

34D.J. Kuck, E.S. Davidson, D.H. Lawrie and A.H. Sameh, Science 231,
967 (1986).

35J.E. Brandenburg and D.S. Scott, Tech. Report # 280182-001, Intel
Scientific Computers, (1983).

36E. Felton, S. Karlin and S. Otto, Caltechl JPL Concurrent Computing
Project Memo 92B.

37M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to
the Theory of NP Completeness (W.H. Freeman, San Francisco, 1979).

38Review listing many refs: D. Hegarty and G. Van der Velde, Int. J. Q.
Chern. 23,. 1135 (1983).

39S. Obara and A. Saika, J. Chern. Phys. 84, 3963 (1986).

40H. Taketa, S. Huzinaga, K. O-ohata, J. Phys. Soc. of Japan 21, 2313
(1966) .

41B.N. Parlett, The Symmetric Eignevalue Problem (Prentice-Hall, Engle
wood Cliffs, 1980).

42C.G.J. Jacobi, J. Reine Angew. Math, 30, 51 (1846).

43A.H. Sameh, Math. of Compo 25, 579 (1971).

44R.A. Whiteside, N.S. Ostlund, and P.G. Hibbard, IEEE Trans. Com
puting C-33, 409 (1984).

45R.P. Brent and F.T. Luk, SIAM J. Sci. Stat. Compo 6, 69 (1985).

46V.R. Saunders and J.H. van Lenthe, Mol. Phys. 48,923 (1983).

47H.B. Schlegel, J. Chern. Phys. 84,4530 (1986)

48E.R. Davidson, J. Compo Phys. 17, 87 (1975).

112

49C. Mead and L. Conway, Introduction to VLSI Systems (Addison
Wesley, Reading, 1980), pp 264-270.

50p.J. Reynolds, D.M. Ceperley, B.J. Alder and W.A. Lester, J. Chem.
Phys. 77, 5593 (1982).

5IR.A. Friesner, Chem. Phys. Lett. 116, 39 (1985).

S2R.A. Friesner, J. Chem. Phys. 85, 1462 (1986).

53S. Eigenback and C. Sadler, BYTE (Aug. 1985), p181.

54T. Toffoli, Physica lOD, 117. (1984).

55U. Frisch, B. Hasslacher and Y. Pomeau, Phys. Rev. Lett. 56, 1505
(1986).

56-rech. Report # 86.14, Thinking Machines Inc., Cambridge (1986).

57S. Wolfram, J. Stat. Phys. 45, 471 (1986).

58p. Clavin, D. d'Humieres, P. Lallemand "and Y. Pomeau, Com pt.
Rend. Acad. Paris, in press, (1986).

590. Montgomery and G.D. Doolen, Tech. Report # LA-UR-86-2975,
Los Alamos National Laboratories, (1986).

.--
LA WRENCE BERKELEY LABORA TORY

TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

