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ABSTRACT 

1 

For many years it has been recognized that fundamental physical con­

straints such as the speed of light will limit the ultimate speed of single pro-

cessor computers to less than about three billion floating point operations per 

second. This limitation is becoming increasingly restrictive as commercially 

available machines are now within an order of magnitude of this asymptotic 

limit. A natural way to avoid this limit is to harness together many proces­

sors to work on a single computation problem. In principle the net process-

ing speed of such a system is limited only by the number of processors linked 

together. 

The usefulness of potentially unlimited processing speed to a computa­

tionally intensive field such as quantum chemistry is obvious. Moreover, if 

these methods are to be applied to significantly larger chemical systems, 

parallel schemes will have to be employed. The work described in this thesis 

represents a first step toward the development of a general system of parallel 

quantum chemistry programs. Parallel algorithms have been developed for 

several important quantum chemical techniques: integral evaluation, self con­

sistent field calculation, integral transformation and second order Moller 

Plesset energy calculation. These algorithms have been implemented and 
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tested on a 32 processor Intel Hypercube . 
. -

The benchmark calculations indicate very good parallel performance for 

all of these algorithms. The most computationally complex step, the two 

electron integral transformation. exhibits nearly perfect parallel speedup. 

That is, when utilizing n processors, the execution speed is increased by a 

factor of n over the single processor implementation. 

• 
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Chapter I: Introduction to. Parallel Computers and 
Molecular Quantum Mechanics 

INTRODUCTION 

In 1946 shortly after the development of the first electronic computer John Von 

Neumann was asked to consult the Office of Naval Research on whether enough 

applications could be found for high speed computing devices to justify further fund­

ing. Von Neumann concluded: 

It is, furthermore, quite clear that there are many problems where the 
length or the complexity of the problem is not sufficient to justify elec­
tronic speeds. It is important, however, to point out that there are plenty 
of problems which justify this speed, and, furthermore, the chances are 
that if these speeds become available, we will come to discover more and 
more how numerous these problems are. 1 

In the forty years since Von Neumann made this comment computers have had. 

a revolutionary impact on nearly all aspects of human endeavor. Today computers 

are essential tools in many fields including business, medicine, publishing and 

manufacturing. However no field has been affected more dramatically than scientific 

research. Computers are a ubiquitous presence in the laboratory where they control 

instruments and collect and analyze data. Yet the most important function of com­

puters in science is that which Von Neumann originally predicted: as a tool for the 

accurate theoretical modeling of physical systems. 

The potential of such computational models was quickly recognized by scien-

tists and a number of significant research projects were carried out on the earliest 

available computers.2,3 In the subsequent decades scientific computation has had a 

history of impressive achievements and spawned the creation of many new fields of 
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theoretical research. A large factor in the increasing accuracy and utility of of 

scientific computation has been the phenomenal growth of computer performance. 

In the past forty years the instruction speed and memory capacity of computers have 

increased by nearly six orders of magnitude. 

Unfortunately single processor (or serial) performance will not continue to 

'improve at this rate. Despite a thirty year history of a factor of ten increase in 

instruction speeds every 5-7 years, the past decade has seen only a three fold 

increase in the clock rates of high-end supercomputers.4 Moreover, fundamental 

physical constraints such as the speed of light limit single processor computational 

speeds to less than about three billion floating point operations per second5 which is 

less than an order of magnitude' faster than currently available supercomputers. 

Such a limitation would seriously impair many fields where the size and accuracy of 

the systems modeled are severely constrained by available computer speeds. 

A possible solution to this problem is to harness together many processors to 

work on a single computational problem. In principle the net processing speed of 

such a system is limited only by the number of processors linked together. The con­

cept of so called parallel processing computers has been around since the earliest 

days of automatic computing, and a number of experimental parallel computers were 

proposed and built in the 1960's and 70's.6,7,8 Yet, parallel computers have 

become commercially available only in the last few years with the development of 

inexpensive and reliable processing elements. Currently there are more than a dozen 

commercially announced parallel computers ranging from two processor machines 

operating at less than a megaflop (million floating point operations per second)9 to 

4000 processor machines operating at nearly a hundred gigaflops (billion floating 

point operations a second).lO 

The potential capabilities of parallel computers have stimulated tremendous 

" 



3 

interest in the computer science community (illustrated by the fact that a 1983 

bibliography on parallel computers contained a total of 5161 entries ).11 Despite this 

great enthusiasm among computer scientists, there has been relatively little interest 

from the physical sciences. This lack of interest is due to the experimental nature of 

most of the available parallel computers and the difficulty of programming 

efficiently such machines. Nevertheless there have been a few significant efforts 

worthy of note, all the result of collaboration between physical scientists and com­

puter scientists. 

One of the earliest such efforts was carried out at Carnegie-Mellon University 

and involved the development of monte carlo and molecular dynamics algorithms for 

the 50 processor CM* computer.12 Two large parallel computing projects are 

currently underway at IBM and Caltech. The ffiM project is aimed at developing 

quantum chemistry and molecular dynamics algorithms for parallel computers 

involving relatively small riumbers of high-end processors.13 The Caltech project 

involves the application of very large arrays of microprocessors to a wide variety of 

problems in the physical and biological sciences. 14 In the near future the number and 

magnitude of parallel scientific computation projects will certainly grow, as parallel 

hardware and expertise become more widespread and the need for faster computers 

more acutely felt. 

COMPUTERS AND MOLECULAR QUANTUM MECHANICS 

With the development of quantum mechanics in the 1920's it becam.e possible 

In principle to predict theoretically any chemical property. Such a prediction 

requires solving the molecular Schrodinger equation, a partial differential equation of 

the elliptic type which is insoluble for all but trivial cases. Hence, for thirty years 

theoretical chemists were limited to very small systems (such as helium atom15 or 
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hydrogen moleculel6 ) or to very simplified models of large compounds.!? The 

advent of the electronic computer rapidly expanded the horizons of the quantum 

chemist. In 1956 Boys reported the first quantum chemical calculation carried out 

entirely on an. electronic computei3 and only three years later Robert Mulliken 

predicted: "colossal rewards lie ahead from large scale quantum mechanical calcula­

tions of the structure of matter."IS Since 1959 great strides have been made in this 

direction. Theoretically predicted molecular properties are used routinely to aid in 

the interpretation of experimental results, and there have been many instances where 

discrepancies between theory and experiment have been resolved in favor of 

theory. 19 

Despite this history of successes, Mulliken's vision of obtaining" the electronic 

eigenfunction and energy of every major type of molecule" has not been realized. 

The problem is not that there are inherent limitations in the theoretical methods; 

these methods could, in principle, be applied to macromolecules or solids. Instead 

the . limitation is due to the inherent complexity and associated computational cost of 

solving the molecular Schrodinger equation. Even the fastest available supercomput­

ers are not sufficiently fast to allow the study of molecules with more than a few 

dozen' atoms. Hence, the limitations on single processor performance discussed in 

the last section will seriously constrain the size of systems amenable to study by 

quantum chemical methods. If quantum chemical calculations are to be carried out 

on significantly larger systems, parallel computers will have to be used. 

The conversion of standard quantum chemical methods to parallel computers 

will not be an simple task. Most of these methods require large data sets and 

involve tightly coupled iterative algorithms not easily broken down into concurrent 

procedures. Moreover, the quantum chemical procedures have been optimized to 

make efficient use of single processor computers, further complicating the conver-

j) 
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sion to parallel machines. 

A research group a mM under the direction of Enrico Clementi has success­

fully implemented a parallel scheme for doing SCF calculations 20 and are currently 

developing parallel algorithms for other quantum chemical techniques.21 However, 

these algorithms are designed for parallel computers having ten or fewer very large 

scale processors. In order to gain the very dramatic performance increases promised 

by parallel computers, algorithms must be designed to run efficiently on arbitrarily 

large arrays of processors. The work described in this thesis represents a first step 

towards this goal. This work involved the design and implementation of parallel 

algorithms for several major quantum chemical procedures. These algorithms were 

implemented on a 32 processor Intel Hypercube, a prototype of the much larger 

parallel computers that will be available in the next few years. 

The remainder of this chapter is divided into three sections. The first is a 

description of the met~ods and computational requirements of molecular quantum 

mechanics. Following this is a brief overview of the types of parallel computers 

now available and a description of the Intel Hypercube. The third section is a dis­

cussion of general principles for parallelizing scientific programs. Chapter two con­

tains a detailed description of the parallel algorithms, and the third chapter gives the 

benchmark results and an analysis of the algorithm efficiencies. The final chapter 

discusses quantum chemical methods and computer technologies that seem promis­

ing for the future. 

METHODS OF MOLECUlAR QUANTUM MECHANICS 

The goal of molecular quantum mechanics is to calculate from first principles 

the chemical properties of molecular systems. This amounts to solving the molecu­

lar Schrodinger equation to determine the wavefunction of the molecule of interest. 
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From this wavefunction all observable properties of the molecule can be calculated. 

The molecular Schrodinger equation cannot be solved exactly except for the 

simplest systems, so that a series of approximations must be made. For most chemi­

cal applications, relativistic effects are sufficiently small that they can be ignored. 22 

Also. terms coupling nuclear motion to the electronic structure can be omitted from 

the molecular Hamiltonian (Born-Oppenheimer approximation23 ) so that the prob-

lem reduces to determining the electronic wavefunction for a fixed nuclear frame­

work. 

In most quantum chemical calculations the electronic wavefunction is 

represented by an antisymmetrized product of molecular orbitals (MO's) known as a 

Slater determinant. 

1 
'II = _rt det(<I»l <1»2 •.• <1»11) 

-vn! 
(1.1) 

These molecular orbitals are approximated as linear combinations of atomic orbitals 

(AO's) 

(1.2) 

The matrix C relating the molecular orbitals to the atomic orbital basis functions is 

determined by the iterative self-consistent field (SCF)24 procedure. The atomic orbi­

tal basis functions are represented by analytic functions having the form of linear 

combinations of gaussian functions: 

~d f. m; 11; -a;r 
XJ,.L = 44 i X 'y Z e 

i 
(1.3) 

The contraction coefficients d are fixed before the computations begins. Typically a 

quantum chemical calculation involves the use of 50-100 of these basis functions. 

The SCF procedure is usually carried out in two steps. The first is the numeri-
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cal calculation of integrals over the basis functions. The most time consuming of 

these integrals has the fonn: 

(1.4) 

These integrals have an inherent 8-fold symmetry with respect to the permutation of 

their indices: 

(J..1VIAcr) = (VJ..1IAcr) = (AcrlJ..1v) 

For a system with n basis functions there are n4/8 of these integrals, hence the com­

putational complexity of this step is O(n4). The second step is the calculation of the 

self consistent field energy and molecular orbitals. This iterative procedure requires 

the repeated construction and diagonalization of a Hamiltonian matrix from the pre­

calculated integral list. This Hamiltonian is called the Fock operator and has the 

form: 

(I.5) 

where H is the sum of the kinetic energy and nuclear attraction integrals, and P is 

the density matrix fonned from the SCF vector C. The complexity of this step is 

also O(n4) since the integral list must be processed each iteration. An alternative 

approach is used when there is insufficient memory to store the two-electron 

integrals. In this strategy, known as direct SCF, the integral list is recalculated 

every SCF iteration. 

Although many properties calculated fonn the SCF wavefunction are quantita­

tively accurate24 , it is often necessary to go beyond this first order approximation. 

There are a variety of different methods for extending the accuracy of the SCF 

wavefunction. The more widely used methods include: configuration interaction25, 

Moller Plesset perturbation theory26, and coupled-cluster methods27. These 
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techniques have the common feature that they all require the AO integral list to be 

transfonned into the MO basis. This transfonnation has the fonn: 

(ijlkl) = LLLLCIJ.PvjCuCal(JlvIAO') 
IJ. v A. a 

(1.6) 

where iJ,k,l, are MO indices, Jl,V.A,O', are AO indices, and C is the MO coefficient 

matrix. As written above, this transfonnation has complexity O(n8), but it can be 

rearranged into a series of partial transfonnations so that it has complexity O(n5).28 

The two most widely used post-SCF techniques are configuration interaction 

(CI) and Moller-Plesset perturbation theory (MPPT). Both methods have strengths 

and weaknesses so that they can be used in complementary roles. 

Moller-Plesset perturbation theory is standard perturbation theory approach 

where the zeroth-order Hamiltonian is the Hartree-Fock wavefunction. The pertur­

bation tenn is the difference between this approximate Hamiltonian and the full 

molecular Hamiltonian. When the perturbation expansion is carried ou~ corrections 

to the SCF energy and wavefunction to various orders are obtained. The energy 

expressions have the fonn of sums of products of transfonned integrals and SCF 

orbital energies. For example the second order energy correction is: 

(1.7) 

where Ea is the SCF energy of orbital a and <abllrs> are the so called super-integrals 

fonned from the transfonned integrals as follows: 

<abllcd> = (aclbd)--(adlbc) (1.8) 

The energy corrections are routinely calculated to fourth order in quantum chemical 

. calculations. 

In the configuration interaction technique the molecular wavefunction is 

approximated as a linear combination of Slater determinants. In general the 



9 

wavefunction of any molecular system can be written as 

1<1» = col'P 0>+ Lc~I'P?+ L c~I'P~ ... (1.9) 
ra a<b 

r<s 

where l'Po> is the Hartree-Pock wavefunction and I 'P~ represents the ground state 

wavefunction with an electron excited from the occupied orbital a to virtual orbital 

r. 

The CI energies and wavefunctions are the eigenvalues and eigenvectors of the 

CI Hamiltonian matrix: 

<<1>IHI<l» (1.10) 

where H is the molecular Hamiltonian and 1<1» is the wavefunction given above. 

Since the number of terms in the CI wavefunction grows exponentially in the 

Many interesting chemical properties depend not on the total molecular ener-

gies (calculated by the methods just described), but instead depend on the derivative 

of this energy with respect to nuclear coordinates or some external field. Although 

these derivatives can be approximated by finite difference techniques' from the 

energy calculations, in the past decade more accurate and efficient methods have 

been developed. These methods involve explicitly differentiating the energy expres-

sions and then evaluating these exact expressions. These so-called "analytic" deriva-

tive methods have been implemented for the first and second derivatives (with 

respect to nuclear coordinates) for SCp29, CI30, and MPPf31 wavefunctions. 

This thesis describes algorithms and implementation results for the integral 
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evaluation, SCF energy calculation, integral transfonnation, and second order 

Moller-Plesset energy calculation. Additionally, an algorithm is described for a 

parallel configuration interaction program. 

Introduction to Parallel Processors 

A 1985 survey by the Parallel Processing Research Council found more than 50 

ongoing projects developing new parallel computer architectures.32 Although these 

computers all involve the interconnection of many processors, the nature of the indi­

vidual processors and how they are linked together vary greatly fonn design to 

design. Despite the vast number of proposed designs it is possible to classify nearly 

all parallel computers into a relatively small number of categories. 

One broad categorization is made on the basis of whether the individual proces­

sors carry out the same or different instruction streams. One design is labeled single 

instruction multiple data stream (SIMD) and refers to computers where a number of 

processing elements carry out the same instructions in lock-step on parallel streams 

of data. SIMD machines are well suited for application such as numerical solution 

of differential equations where the identical numerical computation is carried out on 

each distinct grid point The classic example of a SIMD machine is the Illiac IV7 

which contained an 8x8 grid of processors. A recent and more exotic SIMD com­

puter is the "Connection Machine"33 which contains 65,000 one bit processors and 

was designed for both scientific and artificial intelligence applications. The limita­

tion of SIMD computers is, that they can be used efficiently only when the computa­

tional problems well match the the unifonn structure of the machines. 

The alternate category is the multiple instruction multiple data stream (MIMD) 

computers. MIMD describes any linked collection of processing elements which are 

not constrained to carry out identical instruction streams (as are SIMD machines). 

,"' 
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To perform useful computation the processors have to be able to communicate, and 

it is this communication scheme which defines the subcategories of MIMD comput-

ers. 

The two most common communication strategies are for the processors to share 
I 

a common pool of memory (shared memory) or to communicate explicitly by send-

ing and receiving . message packets (distributed memory). Many of the proposed and 

currently available MIMD computers use shared memory. In most shared memory 

computers any processor can access any value in the common memory. This makes 

programming shared memory computers relatively straight forward and for this rea-

son most research on automatic parallelizing compilers (Le. compilers which convert 

serial programs to parallel) is targeting shared memory computers. 

There is, however, a drawback to the shared memory architecture. As the 

number of processors becomes large the communication with the shared memory can 

become a bottleneck. It IS not yet known how restrictive this bottleneck will prove 

to be, but most such machines have less than 20 processing elements. A possible 

way to void the limitation is to have a hierarchy of common memories in which 

small clusters of processors share a common memory and each cluster has a single 

channel to a global shared memory.34 Of course, the introduction of such a hierar­

chy is at the cost of programining simplicity which was the prime motivation for 

using the shared memory architecture. 

Distributed memory architectures have the advantage that there are in principle 

no hardware bottlenecks since communication between one pair of processors is 

independent of communication between another pair. The disadvantage of distri­

buted memory systems is that it is more difficult to program since passing data 

requires synchronizing both the sending and receiving processors. 

An important design parameter of distributed memory computers is the connec-
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tion topology of the processing elements--that is, the way in which the processors 

are linked by communication channels. A large variety of communication topolo­

gies have been studied. These are usually regular grids in one or more dimensions 

(where the grid's vertices represent processing elements and the edges represent 

communication channels). The conclusion of these studies has been that the optimal 

processor connectivity is dictated by the computational problem at hand. 8 Hence, 

one option is to build a special purpose processor for each problem to be solved. A 

more practical alternative is to use a complex connectivity that has a large number 

of useful sub-topologies. 

An example of the second alternative are the hypercube architectures. In a 

hypercube the processor connectivity is that of a n-dimensional boolean hypercube. 

A hypercube of dimension n has 2" processors each connected to n neighbors. 

Hypercubes of dimension 1, 2, 3, and 4 are shown in figure 1. This connection 

topology allows the embedding of regular meshes of lower dimension than the 

hypercube using a subset of the connections of the hypercube. Such mappings are 

easily carried out using a technique known as Gray coding.35 

The goal of the work described in this thesis is to demonstrate the feasibility of 

very dramatic speedups through the use of parallel computers. Such performance 

increases require the use of very large numbers of processors which are currently 

available only in distributed memory computers. For this reason the algorithms 

presented were designed with regard to the advantages and limitations of distributed 

memory machines. 

The implementation of the programs was carried out on an Intel IPSC parallel 

computer (hereafter referred to as the Hypercube) located at Sandia National Labora­

tory in Livermore, California. The Hypercube is a 32 processor distributed memory 

computer with hypercube connectivity. In addition to these 32 "node" processors, 

• 
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there is a host processor with a communication channel to each node processor. 

Each processing node contains an INTEL 80286 CPU and an 80287 floating point 

processor as well as 512 Kbytes of RAM. The host is an identical processing ele­

ment with 2 Mbytes of RAM and access to a 20 Mbyte hard disk. The communica­

tion links areethemet channels with a maximum bandwidth of 10 megabits per 

second. 

A series of benchmark calculations were run on the Hypercube to determine its 

overall performance. These indicate that if all 32 processors are running at 100% 

efficiency, the Hypercube operates at 0.62 million floating point operations per 

second. The node to node communication rate to be 225 kbits per second for 

. nearest neighbor nodes. Although it is possible to send messages between non­

nearest neighbor nodes, this causes a significant degradation in communication 

speed. Taken together, these results indicate that· a node can carry out 65 floating 

point operations in the time it can transmit 1 Kbyte of data to the neighboring pro­

cessor. The details of these benchmark results are given in appendix 1. 
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GENERAL PRINCIPLES FOR PARALLEL ALGORITHMS 

Before discussing the quantum chemical algorithms it would be instructive to 

outline some general principles for programming distributed memory computers and 

to describe a few of the details involved in programming the Hypercube. When 

designing an algorithm for a single processor computer, the key to efficiency is to 

reduce the total number of operations. In contrast, for parallel algorithms the goal is 

to divide the problem into equal sized tasks that can run concurrently. Unfor­

tunately these two goals are often conflicting so that the best serial algorithm for a 

given problem is not necessarily the best starting point for an efficient parallel algo­

rithm.36 This means that it will often not be adequate simply to modify existing pro­

grams. Instead, the problem should be carefully reconsidered with special attention 

to how the task can be subdivided. 

When dividing a problem into subtasks a number of constraints must be kept in 

mind. Most importantly, each subtask must be nearly the same computational size. 

That is, the computational load on each processor should be evenly balanced. 

Another consideration is how much communication will occur between processors. 

Obviously some communication must occur if a useful task is to be carried out, but 

the time the processor spends communicating is wasted and will decrease the perfor­

mance relative to a single processor algorithm. An additional consideration is that 

communication should be carried out in an orderly, organized manner. This is to 

avoid having one communication channel getting overloaded (thereby becoming a 

bottleneck) and to insure against the more serious problem of processor deadlock. 

Deadlock is the situation where a ring of processors becomes stuck because each 

processor in the ring is waiting for a message from the previous processor. 

Given these constraints, what is the best strategy for dividing a problem into 

concurrent tasks? One alternative would be to write a unique program for each 

• 



.'" 

15 

individual processing element. However, this approach is unsatisfactory for a 

number of reasons. One problem is that such an implementation will only work on 

a fixed number of processors, so that the performance could not be improved by 

adding more processing elements to the computer. Moreover, it would be prohibi­

tively difficult to write separate programs for each of the tens or hundreds of proces­

sors available in most distributed memory computers. 

A better strategy for subdividing a problem is to have one "control program" 

(usually running on a separate "host" processor) coordinating the activity of a single 

"slave" program which runs on all of the remaining processors. This allows the use 

of a flexible number of processors since at run time the host program can read in the 

number of available processing elements and adjust the load on each processor 

accordingly. Also, this requires the writing of only two separate programs. 

The first step in this strategy is to find one or more "dimensions" along which 

the problem can be divided. These dimensions are usually an adjustable parameter 

of the calculation, such as the number of particles in a molecular dynamics problem, 

the number of basis functions in a quantum chemistry calculation, or the order of the 

matrices in a linear algebra computation. The subdivision of the task onto the pro­

cessors then occurs along these dimensions. For example, if the problem involves 

the construction of a large matrix where each matrix element is the result of the 

same operations on different data sets, then the problem naturally divides up with 

each processor computing a equal sized sub-block of the matrix (see figure 2). 

Since most problems have a number of such dimensions careful thought should 

be given to which are subdivided. The choice of dimensions requires consideration 

of both constraints dictated by the problem, such as load balancing and communica­

tions costs, and constraints dictated by the computer, such as the number and con­

nectivity of the processors. For example, consider the simulation of the motion of a 
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set of mutually interacting particles. The problem can be divided so that each pro­

cessor is assigned either to propagate a fixed set of particles (regardless of where 

they are located) or to propagate all particles in a given region of space (regardless 

of how many particles it contains). The latter strategy is best for cases with a rela­

tively uniform particle density -- so that the computational load is balanced, and for 

cases with short-ranged interparticle forces -- so that communication between pro­

cessors is minimized. In order to avoid communication problems, however, this 

strategy requires a processors connectivity that supports a regular three dimensional 

mesh. 

As can be seen from this example there is no simple recipe for devising an 

efficient parallel algorithm -- each problem requires careful consideration of con­

straints described above. In the following sections an effort has been made to clar­

ify the steps in developing a efficient parallel algorithm by providing a step-by-step 

description of the development of these algorithms. 

PROGRAMMING THE HYPERCUBE 

At the present time programming the Hypercube is much like programming a 

serial computer. The programs for both the host and node processors are written in 

either FORTRAN or C (all programs described in this thesis were written in FOR­

TRAN). The interprocessor communication is facilitated by a set of routines which 

handle all of the communication protocol. Most of ~e internode communication is 

carried out by with four routines: send and recv for asynchronous communication 

and sendw and recvw for synchronous communication. These routines take the same 

set of arguments: a channel number, a message type, the starting address and length 

of the message, and the destination node (or the sending node in the case of recv or 

recvw). The message type is a user specified integer which identifies the message. 

A message will be received by a processor only if its type matches that specified in 

" 
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the recv or recvw call. 

The synchronous communication routines (sendw and recvw ) block the opera­

tion of the program until the message has been received in the case of recvw or 

copied out of the user space in the case of sendw. The asynchronous routine recv 

simply queues a request for the receipt of a message. Similarly the send routine 

simply initiates the transmission of a message before returning to the program. The 

host communicates to the node processors via two synchronous communication rou­

tines: sendmsg and recvmsg. Although the routines described here are specific to 

the hypercube, they are sufficiently simple and general that similar routines will 

probably be standard on future distributed memory computers. 

The use of these routines is illustrated by the simple Hypercube program in 

figure 3. The host program reads in the number of processors to be used (nproc ) 

and an array of numbers (x ) equal in length to the number of processors. The host 

then sends out each of these numbers to a separate processor. The nodes receive the 

number, square it, and send it back to the host where the numbers from all the pro­

cessors are summed together (total ). 

Finally, a few hardware features unique to the Hypercube should be considered 

since they will affect the design of the programs to be discussed. Most important of 

these is the limited memory available on the processing nodes. Although there is 

512 Kbytes (thousand bytes) of memory available on each node, the node operating 

system requires nearly 200 Kbytes leaving only 320 kbytes of usable memory. 

Since the nodes have no access to mass storage and there is no provision for pro­

gram overlay, all of the programs and data for a given calculation must fit into this 

limited space. This limitation will be discussed further when the benchmarks are 

presented. 

A second item requiring special consideration is the Hypercube's very low ratio 
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of processing speed to communication speed (see appendix 1). In its standard 

configuration, the Hypercube can send a word (8 bytes) of data in nearly half the 

time it takes to carry out a floating point operation. This will clearly not be the case 

for future distributed memory computers and a vector processing board is now avail­

able for the Hypercube which boosts the processing speed by a factor of 100 

(without increasing the communication speed). For these reasons the algorithms 

were designed assuming a relatively high processing speed to communication speed 

ratio. 
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Chapter II: Parallel Algorithms for Molecular 
Quantum Mechanics 

INTEGRAL EVALUATION 

An important consideration in developing a package of quantum chemis­

try programs is that most calculations involve running a series of these pro-

grams in sequence (for example, an integral evaluation followed by an SCF 

~alculation). Hence, in order to optimize the efficiency of the overall compu­

tation it is necessary to design the set of programs to facilitate the most com­

putationally d·emanding steps. This can be complicated because it often 

means ~hoosing less than optimal algorithms for the simpler· steps. The com-

putational complexity ofa number of common quantum chemical procedures 

are given in the following table (n = number of basis functions). 

Com pu tational com plexities 

Procedure Complexity 

Integral evaluation o (n4) 

SCF o (n4) 

In te gral tran sform ation o (n) 

MPPT (second order) o (n4) 

MPPT (third order) o (n 6) 

MPPT (forth order) o (n 7) 

CISD o (n 6) 
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The first step in most quantum chemical calculations is the numerical 

evaluation of various integrals. There are three sets of one electron (two 

index) integrals: the nuclear repulsion, kinetic energy and overlap integrals. 

. n*(n+l) 
Each of these sets contams . 2 integrals where· n is the number of 

basis functions. The remaining integrals are the two electron (four index) 

in tegrals (equation 1.4). This set is much larger than the one electron 
4 . 

integral sets, containing n8 symmetry distinct integrals. Since the calculation 

of the two electron in tegrals vastly dominates the integral evaluation step, the 

emphasis should be to parallelize this step. The computation of the one elec-

tron integrals will be carried out on the host processor. 

In principle the parallelization of the two electron integrals is straight for­

ward; each processor computes an equal sized subset of the total integral list. 

However, the distribution of the integrals onto the processor is complicated 

by considerations of how the integrals will be used in subsequent computa­

tional steps. In the development of this integral program two common 

sequences of quantum chemical computational procedures were considered. 

The first of these (the most common of all quantum chemical computations) 

is simply an SCF energy calculation. The second sequence is an SCF calcula­

tion followed by a post-SCF procedure requiring an integral transformation. 

I ntegral distribution for S C F calculations 

The computational complexity of the integral evaluation and SCF steps 

are the same, so neither step should be given dominant consideration. 

Further, since an efficient SCF algorithm can be designed which will work 

with arbitrary integral distributions, it is necessary only to focus on efficient 

load balancing of the integral evaluation. The simplest method to distribute 
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equally the integrals is to have. each processor loop over all symmetry distinct 

integrals and select a unique subset to calculate and store. This can be 

accomplished by the segment of program given below: 

[COUNT = 0 
JCOUNT= 0 
DO Jl = 1, NBAS[S 

DO v = 1, Jl 
DO A = 1, Jl 

DO cr = 1, A (v if Jl= v) 
[COUNT = [COUNT + 1 
IF «MOD (ICOUNT ,NUMPROC».EQ.PROCjD) THEN 
EVALUATEINTEGRAL(Jlv~cr) 

END DO ( cr) 
END DO ( A) 

END DO (v) 
END DO ( Jl) 

Each processing node has a unique identification number (PR OCjD) rang­

ing from 0 to the total number of processors minus 1. An integral is 

evaluated if the integral's cardinality (ICOUNT) modula the tot.al num ber of 

processors (NUM PR OC) is equal to the node's identification number. 

This scheme guarantees equal balancing of the total number of integrals 

on each processor. A difficulty arises, however, since some basis function s 

represent more complex atomic orbitals than others (p or d orbitals as 

opposed to s orbitals) so that the computational cost for evaluating each 

integral is not the same. This means that even though each processor has an 

equal number of integrals, the net computational load may not be evenly bal­

anced. Unfortunately a more exact load balancing would be very difficult to 

achieve. Even if the exact computational cost of each integral type was 

known in advance, equal distribution of the load would be an extremely 

difficult computational task. (This task is equivalent to the "multidimensional 

knapsack" problem which is in the class of NP complete problems widely 
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believed to have an exponential computational complexity).37 

A possible alternative is to use dynamic load balancing. In this strategy a 

certain number of integrals are held back and then are dealt out to the first 

node processors to finish their initially assigned integrals. The decision was 

made not to implement dynamic load balancing in the integral evaluation step 

since it would greatly increase the complexity of the program and take up 

much needed memory space. Moreover, the simple scheme proposed evenly 

distributes both the computationally simple and complex integrals so that for 

large problem sizes the load balancing should be quite good. (This is 

confirmed by benchmark results given in the following chapter.) 

I ntegral distribution for post-S CF calculations 

If the two electron integrals are eventually to be transformed, a number 

of complicated constraints are placed on the distribution scheme. The 

transformation is simplified if the integrals are available in continuous seg­

ments (rather than scattered as in the method previously described). More­

over, the communication costs in the transformation step are greatly reduced 

if some integral redundancy is allowed. 

For reasons that will be explained in the description of the transforma­

tion step, a good way to distribute the integrals is to map them onto a two 

dimensional rectangular array of processors (a subtopology of the hypercube 

connectivity). A simple way to carry out this mapping is to choose two of the 

integral's four indices as the coordinates of the processing node which is to 

evaluate the integral (figures 4-7). If there are more basis functions than 

processors along one of the dimensions then more than one basis function 

per processor is assigned along that dimension (see figures 6 and 7). 
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Due to 'the inherent symmetry of the two electron integrals, there are 

only two symmetry distinct pairs of indices which can be chosen: the last two 

indices A.,a , and the second and fourth v,a. The choice of which two 

indices to use for the integral distribution is determined by what will be done 

with the transformed integrals. Figures 4-7 illustrate these two possibilities, 

both for the case where the number of basis functions matches the number 

of processors in each dimension (figures 4 and 5) and the case where the 

humber of basis functions exceeds the number of processors along each 

dimension (figures 6 and 7). 

These two distribution schemes involve the calculation of different 

numbers of integrals. The first scheme easily allows the use of one of the 

three index symmetries (permutation of the first two indices) so that there is 

a four fold redundancy in the integrals calculated. The second scheme does 

not allow the. easy use of any of the integral symmetries so that all N4 

integrals are calculated. Of course the calculation of redundant integrals 

means that the integral evaluation step is non-optimal; however, this integral 

distribution will facilitate the more computationally complex integral transfor­

mation and post-SCF steps. Both of these distribution schemes will give 

good load balancing for sufficiently large problem sizes. 

Two electron integral evaluation 

Methods for the numerical evaluation of two electron integrals have 

been the focus of intense research efforts for the past three decades38 and 

are still a subject of much interest.39 The result of these efforts have been a 

large number of computationally efficient methods for integral evaluation. 

Although the integral evaluation scheme chosen for the Hypercube was dic­

tated by memory considerations, the question of which methods are optimal 
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for parallelization should be addressed. 

In the most efficient integral evaluation schemes two strategies are used 

to improve performance. One is the precomputation of large tables of repeat­

edly used numerical values. The other strategy is to compute the integrals in 

large groups to eliminate the redundant computation of partial terms. Both 

of these present special difficulties for parallel implementation,s which must 

be carefully considered. 

A potential problem with the precomputation of lookup tables is that it 

does not use memory very efficiently since each of the processing nodes 

would have to store a copy of the table. Another concern is the manner in 

which the table is computed. It is obviously undesirable to have each proces­

sor calculate the entire table; however, if each processor computed unique 

segments, a large amount of communication would be required to fully distri­

bu te the table. 

The most common approach to the second strategy is to calculate the 

in tegrals in complete shell blocks. A shell block is the set of all integrals 

over common atomic shells. For example, a complete (<I>p <l>s I <l>s <l>s) block 

contains the following three integrals: (<I>px <l>s I <l>s <l>s) , (<I>py <l>s I <l>s <l>s) , and 

(<I> pz <I> s I <I> s <I> s) • The followin g table lists the sizes of other shell blocks. 

Shell block SIze 
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The rationale for this strategy is that the mathematical expressions for 

each integral in the shell blocks contain many common parts, so that if the 

entire block is calculated at once, many potentially redundant steps are 

avoided. This approach has proved to be very efficient on serial computers, 

but a number of problems arise when attempting to construct a parallel ver­

sion of this scheme. These problems stem from the fact that to be efficient, 

the computation of the integrals in an individual shell block cannot be split 

across processors. This leads to the possibility of very poor load balancing 

due to the large discrepancies in the sizes of the shell blocks. A further 

difficulty that arises if the integrals are distributed by shell block is that the. 

resulting distribution will complicate subsequent integral transformation and 

post-SCF steps. Despite the difficulties sited here, these two strategies poten­

tially offer very large increases in the efficiency of the integral evaluation 

step, so despite their drawbacks, these methods should be carefully con-

sidered in future implementations of parallel integral evaluation programs. 

As mentioned earlier, the prime concern in developing an integral pro­

gram for the Hypercube was to conserve memory (since a fast integral 

evaluator would be of little use if there was no memory remaining to store 

the integrals.) Hence the decision was made to write an new integral evalua­

tion program rather than use one of the available programs. The expressions 

used for both the one and two electron integrals are those derived by Taketa, 

Huzinaga, and O-ohata.40 These expressions have the form of sums of pro-

ducts involving numerical constants, input values (angular momenta, internu-

clear distances), and the so-called associated F-function: 

1 

F m(t) = f t2m exp( - xt2)dt 
o 

(ILl) 
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An advantage of this method over the more efficient techniques is that the 

expressions are completely general so that integrals can be calculated over 

basis functions of arbitrarily high angular momentum. 

In the implementation on the Hypercube, each integral is evaluated indi­

vidually, so that no efficiency is gained by avoiding redundant computation. 

The overall size of the two electron in tegral program based on this method is 

55000 bytes. In comparison, a standard two electron integral package 

(excluding lookup tables) requires nearly 800,000 bytes. For the simplest 

two electron integrals, (<1>5 <1>5 1<1>5 <1>5), the Hypercube implementation is 

about a quarter the speed of the larger program. 
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SELF CONSISTENT FIELD CALCULATION 

The SCF procedure is more complex and less homogeneous than the 

integral evaluation and hence a much more difficult task to parallelize. The 

first step is to look in detail at the various steps involved and the associated 

computationally complexity. The steps involved in an SCF iteration for a 

closed shell system are listed below. 

1) Generate initial guess for the density matrix. 

2) Form two electron part of the Fock matrix: 

1 
F~v = LPA.CJ[(~v lA.cr)--(~A.lcrv)] 

A.CJ 2 
(II.2) 

3) Add kinetic and potential energy one electron integrals: 

F~v = F~v + K~v + V~v (II.3) 

4) Transform the Fock matrix using the overlap integrals: 

yt = S-1I2 F S-1I2 01.4) 

5) Diagonalize the transformed Fock matrix to get the SCF vector C and 

the orbital energies E: 

6) Back transform the SCF vector: 

c = S-1I2 C't 

7) Form new density matrix (NOCC = # occupied orbitals): 

NOCC 
P~~ = 2 L C~i Cvi 

i 

(11.5) 

( II.6) 

(II.7) 

Steps 2-7 are repeated until the density matrix is converged. The com­

putational complexity associated with each of these steps is given in the fol-

lowing table. 
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Com uu tation al com ulexities 
Step Comolexitv 

1 0(n4) 
2 0(n4 ) 

3 O(n:':) 
4 O(n.j) 
5 O(n.j) 
6 Oin.jl 
7 0(n4) 

It is obvious from the data in this table that for large problem sizes the SCF 

computation will be dominated by step 2, the formation of the two electron 

portion of the Fock matrix. This result is corroborated by actual timings on 

serial SCF programs. 

Hence, the logical starting point in the parallelization of the SCF pro­

cedure is to distribute the computation of the two electron Fock matrix. The 

two components required to form this term are the density matrix and the 

two electron integrals. Since the two electron integrals have already been dis-

tributed onto the nodes by the integral program and these integrals do not 

change with each iteration, a sensible procedure for forming the Fock matrix 

is to distribute the density matrix to the nodes each iteration and then calcu-

late partial Fock matrices from the resident two electron integrals. These par-

tial Fock matrices are then summed toge,ther on the host processor where the 

new density matrix is formed and broadcast back to the nodes. A flow 

diagram of this procedure is given in figure 8. 

The method used to form the partial two electron Fock matrices is 

dependent on the integral distribution scheme used in the integral evaluation 

step. If the integrals were distributed for just an SCF calculation the forma-

tion of the partial Fock matrices is straight forward since a nonredundant list 

of two electron integrals is evenly distributed onto the processors. This pro-

cedure on each node involves simply looping over all of the resident integrals 
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calculating their contributions to the Fock matrix. Sinc~ only the symmetry 

distinct integrals have been stored, each integral will contribute to between 

one and eight Fock matrix elements. Figure 9 lists all Fock matrix element 

contributions from symmetry distinct integral types. 

If an integral transformation is to be carried out, the formation of the 

partial Fock matrices is more difficult because of the more complex integral 

distribution. The difficulty is that redundant integrals are stored so that spe­

cial care must be taken that redundant contributions are not made to the par­

tial Fock matrices. This consideration greatly complicates load balancing. 

Since the integral distribution is determined by two of the integral indices, 

most schemes for selecting symmetry distinct integrals will preferentially load 

certain processors. However, a scheme which works well for most cases is 

straight forward. Consider the simplest integral loading (as in figure 4) where 

a processor with coordinates 1f.1 holds the integral block (ij Ikl) where 

i ,j = I to n. If If < 1 the node processes all symmetry distinct in tegrals for 

which i+ j is odd. If If > 1 then the node processes all symmetry distinct 

integrals for which i+ j is even. Of course if If = 1 then all of the symmetry 

distinct integrals must be processed. Hence this strategy will overload the 

diagonal processors (If = 1), but since for most actual cases each node will 

have many integral blocks (as in figures 6 and 7) this load imbalance should 

not be serious. 

As indicated in the flow diagram (figure 8), the SCF procedure requires 

the communication of all of the partial Fock matrices from the nodes to the 

host and the subsequent rebroadcast of the new density matrices. If all of the 

communication were to be carried out directly between the nodes and the 

host, the host's comm unication channels would be overloaded and become a 
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bottleneck. What is needed is to carry out as much of the communication in 

parallel as is possible and to avoid having an individual processor sending or 

receiving more than one message at a time. Fortunately there is a simple 

scheme. utilizing a so-called broadcast tree which fulfills these conditions. 

The broadcast of a message from the host to all of the nodes in a three 

dimensional hypercube is shown in figure 10. 

Basically, the scheme involves the sequential' broadcast of the message 

from all of the nodes in a N dimensional hypercube to all the nodes in an 

N + 1 dimensional hypercube. Hence, it takes a total of six communication 

steps to broadcast a message to all of the nodes in a five dimensional (32 pro­

cessor) Hypercube. (This includes the initial communication of the message 

from the host to node 0.) Similarly, if a result is to summed from the nodes 

onto the host, the reverse procedure can be carried out: each node in an N 

dimensional cube receives a message, sums it into his own result, and broad­

casts this message to the corresponding proce~sor in an N -1 dimensional 

cube. 

Although parallelizing the most computationally complex part of the SCF 

procedure is clearly the first step, there are a number of reasons also to distri­

bute the less computationally complex tasks. One obvious reason is that for 

sufficiently large problem sizes, even the O(n3) steps iIl the SCF procedure 

will take a prohibitively long time on the host processor. A second reason is 

that for problems running on computers where the number of processors (m) 

is comparable to the number of basis functions (n), the complexity of the 

Fock matrix formation O(n 4/m) reduces to O(n3) so that the other O(n3) 

steps will dominate the computation time. (This is the case for some of the 

benchmark calculations on the Hypercube where the memory size severely 
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limits the number of basis functions.) 

There are two types of 0 (n 3) steps occurring in the SCF procedure: the 

matrix multiplications and the diagonalization of the Fock matrix. The 

matrix multiplies are fairly easy to distribute, but the diagonalization is much 

more difficult to parallelize efficiently. Although a parallel diagonalization has 

not yet been implemented, the method for doing this is discussed here. 
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PARALLEL MATRIX DIAGONALIZATION 

Due to their tremendous importance in a vast number of mathematical 

and scientific applications, numerical methods for the computation of eigen­

values and eigenvectors of symmetric matrices have been the subject of 

intense study for more than century. A large, number of very efficient serial, 

algorithms have been developed which are able to compute the eigenvectors 

of an n x n matrix in 0 (n 3) time41 • Not surprisingly, in recent years a lot 

of effort has been put into the study of parallel matrix diagonalization algo­

rithms. One conclusion of this work is that the very best serial algorithms 

(e.g. Householder tridiagonalization followed by QR iterations) are not as 

well suited for parallelization as the older, simpler methods. 

One very old algorithm which se,ems especially promising for parallel 

applications is the Jacobi method (first described in 1846).42 In this scheme a 

symmetric matrix A is diagonalized by a series of plane rotations. Each rota­

tion is carried out such that it annihilates n (n;l) of the off diagonal matrix 

elements. Since the zeroed off diagonal matrix elements will not necessarily 

remain zero for successive rotations, the method is iterative. If m such rota-

tions are necessary to zero all of the off diagonal elements of A, then: 

(II.8) 

where U is the matrix of eigenvectors of A and Rm is the m th successive 

plane rotation matrix. The eigenvalues are given by: 

(II.9) 

and the rotation matrix elements at each iteration are given by: 

R.. = R .. = co s( a .. ) 
")) I) (IL10) 



R·· = -R·· = sin(a.;}.) 
'J J' • 

where: 
A·· 

tan(2a.jj) = 2-A-.. -_"'::"'~-.. 
U JJ 
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(11.11) 

(II.12) 

Since the computation of the eigenvectors simply corresponds to a series 
. 

of matrix multiplications, there are a number of possible strategies for paral-

lelization of the Jacobi algorithm. One approach has been investigated by 

Sameh 43 and Whiteside, et al.44 This scheme is based on the observation 

that there exist sets of plane rotations that each annihilate different matrix 

elements without changing the values of the matrix elements annihilated by 

other rotations in the same set. Since all rotation matrices in each set com-

mute with each other, the rotations can be carried out independen tly. For an 

n by n matrix there are ~ rotation matrices in each of these sets so that ~ 

off diagonal elements could be eliminated simultaneously. Thus, this algo-

rithm could efficiently utilize ~ processors in parallel. For the SCF pro­

cedure described here, - n 2 processors are used to form a Fock matrix of 

order n. However, this diagonalization routine would only use - n proces-

sors. Hence, this algorithm is poorly balanced for the SCF procedure. 

Fortunately another par~llel Jacobi diagonalization algorithm has recently 

been developed which allows the efficient use of much larger numbers of pro­

cessors.45 In this scheme the matrix is divided into 2 x 2 submatrices and 

mapped onto a two dimensional square array of processors, so that an n by n 

matrix would map onto an ~ by ~ array of ~rocessors (see figure 2). Dur­

ing each iteration the diagonal processors (i.e. those containing diagonal 

matrix elements) calculate the rotation matrix necessary to diagonalize their 

resident 2 x 2 matrix. This rotation matrix is broadcast to the other 
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processors which carry out the necessary rotations on the off diagonal terms. 

After one such complete rotation has been carried out, adjacent processors 

exchange rows and columns so that the diagonal processors receive new off 

diagonal matrix elements of the rotation is again carried out. The method 

has been empirically found to require 0 (log(n)) such rotations with each . 
rotation requiring 0 (n) computing time, yielding. a net computational com-

plexity of O(nlog(n)). Although this method has not yet been implemented 

on the Hypercube, its low computation cost, orderly interprocessor communi­

cation, and efficient use of - n 2 processors make it a good candidate for the 

Fock matrix diagonalization. 
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TWO ELECTRON INTEGRAL TRANSFORMATION 

The two electron integral transformation is the most computationally 

complex of the steps so far considered. Hence, much of the concern in the 

design of the algorithms for the previous two steps was to facilitate the 

efficiency of this computation. This procedure involves the transformation of 

all four indices of the two electron integrals. The most compact expression 

for this step is: 

(ij Ikl) = r,r,r,r,CJ,LiCVjCUCcrl(llvIAa) 
J,LVA.cr 

where the Roman letters represent MO indices and the Greek letters AO 

4 
indices. Since this 0 (n4) must be carried out for all of the n8 integrals, the 

total complexity as written above is O(n s). However, this transformation 

can be rewritten as a series of one index transformations (or "quarter 

transformations"). For example, the transformation of the fourth index, a 

can be carried out as an autonomous step: 

(IlVIAl ) = r,Ccrl(llvIAa) 
cr 

Each of these quarter transformations involve n 5 multiplications, so that the 

entire sequence of one index transformations requires 4n 5 multiplications. If 

the 8 fold index symmetry is exploited, this total can be reduced to ; n 5. 

More sophisticated transformations have been developed which involve the 

decomposition of each quarter transformation and require a total of only 

~~ n 5 multiplications.46 However, as pointed out previously, the optimal 

serial algorithms are usually too complex to be converted into an efficient 
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parallel implementation. Instead, it is usually better to begin with a simple 

expression for the problem and to look for dimensions along which to divide 

the task. 

In the transformation step a natural choice for these dimensions would 

be one or more of the two electron integral indices. The advantage of this 

choice is that all of the integrals needed to complete a given quarter transfor-

mation would be present along a single processor or along a single dimension 

of the processor array. To illustrate this concept consider the mapping of the 

two electron AO integrals onto a one dimensional array of processors (Le. a 

loop). (A three basis function example is shown in figure 11.) The integral 

blocks are assigned to processors on the basis of their fourth index, cr. Each 

integral block contains integrals for all symmetry distinct combinations of 

~, v, and A: ~. v = 1 to n with ~ ~ v, and A = 1 to n. Note that only one 

·of the three axes of integral symmetry is used. so that a four fold redundancy 

of integrals is stored. 

For this integral distribution, the first step is the transformation of the 

indices local to each processor, ~, v, and A (step 2 in figure 11). For exam-

pIe, on the first processor this involves: 

(ij Ik 1) = LLLC~jCvjCA.Jc(~vIA1) 
~ v A. 

(Of course in an actual implementation this would be carried out as three 

quarter transformations.) Due to the integral distribution this step can be 

carried out without any interprocessor communication. 

All that remains is the transformation over the final index, cr. Since 

each processor holds integral blocks with only a single value of cr and this 

final quarter transformation requires a summation over this index, this step 
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will require interprocessor communication. Because of the distribution 

scheme, this can be carried out in a series of orderly communication steps as 

follows (step 3 in figure 11). First, each processor sends a copy of the par­

tially transformed integrals to its neighboring processor. Each processor then 

sums a contribution from the visiting integral block into a buffer: 

(ij Ikires) = (ij Ikires) + C~:' (ij Ik avis) 

where the subscripts res and vis indicate indices associated with the resident 

and visiting integral blocks. Note the assumption that the processors will 

retain the same AO and MO integral blocks: ires = .a res' 

This step is repeated until the integral blocks have been passed com­

pletely around the loop and have arrived at their initial nodes. At this point 

the transformation is complete since each processor has received all the 

necessary con tribu tions for the last quarter transform. 

Obviously this one dimensional mapping could be extended to two, 

three, or four dimensions by simply distributing more of the integral indices 

in the way a was distributed in the one dimensional case. The choice of how 

many dimensions to use is essentially that of the granularity of the parallel­

ism. 

The granularity of the parallelism refers to the amount of independent 

computation that each processor performs before it must communicate with 

another processor. If a large amount of processing is performed, for example 

a pass through some outer loop of the program, then the granularity is 

"course." If only a small amount of processing is performed between com­

munication steps, for instance only a single arithmetic operation, then the 

parallelism is "fine grained." Because of the relatively slow in terprocessor 
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communication channels on the Hypercube (probably this will be a problem 

on all distributed memory machines) fairly course grained communication is 

favored. Otherwise, the communication overhead will be much more time 

consuming than the useful computations performed. 

Other considerations in the choice of dimensionality are the number of 

available processing nodes and the total amount of memory on each node. If 

the integrals are mapped onto a one dimensional grid (see figure 11), the 

largest number of processors that can be utilized is equal to the number of 

basis functions, n, and each node must store - n 3 integrals. Similarly, for a 

two dimensional mapping, the maximum number of usable nodes would be 

n 2, with each node storing - n 2 integrals. The following table lists the 

relevan t data for each of the possible mappings . 

. Integral Distributions 

Dimensions #. usable Integrals Operation s per 

nodes per node comm unication 

1 n n3 n 3 

2 n 2 n2 n 2 

3 nJ n n 

4 n 4 1 1 

For most chemically interesting problems, the number of basis functions 

is not more than a few hundred. In comparison, the Intel Hypercube is avail­

able with up to 128 processors and other computers are available with 

thousands of processors. Hence, the one dimensional transformation scheme 

would not be able to utilize fully the available hardware. However, the two 

dimensional mapping would be able to use efficiently the large parallel 



39 

computers available in the foreseeable future while still maintaining a fairly 

course grained parallelism. 

A final issue is the topology of interprocessor interconnection assumed 

by the parallel implementation. Although these programs are being imple­

mented on a machine with hypercube connectivity, it is not necessarily pru­

dent to assume the presence of that particular interconnection in this algo­

rithm. If an efficient algorithm can be developed that requires only very sim­

ple topologies, such as one or two dimensional meshes, the algorithms will 

run on a wider range of parallel architectures. 

On the basis of the considerations listed above, the two dimensional 

transformation scheme was chosen for implementation. This choice clarifies 

the reasons for the post-SCF integral distributions described in the integral 

evaluation section (figures 4-7). The two indices which indicate the processor 

coordinates are those which require interprocessor communication to 

transform, (analogous to cr in the one dimensional case). The transforma­

tion procedure for the two post-SCF integral distribution schemes, A.cr 

(figures 4,6) and vcr (figures 5,7), are essentially iden tical, differing only in 

the order in which the indices are transformed. Hence, in the algorithm 

described here, only the A.cr distribution will be considered. Further, in the 

following description the processing grid is assumed to be a square torus of 

processors (m by m) where the number of basis functions, n, equals the 

number of nodes along each dimension (i.e. m = n). These constraints are 

not inherent in the algorithm which will work efficiently for any number of 

basis functions provided (n ~ m) and on any torus supported by the inter­

processor connectivity_ (In general a hypercube architecture has as a subto­

pology a 2i x 2j rectangular torus where i+ j~ the total hypercube dimen-
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sionality.) The extension to cases with rectangular processing grids and cases 

where n > m is straight forward. 

At the outset of the integral transformation the integrals are distributed 

on to the processing nodes on the basis of their final two indices, Acr, as 

shown in figure 4. The transformation matrix C is the final converged SCF 

vector which is broadcast from the host to all of the nodes using a broadcast 

tree. 

The first step is the transformation of the first two indices, Jl and v 

(figure 12). This step is carried out as two quarter transformations. If each 

processor is assumed to hold only one Acr block and no integral symmetry is 

considered, then each quarter transformation requires n 3 multiplications. 

This yields a total of 2n 3 for this entire step. However, if the Jl v symmetry 

is exploited then the number of multiplications is reduced to ; n 3. 

The final two quarter transformations are more complicated since they 

will require in terprocessor communication. Analogous to the transformation 

over cr in the one dimensional case, these last two steps will require com­

munication first across the processor rows (figure 13) and then down the pro­

cessor columns (figure 14). Although these two steps are in principle straight 

forward, a number of details must be carefully considered in order to use 

efficiently memory and to avoid communication bottlenecks. 

There are two general methods for carrying out the communication 

steps. The processors could either pass around MO integrals (with initial 

values of zero) that accumulate contributions from each of the other proces­

sors as they circumnavigate the row, or they could pass around raw (half 

transformed) AO integrals and accumulate MO integrals locally from each of 

the AO integral subsets as they pass by. (The latter strategy was described 
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for the one dimensional example). 

The chief distinction between these two strategies is the type of interpro­

cessor communication allowed by each. In the first scheme all communica­

tion must be synchronous. That is, communication is not carried out while 

the nodes are involved in other computation. The reason for this is that each 

of the MO integral buffers must remain on each node until all of contribu­

tions from the resident integral set has been added in. Only when all of 

these computations are completed is the integral buffer ready to be passed on 

to the next proce.ssor. 

In contrast, when the raw AO integral sets are passed, the processor 

needs only to make a copy of the integral set before passing the integrals on 

to the next processor. This second scheme is obviously more efficient since 

it allows the overlap of communication and computation. However, the asyn­

chronous scheme has some potential pitfalls. Since the integral buffers are 

passed on by each processor immediately, slow processors could potentially 

queue up many unreceived messages which can cause erratic behavior on .the 

Hypercube. Nevertheless, in order to study the performance enhancement 

gained by asynchronous communication the second scheme was implemented 

in the final version of the integral transformation. 

The code given in figure 15 summarizes the operations performed during 

the third quarter transformation. The routine is passed the resident block of 

half transformed integrals (xints), the SCF vector (C), the number of basis 

functions (nbasis), and the value of the third integral index for the resident 

AO (mylambda) and MO (k) integral blocks. Note that for the example in 

figures 12-14, mylambda = k . 

In order to allow asynchronous communication, the scratch array buf IS 
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divided into two segments, each able to hold a full integral block. Two vari­

ables, outpoint and inpoint, hold pointers to the two halfs of buf. The half 

indicated by outpoint holds the integral block about to be processed, and the 

half indicated by inpoint receives the incoming integral block. 

The subroutine begins by initializing the pointer~ and copying its 

integrals from the array xints into the half of buf pointed to by outpoint , 

zeroing xints as it does. The MO integrals will accumulate in xints. The rou­

tine then enters the main loop over the number of processors in each row, 

which equals nbasis for this example. Then first step is to send off a copy of 

the integral block that is about to be processed (stored in buf(outpoint)). 

Next, recv is called to initiate the receipt of a new block of integrals which 

will be stored in buf (inpoint) . After the communication steps are initiated, 

the contributions from the integrals in buf (outpoint) are summed into xints. 

Next the variable lambda is decremented in anticipation of the new integral 

block. Since it is possible that this communication is not yet complete, the 

routine calls waitchan which blocks execution until the integral block is com­

pletely received. At this point the cycle is ready to begin again except that 

the roles of the two halfs of buf are switched -- the newly received block of 

integrals will be sent on and processed, and the previously processed block 

will be overwritten by the incoming integral block. This switch can be 

accomplished by simply swapping the values of the pointers inpoint and out­

point. 

After iloop has looped over all of the processors in the row, each proces­

sor has received all of the necessary contributions for the transformation of 

the third index. The only step remaining is the transformation of the final 

index cr . This step can be carried out in a way exactly analogous to the 
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transformation of the third index, except that the interptocessor communica-

tion is down the processor columns rather than across the processor rows. 

For clarity of presentation several important details have been neglected 

in this description. For instance, the code as presented requires each half of 

the buffer space but to be able to hold a full integral block. In fact, the 

transformation can be carried out with a smaller buffer, it simply requires 

more passes through a code similar to this, each pass completely transforming 

only a subset of the integral block. 

n 3 . 
Each of the last two quarter transformations requires T operatIons on 

each of the processing nodes. Since only n sequential communication steps 

are required for each quarter transformation, communication time will not 

dominate the execution time except for very small problem sizes. Each of 

3 
the n 2 processors carry out 3 n

2 
operations for the first half transformation 

over Jl and v and n 3 operations for the final half transformation over A. and (J' 

. 3 
, yielding a total computational complexity of 5 n

2 
on each of the nodes for 

the entire four index transformation. 

As mentioned earlier, for problems where the number of basis functions 

is not evenly divided by the number of nodes along each dimension of the 

processor mesh, the number of integrals blocks assigned to .each processor 

will be unequal and, hence, the computational load will be poorly balanced. 

An extreme example is shown in figure 6 where four nodes must process 

four integral blocks each and one node is assigned only one integral block. 

Since the lightly loaded processors will eventually have to wait for the more 

heavily loaded processors (during the third and fourth quarter transforma-

tions) the transformation of the N = 5 case will require the same amount of 
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time as the n = 6 case. Of course for larger problem sizes where the number 

of basis functions is much larger than the number of ,nodes along each 

dimension of the grid, this load imbalance will contribute a proportionally 

very small contribution to the total running time. Nevertheless, it is worth 

investigating methods to improve the load balancing. 
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MOLLER PLESSET PERTURBATION THEORY 

The integrals produced by the transformation step have little intrinsic 

scientific value. They are useful only as input to subsequent computations. 

There are a large number of post-SCF procedures requiring the transformed 

integral list. The two most commonly used methods are configuration 

interaction and Moller Plesset perturbation theory. For reasons that will be 

discussed shortly the perturbation theory calculations are easier to parallelize 

so these were chosen as the first post-SCF methods to implement on the 

Hypercube. Considerations for the parallel configuration interaction algo-

rithm will be discussed in a later section. 

As described in the first chapter, Moller Plesset perturbation theory pro-

vides a series of additive corrections to the total electronic energy calculated 

by the SCF procedure. For all orders of the perturbation theory, these 

energy corrections have the same form: linear combinations of products of 

super-integrals formed from the transformed two electron integrals and 

coefficients formed from the SCF orbital energies (the eigenvalues of the 

converged Fock matrix). In principle this step is easy to parallelize. Each 

processor asynchronously forms contributions to the energy correction from 

its resident list of transformed integrals. When completed, these partial con­

tributions are sent back to the host processor where they are summed 

together. The various details involved in this procedure will be covered in 

the following description of the second order Moller Plesset energy correction 

(£(2»). Extension to higher orders of perturbation theory is straight forward. 

The standard expression for £(2) is: 

ace vir I< ab I Irs > 12 
£(2) = LL--------

Dabrs ab rs 
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This expression is meant to be used as a correction to unrestricted Hartree 

Fock (UHF)24 energies and hence, the summations are over spin orbitals. 

However, the SCF program implemented on the Hypercube carries out res­

tricted Hartree Fock (RHF) calculations so that spin independent spatial orbi­

tals are produced. (The relative merits of UHF and RHF have been exten­

sively debated.47) The conversion of the Moller Plesset energy expressions 

from spin to spatial orbitals is quite easy. The resulting E (2) expression for 

closed shell systems is: 

E(2) = ~i (ar Ibs)[2(ar Ibs)-(as Ibr)] 

ab rs Dabrs 

where the integrals are the standard transformed two electron integrals and 

Dabrs is f?rmed from the final SCF orbital energies: 

Hence, in order to form contributions to E(2) the nodes need access to the 

transformed integrals and the orbital energies. Since the number of orbital 

energies is the same as the number of basis functions « 150), it makes. 

sense to send a separate copy to each of the nodes. 

The transformed integrals are already distributed onto the nodes by the 

transformation program; however, the formation of each term in E(2) 

requires the presence of on a single processor of a pair of integrals 

(corresponding to the pair of integrals required to form a single super­

integral). These two integrals are related by the permutation of their second 

and fourth indices. An important question is whether these pairs of integrals 

will be available on the same processor or will interprocessor communication 

be necessary to collect them. Of course the answer depends on the final 
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distribution of the transformed integrals. 

As described in the previous sections two possible post-SCF integral dis­

tribution schemes have been investigated. The first distributes the integrals 

on the basis of their third and fourth indices (figures 4 and 6), and the other 

distributes them on the basis of their second and fourth indices (figures 5 and 

7). For the computational steps through the integral transformation the chief 

difference between these two is that the latter requires an additional factor of 

two redundancy in the computation, storage, and transformation of the 

integrals. However, for the computation of £(2) these two distributions will 

lead to very different algorithms. 

For the first of these schemes, the appropriate pairs. of integrals will not 

be together on the same processor. For example, in figure 4 the transformed 

integral (33111) is assigned to the node in the upper left corner, while its 

partner (31113) is assigned to the node in the upper right corner. This means 

that if the calculation of £(2) is to be carried out, some interprocessor com­

m unication will have to occur. The remaining question is whether this com­

munication can be carried out in an orderly, efficient way. 

In this integral distribution scheme a given node has MO integrals with 

all possible values for the i and j indices and with values for k and I indices 

determined by the processor's position in the grid. Since the integral pairs 

are related by the perm utation of the second and fourth indices, an integral 

block on a particular processor will have to access all blocks with the same k 

index, but having all possible values for the I index. Due to the fact that the 

I index is used to assign the integral blocks to processor rows, the necessary 

integral blocks can be found on the other processors in the same column. 

Hence, the comm unication is very similar to that required in the final quarter 
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transformation; buffers must be passed around the columns of the processor 

grid. 

To clarify this somewhat complicated explanation, consider again the 3x3 

example used in the transformation section. After the transformation, the 

integrals are distributed onto the processors as shown in figure 4 The node 

in the upper right holds the integral block (ij 111) . In order to form the 

corresponding block of super-integrals, this block will have to be combined 

with all integrals of the form (ilI1j) with i ,j = 1,3. All of these integrals 

can be found in the first column of processors. A remaining question is how 

to assign E(2) contributions to the processors or, more generally, how to dis­

tribute the super-integrals. Since the super-integrals are defined: 

< ab I led> = (ae Ibd) - (ad Ibe) 

a natural choice is to let the processor holding the first integral form and pro­

cess t~e corresponding super-integral. 

Note that for the calculation of the second and third order Moller Plesset 

energy corrections not all the super-integrals need to be formed. For exam­

ple, E(2) only has contributions from super-integrals of the form < ab I Irs> 

with a ,b occupied orbitals and r ,s virtual orbitals. These constraints will 

limit the number of integral blocks that need be sent around the processors. 

The "driver" subroutine for the calculation of £(2) is given in figure 16. 

Each processor loops over its resident integral blocks sending valid blocks 

down the processor column. For the calculation of £(2) valid blocks are 

th ose with k an occu pied orbital and I a virtual orbital. (If a processor has 

no more valid blocks to send, it must still receive the remaining blocks being 

broadcast by the other processors in order to finish the contributions to its 

resident super-integrals.) After sending an integral block down the grid, each 
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node receives an integral block and immediately sends on a copy of this block 

by calling the subroutine sendblkon. Next, contrb is called which generates all 

super-integrals that can be formed from the resident and visiting integral 

blocks. Once formed,· the super-integrals are not stored, instead they are 

immediately combined with the appropriate D ijk1 elements (which are formed 

as needed) and summed into the energy term. When all the nodes are 

finished calculating the partial E(2) terms, hostsum is called to sum the terms 

down a broadcast tree onto the host. 

As mention.ed earlier, the alternative integral distribution leads to a very 

different algorithm. In this scheme the integrals are assigned to processors 

on the basis of their second and fourth indices. In the 3x3 example (figure 

5) the upper left processor holds the integral block (i 11k 3) which is by sym­

metry equivalent to (i31k 1). Hence, with this integral distribution, no com­

munication will be necessary to form the super-integrals. The algorithm for 

calculating E(2) is very simple. The routine ~imply loops over valid super­

integrals, summing energy contributions into a buffer. When the loop is 

complete, the partial terms are summed onto the host processor. 

Each of the two integral distributions has merits and disadvantages. The 

first allows efficient integral evaluation and transformation, but requires n 

sequential communication steps to form the super-integrals. In contrast, the 

second scheme allows the formation of the super-integrals without communi­

cation, but adds a factor of two to the number of integrals which must be cal­

culated and transformed. Which of these two scheme is ultimately the best is 

dependent on the hardware being used. For some of the presently available 

computers, on which communication and processing speeds are comparable 

and on which memory is at a premium, the former scheme is best. How-
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ever, for future parallel computers on which processing speeds will be much 

faster than communication speeds and memory will not be a limitation, the 

latter scheme will be optimal. Benchmarks results for both schemes are 

given in the next chapter. 
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CONFIGURATION INTERACTION 

Although Moller Plesset perturbation theory (MPPT) and configuration 

interaction (CI) are both methods to correct for SCF's exclusion of instan-

taneous electron-electron correlation in the electronic wavefunction, the 

actual computational procedures involved are very different. As discussed in 

the previous section, the computation of MPPT energies involves summa­

tions over the transformed integrals, -so the parallelization is fairly straight 

forward. In contrast, CI calculations involve the formation and diagonaliza-

tion of the CI matrix < <1> IH 1<1» This procedure is computationally 

difficult for both serial and parallel implementations since this matrix is very 

large -- of order at least 100,000 for most systems of chemical interest. For-

tunately this matrix is sparse and only the first few roots are ever desired, so 

that efficient iterative diagonalization methods can be used. 

A commonly used iterative diagonalization method is that of Davidson.48 

In this algorithm the true eigenvectors Cj are approximated by a set of k 

basis vectors bi : 

" C - = "" a.- -b· ) ~ I) I 

i 

where k is much less than the order of the matrix. Each iteration involves 

the construction and diagonalization of a k x k matrix P to form a new set 

of coefficients a.jj • Additionally with each iteration a new basis vector b is 

added to the expansion. The construction of the matrix P requires the mul­

tiplication of each of the basis vectors by the matrix to be diagonalized. 

Since a new basis vector is added with each iteration, this large matrix multi-

ply must be carried out each iteration. 
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While the Davidson procedure provides an efficient way to compute the 

first few roots of the CI matrix, as described above it does not alleviate the 

need to store the entire CI matrix. This can be avoided, however, by using a 

method known as direct CI. In direct CI as each matrix element contribution 

(a product of a transformed integral and a coefficient) is formed it is immedi­

ately combined with the appropriate elements in the guess vector. In this 

way when all of the CI matrix elements have been constructed the matrix 

multiply is complete. 

When the transformed integral list is evenly distributed onto the node 

processors the direct CI method is well suited for parallelism. Each processor 

calculates the coefficients for its set of transformed integrals. As each of 

these partial matrix elements are produced, they are combined with the 

appropriate elements in the guess vector. When the nodes have processed all 

of their two electron integrals, the product vectors are summed together on 

the host. The new guess vector is then generated and broadcast to the nodes. 

Although the algorithm should be easy to implement it has the drawback 

that each of the processors must hold a copy of the guess vector (which is the 

same length as the CI expansion) as well as its set of MO integrals. Hence, 

due to the limited memory currently available on the Hypercube the CI pro­

gram has not yet been implemented. 
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Chapter III: Benchmark Results 

INTRODUCTION 

No matter how impressive the theoretical efficiency of an algorithm, the 

true test is its actual performance when implemented on a real computer. 

This is particularly true for parallel algorithms where unexpected bottlenecks 

can drastically reduce the anticipated performance. In order to test the algo-

rithms presented in the previous chapter, they ·were implemented on a 32 

processor Hypercube located at Sandia National Laboratories. Before 

present~d the actual results, it would be worthwhile to describe briefly the 

theory of measuring the efficiency of parallel algorithms. 

The principle measure of performance is the· elapsed time necessary to 

solve a real problem of interest. However, in evaluating parallel programs 

the speedup gained by adding additional processors is often a more informa­

tive measure. The speedup of a parallel program run on k processors, Sk is 

defined by 

where tk is the time necessary to complete the computation on a k processor 

parallel computer, and fref is some reference time for the computation. It is 

common to take fref to be the time necessary to perform the computation on 

a single processor of the type used in the mUltiprocessor. Therefore, the 

ideal case is Sk = k indicating that the computation runs a factor of k times 

faster when running on k processors. 
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The first set of benchmark results are for the integral and SCF programs. 

Results are given for both standard and direct SCF calculations. Next, the 

results for complete integral, SCF, transformation, and second order Moller 

Plesset energy calculations are given. Finally, the results are presented of an 

extensive battery of benchmark calculations for the most computationally 

complex of the programs implemented, the two electron integral transforma-

tion. 

As mentioned earlier, the chief constraint on the problem sizes which 

can be handled by the Hypercube is the relatively limited memory on each 

processing node. In the standard configuration, each node has 512 Kbytes of 

RAM. After the node operating system is loaded, 322 Kbytes remain for the 

user programs and data. The node programs for the integral and SCF calcu­

lations re-quire 81 Kbytes leaving 240 Kbytes. Since an n basis function prob-

4 
lem requires the storage of - n8 in tegrals (each requiring 8 bytes of 

memory), the maximum size SCF calculation that can be carried out using all 

32 nodes is: 

4..J 32 x 240000::: 50 basis functions 

(Of course for a direct SCF calculation there is essen tially no limit on tbe 

problem size since no integrals are stored.) The full set of node programs 

(in tegral evaluation through Moller Plesset energy) require 119 Kbytes leav­

ing 203 Kbytes for integral storage. The two integral distribution schemes 

n 4 

investigated require the storage of T and n 4 integrals, respectively, 

corresponding to maximum problem sizes of 35 and 30 on a full 32 node 

Hypercube. 
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This limitation can be alleviated by either adding more memory to each 

node or by adding more processing nodes (so that each has a smaller fraction 

of the total integral list). Both of these options are now available for the 

Hypercube. The total number of processing nodes can be increased to 128,­

and the memory per node can be upgraded to 4 M.bytes. All calculations car-

ried out for this thesis were on the standard configuration Hypercube. 

In order to determine the program speedups it is necessary to run the 

benchmark calculations on various sized subsets of the Hypercube processors. 

The Hypercube allows the user to specify easily how many nodes to use for a 

given calculation. A natural choice of subsets used for most of these bench-

marks are the "sub-cubes" of lower dimensions having 2n processors for 

n = 0 to 5. However, using fewer than the. full 32 nodes decreases the total 

available memory, so that the size of the test cases will be dictated by the 

smallest processor array in the ~enchmark sequence. 

In order to test the performance on both large and small cases two test 

problems were chosen. The first is 24 basis function C2H2 for which a full 

Moller Plesset calculation can be carried out on as few as 8 processing nodes. 

The second test case is 13 basis function H20 which is sufficiently small to fit 

on a single processing node. The details of these test cases are given in 

appendix two. 

SCF RESULTS 

1 Since the host-to-node communication rate is about 3" that for node-to-

node, for calculation s in volving no post-SCF steps it is more efficien t to have 

one of the node processors take the role of the host, receiving and diagonal-

izing the Fock matrix. (Note that this would be complicated for post-SCF 
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computations since the transformation requires a full rectangular grid.) This 

strategy has been employed for the SCF benchmarks, and hence the proces­

sor grids have size 2n_ 1 (n = 1 to 5). 

The integral and SCF benchmark results for the C2H2 test case are given 

in the tables in figure 17. Each of these tables has three columns of data. 

The first contains results for the two electron integral evaluation. The second 

gives results for the SCF step and the third lists results for the construction 

of the partial Fock matrix. 

The first table gives the total timings in seconds. Obviously the timings 

in the second and third columns vary from node to node (unless load balanc­

ing is perfect). The timings given are those fbr the slowest processors. The 

second table lists the speedup ratios derived from the timings in the first 

table. The values should· be compared with the numbers in the "ideal 

speedup" column. These data show that the integral evaluation and Fock 

matrix formation steps have nearly perfect speedups. The slightly super­

linear speedups in the table are due to changing load balance for different 

sized test cases. 

Although the results for the Fock matrix formation step are very good, 

the speedup for the full SCF calculation is not very encouraging. The 

efficiency on 31 processors is less than 30%. Since the parallelized portions 

show good speedup, the problem must be that the serial portion (the com­

munication and diagonalization of the Fock matrix) must be dominating the 

computation time. The communication benchmarks (appendix I) indicate 

that the collection of the partial Fock matrices is rapid, so that the bottleneck 

must be the diagonalization. For this test case (n= 24) this is not surprising. 

As discussed in the SCF section, when the number of nodes (m) is com par-
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able with the number of basis functions (n), the parallel Fock matrix forma­

tion and the serial diagonalization steps have the same computational com­

plexity. Although for much larger problem sizes (n > > m) the SCF 

speedup should be good, it is clearly necessary to parallelize the diagonaliza­

tion step in order to allow efficient use of large processor arrays. 

The third table gives the percentage differences in the timings for the 

fastest and slowest processors indicating the quality of the load balancing. 

The results are quite good especially considering the small size of the test 

case. 

Figure 18 gives the same results for the 13 basis function H20 test case. 

The results are pretty much the same as those for C2H2 except that the 

smaller size of the ·problem leads to poorer speedups and load balancing on 

large numbers of processors. A surprising and rather curious result is the 

slight super-linear (i.e better than ideal) speedups seen for the first few. 

numbers of processors. Since these speedups have been calculated relative to 

single node timings this cannot be the result of poor load balancing in the 

reference calculation (as was the case for the C2H2 benchmark). At this time 

this anomalous result has not been definitely attributed to a specific cause. A 

careful study of the algorithm has found nothing that would preferentially 

degrade the single processor performance .. This indicates that some the prob­

lem arises from some feature of the node hardware. A likely candidate is 

associated with how the processor handles large data arrays. The size of the 

data sets on each node is inversely proportional to the number of nodes parti­

cipating in the calculation. Hence, if references into very large data arrays 

are at all slower than references into small arrays, the algorithm's perfor­

mance would be degraded when running on fewer processors. The fact that 
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memory access speed is inversely proportional to memory size has been used 

as an argument for the possibility of super-linear speedups on parallel com­

puters.49 However, more extensive benchmarks of the Hypercube would be 

needed to verify that this is the phenomena being observed. 

DIRECT SCF 

The benchmark results for parallel direct SCF calculations on C2H2 and 

H20 are given in figures 19 and 20. As before, these data are in three tables 

giving total run times, speedups, and percentage load imbalance. Each of 

these tables has two data columns. The first gives results for the complete 

calculation while the second contains results for a single iteration the parallel­

ized portion of the program. The parallelized portion involves both the 

integral evaluation and the formation of the partial Fock matrix. As before, 

the timings given are for the slowest processor. Note that the reference cal­

culation for C2H2 was run on three processors (rather than one) due to time 

limitations; memory is not a limitation for direct SCF calculations. 

As might be expected from the previous results, the speedups are very 

good. The parallelized portions show nearly perfect speedups over the entire 

range of node configurations. The speedups for the complete calculation is 

degraded on large numbers of processors (particularly for the smaller test 

case) as the serial diagonalization step grows to dominate the computation 

time. This problem can only be alleviated by parallelizing the diagonalization 

step. Once again the results show slight « 5%) super-linear speedups for 

small numbers of processors. 

POST-SCF BENCHMARKS 

.. 
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This section describes benchmark results for the full Moller Plesset 

energy calculations. This procedure involves four steps: integral evaluation, 

SCF, integral transformation, and the E(2) calculation. Benchmarks calcula­

tions were run for both the C2H2 and H20 test cases using both of the pro­

posed Moller Plesset algorithms. These results are given in figures 21-24 in 

the same format as the results in the previous two sections. 

The integral and SCF results are very similar to those presented in the 

previous sections. As anticipated the speedups and load balancing for these 

steps is worse due to the more complicated integral distribution constraints 

imposed by the transformation step. The particularly poor speedup for the 

SCF step is due to the fact that a more lengthy matrix diagonalization pro­

cedure is required since the transformation requires the full set of eigenvec­

tors. 

The speedup results for the integral transformation step are quite good. 

For the larger C2H2 test case the speedups are ideal (or even slightly super­

linear) for the entire range of processor configurations .. The reason for the 

super-linear results are well understood. It is a consequence of the fact that 

interprocessor messages are limited to 16 Kbytes on the Hypercube. When 

small numbers of processors are involved in 'the transformation of a large test 

case, many integral blocks must be assigned to each node. For sufficiently 

large cases, the communication of the partially transformed integrals in the 

final two steps of the transformation cannot be done in one message passing 

step. Instead, the in tegrals must be passed in several comm unication steps 

requiring extra overhead for the packing and sending of the message packets. 

Since this multi-step communication is necessary only when a small number 

of processors are being used, these cases will have degraded performance. 
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This suggests that the parallel transformation program does not yield good 

few-processor reference timings. Instead, the speedups should be calculated 

relative to a transformation program better suited for single processor opera­

tion. This strategy was used for the more extensive transformation bench-

marks given in the next section. 

As described in the previous chapter two different Moller Plesset algo-

rithms were investigated. One (type 1) involved interprocessor communica-

tion in the formation of the super-integrals. The other (type 2) required no 

communication at the expense of an extra twofold redundancy in the number 

of integrals evaluated and transformed. The type 1 results are given in 

figures 21 and 23 and the type 2 results in figures 22 and 24. These results 

show that the type 2 algorithm is 5-10 times faster than the type 1. Of course 
. 

the second order Moller Plesset calculation requires so little time that the 

extra time spent in the integral evaluation and transformation steps far 

outweighs any gain by using the type 2 algorithm. However, for higher ord-

ers of perturbation theory which have greater computational complexities 

than the transformation the type 2 algorithm should be overall more efficient. 

Note that the relatively poor speedups exhibited by the Moller Plesset 

program are the result of the limited number of occupied orbitals in the two 

test cases. Since t~e £(2) expression involves only integrals of the form 

(ir Ijs) with i ,j occupied and r ,s unoccupied, the speedup is largely limited 

by the number of occupied orbitals in the test case. 

Load balancing data is not listed for the transformation and Moller 

Plesset steps since these procedures involve explicit synchronization of the 

processing nodes. Thus, overall load balancing would be difficult to measure. 
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TRANSFORMATION BENCHMARKS 

The reason for developing these parallel quantum chemistry programs 

was to be able ultimately to study very large chemical problems on the mas­

sively parallel computers soon to be available. For such problems the compu­

tational time will truly be dominated by the most computationally complex 

steps. Hence it is important to benchmark carefully those steps which will 

become future bottlenecks. For this reason an extensive series of benchmark 

calculations were carried out on the two electron integral transformation. In 

order to save the time and memory space required by the integral and SCF 

calculations, the transformation was carried out on a set of "dummy" integrals 

which were a simple function of the AO indices. The transformation matrix 

C was simply a matrix with all entries equal to 0.5 to simplify the checking of 

the results. Figure 25 summarizes the timings for various meshes and 

numbers of basis functions. 

In order to determine accurate speedups, a serial transformation program 

was written. Since this program required too much memory to run large test 

cases on a single Hypercube node, it was implemented on an IBM 3081 K at 

the University of California, Berkeley. A series of benchmark calculations 

revealed that the mainframe executed the transformation 103.5 times faster 

than the Hypercube node. Thus, the speedup on k processors is defined 

where tk is the computer time on k nodes and tref is the time for the serial 

calculation on the IBM. 

The speedups calculated in this way are given in figures 26 and 27. Fig-

ure 26 gives speedup curves for those basis sets sizes where the load evenly 
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divides onto the processor grid. The results for n=24 and n=32 are nearly 

ideal. The curve for n = 16 shows some falloff, but the efficiency is still 

greater than 90% on all 32 processors. For the smallest case, n = 8 there is 

significant falloff indicating that the problem is so small that the communica­

tion is becoming a bottleneck. 

Figure 27 shows speedup curves for several problem sizes where even 

load distribution is not possible for some of the meshes. Since the overall 

speed of the transformation is limited .by the most heavily loaded processor, 

these results are not as good as those for evenly loaded problem sizes. As 

n = 24 is an evenly balanced case, n = 23 and n ='25 are two extremes in poor 

load balancing. For n = 23 a few processors have less work than the majority, 

so the speedup is not seriously degraded. However, for n = 25 only a few pro­

cessors have extra work, but the remaining majority must wait for these to 

catch up, leading to a more severe performance degradation. Nevertheless, 

these results are still quite good considering the relatively small size or" the 

test cases. 

SUMMARY 

Despite the constraints on problem size due to the limited memory on 

each node, good performance speedups were found for the integral evalua­

tion and transformation steps as well as the parallel portions of the SCF. The 

SCF benchmarks clearly indicate the need to parallelize the diagonalization of 

the Fock matrix. Although the test cases were too small to yield reliable 

benchmarks for the Moller Plesset step, the speedup on smaller processor 

meshes is encouraging. 
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Conclusions and Fu ture D irec-

The work described in this thesis represents a first step in the develop­

ment of a general system of quantum chemistry programs able to exploit the 

capabilities of massively parallel computers. Just as the development of 

efficient serial algorithms for quantum chemistry has taken many years, the 

remaining steps will require the efforts of many researchers over a number of 

years. Much of the remaining work has been alluded to in the preceding 

. chapters. The following paragraphs will describe some of the continuing work 

currently being pursued by the author and h,is collaborators. 

As described in the previous section, most of the programs implemented 

should give good performance on the parallel computers available in the fore­

seeable future. A notable exception is the SCF step where the diagonaliza-

tion step can become a bottleneck on large processor grids. In· order to rec-

tify this situation work has begun in implementing the parallel diagonalization 

algorithm described in this thesis. 

A second direction of current work is to complete the implementation of 

the third and fourth order Moller Plesset energy corrections. Once imple­

mented, these methods will allow truly "state of the art" calculations to be 

carried out in parallel. 

Although not currently under development, the next logical step will be 

the implementation of a general configuration interaction program. This 

method has a number of advantages over Moller Plesset perturbation theory, 

probably the most important being that it yields a variational upper bound on 
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the total energy. Additionally, the general methodology of forming and 

diagonalizing a large Hamiltonian matrix is applicable to a large number of 

problems in the physical sciences. 

Finally, a straight forward but practically useful task will be the imple­

mentation of programs to compute the first and second derivatives (with 

respect to nuclear coordinates) of these various total energies (SCF, MPPT, 

and CI). These procedures are well worked out for serial computers, and the 

bottleneck steps involve the computation of large integral lists and the solu­

tion of large systems of linear equations, both of which should easily parallel­

ize. 

Although the algorithms described in thiS thesis have been designed to 

work efficiently on distributed memory parallel computers, they are 

sufficiently general that they should provide good performance on a wide 

range of parallel architectures. Work is currently under way to get these pro­

grams running on two vastly different parallel computers. 

The first of these is a ten processor Elxsi 6400 located at Sandia National 

Laboratories. Although this computer has a shared memory architecture and 

hence no explicit interprocessor communication channels, communication can 

be mimicked by routines using the shared memory. Work is under way writ­

ing Hypercube compatible communication routines. These routines will 

require computational overhead to mimic effectively communication chan­

nels, but this should not adversely affect the performance of the algorithms 

since they were specifically designed for systems with relatively slow interpro­

cessor communication. This suggests that all parallel algorithms should be 

targeted for distributed memory computers since shared memory computers 

can effectively mimic distributed memory architectures, while the converse is 
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not true. 

A second type of parallel computer on to which these programs are being 

implemented is not a tightly coupled set of homogeneous processors as are 

the Hypercube or Elxsi. Instead, this "computer" is a large group of worksta­

tions linked together by a local area network. Such collections of fairly 

powerful workstations (each comparable to a DEC VAX 11/780) linked by 

communication channel to each other and shared resources (such as printers 

and disk drives) are becoming increasing popular and will soon be a ubiqui­

tous presence in businesses and research institutions. Although these works­

tations are individually too small to perform large scale scientific computa­

tions, together they represent an enormous computing resource (especially 

since they are. often idle during evenings and weekends). For example the 

network of - 200 SUN 3/50 workstations currently in place at the University 

of California at Berkeley is, as a unit, several times the power of the Cray X­

MP at the central computing facility. 

All that is required to use these large networks as a single distributed 

memory computer is to write a series of Hypercube compatible communica­

tion routines using the existing network protocols. The relatively slow net­

work communication speeds should not seriously degrade the performance of 

the algorithms described here. A set of preliminary routines have been writ­

ten by Curtis Janssen at Berkeley. The speedup curve for a 26 basis function 

integral and SCF calculation running on 1-8 SUN 3/50 workstations is given 

in figure 28. Benchmark calculations will be carried out on much larger 

arrays of workstations as soon as a more efficient set of communication rou­

tines is com plete. 

In addition to the development of parallel algorithms for the standard 
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quantum chemical methods, an important direction of study "is the develop­

ment of entirely new approaches to molecular quantum mechanics which 

involve inherently parallel techniques. One promising method which has 

been developed during the past decade is Quantum Monte Carlo (QMC).50 

The basic idea behind QMC is to recast the Schrodinger equation as a 

diffusion equation which is then solved by a stochastic algorithm. This algo­

rithm involves carrying out standard Monte Carlo updates on a large ensem­

ble of possible configurations of the system (Le. trial wavefunctions). After a 

certain number of generations, configurations are either discarded or repli­

cated on the basis of a Boltzman weighting of their total energy. (This is 

called the branching step.) Then the Monte Carlo procedure is again carried 

out on the new ensemble of configurations. In this way, the ground state 

wavefunction eventually evolves. 

Since this algorithm involves the concurrent simulation ofa large ensem­

ble of configurations it is ideal for parallelization. Each processor is assigned 

a configuration or set of configurations for the Monte Carlo updates. Inter­

processor communication is required only during the branching step. Unfor­

tunately, there are still some problems using QMC on fermion systems 

rela~ed to the selection and convergence of the wavefunction's nodal struc­

ture. However, these problems are being addressed so that QMC should be a 

very promising method for parallel implementation in the coming years. 

Another potentially promising method involves the solution of the SCF 

equations using pseudospectral methods originally developed for hydro­

dynamic simulations. 51.52 The basis strategy is to construct different parts of 

the Hamiltonian matrix (in this case the Fock operator) in different represen­

tations. Certain parts of the Hamiltonian are best calculated in the spectral 
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(Le. basis set) representation. These terms include the kinetic energy terms 

involving derivatives with respect to position. Other terms including the 

electron-electron repulsion terms are best constructed in the spatial represen­

tation (i.e. on a three dimensional grid). The collocation method is used to 

transform between these two representations. 

The net effect of this approach is that the number of two electron 

integrals is reduced from n 4 to n 3 • This is potentially a big advantage for the 

development of parallel implementations since the amount of memory on 

each processor is one of the chief limitations on the size of problems which 

can be studied. 

Of course a lot of research on parallel processing is being carried out by 

the computer science community. Of particular interest to computational 

physical scientists is the work on software to parallelize automatically serial 

programs. Ideally programs should not have to be specifically tailored to util­

ize efficiently a particular computer. Instead the compiler should be able to 

restructure the program for optimal performance regardless of whether the 

architecture is scalar, vector or parallel. 

Vector compilers have been under development for nearly a decade and 

are now fairly adept at reordering loop structures to optimize vector perfor­

mance. By comparison, automatic parallelization compilers are still quite new 

and limited in capability. Those currently available seem capable of carrying 

out efficiently very fine grained parallelization. More specifically, these sys­

tems distribu te the program on an instruction by instruction basis, for exam­

ple, distributing the successive cycles though a do-loop. While this approach 

has proven successful so far, the fine grained nature of the parallelism 

requires very high interprocessor communication rates and hence will be lim-
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ited to relatively small numbers of processors. 

In order to achieve the very large performance enhancements promised 

by massively parallel computers much coarser grained parallelism will have to 

be used. However, the automatic detection and exploitation of coarse 

grained parallelism is very difficult. The problem is that this requires 

knowledge of the control structure and data dependencies of the program, 

and such information is very hard to extract from programs written in stan-

dard scientific programming languages such as FORTRAN. Unfortunately 

this difficulty is not due to superficial features, but rather due to the funda-

men tal structure of these languages. 

A particularly problematic feature of languages like FORTRAN is that all 

variables point to memory locations ("pass by pointer"). While this has the 

advantage of saving memory, it means that the input values to functions and 

subroutines can (and often are) modified by the routine. Such modifications 

are called sjde effects and they greatly complicate the problem of paralleliza­

tion. For example, consider the following segment of code: 

D = Juncl(A,B) 

E = Junc2(A ,C) 

Potentially June 1 and Junc2 could be evaluated in parallel. However since 

June 1 may modify A , extensive analysis of June 1 is necessary before paral-

lelization can be implemented. 

These difficulties are sufficiently serious that it is unlikely (at least in the 

near future) that a fully automated compiler will be available that is capable 

of restructuring efficiently a program for a distributed memory computer. Of 

course many software tools will be available to aid in the development of 

parallel programs, but the burden of determining how to distribute. the 

.. 
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program will still be on the programmer. 

In order to overcome some of the difficulties associated with standard 

scientific programming languages, computer scientists have developed a new 

type of programming language known as functional languages.53 In these 

languages the programmer works entirely with instructions that act like 

mathematical functions, taking particular inputs and returning outputs. An 

example of a simple function is sum (A ,B) which returns A +B . Note that 

A and B are unmodified (Le. there are no side effects). From simple opera­

tions such as sum the programmer constructs more and more complex func­

tions until ultimately the program itself is defined in terms of these high level 

functions. For example the following is a hypothetical SCF program: 

sci _energy = sum (eieccenergy (nuc_coords ,basis) ,nucCenergy (nuc_coords ) ) 

where the total SCF energy is calculated as the sum of two functions calculat­

ing the electronic and nuclear repulsion terms. 

Such an approach has a number of useful properties. It produces well­

structured, easy to read programs and it easily allows the construction of large 

programs from sets of smaller programs. Further, functional programs are in 

principle easily parallelized. The reason for this is that since the functions 

have no side effects, all terms in a given expression can be evaluated con­

currently. In the example given above, the functions eieccenergy and 

nucCenergy can be evaluated simultaneously. 

Despite these advantages, functional languages are somewhat difficult to 

use and are inefficient on standard computer architectures. Hence, they are 

still not universally advocated. Exactly how much of the task of paralleliza­

tion will eventually belong to the programmer is still unclear; however, it is 

likely that efficiently programming parallel computers may always be more 
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difficult than serial programming. Nevertheless, if large performance 

increases are needed, this extra effort is justified. 

A final question that should be addressed in this thesis is whether there 

are ultimate limits on the speed and accuracy of scientific computation. This 

question is more subtle than that of the limitations on processing speeds. 

Parallel computers can in principle be made arbitrarily fast by linking together 

arbitrarily large numbers of processors. Hence, the real limit is not the max­

imum potential speed of the parallel computers, but instead the ultimate 

degree to which scientific problems can be parallelized. Of course this largely 

depends on the scientific problem at hand. Therefore, for simplicity consider 

the numerical computation of the dynamics of a many-body system. Since 

this computation is simply a direct simulation of nature, the limits on its 

parallelizability are tied the deeper, more general question: to what extent are 

natural processes parallelizable? That is, to what extent can nature be decou­

pled into separate processes interacting only locally? 

The difficulty with this decoupling is that at the scales nature is· usually 

sim ulated, particles are assumed to exert instantaneous action at a distance. 

Thus, for a system spatially mapped onto a grid of processors the motion of 

particles on distant processors will to some degree be coupled. This coupling 

will require interprocessor communication putting tight constraints on the 

number of processors which can be efficiently used. 

All natural forces attenuate with distance so that there is a cutoff dis­

tance beyond which particles can be considered non-interacting. Therefore 

the limit on the numbers of processors which can be efficiently used is deter­

mined by the ratio of the distance of significant interactions to the size of the 

system. For example, if the system being simulated is a relatively small clus-
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ter of very massive particles, all particle motions will be tightly coupled so 

that the system will not be amenable to massive parallelism. In contrast, sys­

tems with no action at a distance such as continuum fluids and ''billiard-ball'' 

models are ideal for massive parallelism. For such systems the only limita­

tion will be the communication required to calculate global system properties 

such as energy, average momentum, and so on. 

Since interprocessor communication limits the performance of parallel 

computers, one strategy would be to shorten the message size and data 

routes. This is the motivation for radical new computer architectures which 

involve thousands of tiny few bit processors. Since the processors are very 

small many can be fit onto a single integrated circuit so that the communica­

tion channels are very short. Moreover, the processors are designed such 

that the largest useful messages are only a few bits. 

In order to use such machines efficiently, a very non-traditional approach, 

'to scientific simulation is required.54 Rather than stylize large scale dynamics 

into complex partial differential equations to be solved by numerical schemes, 

the microscopic dynamics are encoded into very simple (few bit) rules 

describing the local interactions of particles or small spatial regions. The 

large scale behavior of the system is determined by studying very large aggre­

gates of the in teracting sub-regions. Since the interaction rules are simple 

and local, such algorithms are easily mapped onto these novel computer 

architectures. 

The first major application of this strategy has occurred only in the past 

year when Pomeau and coworkers55 discovered that the large scale dynamics 

of two dimensional incompressible fluid flow can be reasonably modeled by a 

large ensemble of simply interacting point particles moving on a hexagonal 
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mesh. This so-called hexagonal lattice gas model is straight forward to paral­

lelize and has already been efficiently implemented on a 65000 processor 

Connection Machine.56 Despite its recent development this model has stirred 

a great deal of scientific research and raised many fundamental questions 

about hydrodynamics and . computational simulations.57 Work is currently 

underway to extend this approach to more complex systems .including m ulti­

componen t fluids58 and plasmas.59 

Despite this success, it is still not clear whether these methods will be 

applicable to strongly interacting, noncontinuum systems. Of course· the ulti­

mate simulation of nature would be carried out at such a small scale that 

instantaneous action at a distance would not occur--particles would interact 

directly by exchange. of virtual particles. However at these scales the particles 

themselves would be nonlocal wavepackets, leading to even deeper questions 

about the simulation of fundamental interactions. Hence, the question of 

whether there exist ultimate limits on the scale and accuracy of scien tific 

simulations is not yet answerable; however, it is clear that the attempt to 

reach this limit will uncover clues to the ultimate goal of science, an under­

standing of the fundamental workings of nature. 
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Appendix 1: Hypercube Benchmarks 

A series of benchmark calculations were carried out to test the process­

mg speed and interprocessor communication rate of the Intel Hypercube. 

The following table gives the timings for various operations on double preci-

sion real variables. These benchmarks were run on the processing nodes 

using the system clock function to time the operations. The timing values 

are in millisec and indicate the amount of time to carry 100000 repetitions of 

the operation. In this table R indicates a double precision real variable, and 

the final table entry is the overhead time for a do-loop of length 100000. 

Floating Point Benchmarks 

Operation Millisec per 10j Ops Ops per second 

R*R 7728 12940 

R*R*R 10304 9705 

R+R 6624 15087 

R 
R 

8144 12278 

...JR 7440 13440 

exp(R) 37056 2699 

do-loop 2528 --

With do-loop overhead taken into account the processing speed of each node 

is 19230 double precision multiplications per second. Hence if all 32 nodes 

were used with 100 percent efficiency, the overall processing speed of the 

Hypercube would be approximately .62 MFLOPS (million floating point 

operations per second) or about the speed of 6 DEC VAX 11/780's. 
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Determining the interprocessor communication rates is a more compli­

cated procedure. Since the clocks on the different nodes are not necessarily 

synchronized, it is not possible to time directly the comm'unication of mes­

sages between nodes. Instead, it is necessary to time the cycle of a message 

from a node to its neighbor and then back to the original node again. Since 

this round trip involves two complete message passing steps, the one way 

comm unication rate can be calculated. 

The following table gives the round trip communication times and the 

derived one way message passing rates. 

Node-to-Node Communication Rates 

Message Size (bytes) Iterations Time (msec) Kbytes per sec 

4 100 0.90 0.89 

40 100 1.07 7.46 

1000 300 4.32 138.9 

1040 300 5.52 113.0 

2040 300 5.87 208.4 

2080 300 8.26 151.2 

4080 300 12.26 199.7 

4120 300 13.20 187.3 

8160 300 322.64 216.3 

8200 300 24.35 202.0 

12280 300 33.39 220.7 

12320 300 35.01 211.2 

16000 200 42.91 223.7 
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The communication rate is plotted against the message size in. figure 29. 

The asymptotic interprocessor communication rate is 225 Kbytes per second 

for one-way, nearest neighbor message passing. The node to host communi­

cation rate was calculated in a similar way and found to be 75 Kbytes per 

second. Further, these results indicate that the net communication rate is 

strongly dependent on the message size and that the messages are broadcast 

in 1 kbyte chunks. Hence, when developing algorithms for the Hypercube, 

communication overhead can be minimized by avoiding small messages or by 

bundling them together into larger blocks. Comparing the node processing 

speed of 19230 floating point operations per second with the maximum com­

munication rate indicates that about 1.5 double precision numbers can be 

passed between processors in the time that one operation can be carried out. 
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Appendix 2: Benchmark Test Cases 

The parameters for the two benchmark test molecules are given in the 

following tables. Note that the basis sets are fully uncontracted to simplify 

load balancing. 

Geometry 

c- C 1.50 Bohr 

C- H 0.75 Bohr 

Energies . 

SCF - 112.464174140 Hartrees 

Moller Plesset (E(2») - .108571920639 Hartrees 

Basis Sets 

Carbon Hydrogen 

# Ang. Mom. Exponent # Ang. Mom. Exponent 

1 S 42.4974 1 S 2.8992 

2 S 14.1892 2 S 0.6534 

3 S 5.1477 3 S 0.1776 

4 S 1.9666 

5 S 0.4962 

6 S 0.1533 

7-9 p 0.54424 

.. 
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Geometry 

0- H 1.8523498 Bohr 

H- 0- H 104.0330035 degrees 

Energies 

SCF - 63.195575507070 Hartrees 

Moller Plesset (£(2») - 0.0694749326263 Hartrees 

Basis Sets 

Oxygen Hydrogen 

# Ang. Mom. Exponent # Ang. Mom. Exponent 

1 S 5.0 1 S 0.5 

2 S 1.0 2 S 1.0 

3 S 0.5 

4-6 P 0.75 

7-9 P 1.25 
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Figure 1. Illustration of hypercubes of dimensions 1,2,3, and 4. 
Vertices represent processors and edges represent direct 
interprocessor communication channels. 
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Figure 2. Distribution of matrix elements onto a 
3 x 3 grid of processors. Dashed lines indicate 
indicate processor boundaries. 
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Program Host 
c 
C This program reads in a list of numbers, sends them 
C to separate nodes for processing, and then sums the 
C results together 
C 

c 
Integer*4 ci,mtype,length,node,pid,rlength 
Dimension x(32) 

C Open communication channel 
ci=copen(1 ) 

C 
C Read in the number of node processors 

Read * ,nproc 
C 
C Read in nproc numbers 

Read *,(x(i),i=l,nproc) 
C 
C Send these values to separate processors 

mtype=1 

C 

length=4 
pid=l 
Do 10 i= 1 ,nproc 
node=i-l 
Call sendms g( ci,mtype,x(i),length.node,pid) 

10 Continue 

C Receive values back from nodes 
total=O.O 
Do 20 i=l,nproc 
Call recvmsg( ci,mtype, value,length,rlength,node,pid) 
total=total+value 

20 Continue 
C 
C Print out result 

Print * ,'Total =' ,total 
End 

Figure 3a. Listing of sample program for the host processor. 
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Program Node 
C 
C This program receives a value from the host, squares it 
C and sends it back to the host. 
C 

Integer*4 host,pid,mtype,length,rlength,ci,copen 
C 
C Open communications channel 

ci=copen(l) 
C 
C Receive value from host 

mtype=l 
length=4 
Call recvw( ci,mtype, value,length,rlength,host,pid) 

C 
C Square this number 

value=value*value 
C 
C Send new value back to host 

Call sendw( ci,mtype, value,length,host,pid) 
C 

End 

Figure 3b. Listing of sample program for the node processors. 
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Figure 4. Distribution of two electron integrals for n = 3 on 3 x 3 grid of 
processors. The Greek indices range over all symmetry distinct 
values: Il,v = 1 to n, with Il ~ v . 
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Figure 5. Distribution of two electron integrals for n = 3 on 3 x 3 grid of 
processors. The Greek indices range over all values: ~,A = 1 to n. 
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Figure 6. Distribution of two electron integrals for n = 5 on 3 x 3 grid of 
processors. The Greek indices range over all symmetry distinct 
values: /..l,v = 1 to n, with /..l ~ v . 
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Figure 7. Distribution of two electron integrals for n = 5 on 3 x 3 grid of 
processors. The Greek indices range over all values: ~,A. = 1 to n. 

85 

f--

f--

f--



Host 

Form one electron Integrals 

Generate Initial 
density matrix 
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partial Fock matrices 
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Figure 8. Flow diagram of integral and 
SCF programs. Dashed lines indicate 
interprocessor communication 
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Fock Matrix Contributions 
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(calbb) - ~Pcb 2P", Pbb .-:.!..P - - - -
2 2 .... 

(cclba) - Pet: - .2. Pcb 
2 

.-:.!..P 
2 "" 2P"" - - -

(cblca) - .2.p - ~Pcb J..p P"" - - -2 cc 2 2 "" 

(dclba) - 2Pdc - ...:.l.Pdb 2 
...:.l.p 
2 .. - ...:.l.Pcb 2 

.2.p 
2 "" 2P"" 

(dblca) - .-:.!..Pdc - 2Pdb ~P .. - ...:.l.Pcb 2P"" ..2.P"" 
2 2 2 2 

(dalcb) - .-:.!..Pdc - ~Pdb 2PdtiJ - 2Pcb ...:.l.p ...:.l.PbtJ 2 2 2 "" 2 

Figure 9. Symmetry distinct two electron integral contributions to the Fock matrix. 
For example the integral (21111) has contributions to two Fock matrix elements: 

1 
P21 * (21111) to Fll and 2"P ll * (21111) to F21 



Step 1 

HOST 

Step 2 

Step 3 

Step 4 

;1~ ____ ....,.7 

3 1 ~ __ +-_-(" 

4!)-_-+-__ ..,6 

3 1~ __ +-_~ 

!)-_-+-__ ..,6 

~ ____ ...,.7 

4!).-_-I-__ ...,I6 

° "'-_ ..... _--.;;;;2v 

~ ____ ...... 7 

3 1 fC---+--.f' 

'!J---+----.)6 

Figure 10. Communication of message from host to all nodes using broadcast tree. 
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- (Il v I A 1) (Il v I A. 2) (Il v I A 3) 

Step l:Initial distribution of AD integrals. 

(Il V I A 1) (Il V I A. 2) (Il V I A. 3) 

- l l l 
(i j I k 1) (i j I k 2) (i j I k 3) 

Step 2:In-place transfomlation of flrst 3 indices . 

... -

resident: resident: fesident: 
(ijlkl) (i j I k 2) (i j I k 3) 

- .. .. 
visiting: visiting: visiting: 
(ijlk3) (i j I k 1) (i j I k 2) 

Step 3:Transfonnation of final index requiring communication 
around processor ring. 

Figure II.Transfonnation of three basis function case mapped onto a 
one dimensional grid of 3 processors. 
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(J.l viII) (J.l v 12 1) (J.l V 1 3 1) 

l t l 
(i j I 1 1) (ijI21) (ijI31) 

(J.l viI 2) (J.l V 122) (J.l V 1 3 2) 

l l l 
(ijI12) (ijI22) (i j I 3 2) 

(J.l viI 3) (J.l V 1 2 3) (J.l V 1 3 3) 

l l l 
(ijI13) (i j 123) (i j I 3 3) 

Step 1. In-place transfonnation of fIrst two indices. 

Figure 12. Transfonnation for n = 3 on 3 x 3 grid of processors. 



( 

-

.. 

resident: resident: resident: 
(ijI11) (i j 1 2 1) (i j 1 ~ 1) 

.. ... 
~ 

visiting: visiting: visiting: 
(i j 1 3 1) (i j 1 1 1) (i j 1 2 1) 

-... 

resident: resident: resident: 
(i j 112) (i j 122) (i j 1 ~ 2) 

.. .. ... ~ 

visiting: visiting: visiting: 
(i j 1 3 2) (i j 1 1 2) . (i j 1 22) 

. -... 

resident: resident: resident: 
(i j 113) (i j 123) (i j 1 ~ 3) 

.. .. ... . 
visiting: visiting: visiting: 

(i j 1 3 3) (ijI13) (i j I 2 3) 

Step 1. Transfonnation of third index. Underlined numbers are 
MO indices. 

Figure 13. Transfonnation for n = 3 on 3 x 3 grid of processors. 
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resident: resident: resident: 
(ij 111) (i j I 21) (i j I 31) 

visiting: visiting: visiting: 
(i j 113) (i j 123) (ijl~3) 

r 1, 
" 

resident: resident: resident: 
(i j 112) (i j 122) (ijl~2) 

visiting: ~ visiting: ~~ visiting: 
(ijll1) (i j 12 1) (i j I 3 1) 

" 1, " .. 

resident: resident: resident: 
(i j 11 ~ (ij 12 ~ (ij I ~ ~ 

visiting: visiting: visiting: 
(i j 112) (i j 122) (i j I ~ 2) 

I 

Step 1. Transformation of fourth index. Underlined numbers are 
MO indices. 

Figure 14. Transformation for n = 3 on 3 x 3 grid of processors. 
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sul>routine trans(xints,buf,c,mylambda,k,nbosis) 

comment: Perfonn the transfonnation on the index A, xinls 
holds the integrals, but is a big scratch array, c is the MO coefficient matrix, mylambda is index of the 
resident integral block. k is the index of the MO block to be fonned on the processor. 

dimension buft.2,nbasis,nbasis), xints(nbasis,nbasis), c(nbasis,nbasis) 

comment: initialize the pointers into buf . 

inpoint=2 
outpoint=l 

comment: Copy the resident integrals into the first half of buf and zero 
xinls. 

do 1.1. = l,nbasis 
do v = l,nbasis 

bufl.outpoinl,1J., v )=xints(JJ., v) 
xinl$, v )=0.0 

end do(v) 
end do(l.I.) 

comment: lambdLJ holds the A value for the current integral block. Initially set to resident A. 

lambdLJ = mylambdLJ 

comment: loop over nu mber of processors in row (= nbasis). With each pass process the contents of the half 
of but pointed to by outpoinl. 

do i/oop = l,nbasis 

return 
end 

comment: send the integral block about to be proceed to the neighboring 
processor and initiate receipt of a new integral block. 

call send(bufl.outpoinl» 
call recv(bu.f(inpoinl» 

comment: sum into xints the contributions from outpoinl half of but 

do 1.1. = l,nbasis 
do v = l,nbasis 

xinl$,v) = xinls(JJ.,v) + C(k,lambda)*bufl.outpoinl,I.I.,v) 
end do (v) 

end do (1.1.) 

comment: update value of lambdLJ to match incoming buffer. 

lambda = lambda - 1 
if (lambda.eq.O) lambda = nbasis 

comment: Check to make sure new integral buffer has been .received. 

call waitchan 

comment: now swap values of outpoint and inpoint 

call swap(outpoinl,inpoint) 
end do(i/oop) 

Figure 15. Fortran-like code for the transfonnation of the third index. 
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subroutine mp2(numk,numl,Llist,k_list,nblocks) 

comment: This routine calculates the second order Moller Plesset energy from 
transformed integrals distibuted on the basis of their third and fourth indices. 
numl and numk contain the number of k and I index values for the integral 
blocks located on the processor. k_list and Llist are arrays containing the lists 
of k and I index values. nblocks contains the total number of valid integral 
blocks in the column of processors. 

dimension k_list(50), Llist(50) 

comment: Loop over resident integral blocks, sending valid blocks down the 
processor column. 

do Icount = 1,numl 
I=Llist(lcount) 
do kcount = 1,numk 

k=k_list(kcount) 

comment: Skip this block if I is not an occupied orbital or k is not an 
unoccupied orbital. 

if (l.gt.nocc) goto 200 
if (k.le.nocc) goto 100 

comment: Send valid blocks to lower neighbor. 

call sendblk(k,l) 

comment: Receive a block from upper neighbor 

50 call recvblk(owner,visiting_k,visiting_l) 
nblocks=nblocks-1 

comment: If received block is a resident block, make 
contributions, but don't pass it on. 

if (owner.eq.mynode) then 
call contrb(visiting_k, visiting_I, value) 

comment: If all blocks in column have been received, then quit. 

if (nblocks.eq.OJ goto 500 

comment: Otherwise send out another resident block. 

goto 100 

end it 

Figure 16. FORTRAN-like driver routine for type 1 second order Moller 
Plesset energy calculation 



comment: Send visiting block to lower neighbor. 

call sendblkon 

comment: Calculate £<2) contribution from visiting integral block. 

call contrb(visiting_k, visiting_I, value) 

comment: Receive next block. 

goto 50 
100 continue 

comment: Now all valid resident integral blocks have been 

processed, but it is still necessary to wait for 
contributions from other processors' blocks. 

200 continue 
call recvblk(owner,visiting_k,visiting_l) 
call sendbikon 
call contrb( visiting_k, visiting_I, value) 

comment: Quit if last block has been processed. 

nblocks=nbiocks-l 
if (nblocks.eq.O) goto 500 
goto200 

comment: All that remains is to sum up the partial £(2) values on the host. 

500 call hostsum(value) 

return 

end 

Figure 16. continued 
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Total Execution Time (sees) 

# Nodes Integral SCF Fock Matrix 

3 811.94 1289.20 7.86 

7 352.06 706.21 3.14 

15 158.66 479.92 1.49 

21 79.14 378.62 0.70 

Speedups 

# Nodes Integral SCF Fock Matrix Ideal 

3 1.00 1.00 1.00 1.00 

7 2.34 1.83 2.25 2.33 

15 4.92 2.69 5.05 5.00 

31 10.0 3.40 10.31 10.33 

Load Imbalance (%) 

# Nodes Integral SCF Fock Matrix 

3 1.4 -- 11.9 

7 5.9 -- 4.9 

15 9.1 -- 17.3 

21 11.3 -- 14.6 . 

Figure 17. SCF Benchmark results for 24 basis function C2H2 
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Total Execution Time (sees) 

# Nodes Integral SCF Fock Matrix 

1 364.83 5167.36 2.05 

3 116.42 2200.32 0.67 

7 50.93 141.74 0.34 

15 25.97 113.94 0.26 

31 11.78 101.58 0.16 

Speedups 

# Nodes Integral SCF Fock Matrix Ideal 

1 1.00 1.00 1.00 1.00 

3 3.13 2.35 3.05 3.00 

7 7.16 3.65 6.10 7.00 

15 14.05 4.535 8.00 15.00 

31 30.98 5.09 12.80 31.00 

Load Imbalance (%) 

# Nodes Integral SCF Fock Matrix 

1 -- -- --
3 4.5 -- 7.1 

7 15.0 -- 23.8 

15 28.2 -- 56.3 

21 16.8 -- 72.5 

Figure 18. SCF Benchmark results for 13 basis function H20 
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Total Execution Time (sees) 

# Nodes Total SCF Integral and Fock Matrix 

3 19623.50 838.99 

7 8573.07 358.88 

15 4232.83 170.42 

31 2248.43 84.02 

Speedups 

# Nodes Total SCF Integral and Fock Matrix Ideal 

3 1.00 1.00 1.00 

7 2.29 2.34 2.33 

15 4.64 4.92 5.00 

31 8.73 9.99 10.33 

Load Imbalance (%) 

# Nodes Total SCF Integral- and Fock Matrix 

3 -- 1.4 

7 -- 8.0 

15 -- 9.0 

31 -- ll.l 

Figure 19. Direct SCF Benchmark results for 24 basis function C2H2 
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Total Execution Time (sees) 

# Nodes Total SCF Integral and Fock Matrix 

1 11555.23 368.90 

3 3749.52 117.82 

7 1691.25 51.52 

15 909.34 26.27 

31 479.1 12.37 

Speedups 

# Nodes Total SCF Integral and Fock Matrix Ideal 

1 1.00 1.00 1.00 

3 3.08 3.13 3.00 

7 6.83 7.16 7.00 

15 12.71 14.14 15.00 

31 24.12 29.83 31.00 

Load Imbalance (%) 

# Nodes Total SCF Integral and Fock Matrix 

1 -- --

3 -- 2.9 

7 -- 14.9 

15 -- 28.1 

21 -- 19.9 

Figure 20. Direct SCF Benchmark results for 13 basis function H20 
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Total Execution Time (sees) 

# Nodes Integral SCF Fock Matrix Transformation MPPT 

8 1213.02 863.42 9.28 341.84 4.59 

16 649.12 804.93 4.85 163.70 2.66 

32 399.15 730.43 2.58 81.26 2.19 

Speedups 

# Nodes Integral SCF Fock Matrix Trans. MPPT Ideal 

8 1.00 1.00 1.00 1.00 1.00 1.00 

16 1.87 1.07 1.91 2.09 1.73 2.00 

32 3.04 1.18 3.60 4.21 2.09 4.00 

Load Imbalance (%) 

# Nodes Integral SCF Fock Matrix Transformation MPPT 

8 14.8 20.8 15.2 -- --
16 27.3 18.2 21.8 -- .. --
32 47.6 25.9 34.8 -- --

Figure 21. Type 1 Moller Plesset benchmark results for 24 basis function C2H2 
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Total Execution Time (sees) 

# Nodes Integral SCF Fock Matrix Transformation MPPT 

16 1242.32 945.88 5.09 385.60 0.48 

32 764.34 925.42 3.09 190.58 0.24 

Speedups 

# Nodes Integral SCF Fock Matrix Trans. MPPT Ideal 

16 1.00 1.00 1.00 1.00 1.00 1.00 

32 1.63 1.02 1.65 2.023 2.00 2.00 

Load Imbalance (%) 

# Nodes Integral SCF Fock Matrix Transformation MPPT 

16 24.4 35.8 43.4 -- --
32 47.2 34.9 63.7 -- --

Figure 22. Type 2 Moller Plesset benchmark results for 24 basis function C2H2 
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Total Execution Time (sees) 

# Nodes Integral SCF Fock Matrix Transfonnation MPPT 

2 698.03 325.66 3.55 76.96 3.76 

4 341.22 266.11 1.78 38.69 1.92 

8 190.99 257.78 0.96 21.41 1.87 

16 109.66 227.94 0.56 12.18 1.14 

32 60.00 209.66 0.32 6.26 0.88 

Speedups 

# Nodes Integral SCF Fock Matrix Trans. MPPT Ideal . 

2 1.00 1.00 LOO 1.00 1.00 1.00 

4 2.05 1.22 2.00 1.94 1.96 2.00 

8 3.66 1.26 3.70 3.60 2.01 4.00 

16 6.37 1.43 6.34 6.23 3.31 8.00 

32 11.63 1.55 11.10 12.30 4.27 8.00 

Load Imbalance (%) 

# Nodes Integral SCF Fock Matrix Transformation MPPT 

2 9.6 20.6 12.6 -- --
4 18.3 23.5 21.6 -- --
8 39.0 28.9 33.3 -- --
16 53.8 25.9 45.7 -- --
32 61.3 18.0 65.0 -- --

Figure 23. Type 1 Moller Plesset benchmark results for 13 basis function H20 
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Total Execution Time (sees) 

# Nodes Integral SCF Fock Matrix Transformation MPPT 

2 1292.69 372.26 3.30 178.38 0.45 

4 631.36 317.33 1.66 87.04 0.24 

8 353.66 299.22 0.99 48.27 0.16 

16 202.94 274.90 0.58 27.25 0.11 

32 111.01 237.38 0.40 13.98 0.06 

Speedups 

# Nodes Integral SCF Fock Matrix Trans. MPPT Ideal 

2 1.00 1.00 1.00 1.00 1.00 1.00 

4 2.05 1.17 1.98 2.05 1.87 2.00 

8 3.66 1.24 3.32 3.70 2.80 4.00 

16 6.37 1.35 5.72 6.54 4.00 8.00 

32 11.65 1.57 8.24 12~76 7.00 16.00 

Load Imbalance (%) 

# Nodes Integral SCF Fock Matrix Transformation MPPT 

2 9.6 33.5 22.3 -- --

4 9.4 36.6 16.3 -- --
8 39.1 39.9 58.1 -- --
16 51.5 38.0 69.4 -- --
32 62.7 29.3 88.0 -- --

Figure 24. Type 2 Moller Plesset benchmark results for 13 basis function H20 
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Processors BaSIS FunctIons 

1 

2 

2 

4 

4 

4 

8 

8 

8 

8 

16 

16 

16 

16 

16 

32 

32 

32 

32 

32 

32 

Mesh 8 16 2U 23 :24 :2,) 32 

:2xi. 11.Y1 -- -- -- -- -- --

lx2 6.06 175.65 -- -- -- -- --

2xl 6.05 175.70 -- -- -- -- --

lx4 3.20 85.18 267.57 -- -- -- --
2x2 3.14 84.51 265.76 -- -- -- --
lx4 3.20 85.22 267.63 -- -- -- --

lx8 1.82 43.04 159.09 277.23 321.44 -- --
2x4 1.71 42.19 128.94 284.54 315.87 -- --
4x2 1.74 42.14 128.88 277.06 315.89 -- --
lx8 1.92 43.14 159.26 272.06 321.49 -- --

lxi6 -- 23.68 107.46 185.41 216.53 260.46 --
2x8 1.17 21.81 77.47 140.24 155.65 263.63 --
4x4 1.12 21.44 64.00 136.00 154.10 246.13 --
8x2 1.18 21.66 77.54 137.38 155.65 254.14 --
16xl -- 23.25 107.65 182.21 216.98 260.27 --

lx32 -- -- -- -- -- -- 352.54 

2x16 -- 12.35 53.01 95.14 105.81 132.75 327.73 

4x8 0.90 . 11.34 38.80 68.61 77.65 139.36 320.56 

8x4 0.86 12.08 38.80 68.61 77.62 139.25 320.54 

16x2 -- 12.34 53.17 95.50 105.84 132.74 327.79 

32xl -- -- -- -- -- -- 352.32 

Figure 25. Summary of execution times in seconds for parallel transformation pro­

gram. 
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Figure 26. Speedup curves for test cases with even load balancing. 
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Figure 27. Speedup curves for problem sizes with unequal load distributions. 
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Figure 28. SCF speedup curves for a network of Sun Workstations. 
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