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The pairing Hamiltonian, diagonal in the quasiparticle space, has been 

used to determine the statistical and thermodynamical properties of a system 

with fixed number of quasiparticles. The formalism can describe the.phase 

transi tion occurring at fixed energy as the system relaxes from the initial to 

the equilibrium quasiparticle number. 

In many cases a nuclear reaction is initiated by generating a very simple 

particle-hole configuration (doorway state) like the creation of one particle-

one hole state in the photonuclear reactions or by the excitation of other simple 

particle hole states in particle induced reactions. 

The initial doorway state usually relaxes by generating more and more 

complicated configurations involving an increasingly larger number of quasi-

particles and leading eventually to the formation of the compound nucleus. The 

relaxation process terminates when the system reaches its most probable number 

of quasiparticles associated with the compound nucleus formation. , 

Such an entropization process is frequently described by means of the 

master equation and in general it requires the knowledge of the phase space 

associated with specified numbers of quasiparticles [1,2]. 

t 
Work performed under the auspices of the U. S. Atomic Energy Commission. 
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The calculations on systems with fixed quasiparticle number performed 

so far deal exclusively with the evaluation of the level densities and have been 

restricted to independent particle models ranging from the equidistant model to 

the shell model Tl, 2,3] . 

In the present note an attempt is made to introduce the residual interactions 

by means of the pairing Hamiltonian with the aim of obtaining the dependence of 

the pairing correlation upon energy and quasiparticle number. 

The Hamiltonian used in this paper is the pairing Hamiltonian in its 

diagonal form in quasiparticle space: 

(1) 

where Ek are the doubly degenerate single particle energies, A is the particle 

chemical potential, G is the pairing strength, Ek = ~ (E
k 

- A)2 + 6
2 

are the 

quasiparticle energies, n
k 

are the quasiparticle occupation numbers and 6 is the 

gap parameter which can be obtained from the gap equation: 

2 1 - 2n 

G"=L Ek k 
(2 ) 

The quasiparticle number Q = 2 ~nk can be fixed in the calculation by 

introducing the following auxiliary Hamiltonian: 

H' (3) 

where E, is a Lagrange multiplier which assumes the meaning of the quasiparticle 

chemical potential. 

rl 
From the auxiliary Hamiltonian the Grand Partition Function e can be 

obtained: 

(4) 

where B = liT is the reciprocal of the temperature. 
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The gap equation takes the form: 

The first integrals of motion can be obtained by differentiation of ~: 

1 a~ Ek - A 1 
N = s aI = L: [1 - Ek tanh "2 6 (Ek - ~)] particle equation 

1 a~ L: 1 
Q = S a~ = 2 1 6 (Ek - ~) + exp quasiparticle equation 

-~~ = L: Ek [1 -
E - A 

E k tanh = 
Ek 

energy equation. 

By fixing the value of G, N, Q and E, the above four equations can be solved for 

A, C 6 and /}.. These quanti ties can be used to calculate the entropy: 

A great simplification in the calculation and in the interpretation of 

the results can be achieved by applying the formalism to the uniform model, 

characterized by the density of doubly degel;1erate single particle levels g and 

by the ground state gap parameter /}. • 
o 

(5 ) 

( 6) 

( 7) 

(8) 

( 9) 

Because of the uniformity of the spectrum, the particle chemical potential 

A is a constant so that it can be set equal to zero and the particle equation 

can be disregarded. A particularly simple case which is amenable to a completely 

analytical treatment is the zero temperature limit (6 ~ 00). In this limit the 

gap equation can.be integrated analytically and gives the following relation 

between ~ and/}.: . 

~ = - - (/}. l,ft 2 /}. 0 
o 

+ b.) 

The integration of the quasiparticle equation yields the following expression: 

By combining the above two equations a relationship between Q and /}. is obtained: 

(10) 

(ll) 
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( 12) 

As can be seen in fig. 1 the gap parameter initially decreases with increasing 

quasiparticle number. However, th.e I::. = I::. (Q) function, after extending as far as 
I::. 

4 o --g 
""max 3/3 

o 
I::. at I::. = --3 ,folds back and goes to zero at Q = O. Therefore, o max 

the function I::. = I::.{Q) is triple valued (I::. a is always a solution of the gap 

equation) in the range from Q = a to Q = Q . 
max 

In order to decide which of the three values is the physically stable 

solution one must study the dependence of the energy upon quasiparticle number. 

The energy equation can be integrated analytically and gives: 

1 {I::. 2 
2 g 0 

1::.2 } (1 + Q.) 
I::. 

for I::. > a 
0 

E = (13) 2 
1 I::. 2 +2- for I::. a 2"g o. 8g 

In fig. 1 such a function is shown. As t,. goes from I::. to a the E ~. Q function 
o 

follows a loop which must be bypassed by the stable solution. The location of 

the bypass can be established by means of the condition: 

122 I::. . 
- g{1::. . - I::. } (1 + - ) = 
2 0 I::. 

o 

1 II 2 () 
gLl +lO-

2" 0 8g 

The values of 1::., Q, E at the bypass point are: 

I::. 
x· 1 

6= 2 
o 

I::. 
o Q = g --

x 12 
E 

x 

where C is the condensation energy. 

~c 
8 

E . d pa1re = E or: unpaired' 

(14) 

(15) 

1 
At the bypass point, 1::./1::.0 goes abruptly from 2" to o. For temperatures larger 

than zero and smaller than the critical temperature of the unrestricted system, 

a similar picture appears, namely the function I::. = I::.{Q) is triple valued over a 

certain range of Q. The stable solution can be obtained by considering the 

dependence of the Free Energy F = -T~ + ~Q upon Q. 

This function {like the energy E at T = O} presen'!:s a loop which must 

be bypassed by the stable solution. At the bypass I::. suffers a discontinuity, 
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dropping from a finite value to zero. At the same time /). can reach zero 

continuously at a finite value of Q. The branch of the curve /). = /).(Q) beyond 

the location of. the discontinuity corresponds to an unstable solution. As the 

temperature increases the values of Q at which /). vanishes continuously and 

discontinuously approach each other and eventually merge into each other. In 

fig. 2 the loci of the points where /). vanishes continuously and discontinuously 

are shown in the T,Q plane. 

Contrary to the T = 0 limit, for T > 0 the discontinuous vanishing of 

/). characterized by /).F = 0 is associated with a jump in energy /).E ~ o. So this 

transition is a first order phase transition. 

The free energy can also be used to determine the most probable number 

of quasiparticles. The equilibrium condition is achieved when the free energy 

is at a minimum, which occurs for ~ = O. In fig. 2 the ~ = 0 line, corresponding 

to the most probable quasiparticle number, is plotted in the T,Q plane. 

In fig. 2 the lines of constant /). are also presented. It can be seen that 

the pairing correlation extends well above the critical temperature of the 

unrestricted system, provided that the number of quasiparticles is smaller than 

its most probable value. Figure 2 also shows that by raising the temperature of 

the system at fixed quasiparticle number, the pairing correlation increases if 

the system is already paired, and if the system is not paired it will eventually 

become paired. This phenomenon, which we called elsewhere thermally assisted 
, . 

pairing correlation [4], is due to the fact that, as the temperature increases, the 

quasiparticle distance from the Fermi surface becomes larger and the blocking 

diminishes. 

A most relevant diagram is the map of the entropy in the E,Q plane shown 

in fig. 3. This figure is important because the variation in entropy due to the 



-6- LBL-2368 

increase in Q at constant energy can be read out directly. Relaxation phenomena 

occur indeed at constant energy and stop when the entropy of the system is at a 

maximum. In the figure the posi tion of the maximum in entropy is shown by a 

dotted line. The boundary of the paired phase is also shown, together with the 

forbidden region in the E,Q plane due to the first order phase transition. 

In conclusion, the present description, limited to the uniform model 

should be able to provide at least a qualitative picture of the relevant statistical 

quantities of the problem. More sophisticated calculations are being performed 

on the basis of the shell model. 

.. 
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Figure Captions 

Fig. 1. Dependence of the gap parameter ~ and of the energy E upon quasiparticle 

number Q at T = O. The unstable solutions are represented by means of 

thin, dashed lines. The gap parameter is expressed in units of the ground 

state gap parameter ~ , the quasiparticle number in units of the most probable 
o 

quasiparticle number Q at the critical temperature, the energy in units of 
cr 

. . 1 ~ 2 the condensat10n energy C = 2 g U
o 

• 

Fig. 2. Lines of constant ~ (thin lines) in the T,Q plane. The lines are plotted 

at .1 ~ intervals. The thick solid line corresponds to the boundary between 
o 

the paired and the unpaired region. The dotted line corresponds to ~ = 0 

and gives the value of the most probable quasiparticle number. The dotted 

line with small and large dots represents the region where the unstable 

solution leads to ~ = O. 

Fig .. 3. Lines of constant entropy in the E,Q plane. The lines are plotted at 

intervals of 0.1 S where S is the entropy at the critical temperature. 
cr cr 

The thick solid line represents the region of maximum possible quasiparticle 

number at constant energy. The dotted line at the left corresponds to the 

most probable quasiparticle number (~ = 0). The two dotted lines on the 

right define the discontinuity in energy associated with the first-order 

phase transition. 
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