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The Corrosion of Iron Rotating Hemispheres in 1 M Sulfuric Acid: 

An Electrochemical Impedance Study 

Chrystalla Haili 

Abstract 

This research project consists of experimental investigation and 

theoretical analysis of the corrosion of iron in sulfuric acid. The 

main objectives of the project are: to elucidate the processes governing 

the complex behavior of the iron-sulfuric acid system, particularly the 

reaction mechanism, the passivation process, and the observed limiting 

current and electrochemical oscillations; to improve our fundamental 

understanding of metal corrosion and passivation phenomena; and to 

demonstrate the application of the electrochemical impedance method as a 

tool for the study of electrochemical systems. 

Three different types of experiments are carried out: (I) poten

tiodynamic experiments to determine the anodic polarization curve, espe· 

cially the passivation curve; (II) potentiostatic experiments recording 

the sustained current oscillations that occur within a certain potential 

range on the limiting current plateau; (III) measurement of the AC 

(a1 ternating current) impedance of the system at several points along 

the anodic polarization curve, using a frequency response analyser. 

Rotating hemispherical iron electrodes are used in most of these experi

ments, because they have the advantage of a ur.iform primary current dis

tribution, in contrast to the more commonly used rotating disk elec

trodes. 
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Comparing the experimental results for the passivation and current 

oscillations for hemispheres with results for disks obtained by other 

investigators, we observe no dramatic difference. Some differences are 

observed, and they may be attributed to differences between the current, 

potential, and concentration distributions of the two electrode 

geometries. The hemispherical electrodes are observed to passivate 

first near the pole, and then the passivated area increases toward the 

equator, at the conditions tested. 

Rotating disk electrodes are used in some of the impedance measure-

ment experiments, and the results for the disks are compared with the 

results for the hemispheres. Significant differences are observed at 

high perturbation frequencies, where the electrodes approach the primary 

current distribution. Specifically at high frequencies, the impedance 

of the hemispherical electrodes exhibits an additional time constant, 

which might be related to the reaction mechanism for iron dissolution. 

The Kramers-Kronig relations can be applied to the electrochemical 

impedance, and they provide a means of testing the accuracy and con-

sistency of experimental impedance data, or the validity of theoretical 

results. The test consists of calculation of the real part of the I ' 

impedance from the imaginary part, and vice versa, through the Kramers-

Kronig relations and comparison of the calculated results with the 

experimental or theoretical values. A general method of calculation is 

developed and is applied to test the consistency of some of the experi-

mental impedance data exhibiting inductive loops. The data tested are 

found to be consistent with the Kramers-Kronig relations. 
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The experimental results are then compared with theoretical predic

tions in order to elucidate the behavior of the iron-sulfuric acid sys

tem. A concentrated-solution model developed recently in this labora

tory is used to calculate the impedance, in addition to analytic calcu-

lations using infinitely-dilute-solution theory. The concentrated-

solution model has provision for multicomponent diffusion, heterogeneous 

electron-transfer reactions, homogeneous reactions, hydrodynamics, and 

migration, but it has no provision for adsorbed intermediate species, 

the microscopic structure of the electrochemical interface, or porous 

films covering the electrode surface. The calculated results for the 

reaction mechanism and conditions tested do not agree with the experi

mental results. The analysis indicates further research directions that 

could give an agreement between theory and experiment, completing the 

characterization of the iron-sulfuric acid system. 
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CHAPTER 1 

Introduction 

1.1. Motivation 

Most metals spontaneously corrode in the environments in which they 

are used. Given the constraints imposed by scarcity and as metal 

resources are extensively utilized, metal corrosion is an important 

problem. For example, the cost of metal corrosion in the United States 

in 1982 was estimated to be $122 billion, about 4% of the Gross National 

Product (1). 

A knowledge and understanding of corrosion phenomena is necessary 

in an effort to solve the problem of corrosion. Indeed lack of such 

knowledge has been a main cause for the persistence of the problem. 

Since corrosion phenomena are electrochemical in nature, fundamental 

electrochemical research is essential for providing an understanding-of 

corrosion, so that we can predict the behavior of corrosion systems and 

ultimately so that we can control and prevent metal corrosion. The 

electrochemical impedance technique can be a powerful tool for the study 

of complex electrochemical processes such as corrosion. 

This thesis is a study of a specific metal corrosion system using 

the electrochemical impedance technique. The system studied is the cor-

rosion of iron in de-aerated one molar sulfuric acid solution. Gen-

erally in a corrosion system, an overall anodic reaction and an overall 

cathodic reaction occur simultaneously. In the system studied, anodic 
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iron dissolution and cathodic hydrogen evolution, 

++ -Fe ;:::: Fe + 2e [1-1] 

+ -2H + 2e ;:::: H
2 

, [1-2] 

take place. In addition iron passivates in sulfuric acid under certain 

conditions through a mechanism that has not yet been established. This 

work considers mainly the iron dissolution reaction. The study of the 

anodic process itself is a useful approach to the study of corrosion 

systems, especially systems exhibiting passivation. The complexity and 

the practical importance of iron corrosion make the study of this system 

a challenging project. 

Figure 1-1 summarizes the background for this work. A typical 

anodic polarization curve determined in potentiodynamic experiments for 

the iron-sulfuric acid system exhibits two different shapes for the pas-

sivation curve (active-passive transition), depending on the polariza-

tion control device being used. In addition the polarization curve 

displays a limiting current plateau and a region of sustained current 

oscillations. The presence of these characteristics of the system is 

well established, but the processes generating these characteristics 

have not been unequivocally established. Even in the low-current range 

where the behavior of the system appears less complex and reproducible 

experimental results exist, several conflicting theories for the reac-

tion mechanism have been postulated. 
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Figure 1-1. Schematic diagram of a typical anodic polarization curve 
determined in potentiodynamic experiments for the iron
sulfuric acid system. The dotted lines illustrate the 
transitions between the active and the passive states 
obtained with a normal potentiostat. The dashed line 
illustrates the active-passive transition curve obtained 
with an alternative polarization control device. 6V 
indicates the potential region where current oscillatiog~ 
are observed. 
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1.2. In Search for a Method 

Figure 1-1 illustrates a fundamental problem in scientific 

research: the experimenter may change the system under study in such a 

way that the true behavior of the system is not observed, or an artifi

cial and hence misleading behavior is observed. Thus the value of any 

experimental results becomes questionable, and identification of the 

characteristics of an inherently complex system becomes very difficult. 

In any event, experimental observations and measurements provide 

the foundation for the development of a theoretical model which is an 

abstract description of the physical system, based on already. esta-

blished principles (laws) or new postulates. To obtain quantitative 

results, the theoretical model is formulated into a mathematical model 

and calculations are made. Subsequent comparison of theoretically cal

culated and experimentally measured results is necessary to characterize 

the system under study, but the comparison is primarily a test of both 

theory and experiment. 

If theory and experiment are found to be in agreement, further 

experiments are usually needed to check and verify the theory and to 

determine the values of relevant parameters. Then we may be confident 

that we have a satisfactory knowledge and understanding of the system. 

If theory and experiment are found to be in disagreement, we need to 

consider whether the theory or the experiment is in error. Changes in 

the experimental apparatus and pr~cedure or the theoretical principles 

and calculations are necessary to reach an agreement. 



5 

And there is always the question when can we say that experimental 

and theoretical results are in agreement, or what is the maximum accept· 

able discrepancy, given the existing experimental and theoretical uncer· 

tainties. Moreover experimental and theoretical results may not be 

directly comparable. An experimental system is normally a simplified or 

idealized representation of the real system whose characteristics we 

seek to determine, and a theoretical model is an abstract idealized 

representation of the real system, but the assumptions (idealizations) 

used in representing the system theoretically may be different from 

those used in representing the system experimentally. 

Independent methods (means) to test the experimental data can be 

useful for determining whether the experiment is in error, but similar 

questions and uncertainties will inevitably arise during the application 

of the testing methods. 

Often research gives useful insight into the questions it seeks to 

answer about a system, but no definitive answers or conclusions. 

Repeating experiments many times and under many different conditions, 

performing many different types of experiments, as well as performing. 

numerous calculations and continuing the development of theoretical 

models, including possibly a radical reshaping of theoretical laws, are 

all necessary to bridge the gap between theory and experiment and com

plete a research study determining the characteristics of a system. One 

hopes that the interaction of theory and experiment will at last reveal 

the truth. 
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1.3. A History of the Iron - Sulfuric Acid System 

A complete research study to determine the characteristics of a 

complex system requires a great amount of work, and often several 

researchers may work on the same system over a period of time. The 

determination of the characteristics of the system may therefore be con

sidered to be a collective effort, in which many investigators take part 

and·each investigator needs to be aware of the others' work. This sec

tion then is an overview of work that has been done on the iron-sulfuric 

acid system. 

The iron- sulfuric acid system has been studied for many years by 

many investigators, but the behavior of the system has not yet been com

pletely determined. Some authors have claimed that they have proved or 

established some characteristics of the system, but their work is gen

erally limited to a certain range of the system, or their analysis is 

not rigorous enough to account for the complexity of the system, and 

their conclusions are therefore questionable, or leave unanswered ques

tions. 

Specifically in this section we consider the reaction mechanism for 

iron dissolution, the limiting-current and passivation phenomena, and 

the sustained current oscillations. 

1.3.1. Reaction Mechanism for Iron Dissolution 

The reaction mechanism for iron dissolution in acidic sulfate solu

tions has been very controversial, and a variety of conflicting experi-

mental results have been reported about it. The controversy has most 
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frequently centered on two basic mechanisms: tl"fe Heusler or catalytic 

mechanism and the Bockris or consecutive mechanism. 

or 

and 

· Heusler (2) proposed the following mechanism, in the 1950's: 

Fe + OH ~ (FeOH) d + e 
a s 

-- (FeOH) d a s 
+ + H + e 

[l-3a] 

[l-3b] 

Fe + (FeOH) d + OH - (FeOH)+ + (FeOH) d + 2e-a s a s (rds) [1-4] 

(FeOH)+ + H+ ~Fe+++ H
2

0 

In 1961, Bockris and coworkers (3) proposed a different mechanism: 

or 

and 

Fe + OH- ~ (FeOH) d + e 
a s 

(FeOH) d a s 

-- (FeOH) d a s 
+ + H + e 

+ (FeOH) + e 

+ + ++ (FeOH) + H ~ Fe + H20 

(rds) 

[1-5] 

[l-3a] 

[ 1- 3b l 

[ 1- 6] 

[ 1- 5] 

The subscript ads indicates that the species is adsorbed at the elec-

trode surface; an ion with no subscript is present in the electrolytic 

solution. (rds) indicates that the reaction was assumed to be the rate 

determining step. 

Both of these mechanisms assume the formation of (FeOH) d , but in 
. a s 

the Heusler mechanism (FeOH) d acts as a catalyst, whereas in the 
a s 

Bockris mechanism (FeOH) d is an intermediate consumed by the reaction. 
a s 
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Note that no physical picture of the catalytic action of (FeOH) d is a s 

given by Heusler and that the catalytic mechanism assumes a two-electron 

transfer in a single reaction step, which is considered energetically 

unfavorable (3-5). 

In the original formulation of the two mechanisms, reaction l-3a, 

\vhere OH ions react directly with iron atoms, was assumed. However in 

a strong-acid solution, the OH concentration is evidently too $mall to 

participate in the reaction.t To avoid this problem, reaction l-3a was 

subsequently (4, 5) replaced by reaction l-3b which involves reaction of 

H
2
o molecules rather than OH ions from the solution to produce 

(FeOH) d . a s 
Reaction l-3b can be considered as the sum of a series of 

elementary steps in equilibrium (4, 5). Proponents of the Heusler 

mechanism (e.g. I 6) have continued to write the catalytic step (equation 

1-4) with OH- as a reactant. 

Both the Heusler and the Bockris mechanisms are for the range of 

low anodic overpotentials and very small surface coverage by (FeOH) d . 
a s 

The adsorption process was not explicitly treated in these early models 

(2, 3), and mass-transfer limitations were not considered. Extensions 

of the mechanisms to describe the entire anodic dissolution and passiva-

tion range were proposed later by several investigators I and we will 

discuss these models later in this section. 

The Heusler and Bockris mechanisms were introduced mainly on the 

basis of experimental results for the value of the steady-state anodic 

t Note that in their original work, Bockris and coworkers (3) used 
electrolytes with pH between 1 and 5. In this work we use 1 M H

2
so

4 with pH ~ 0 and hence much smaller OH- concentration. 
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[1-7] 

and for the apparent value of the reaction order with respect to the 

bulk solution pH or equivalently the OH concentration, 

a log ia Fe 
p = 

H a pH 

a log i a Fe 

a log [OH-] 
[ 1- 8] 

Assuming the symmetry factor for each elementary reaction- step is 1/2 

(see equation 1-34), the Heusler mechanism is consistent with b 
a 

mVjdecade (i.e.' a 
a,Fe 

2) for a steady- state experiment, b 
a 

30 

60 

mV /decade for a transient experiment, and pH = 2, while the Bockris 

mechanism is consistent with b = 40 mV/decade (i.e., a F = 3/2) and a a, e 

PH = 1. ( 4) 

Since the introduction of the two mechanisms, much work has been 

done measuring the parameters ba and pH and thus providing support for 

either of the two mechanisms. In most of these studies, acidic sulfate 

solutions of pH above 0.5 or 1 were used. Reported values of the Tafel 

slope have ranged from 30 to 100 mVjdecade, and values of the reaction 

order have ranged from 0 to 2. (4-11) 

This wide range of experimental values may be due to deviations 

from Tafel behavior, or due to impurities in the iron electrode, impuri-

ties in the electrolytic solution, or defects of the electrode surface 

. structure (3-5). Again we see how questionable experimental results can 

be, in this case, due to experimental conditions that are not strictly 

set up, rather than due to a fundamental problem. 
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Useful studies and reviews comparing the two types of mechanisms 

for iron dissolution from theoretical and experimental viewpoints are 

given by Kelly (4) and Hilbert, Lorenz, and coworkers (5). Kelly's 

analysis concluded in favor of the Bockris mechanism, which Kelly 

presented in a more elaborate form. Hilbert, Lorenz, and coworkers (5) 

concluded hoping "to have proved, beyond doubt, that the anodic dissolu-

tion [of iron] in aqueous solutions can follow two different mechan-

isms." They gave a synopsis of experimental results consistent with 

either the Bockris or the Heusler mechanism, depending on the morphology 

(crystallographic substructure) of the electrode surface. 

According to Lorenz and coworkers ( 5), highly pure iron having a 

relatively low density of crystal imperfections gives results in agree-

ment with the Bockris · mechanism, whereas iron with many crystal 

imperfectionstt and hence high surface activity gives results in agree-

ment with the Heusler mechanism, presumably because the catalytic action 

of (FeOH) d takes place at imperfection sites. They believe that the 
a s 

catalytic mechanism is energetically rather improbable, but possible 

under certain conditions, since they cannot explain some experimental 

results in another way. Bech-Nielsen and coworkers (12) have also found 

results in agreement with either mechanism, depending on the electrode 

surface morphology. Allgaier and Heusler (13) presented a quantitative 

statistical analysis of the morphology of iron electrodes during disso-

lution, emphasizing that according to the catalytic mechanism, charge 

transfer occurs at sites of crystal imperfections. 

tt iron produced by cold-working processes 
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According to a more recent experimental st~dy (11) of iron corro-

sion in sulfate solutions (0 :::5 pH :::5 2), iron dissolution can follow 

three different mechanisms, depending on the solution pH. On the basis 

of measured ba and pH values, this study concluded that iron dissolves 

according to the Bockris mechanism at pH - 1, according to the Heusler 

mechanism at pH - 2, and according to a different mechanism at pH- 0. 

A significant conclusion of this study, which included solutions more 

acidic than most other studies, was that for pH - 0 (pH < 0. 2) solu-

tions, the rate of the anodic reaction is independent of the pH (pH = 

+ -0), indicating that in this pH-range, H, OH, or H
2
o species are prob-

ably not involved in the dissolution reaction. Hurlen (10) had earlier 

proposed a "double metal ion mechanism," according to which, half of the 

iron atoms undergo dissolution through reaction with (OH) species, and 

the other half of the iron atoms dissolve without interaction with (OH). 

Experimental results were often consistent with a Bockris-type con-

secutive mechanism. Thus the Bockris mechanism has become the most 

widely accepted mechanism for the anodic iron dissolution in acidic sul-

fate solutions, at least at low overpotentials, but the controversy is 

not completely resolved. 

Generally, two different sets of ba and pH values were often found 

experimentally and were usually interpreted by two different mechanisms, 

the Bockris or the Heusler mechanism. DraZic and Vorkapic (14) proposed 

an alternative mechanism which can account for both sets of experimental 

data depending on the effect of "internal strains" (the state of- the 

electrode surface, concentration of active sites). The proposed mechan-
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ism was basically the Bockris mechanism with an additional parallel 

dissolution-path, where (FeOH)ads can be transformed into [Fe(OH) 2 Jads 

++ 
and then Fe . Such a general mechanism seems more likely than a change 

from one mechanism to a completely different mechanism to account for 

the experimental data. 

So far we have considered work limited to low anodic overpoten-

tials. Let us now consider work that has been done to determine the 

reaction mechanism for iron dissolution over the entire active and pas-

sivation range. 

Proposed models have been based on the mechanisms described earlier 

in this section, predominantly the Bockris mechanism. These models are 

more complex than the earlier models in order to account for the more 

complex behavior of the system. They include more reaction steps and 

more intermediate adsorbed species. The models discussed next, in this 

section, generally derive kinetic equations using the Langmuir adsorp-

tion isotherm for the surface coverage by adsorbed intermediates, and 

they neglect mass-transfer limitations. 

Lorenz and coworkers (15-17) measured steady-state polarization 

curves for iron in weak- acid sulfate solutions ( 3. 5 ::s pH ::S 5. 5). To 

interpret the experimental results, they proposed a mechanism with eight 

reaction steps including explicitly three adsorbed intermediates as well 

H
+ . as ~ons. (See table 1-1.) They calculated kinetic parameters and 

current-potential curves which were similar to the experimental results. 

Bech-Nielsen (12, 18) proposed an even more complex mechanistic model, 

including H+ ions, the activity of certain anions (e.g., Cl-) or 
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Table 1-1. Reaction Mechanism for Iron Dissolution and Passivation 

proposed by Lorenz and coworkers (15-17) (Based on experimental results 

for weak-acid sulfate solutions, 4 <pH< 6) 

-- (FeOH) d a s 
+ + H + e 

(FeOH) - (FeOH)+ + e ads 

+ Fe [Fe(OH) 2] d - (FeOH) + (FeOH) d + e s a s a s 

[I] 

(rds) [II] 

[III] 

(IV] 

(rds) (V] 

+ Fe [Fe(OH) 2 ] d + H20 ~Fe [Fe(OH) 3 ] d -oxide phase + H + e (VI] s a s s a s 

Passive (nonporous) layer formation: 

(VII] 

* [VII ] 

(VIII] 

Fe is an iron atom of the metallic substrate on which a species is 
ad~orbed. 

* This alternative reaction for the formation of ferric oxide was pro
posed earlier (15), but was later (16) replaced by reaction VII. (See 
discussion of passivation in section 1.3.2.) 
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molecules of the electrolytic solution, and the density of defects on 

the metal surface and using Langmuir, Freundlich, and Temkin isotherms 

for the adsorbed intermediates. 

Considering the complexity of the reaction mechanisms proposed by 

Lorenz and coworkers (15-17) and by Bech-Nielsen (12, 18), it becomes 

evident that steady-state techniques examining current-potential curves 

may be inadequate for elucidating such complex processes and establish-

ing their characteristics. Transient techniques such as the electro-

chemical impedance technique can be much more powerful than steady-state 

techniques for investigating complex electrochemical systems. Let us 

then consider impedance studies of the iron-sulfuric acid system. 

Epelboin and coworkers at the French Centre National de la 

Recherche Scientifique have done much work developing and applying the 

electrochemical impedance method for the study of the kinetics of metal 

dissolution and passivation as well as electrodeposition. Epelboin and 

Keddam (19, 20) first investigated steady-state polarization curves and 

concluded, on the basis of the corresponding reaction-order pH 

values, that these curves strongly supported the Bockris type of mechan

ism. After the steady-state analysis, they performed an electrochemical 

impedance analysis which "confirmed" that conclusion. 

Bechet, Epelboin, and Keddam (21) later stated that their previous 

impedance measurements were not sufficiently accurate at low frequencies 

and that the current-density range was limited. They therefore per-

formed more impedance measurements over a larger current-density range 

and with better accuracy, made possible by the development of improved 
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instrumentation. These impedance measurements showed two inductive 

2 
loops at low frequencies, at current densities of 50 to 100 rnA/em . To 

explain these results they added a parallel dissolution-path to the 

Bockris mechanism. The additional dissolution path involved another 

adsorbed intermediate species, [Fe(OH) 2 J~ds' The additional dissolution 

reaction-step was assumed to be catalytic, similar to reaction 1-4 of 

the Heusler mechanism, but catalyzed by [Fe(OH) 2 J~ds instead of 

(FeOH) d . According to Bechet et al. (21), the Bockris mechanism is 
a s 

dominant at low pH, but the contribution of the parallel dissolution 

path to the overall current increases as the current density increases. 

More recently Keddam et al. (22) presented the results of impedance 

measurements for iron dissolution in acidic sulfate electrolytes 

(H
2

so
4

+ Na
2
so

4
) with 0!:: pH!:: 5, at current densitie.s well below the 

mass-transfer-limited current. At pH = 0 (1 M H
2

so
4

) they observed two 

inductive loops in addition to the high-frequency capacitive loop attri-

buted to the double layer. At higher pH they sometimes observed three 

time constants, inductive or capacitive, in addition to the one for the 

. double· layer, and they assumed that the presence of three additional 

time constants implies three adsorbed intermediate species in the reac-

tion mechanism. 

Keddam et al. (22, 23) then considered forty different reaction 

mechanisms having three adsorbed intermediates and finally concluded 

that, among the mechanisms considered, only one mechanism is able to 

interpret the experimental results over the range investigated. This 

mechanism is given in table 1-2 (reactions [A] through [G]). Reactions 



Table 1-2. Reaction Mechanism for Iron Dissolution 

proposed by Keddam et al. (22, 23) 

+ 
Fe ~ (Fe ) d + e a s 

( +) F ++ Fe d - e + e a s 

+ 
(Fe ) d a s 

+ 
(Fe ) d a s --

-- + * (~e ) ads 

+ * + * ++ ~ (Fe ) d + Fe - (Fe ) d + Fe + 2e a s a s 

++* 
(Fe ) d a s + Fe 

++* 
(Fe ) d a s 

++* 
- (Fe ) d a s 

- (Fe++) 
- ads 

++ -+ Fe + 2e 

(passivation) 
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[A] 

[B] 

[C) 

[D] 

[E] 

[F) 

[G] 
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[A] and [B] represent a Bockris-type dissolution path, which Keddam et 

al. (22) found to be dominant at low currents. Note that reactions [E] 

and [F] are "self-c-atalytic," similar to reaction 1-4 of the Heusler 

mechanism. The last reaction was introduced to account for passivation, 

and it can be ignored at low current and low pH. Keddam et al. 

obtained a theoretical expression for the faradaic impedance based on 

the proposed reaction mechanism. To obtain the (total) electrochemical 

impedance they subsequently assumed a constant double-layer capacity of 

2 
100 ~F/cm connected in parallel with the faradaic impedance. 

Keddam et al. (22) state that the proposed reactions may not 

strictly be related to the true elementary steps, but were introduced as 

possible overall steps manifested in the electrochemical impedance. We 

note that elucidating the true elementary steps is limited by the sensi-

tivity of available analytical methods and the stability of intermediate 

species. The chemical composition and nature of the intermediate 

species were not considered by Keddam et al. (22, 23). More direct 

analytical methods may be necessary to determine what species are actu-

ally present in the system and hence establish a detailed mechanism. 

Neither OH nor H
2
o was explicitly included in the reaction mechan

ism, but Keddam et al. ( 22) believe that the OH- concentration can be 

considered to be implicitly contained in the value of the reaction rate 

constants. The rate constants were adjustable parameters in the 

theoretical model, and their values, which were chosen so that the model 

would reproduce as closely as possible the experimental results, were 

different for solutions with different pH. 



(b) 

02 
": 
E .. 
c 1$ 

,.. ... 
~ 01 z 

(a) ~ 
i oos ... 
Cl: 

a 
0 ... 

-0'.-----r---:---.., 

0 • . 
0.~'=-, --.,.f..c--.+.o,,---...,~. 

II'C)t(NT&A.t.. • .., 

.. E 

q 
... 
Cl: 

~ ,.. 
Cl: 

~ 1 
;; 
c 
J: ..... 

0 
REAL PAR'T . A 

18 

Figure 1-2. Comparison of measured and calculated impedance results of 
Keddam ec al. (22) for an iron rotating disk electrode (d = 
3 mm, 0 - 1600 rpm) in sulfuric acid solution (pH - 0). 
The parameter is frequency in Hz. Measured and simulated 
steady- state polarization curves are also shm.;n. 
Polarization points about which the impedance was measured 

.or calculated are marked on the corresponding polarization 
curve. (a) Measured results (Fig. 2 in Reference 22). 
(b) Calculated results (Fig. 8 and 7 in Ref. 22). 



19 

The calculated impedance results (22, 23) were generally in agree

ment with the experimental results over the range studied. Figure 1-2 

shows the experimental and calculated impedance results for pH = 0. 

However the slope. of the simulated steady-state polarization curves was 

different from that of the experimental curves, and Keddam et al. (22) 

state that the discrepancy in the steady-state results was "the price to 

be paid for better agreement of the impedance diagrams." 

Schweickert et al. (6) also presented an impedance study to eluci

date the iron dissolution mechanism, and proposed a mechanism quite dif

ferent from those proposed by Epelboin, Keddam, and CO\·lOrkers (19-25). 

Schweickert et al. argued that a dominant Bockris mechanism is not 

appropriate for explaining both the steady-state and the impedance 

experimental results, and they proposed a catalytic mechanism with seven 

reaction steps. 

Schweickert et al. (6) emphasized the influence of the electrode 

surface state, which they modeled using potential-dependent coeffi

cients. They used several fitting parameters to simulate the current

potential curves and the faradaic impedance, and they concluded that, 

because of the use of many fitting parameters, the agreement between 

simulation and experiment for the current-potential curves was only 

qualitative in nature. Schweickert et al. did not directly compare 

theoretical and experimental results for the electrochemical impedance; 

they only showed that their model yields a faradaic impedance with three 

time constants, two inductive and one capacitive. 
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In conclusion, this review of previous work investigating the reac

tion mechanism for iron dissolution in sulfuric acid solutions shows 

that there has been no complete and definitive study of the subject and 

thus the question of determining the reaction mechanism is still open. 

In view of the complexity of the proposed reaction mechanisms for 

iron dissolution and the several simplifying assumptions that have been 

employed to develop mathematic-al expressions describing these mechan

isms, it is evident that the development of more rigorous theoretical 

models taking into account most of the occurring phenomena and the 

interactions among them is necessary to characterize the system. These 

phenomena include multiple reactions, mass transfer, nonuniform current 

and potential" distributions, and the role of the double layer. 

Accounting for these phenomena becomes more important in the range 

of higher overpotentials, at the limiting current plateau, and along the 

active-passive transition. We consider this range in the following sec

tion. 

1.3.2. Limiting Current and Passivation 

As the overpotential is increased, the current increases until a 

limiting current plateau is reached, and subsequently the electrode pas

sivates. Let us consider first the physical phenomena that underlie the 

limiting current and passivation behavior and then theoretical models 

that have been proposed to describe the phenomena. 

Limiting currents are generally due to limitations in the transfer 

of a reactant from the solution to the electrode, or in the removal of a 
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product from the electrode into the solution. Anodic limiting currents 

are often associated with more complex phenomena such as formation of 

films covering the electrode surface and resulting in additional concen

tration and potential gradients in the system. For the iron- sulfuric 

acid system, the formation of a ferrous sulfate film is also thought to 

be a necessary precursor to passivation due to subsequent formation of 

an iron oxide film. 

Several authors (26-31) have reported formation of ferrous sulfate 

films on iron electrodes in sulfuric acid solutions, at the limiting 

current and during the onset of passivation. In a microscopic investi

gation ·Beck (31) observed that salt crystals would often start at the 

periphery of a shielded electrode (where the current density was a lit

tle higher) and then propagate part way toward the center. Another 

study (32) using microscopic observations of iron in 1 N sulfuric acid 

solution suggested the precipitation of colloidal ferrous hydroxide par

ticles rather than ferrous sulfate crystals as a precursor to passiva

tion. 

At a high current density, rapid dissolution of the iron electrode 

results in a high concentration of ferrous ions near the electrode. If 

the ferrous ion concentration exceeds the saturation concentration in 

the solution, or a critical supersaturation concentration, then ferrous 

salt crystals can precipitate on the electrode surface. Serra and Feliu 

(27) and Beck (31) calculated supersaturation factors of about 2 for 

ferrous sulfate precipitation to begin. 
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As iron dissolution continues, a porous salt film grows on the 

electrode surface. Alkire et al. (30) calculated maximum salt film 

thicknesses between 2 and 25 t-tm using a simple theoretical model for 

film growth and experimental data for iron in 6 N H
2
so

4
. Beck (31) 

measured potentiostatic current transients for iron in acid solutions, 

while observing the electrode surface with a microscope. He calculated 

a salt film thickness of about 10 t-tm for iron in 5 N HCl04 , using the 

model of Ref. (30) and his experimental data. He also calculated an 

approximate porosity value of 1% for the Fe(Cl04 )
2 

salt film. 

The thickness (of) and porosity (ef) of the salt film are key 

parameters for the behavior of a system that contains a salt film, but 

there is little knowledge about their values. The ohmic potential drop 

in the pores of the salt film depends on these parameters and is approx-

imately given by (31) 

i [~ffl ' ~~O,f- ttf ~ [ 1- 9] 

where ttf is the conductivity of the solution in the pores. The poten

tial drop in the salt film produces concentration changes through the 

film. Changes in the H+ concentration are particularly important, 

because they determine the tendency of the iron electrode to passivate, 

as we describe later. It appears that more sophisticated experimental 

techniques and theoretical models are necessary in order to obtain accu-

rate and reliable values for the porosity and thickness of the salt film 

on iron (and other corroding metals) and therefore be able to character-

ize the system. 
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Faraday (33, 34) discussed the passivation of iron in 1836 and 

attributed passivation to coverage of the iron surface by an insoluble 

oxide film. Almost 100 years later, the oxide passivation theory was 

initially verified by Evans et al. ( 35) , who isolated oxides from pas

sivated iron. Flade (36) studied the passivation of iron in sulfuric 

acid and observed a potential characteristic of the passive-active tran

sition. Pourbaix (37) presented data for tne theoretical equilibrium 

between iron and iron oxides as well as experimental data for the condi

tions where iron was observed to passivate. The experimental conditions 

for passivation were described by 

(Vm - ~o)NHE ~ 0.40 - 0.085 pH (for pH < 12). [1-10] 

Passivation therefore requires high potential and/or high pH values. 

Note that the passivation condition given. by equation 1-10 lies above 

the Fe/Fe
2
o

3 
equilibrium line in a potential vs. pH diagram (37). 

Beck (31) demonstrated that, in a strong-acid solution (low pH), 

condition 1-10 cannot be satisfied and hence oxide passivation is not 

possible without prior formation of a salt film on the electrode. At 

the low pH value prevailing in the bulk solution, unrealistically high 

surface overpotential and hence current-density values would be neces

sary to satisfy condition 1-10. The high current density would result 

in a large ohmic potential drop in the solution, which in turn would 

limit the surface overpotential that can be achieved in a potentiostatic 

experiment. The formation of a porous salt film can cause two major 

changes allowing passivation: decrease of the current density, by limit

ing the transport of Fe++ and also by partially covering the active 
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electrode-surface; increase of the local pH at the electrode surface due 

+ to enhanced migration of H away from the electrode through the addi-

tional potential drop (equation 1-9) across the porous salt film. The 

condition for passivation is thus satisfied, and an oxide film begins to 

form underneath the salt film (31). 

Alkire et al. (30, 38) have also emphasized the role of a salt film 

in the corrosion and passivation of iron and other metals. The salt 

film on the electrode is also associated with the current oscillations 

in a range of potentials along the limiting current plateau for the 

iron-sulfuric acid system. Ue will discuss these oscillatory phenomena 

in the next section . 

. The passive state of iron is still controversial. The film cover-

ing passive iron is generally recognized as primarily a ferric oxide, 

about 15 to 40 A thick, but there is still controversy and incomplete 

knowledge about the nature of this film, particularly its chemical com-

position and electrical conduction properties. 

There have been numerous studies (39-51) of the passive film on 

iron, mostly in neutral solution, using a variety of experimental tech-

niques, but the results and proposed models have often contradicted each 

other. According to a popular model, the passive film is a 

-y-Fe
2
o

3 
- Fe 3o4 film, with the Fe 3o4 oxide next to the metal and the 

-y-Fe 2o3 oxide next to the solution (39, 40). Other models view the film 

as a single layer of a ferric oxyhydroxide, probably FeOOH, including 

defects that affect the conductivity of the film (45-47), or a hydrated 

polymeric ferric oxide (48). 
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The passivation of iron, i.e. , the transiti-on from the active to 

the passive state, has also been controversial. Various types of pas-

sivation are illustrated schematically in figure 1-3 and are discussed 

in this section. We have already shown in figure 1-1 two different 

shapes of experimental passivation curves. In potentiodynamic experi-

ments with a conventional potentiostat, sharp vertical transitions 

between the active and passive states are observed in a current vs. 

potential diagram. The active-passive transition occurs at a potential 

V A-P and the passive-active transition occurs at VP-A, which is less 

anodic than VA-P' i.e., there is a hysteresis phenomenon. 

Epelboin, Gabrielli, and coworkers (52, 53) suggested that the 

observed sharp transitions and hysteresis are not fundamental properties 

of the Fe/H
2
so

4 
system, but are due to the inability of the conventional 

potentiostat to control the system and show its true characteristics. 

Epelboin and coworkers designed an alternative polarization control dev

ice called a Negative Impedance Converter,* with which they recorded a 

continuous and reversible passivation curve having a parabolic shape 

(see figures 1-1 and l-4). The polar~zation curve obtained with this 

alternative control device is called a Z- shaped curve, because of its 

characteristic shape, which is associated with multiple steady states. 

Epelboin, Gabrielli, and coworkers (52, 53) observed localized 

dissolution/passivation of rotating disk electrodes along the passiva-

tion. curve, and they measured the electrode surface profiles with an 

* The principles of polarization control are described in more detail in 
section 2.2. 
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XB L 876-6307 

Figure 1-3. Schematic current-overpotential diagram illustrating 
various types of iron passivation that have been 
experimentally determined or theoretically proposed. (taken 
from Ref. 60) 
(a) Experimental curve obtained by Epelboin and co'Workers 
(24, 54). (See also figure 1-5.) (a') Theoretical 
calculated curve by Epelboin and coworkers (24, 25, 54). 
(b) Local passivation behavior in the Law and Ne'Wman model 
(59). 
(c) Experimental and theoretical curve obtained by Lorenz 
and coworkers (16, 17). 
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Figure 1-4. Comparison of measured and calculated polarization curves 
for an iron rotating disk in 1 M sulfuric acid at four 
rotation speeds (Fig. 6 in Ref. 59). 
dashed line - experimental results of Epelboin et al. (52) 
solid line - calculations of the Law and Newman (59) model, 
p - 0.01 
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optical microscope, which had a depth of field small enough to allow 

measurements within ± 1 ~m. The electrodes had three different confi

gurations, depending on the electrode rotation speed: active (dissolv

ing) outer ring and passive center disk, at low or moderate rotation 

speeds; active ring between an outer passive ring and a passive center 

disk, at higher rotation speeds; active center disk and passive outer 

ring, at very high rotation speeds. 

Epelboin et al. ( 24, 54, 55) also presented polarization curves 

recorded with the Negative Impedance Converter and subsequently 

corrected for ohmic potential drop (curve a in figures 1-3 and 1-5). 

The ohmic drop was calculated using the theoretical primary resistance 

for ring-disk electrodes (56) and the experimentally determined dissolv-

ing area of the electrode. The polarization curve obtained in this 

manner had a peculiar shape indicating multiple steady-states without 

the ohmic drop contribution, and Epelboin et al. concluded that the 

multiplicity of steady states is a fundamental characteristic of the 

Fe/H2so4 electrochemical system. However one can question the accuracy 

of the ohmic correction by Epelboin et al. and hence the validity of 

the resulting passivation curve. There could be significant experimen

tal errors and uncertainties in the ohmic drop correction, especially as 

the electrode is passivating nonuniformly and. its ohmic resistance is 

continuously changing. 

According to Lorbeer, Lorenz, and coworkers (16, 17), the sharp 

transitions between the active and passive states of iron observed with 

a conventional potentiostat can be due to ohmic potential drop, and the 
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Figure 1-5. Polarization curves for iron in 1 M sulfuric acid obtained 
by Epelboin et al. (Fig. 16 in Ref. 54). 
(a) Experimental curve (0 - 750 rpm) measured using a 
Negative Impedance Converter and subsequently corrected for 
ohmic potential drop; plotted in terms of the current 
density for the actually dissolving area of the electrode. 
(a') Calculated curve. 
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observed hysteresis is due firstly to the high ohmic potential drop 

included preferentially in the positive potential sweep and secondly to 

irreversibilities associated with the formation and dissolution of the 

passive film on the electrode. 

Lorenz and coworkers (16) measured current-potential curves (cyclic 

voltammograms) using electronic feedback compensation of the ohmic 

resistance for iron in weak-acid sulfate solutions of pH between 4 and 

6. They reported polarization curves with a negative slope during pas

sivation (curve c in figure 1-3); i.e., the current decreases gradually 

with increasing potential over a certain potential range. These 

negative-slope passivation curves had a Tafel slope of -100 ± 20 

mV/decade (16). 

Moreover the ohmic-compensated polarization curves presented by 

Lorenz et al. (16) show only a relatively small hysteresis between the 

positive and negative potential-sweeps compared with the curves obtained 

with a conventional potentiostat. The small hysteresis, which is 

related to irreversibilities, is influenced by the.potential sweep rate, 

and according to Lorenz et al., one can assume that measurements under 

steady-state conditions would lead to a single, continuous curve for the 

transition between the active and passive states. 

Note however that Lorenz et al. ( 16) did not measure current

potential curves with ohmic compensation for iron in anodic sulfate 

solutions with pH lower than 4, because, as they noted, the maximum 

current density would reach extremely high values, and in that case 

exact compensation of the correspondingly high ohmic drop would be 
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problematical. The polarization curves they pres~nted for sulfate solu

tions with higher pH have two current local maxima and do not display a 

limiting current plat~au; i.e., those curves show a behavior before pas

sivation which is different from that observed for stronger-acid solu-

tion. (See l for example, figures 1-1 and 1-4.) Thus it is not clear 

whether in sulfate solutions with pH 0 to 3, the iron passivation 

behavior would be the same as that found by Lorenz et al. (16) in solu

tions with pH 4 to 6. Lorenz (57) later commented that in stronger-acid 

solutions at very high current densities, coverage of the electrode sur

face by a porous layer consisting of ferrous salt and iron oxide can be 

assumed and this layer may act as an inhibitor producing the observed 

discontinuous passivation behavior. 

So far we have considered the shape of experimental passivation 

curves. Let us then describe and discuss theoretical models that have 

been proposed for iron passivation. Some of these models also treat the 

limiting current plateau, which is physically related to the passivation 

process. 

Lorenz and coworkers ( 15-17) presented a kinetic model for iron 

dissolution and passivation based on the detailed reaction mechanism 

shown in table 1-1. The model includes three adsorbed intermediates, 

(FeOH)ads' [Fe(OH) 2 )ads' and [Fe(OH) 3 )ads' Gilroy and Conway (58) had 

already proposed that the iron surface is covered by these three inter

mediates which inhibit the dissolution reaction, resulting in a negative 

Tafel slope. 
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The model of Lorenz et al. (16, 17) predicts a negative slope for 

the passivation curve (curve c in figure 1-3), as a result of the 

adsorption of the Fes[Fe(OH)
3

]-oxide phase species. This species is 

transformed into a passive Fe
2
o

3 
oxide according to the chemical reac-

tion (VII]. The theoretical Tafel slope of the passivation curve is 

then -120 mV/decade, in agreement with the ohmic-compensated experimen-

tal results of Lorenz et al. (16). Lorenz et al. had previously (15) 

assumed formation of Fe
2
o

3 
according to the electrochemical reaction 

* [VII ] involving transfer of 3e-. That assumption gives a sharp 

decrease of current during passivation (-20 mV/decade), which essen-

tially corresponds to curve b in figure 1-3. (See Fig. 5 in Ref. 15) 

Lorenz et al. (16) rejected the latter assumption in order to get better 

agreement with their ohmic-compensated experimental results. 

We consider then the model of Law and Newman (59), which yields a 

Z-shaped polarization curve very similar to the experimental curves of 

Epelboin et al. (52). Figure 1-4 shows a comparison of the calculated 

and experimental polarization curves. Law and Newman calculated paten-

tial and current distributions for a partially passivated rotating disk 

electrode. The model uses a modified Butler-Volmer expression to 

describe the kinetics of active dissolution of a rotating disk electrode 

and treats the transition from the active to the passive state as a 

discontinuous change of the local current density to an extremely low 

value (a specified constant). This discontinuous passivation is assumed 

to occur at a characteristic value of the local potential (V - 4> ) , • m o .,.. 

Curve b in figure 1-3 illustrtates the passivation behavior proposed by 
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Law and Newman. 

The Law and Newman model (59) also includes the effect of mass-

transfer limitations in the kinetic expression without explicitly con-

sidering the concentration of a limiting reactant. This is accomplished 

by including the factor (1- i/i
1

. )p in the modified Butler-Volmer 
. ~m 

expression. The model accounts for the nonuniform potential (~ ) dis
o 

tribution across the disk electrode. As a result of the nonuniform 

potential distribution, the electrode is partially passive during pas-

sivation. The configuration of the electrode considered by Law and New-

man is an active center disk with a passive outer ring, since (V - ~ ) 
m o 

is higher near the periphery of a rotating disk electrode; as passiva-

tion proceeds, the passive state extends towards the center until the 

entire electrode becomes passive. Note that, as we mentioned earlier, 

this configuration as well as different configurations were observed by 

Epelboin et al. (52), and thus the assumption of an active disk confi-

guration may limit the applicability of the Law and Newman model. 

A main conclusion of the Law and Newman (59) model is that the 

positive slope of the passivation curve in the observed Z-shaped polari-

zation curve is due entirely to ohmic potential drop for an electrode 

passivating nonuniformly. In contrast, according to the model of Epel-

boin and coworkers (24, 25) the positive slope of the passivation curve, 

indicating multiple steady states, arises mainly from the kinetics and 

mass-transfer characteristics' of the Fe/H
2
so

4 
system. The model 

developed by Epelboin and coworkers yields a passivation curve (curve a' 

in figures 1-3 and 1-5) with a different shape from the ohmic-corrected 
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experimental curve (curve a in figures 1-3 and 1-5) determined by the 

same workers, while both of these curves show multiple steady-states 

without the ohmic potential drop contribution. A comparison of the cal-

culated and experimental polarization curves of Epelboin et al. (24, 54) 

is given in figure 1-4. 

The model of Epelboin et al. (24, 25) assumes the following reac-

tion mechanism: 

Fe + OH - (FeOH) d + e 
a s 

(FeOH) - (FeOH)+ + e ads 

+ ++ (FeOH) - Fe + OH 

(FeOH)ads + OH ~ [Fe(OH) 2 Jads + e 

[l-3a] 

[1-6] 

(passivation). [1-12] 

[Fe(OH) 2 ]ads is considered to be the species causing passivation.* The 

same mechanism for iron dissolution and passivation was proposed by 

Bockris et al. (43). 

Epelboin et al. (24, 25) write Butler-Volmer type kinetic expres-

sions for the above reaction steps, using the Langmuir isotherm for the 

adsorbed species. They also consider mass transfer of the reactant OH , 

using the Nernst diffusion-layer approximation. At ~teady state, they 

set the rate of change of the surface coverage by each adsorbed species 

to zero and hence eliminate the coverages from the kinetic expressions. 

t Reaction 1-11 is assumed to be 
the model calculations. 
t Fe 2o3 is considered to be the 
in the completely passive 
[Fe(OH) 2 Jads into Fe 2o3 (24, 43). 

in fast equilibrium and does not affect 

species covering the electrode surface 
state, after transformation of 
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By equating the current density given by the kinetic relationships to 

the current density given by the diffusive flux, they obtain an equation 

which is third order w.r.t. the activity (concentration) of the reac

tant. This equation can thus have, under certain conditions, three real 

roots corresponding to three different values of the current density at 

a given potential value for a range of potentials. 

In order to test their model, Epelboin et al. ( 24, 25) also calcu

lated the electrochemical impedance and compared the calculated 

impedance results with the experimental results. The calculated 

impedance diagrams appeared to be in qualitative agreement with the 

experimental diagrams, in terms of the order of magnitude of the 

impedance and the number and kinds of loops, but a quantitative matching 

of experimental and theoretical results was not shown. 

A critical feature of the reaction mechanism proposed by Epelboin 

et a.l. ( 24, 25) which enables the appearance of multiple steady states 

is that the overall passivation reaction ([l-3a] + [1-12]) has a higher 

order w. r. t. a reactant species (OH-) than the dissolution reaction 

([l-3a) + [1-6)); this makes the overall mechanism "autocatalytic" (54). 

The presence of mass-transfer limitations for this reactant species is 

also an essential feature in the model of Epelboin et a.l. As we men

tioned earlier, the presence of a limiting current plateau indicates 

mass-transfer limitations in the transport of a reactant to the elec

trode, or in the removal of a product from the electrode surface. Epel

boin et al. (24) state that if mass transfer of the product (FeOH)+ only 

is considered, the polarization curve does not show multiple steady 
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states. They therefore assume in their model that the reactant is the 

mass-transfer limiting species in order to obtain a limiting current 

plateau as well as to produce multiple steady states. In terms of the 

model equations, the diffusion of the reactpnt together with the reac

tion orders and the adsorption process gives a third-order equation 

w.r.t. the activity of the reactant. 

Epelboin et al. (24 ,· 25) made several simplifying assumptions in 

their treatment of the diffusion process which may not be valid. First 

they stated that, for a concentrated medium at high current densities, 

the infinite-dilution treatment is not appropriate, but then they used 

the infinite-dilution approximation in their mathematical model. They 

also stated that it is obvious that the concentration of OH- in acid 

solution is far too low to take part directly in the reaction. In their 

model calculations they chose a value for the bulk activity of OH that 

gives a limiting current value close to the experimental value. The. 

chosen value was about ten orders of magnitude larger than the actual 

concentration of OH- in 1 M sulfuric acid (unless one uses a value for 

the diffusion coefficient even more orders of magnitude larger than its 

normal value). 

To justify using OH as the diffusing species, Epelboin et al. (24) 

said that, since the nature of the various species present in the diffu

sion layer is poorly known and since experimental data showed a depen

dence of the current on the bulk solution pH, the diffusing species, 

whatever it is, determines the amount of OH at the interface, and 

therefore they considered OH- in order to simplify the model. They also 
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noted that since at the limiting current plateau;· the electrolyte close 

to the electrode is essentially saturated iron sulfate, H
2

o is a plausi

ble diffusing and reacting species. (See also the discussion on the 

role of OH in section 1. 3 .1.) Evidently the reacting and diffusing 

species in the model of Epelboin et al. is a rather arbitrary species 

without a well-defined physicochemical identity. 

It is significant to note here that, the limiting current plateau 

for the Fe/H
2
so

4 
system may be characterized without assuming the pres-

ence of a mass-transfer limiting reactant in the solution. Specifi-

cally, the presence of a porous FeS0
4 

film on the electrode can yield a 

current plateau. Russell and Newman (61) give an analysis of the limit

ing current showing that the steady-state current value can remain con

stant while the applied potential changes, if certain conditions are 

satisfied; these conditions are relationships between the salt film 

thickness, the film porosity, the fraction of the electrode covered by 

Feso
4

, and the potential. 

An alternative explanation of the limiting current plateau is given 

by a mathematical model for the Fe/H
2
so

4 
system developed recently by 

Gan and Orazem (62). The model does not include a reactant species in 

the iron dissolution reaction, and it yields limiting current values 

which are proportional to the square root of the ~:lectrode rotation 

speed and agree with the experimental values obtained by Epelboin et al. 

(52). This one-dimensional model includes the microscopic structure of 

the double layer·, where multiple reactions take place, as well as 

macroscopic transport in the solution, by migration, diffusion, and con-
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vection (still using dilute-solution theory), but it does not include a 

salt film. At the limiting current plateau, the calculated Fe++ concen

tration near the electrode surface remains constant (independent of 

potential and rotation speed). According to this model, the limiting 

current can be attributed to limitations in the removal of corrosion 

products from the electrode surface coupled with the partial coverage of 

the surface by a passivating oxide. Specifically in the model, Fe++ 

accumulates near the surface and can be oxidized to Fe+++. which forms 

Fe
2
o

3 
reducing the active area of the electrode (62). 

Moreover the results of the Law and Newman model (Fig. 4 in Ref. 

59) show that the observed parabolic shape of the passivation curve can 

be partly characterized without considering mass-transfer limitations, 

since from the viewpoint of the model, the parabolic passivation curve 

is a result of ohmic potential drop for a partially passive electrode. 

The theoretical models of Russell (61), Gan (62), and Law and New

man (59) show that it is possible to characterize two main features of 

the Fe/H
2

so4 polarization curve, the limiting current plateau and an 

approximately parabolic passivation curve, without the assumption of a 

mass- transfer limiting reactant in the solution. This assumption made 

by Epelboin et al. (24, 25) is essential for predicting multiple steady 

states without the ohmic potential drop contribution. Therefore, unless 

one accepts the multiplicity of steady states due to diffusion of a 

reactant species as a fundamental characteristic of the Fe/H 2so4 system, 

there is no fundamental reason to introduce the assumptions of the model 

of Epelboin et al. which yield the multiplicity of steady states. 
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Russell (60, 63) performed some experiments to resolve the contro

versy between the theoretical model of Law and Newman (59) and the model 

and some experimental results of Epelboin et al. (24, 52). He used 

three rotating disk electrodes with three different diameters. As the 

disk diameter decreases, the total current is reduced, and the ohmic 

potential drop in the solution decreases. Therefore the contribution of 

ohmic effects in the system behavior decreases as the electrode size 

decreases. 

A significant result obtained by Russell and Newman (63) · is shown 

in figure 1-6, which shows that the passivation curve becomes steeper as 

the disk diameter decreases. Russell also measured the corresponding 

polarization curves with a normal potentiostat and observed that the 

width of the hysteresis (difference between VP-A and VA-P) decreases as 

the disk diameter decreases. These two trends in the experimental 

polarization curves are considered as an indication that in the limit of 

zero electrode size (no ohmic potential drop), both the active-passive 

and passive-active transitions are characterized by a nearly vertical 

line on a current vs. potential graph, in agreement with the Law and 

Newman (59) model. 

Russell and Newman (63) then concluded that, assuming the active 

part of the rotating disk electrode always has a disk configuration, 

their experimental results have shown that the Z-shaped polarization 

curve, obtained with a Negative Impedance Converter, is due only to 

ohmic potential drop in solution. However Epelboin et al. (52) observed 

that the active part had a ring configuration, and in this work (section 
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Figure 1-6. Polarization curves for three rotating disk electrodes 
measured by Russell using a polarization device with a 
positive-slope load line. Electrode diameters: A - 4. 94 
mm, B • 2.98 mm, C - 0.986 mm. Electrolyte: 1M sulfuric 
acid. 0 ~ 1600 rpm. (Fig. 6 in Ref. 63) 
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3. 6. 2) we have also observed dissolution of the .outer ring part of the 

disk electrode, under the same conditions as the experiments of Russell 

(60, 63). Therefore the conclusions of Russell and Newman cannot be 

completely substantiated, even though they support the hypotheses of Law 

and Newman (59). 

A different approach to the modeling of metal passivation kinetics 

was presented by Griffin ( 64, 65) . Griffin's theoretical passivation 

model, which may be applied to the Fe/H
2
so

4 
system, assumes a two-step 

reaction mechanism including oxidation of metal atoms to produce 

adsorbed cations and subsequent dissolution (desorption) of the cations 

into the electrolyte. The rate of cation desorption is assumed to 

depend on the (fractional) surface coverage by adsorbed cations, which 

can be either isolated or incorporated into an oxide layer, and a 

Temkin-type adsorbed cation interaction parameter, but not on the poten-

tial. Griffin (64) calculated steady-state current-potential curves, 

and for certain values of the interaction parameter, the curves 

displayed multiple steady states during passivation due to multiple 

solutions for the surface coverage at certain potentials. Griffin (65) 

also predicted a hysteresis in potentiodynamic sweep curves around the 

active-passive transition. 

Griffin's passivation model (64) is an example of a simple kinetic 

model that can give multiple steady states without considering either 

diffusion or ohmic potential drop effects. The model of Griffin has not 

been applied to the Fe/H
2
so

4 
system, and therefore it is not known 

whether the model can describe the passivation behavior of this specific 
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system. Talbot et al. (66, 67) applied linear stability and bifurcation 

analysis to Griffin's passivation model and determined that when three 

steady states exist, the middle state is unstable and the two outer 

states are stable; the system moves away from the middle steady state to 

the outer steady states. For the Fe/H
2
so4 system, the active state and 

the passive state may be considered as two stable steady states, and a 

partly-active partly-passive state may be considered as a middle 

unstable state. 

1.3.3. Sustained Current Oscillations 

Sustained current oscillations at constant potential are observed 

within a certain potential range on the limiting current plateau for the 

iron-sulfuric acid system (68-72, 31, 60). 

Podesta et al. (69) studied the effects of the H
2
so

4 
concentration, 

the electrode rotation speed, temperature, and the concentration of iron 

ions on the current oscillations. They interpreted their results 

phenomenologically by discussing the reaction mechanism of iron dissolu

tion and passivation together with mass-transfer effects. The oscilla

tions observed by Russell (60, 70) were overall periodic, but in some 

cases, particularly for larger electrodes and greater rotation speeds, 

the periods and shapes of the cycles varied significantly. The oscilla

tion frequency was found to be a linear function of the square root of 

the electrode rotation speed for disk electrodes (69, 70). Oscillations 

were also observed for a hemispherical electrode, but the oscillation 

frequency for this electrode was a weaker and nonlinear function of the 



43 

rotation speed (70). 

Beck (31) observed microscopically an oscillatory growth of salt 

crystals on a shielded iron electrode during current oscillations in 

He reported that the salt crystals grew 

after the· current rise and disappeared when the current decayed. Beck 

then presented a phenomenological description of the processes leading 

to oscillations. Oscillations were explained by the growth and dissolu

tion of a porous salt film and the associated changes in the potential 

and concentration profiles in the pores of the film, resulting in cyclic 

transitions of the electrode between the active and passive states (31). 

Oscillations in electrochemical systems are most frequently 

observed during the anodic dissolution of certain metals which can pas

sivate, e. g., copper in various electrolytes (73-76). These electro

chemical oscillations are associated with the instability of porous or 

non-porous passivating films under certain conditions. 

Wojtowicz (77) presented a review of experimental studies and 

theories proposed to explain osciilatory behavior in electrochemical 

systems. Several mathematical tools, such as phase-plane analysis and 

bifurcation, are available for describing oscillatory behavior. Talbot 

et al. (66, 67) recently presented an application of linear stability 

and bifurcation analysis to the oscillatory model of Franck and FitzHugh 

(78) for iron dissolution and passivation. These mathematical tech-

niques are useful for determining the conditions for oscillations, mul

tiple steady states, or single steady states. Russell and Newman (61) 

summarized some of the oscillatory models for the iron- sulfuric acid 
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system. 

An essential feature of the Fe/H
2

so
4 

oscillatory system is con

sidered to be a porous ferrous sulfate film covering the electrode sur

face. We have already discussed the role of the salt film for the lim

iting current and passivation behavior (section 1.3.2). A qualitative 

description of the physical process manifested in the current oscilla

tions as proposed by Be~k (31) and Russell (61, 70) is given below. 

The current values are near a maximum in the oscillatory current

time curve when most or all of the electrode surface is active. When 

the electrode is in the active dissolution state, the current density is 

high and therefore there is a high potential gradient across the salt 

film. This high potential gradient causes migration of H+ ions away 

from the electrode through the pores of the salt film and thus facili

tates passivation according to condition 1-10. At a sufficiently high 

pH value at the surface, the electrode passivates locally with an oxide 

film covering the surface. The current gradually decreases as passiva

tion extends over a larger part of the electrode determined by the 

potential and pH distributions. The current is at a minimum value when 

a large part of the electrode is passive. At low current values, the 

potential gradient in the salt film is substantially reduced, 
+ and H 

ions can diffuse back to the electrode surface. When the pH near the· 

surface decreases sufficiently, the passivating oxide dissolves, and the 

electrode returns to the active state. One cycle is completed, and the 

process repeats itself. 
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Russell and Newman (61, 79) developed a mathematical model based on 

the above process for the sustained current oscillations in the Fe/H
2
so

4 

system. The model is developed on a more fundamental basis than previ

ous models; it includes a porous ferrous sulfate film as an integral 

part. In the model, the salt film remains on the electrode during the 

oscillations, and it grows or dissolves following the Fe++ concentra

tion. The model uses a modified Butler-Volmer equation to describe the 

kinetics of the iron dissolution reaction (like the model of Law and 

Newman, Ref. 59) and the potential-pH condition for passivation given by 

Pourbaix (equation 1-10). The model also includes mass transfer by con

vection, diffusion, and migration, and it determines the concentration 

and potential profiles in the solution in the pores of the salt film and 

in the diffusion layer. The fundamental equations subject to appropri

ate boundary conditions are solved numerically. 

The model of Russell and Newman (61) is one-dimensional and 

strictly applies to regions of the electrode undergoing continuous 

cycling between the active and the passive states. However the observed 

minimum current density during oscillations is too large to be produced 

by an entirely passivated electrode, and therefore a portion of the 

electrode is always undergoing active dissolution. The model then uses 

a "residual ohmic drop" parameter to correct for the ohmic potential 

drop due to the dissolution of the portion of the electrode that remains 

active. 

The calculated current-time curve was similar with the experimental 

curve, specifically the calculated current-density values were in good 
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agreement with the experimental values, but there were also significant 

discrepancies between the calculated and experimental results. The cal

culated frequency \vas 3 to 5 times higher than the observed frequency, 

and the shape of the waveform, particularly the ratio of the times the 

electrode spent in the active and passive states (at high and low 

currents), did not agree with the observed oscillations (61). 

Russell and Newman ( 61) then suggested several changes in their 

model as well as experimental studies that could bridge the gap between 

calculated and experimental results for oscillations. Russell and New

man determined that the discrepancies between the calculated and experi

mental results were due primarily to a very small calculated value of 

the salt-film thickness, compared with the expected value and the values 

reported for certain salt films (see section 1. 3. 2). They therefore 

suggested including the kinetics of salt-film dissolution in the 

mathematical model to obtain a more realistic value for the film thick-

ness. Additional refinements they suggested, for a more accurate 

description of the physical processes, were including the concentration 

dependence of the bisulfate -dissociation equilibrium constant and the 

concentration dependence of the transport properties. 

More fundamentally, Russell and Newman (61) indicated that passiva

tion is not necessarily required to achieve oscillations, and they qual-

itatively outlined two alternative oscillatory mechanisms. In one 

mechanism, current oscillations are caused by periodic changes in the 

fraction of the electrode surface covered by ferrous sulfate, and in the 

other mechanism, current oscillations are caused by periodic changes in 
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the porosity of the salt film. 

To implement the proposed changes in the mathematical model 

describing the behavior of the Fe/H2so4 system, it is first necessary to 

have more information about the actual behavior of the system. Informa

tion obtained in the proposed experiments may indicate the most 

appropriate way to proceed with modeling the system behavior (61). 

Experiments are needed to determine important parameters, particu

larly kinetic parameters for the precipitation and dissolution of Feso4 

and also the thickness and porosity of the salt film. Another critical 

series of experiments for characterizing the oscillatory behavior of the 

Fe/H
2

so4 system is determination of the surface dissolution-profile and 

morphology of the electrode at potentials where oscillations occur and 

at other potentials on the limiting current plateau where oscillations 

do not occur. The results of these experiments can indicate whether the 

electrode is partially active and partially passive and whether there is 

an important difference between the dissolution profiles of an electrode 

undergoing oscillations and an electrode at steady state at the limiting 

current plateau. This information is important for determining the 

mechanism by which oscillations occur. 

Podesta et al. ( 69) observed nonuniform dissolution of iron wire 

electrodes as well as rotating disk electrodes, after recording the 

current oscillations for some time. They reported that the dissolution 

of the rotating disk electrode is characterized by the formation of a 

central etch. 
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Miller and Orazem (71, 72) performed some experiments to determine 

the surface dissolution profile and morphology of an iron disk electrode 

in 1 M H
2
so

4 
subjected to an impinging jet of electrolyte. They used 

optical microscopy, electron microscopy, and EDX analysis to investigate 

the electrode surface after potential-step experiments where the elec

trode was held for three minutes at an anodic potential, before the pas

sivation potential, and particularly in the range of oscillations. 

Miller and Orazem (71, 72) observed that at low anodic potentials, 

the electrode surface was rough and granular and near the limiting 

current, a smooth region appeared at the periphery of the electrode. 

Then as the potential was increased, the smooth region was seen over a 

larger part of the electrode, extending toward the center, and just. 

prior to passivation, the entire surface appeared smooth and uniform. 

The same trends were observed visually during anodic potential sweep 

experiments. Miller and Orazem then concluded that tha range of poten

tials where a change of the electrode morphology from a granular to a 

smooth surface occurs (when smooth and granular regions coexist on the 

electrode) corresponds to the range of potentials where current oscilla

tions are observed. They attributed the observed smooth dissolution of 

the outer region of the electrode to formation of a salt film. 

Miller and Orazem (71, 72) measured the surface profiles after the 

potential- step experiments with an optical microscope by a depth of 

field technique. From these profiles they concluded that the rate of 

dissolution was higher in the smooth outer region than in the central 

granular region. and they attributed the higher rate of dissolution 
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near the periphery to the higher potential driving-force there. However 

a trend of greater dissolution near the periphery of the electrode dur

ing current oscillations was not clearly shown in all the experimental 

surface profiles presented by Miller and Orazem. For example, in one 

case (Fig. 5, 0. 62 V, in Ref. 72) the profile showed more dissolution 

near the center, while current oscillations occurred and the electrode 

surface was mostly smooth with a small granular region at the center; 

and in another case (Fig. B.l.8, in Ref. 71) the profile showed essen

tially uniform dissolution, while current oscillations occurred. 

The EDX analysis of some electrodes by Miller and Orazem (71, 72) 

indicated the presence of an iron oxide film in the smooth region of the 

electrode. An oxide was not detected on the central granular region. 

The presence of an oxide film may support the hypothesis of preferential 

passivation of the periphery of the electrode during oscillations. 

Overall the results of Miller and Orazem do not give a definitive con

clusion about the electrode dissolution profile during current oscilla

tions or the mechanism of the oscillations. Further work is needed to 

elucidate the oscillatory phenomena for the Fe/H
2
so4 system. 

1.4. Outline of This Work 

The purpose of this work is to answer some of the questions about 

the corrosion of iron in sulfuric acid, using mainly the electrochemical 

impedance technique, and also to develop the impedance technique as a 

tool .for the study of electrochemical systems, using the iron- sulfuric 

system as an application. 
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Three different types of experiments are carried out: 

I. Potentiodynamic experiments to determine the anodic polarization 

curve, especially the passivation curve. 

II. Potentiostatic experiments recording the sustained current oscilla

tions that occur within a certain potential range on the limiting 

current plateau. 

III. Measurement of the AC (alternating current) impedance of the sys

tem at several points along the anodic polarization curve, using a fre

quency response analyser. 

Rotating hemispherical iron electrodes are used in most of these 

experiments, because they have the advantage of a uniform primary 

current distribution, in contrast to the commonly used rotating disk 

electrodes, which have a highly nonuniform primary distribution. The 

characteristics of the rotating hemispherical electrode are described in 

section 1.5. 

~e have already discussed the importance of potential distribution 

and ohmic potential drop effects for the passivation and oscillatory 

behavior of the Fe/H
2
so

4 
system. Experimental results for electrodes 

with a uniform primary distribution should therefore provide useful 

insight into those effects. Results from experiments I and II are 

presented and compared with results for disk electrodes reported by 

other investigators, in chapter 2. 

Another series of experiments was carried out to determine the sur

face dissolution profiles of a rotating disk electrode at several poten

tials in the limiting current plateau, particularly in the range of 
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current oscillations. An optical microscope was used to measure the 

profiles, but the results were not sufficiently accurate or definitive 

and will therefore not be presented. Determination of the electrode 

surface profile is considered important, and further experiments to 

determine the surface profile are needed. 

This work focuses on the electrochemical impedance technique. The 

results from experiments III are presented, in chapter 3. Rotating disk 

electrodes are used in some of the impedance measurement experiments, 

and the results for the disks are compared with the results for the hem

ispheres. The nonuniform primary current distribution of the disk elec

trode may produce serious artifacts in impedance measurements, particu-

larly at high perturbation frequencies. The hemispherical electrode 

with its uniform primary distribution should be free of this kind of 

artifacts and is therefore preferable for impedance experiments. 

The Kramers-Kronig relations provide a means of testing the accu

racy and consistency of experimental impedance data, or the validity of 

theoretical results. The test consists of calculation of the real part 

of the impedance from the imaginary part, and vice versa, through the 

Kramers-Kronig relations and comparison of the calculated results with 

the experimental or theoretical values. A general method of calculation 

is developed. The method is applied to test the consistency of some of 

the experimental impedance data exhibiting inductive loops. 

The experimental results are then compared with theoretical predic

tions in order to elucidate the processes and variables governing the 

behavior of the iron-sulfuric acid system. Theoretical results for the 
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impedance of the system are calculated using a concentrated-solution 

model developed recently in this laboratory, as well as analytic expres-

sions from dilute-solution theory, for comparison. The concentrated-

solution model uses the Stefan-Maxwell equations for multicomponent dif

fusion and has provision for heterogeneous electron-transfer reactions, 

homogeneous chemical reactions, hydrodynamics, and migration. Thus this 

model can rigorously treat mass-transfer phenomena in solution, which 

are important for the "Fe/H
2

so
4 

system. The model in its present form 

does not include adsorption/desorption reactions, the microscopic struc

ture of the electrochemical interface (double-layer), or a porous salt 

film on the electrode. This model is therefore not expected to be able 

to characterize the Fe/H
2

so4 system completely, but results from the 

model may indicate whether certain processes are important for determin

ing the system behavior and can indicate directions for further 

research. 

Work is currently being done by researchers in this laboratory to 

develop a fundamental general model for the electrochemical impedance 

including the microscopic structure of the interface as well as mass 

transport for a concentrated solution and a porous film on the elec

trode. This general impedance model should be able to describe the cor

rosion of iron in sulfuric acid. 

1.5. The Rotating Hemispherical Electrode 

The rotating hemispherical electrode was proposed by Chin (80-82) 

as a useful tool for studies of reaction kinetics and mass transfer in 
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electrochemical systems, particularly for metal _dissolution or deposi-

tion systems. The use of the hemispherical electrode was proposed to 

overcome an inherent limitation of the rotating disk electrode in such 

systems. In metal dissolution studies, the disk electrode recedes into 

the insulator, thereby altering the hydrodynamic conditions at the elec

trode and rendering the rotating-disk theory no longer rigorously appli

cable; the hemispherical electrode maintains its shape and hydrodynamic 

characteristics relatively unchanged. 

A major advantage of the hemispherical electrode is that it has a 

uniform primary current distribution, whereas the rotating disk elec

trode has a very nonuniform primary current distribution (83). A nonun-

iform primary distribution may result in significant errors in the 

evaluation of kinetic parameters such as exchange current densities in 

investigations of electrode kinetics (84). In electrochemical impedance 

measurements, problems due to a nonuniform primary current distribution 

may be even more serious.t 

On the other hand, the rotating disk electrode has a uniform limit

ing current distribution, which makes it attractive for mass- transfer 

studies. The hemispherical electrode has a nonuniform limiting current 

distribution (85, 80). Below the limiting current, the disk electrode 

always has a nonuniform current distribution, due to the nonuniform 

ohmic potential drop in the solution (nonuniform primary distribution) 

(86). In contrast, the current distribution on a rotating hemispherical 

electrode is uniform at low current densities and becomes less uniform 

t See discussion in section 1.6.2. 
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as the limiting current is approached (87). In the absence of concen-

tration gradients, the hemisphere maintains a uniform current distribu

tion. Ni$ancioglu and Newman (87) showed that it is possible, in prin

ciple, to attain a uniform current distribution on a rotating sphere 

below the limiting current, even in the presence of concentration varia-

tions at the surface. In general, the rotating hemisphere and disk 

electrodes have some complementary aspects for electrochemical studies 

(87). The rotating. disk electrode is uniformly accessible fr"om a mass

transfer viewpoint, and the hemispherical electrode is uniformly acces

sible from an ohmic viewpoint. 

Chin (80, 88) and Newman (85) have solved the convective diffusion 

equation for a rotating sphere at limiting current conditions and 

predicted that the average limiting current is proportional to the 

square root of the electrode rotation speed. The mass transfer rate 

near the poles of the sphere was found to be essentially identical to a 

rotating disk, but then decreasing in the direction toward the equator. 

The analysis for a sphere also applies to a hemispherical electrode on 

an insulating plane (80). Experimental data for the limiting current 

for rotating hemispherical electrodes agreed with the calculated results 

(81). 

Ni$ancioglu and Newman (87) calculated the current distribution on 

a rotating (hemi)spherical electrode at appreciable fractions of the 

limiting current, assuming Tafel kinetics and ·no migration effects. 

They showed that at high rotation speeds, the current distribution is 

uniform when the current level is below 68% of the limiting current. 
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Figure 1-7 shows the current and potential- distributions at the 

limiting current on a hemispherical electrode (87). Figure 1-8 shows an 

analogous plot for a rotating disk electrode (86). The maximum paten-

tial variations near the surface of a hemisphere occur at the limiting 

current, and the maximum potential difference between the pole and the 

equator is then (87) 

(t-ell') -0.546 [roiavg]. 
o max 1t 

[1-13] 

The rotating disk electrode at the limiting current follows the same 

formula except with a coefficient 0.363. (89) The ohmic resistance of a 

hemispherical electrode of radius r on an insulating plane is 
0 

the ohmic resistance of a disk electrode is 

which is a factor of ~12 greater than that of a hemisphere (83). 

[1-14] 

[1-15] 

Chin (90) recently calculated the convective Warburg impedance of a 

rotating hemispherical electrode using a series expansion of the concen-

tration for small values of 8, the angle from the pole. His results 

showed that for values of a dimensionless perturbation frequency K' 

greater than 10, where K' is defined as~ sc113 , the convective Warburg 

behavior of the hemispherical electrode becomes the same as that of a 

rotating disk electrode. 

The hemispherical geometry also has certain limitations. For exam-

ple, mechanical polishing of the hemispherical electrode without 
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Figure 1-7. Current and potential distributions at the limiting current 
on a rotating (hemi) spherical electrode. 8 is the angle 
from the pole. ~ ' is the potential in the solution just 
outside the diff8sion layer; more precisely ~ ' is the 
solution of Laplace's equation in the bulk0 solution 
extrapolated to the electrode surface. (Fig. 8 in Ref. 87) 
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a uniform current density (at the limiting current) on a 
rotating disk electrode (Fig. 1 in Ref. 86). 



58 

slightly deforming its shape seems difficult. It has been found that a 

slight deviation from a spherical shape does not change the flow charac-

teristics appreciably. However in the case of severe etching of a 

hemispherical electrode, localized disturbances in the flow or an early 

transition to turbulent flow may occur (82). For a smooth rotating 

hemispherical electrode, the transition from laminar to turbulent flow 

was experimentally found to occur at a Reynolds number of 1. 5 x 10
4 

(81). This value is lower than the value of the transition Reynolds 

number for a rotating disk, which is about 2 x 105 (89, 91). The influ-

ence of surface roughness on the transition to turbulence is discussed 

by Schlichting (91). 

Changes in the flow characteristics of a rotating hemispherical or 

disk electrode are sometimes manifested as the formation of spiral mark-

ings (vortices) on the surface of the electrode. Kim and Jorne (92) 

used a rotating zinc hemisphere to study zinc dissolution in chloride 

solution. They observed spiral markings on the surface of the hemi-

3 
sphere at Reynolds numbers of about 7 x 10 , and they attributed the 

markings to a transition to turbulent flow earlier than expected, as a· 

result of increasing surface roughness. Kim and Jorne (93) observed 

spiral markings on a rotating hemispherical zinc electrode after zinc 

deposition, under certain conditions. Several other investigators 

(e.g., 94-96) have also found spiral patterns on rotating disk elec-

trades in the process of metal dissolution or deposition. Rogers and 

Taylor (94) concluded that the spirals observed in their investigation 

were traces of wakes (flow disturbances) produced from small protrusions 
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such as evolved hydrogen bubbles and burrs on .the electrode surface, 

while the flow appeared to remain laminar. 

1.6. The Electrochemical Impedance 

This section is an introduction to the electrochemical impedance 

method, providing the background for the application of the method to 

Many treatments of the method are found in the 

literature, but only few comprehensive theoretical treatments are avail

able, and the analysis and interpretation of electrochemical impedance 

results are controversial. This section then presents our perspective 

on the method. In addition the definitions of some terms used in the 

electrochemical impedance literature are often confusing or not univer-

sally recognized. Another objective of this section is therefore to 

clarify those definitions. 

The electrochemical impedance technique consists of applying a 

small perturbation to the electrochemical system under study and measur

ing the response of the system. By analyzing the response, one can then 

obtain information about the system. The perturbation can be either a 

small-amplitude alternating voltage (~V) or a small-amplitude alternat

ing current (~i) and is superimposed on the steady-state polarization 

(V, i) of the system. The response of the systen can be expressed in 

terms of an impedance (Z) defined as the ratio (transfer function) of 

the applied (resulting) alternating voltage to the resulting (applied) 

alternating current. The technique is illustrated in figure 1-9 for the 

case of a sinusoidal current perturbation of a particular frequency (w). 
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Potential V 
V = V + I~VIcos (wt + <!>) 

X B L 876-6301 

Figure 1-9. Illustration of the electrochemical impedance technique. A 
small-amplitude sinusoidal current perturbation is 
superimposed on the steady- state (DC) polarization curve 
and an alternating voltage results. (Fig. 1.2 in Ref. 
110). The measured impedance (in ohm) is 

Z- ~~~~ exp(j~). 
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The origins of the electrochemical impedanc-e method are found in 

the works of Kohlrausch ( 97) , Warburg ( 98) , and Kruger ( 99) , about a 

hundred years ago and later in the works of Randles (100), Ershler 

(101), Gerischer (102), Grahame (103), and others. Treatises and 

reviews of the method are given in References (104-111). A helpful 

introduction to the theoretical aspects, experimental aspects, and 

applications of the method is given by Gabrielli (110). 

The electrochemical impedance technique is a powerful tool for the 

study of electrochemical systems. The power of the impedance technique 

lies mainly in its ability to discern the different elementary processes 

occurring in complex electrochemical systems. As the different elemen-

tary processes change at different rates (have different characteristic 

time constants), certain processes dominate the response of the system 

at certain perturbation frequencies. Measurement and analysis of the 

impedance over a wide range of frequencies can then elucidate the dif-

ferent processes. 

More specifically, the electrolytic solution resistance is mani-

fested in the electrochemical impedance at very high frequencies, while 

mass- transfer limitations are manifested in the impedance at low fre-

quencies and electrochemical reactions become evident at frequencies 

corresponding to the reaction rate constants. Experimental measurement 

together with theoretical calculation of the impedance as a function of 

frequency at several points all along the polarization curve allows a 

* complete description of the electrochemical system. Figure 1-10 

* From the viewpoint of purely electrochemical experimental techniques. 
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(a) charge-transfer resistance: Rt _ [:~F] 
0 ss 

classical Warburg impedance for semi-infinite diffusion: 
Rt >. 

zo - --=--
D 

(total) electrochemical impedance: Z- [[Rt + z~)-l + jwcd]-l + R, 

(b) 

(c) 

-N 

E -I 

z_o. 
•D 

·. 

Re {Z} 

XB L 876-6315 
Figure 1-10. A classical model of the electrochemical impedance (103, 

98, 105). 
(a) Summary of model expressions for the impedance (>. is 
given by equation 1-47). 
(b) Illustration of the model by an equivalent circuit 
(Fig. 1 in Ref. 103). 
(c) Complex-plane plot of the impedance (Fig. 4 in Ref. 
105). Thick solid line: general behavior predicted by the 
model. Thin solid line: limiting behavior predicted by the 
model for >.- 0, i.e., no· mass-transfer effects (see also 
figure 1-12). Dotted line: behavior expected in the 
presence of convection (not included in the classical 
model). 
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summarizes a classical model of the electrochemical impedance (103, 98, 

105), showing what information can be obtained through the electrochemi

cal impedance method. 

The use of the electrochemical impedance technique has been 

increasing rapidly over the past one or two decades, mainly due to the 

development of instrumentation, that allows experimental measurement of 

the impedance relatively easily. The impedance technique is finding 

increasing application for the study and in situ monitoring of electro

chemical corrosion systems, which always involve multiple phenomena. 

Epelboin, Keddam, Gabrielli, and coworkers (19-25, 53, 54) have applied 

the electrochemical impedance method to elucidate the reaction mechanism 

and mass-transfer effects for metal dissolution and passivation systems 

and to determine the corrosion rate (112). The application of electro

chemical impedance analysis to corrosion systems, particularly for the 

measurement of corrosion rates, is discussed in References ( 110, 112-

118). Other , important applications of the electrochemical impedance 

method are biological membranes (119, 120), improving the performance of 

batteries (121), semiconductor electrochemistry (122), and photoelectro

chemical solar cells. 

1.6.1. Theoretical Formulation 

1.6.1.1. General Concepts 

To obtain a theoretical expression for the electrochemical 

impedance, we need to determine the alternating current response to an 

imposed alternating potential, or vice versa. To determine the 
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alternating current or potential, it is generally necessary to solve the 

fundamental equations describing the electrochemical system, specifi-

cally equations describing reaction kinetics and other interfacial 

phenomena, and transport phenomena. These fundamental equations are 

discussed in detail by Newman ( 89). The relevant variables (x) in an 

electrochemical system include potential differences, partial currents 

for each electrochemical reaction, species concentrations (moljcm3) in 

2 . 
the electrolytic solution, surface concentrations (mol/em ) of adsorbed 

species, and charge densities in the electrode-electrolyte interface 

(double layer). The impedance of the electrochemical system results 

from the interactions of these variables. 

The equations for the electrochemical impedance problem, are gen-

erally nonlinear and time- dependent. A steady-state solution is first 

obtained, and then the transient (alternating) solution is obtained for 

a small perturbation around the steady state, using a linear analysis. 

The linearized transient equations are simpler than the nonlinear 

steady-state equations, but they are still quite complex. In addition 

the transient problem includes double-layer effects which are not 

present in the steady problem. 

An electrochemical system is inherently nonlinear, but it can be 

treated using linear analysis, if the amplitude of the applied perturba-

tion is small enough. The response of each variable in a linear system 

has the same frequency (w) as the applied perturbation (i.e. , higher-

frequency harmonics are zero or negligible), but a different phase 
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angle t (phase shift, tjJ ) . The response can therefore be expressed in 
X 

terms of in-phase and out-of-phase components, which are functions of 

the perturbation frequency. Mathematically, these components are 

expressed as the real and imaginary parts of complex functions. 

Consider now some mathematical notation (123, 124, 110). Each 

dependent variable x can be written as 

X "" X + t::.x · [1-16] 

x is the steady-state value, and t::.x is the transient (oscillating) part 

representing a small perturbation from the steady state. For a small 

sinusoidal perturbation of frequency w, all the transient quantities 

oscillate at the same frequency, and t::.x may be written as 

t::.x - lt:.xl cos (wt + t/J ) 
X 

[1-17] 

- Re ( lt:.xl exp [j(wt + t/J )]) 
X 

- Re (X exp (jwt)) , 

where j ""J-1 and ejt/1"" cost/!+ jsint/1. lt:.xl is the magnitude of the 

oscillating part of x. and tjJ is the phase angle. Both lt:.xl and tjJ are 
X X 

generally functions of position (distance from the electrode) and are 

independent of time; their values vary with perturbation frequency. -X 

is a complex function, and as such it can be written in two equivalent 

ways: 

X - lt:.xl exp (ji/J ) 
X 

(polar form) [1-18] 

t The phase angle may be defined relative to a chosen reference signal. 
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- Re <xl + j Im <xl (cartesian form) . 

The time variable is effectively eliminated from the mathematical prob-

lem, av . - d h ( ) 1 as .:;..A"" Jwx an t e exp jwt terms cance out. at The problem is 

thus conveniently expressed in the frequency domain. 

The electrochemical impedance is defined by a generalized Ohm's 

law: 

-
z - v 1· [1-19] 

where i is the normal component of the total current density at the 

electrodett and V is the total potential, i.e., the potential difference 

between the working electrode and- a reference electrode of a given kind 

in the bulk solution, which is the potential monitored by the polariza-

tion control device in an experiment. The impedance can then be written 

as 

Z(jw) IZI exp (j¢) [1-20] 

= Re { Z} + j Im ( Z} , 

where ~ 121 - lt.il (magnitude) and <P"" <<Pv- <Pi) (phase angle). [1-21] 

For example, the impedance of an ideal electrical condenser C 

tt The measurable impedance is V/I where I is the total current. 
However theoretical models of electrochemical systems involve primarily 
current densities. If the electrode has a uniform current distribution 
(i is constant), then I - iA where A is the electrode surface area. If 
the electrode has a nonuniform current distribution, then one would have 
to use an average current density (equal to I/A obtained by integrating 
the local current density over the electrode surface) in equation 1-19 
and in subsequent expressions for Z and the various impedances (or 
resistances) defined later in this chapter. For convenience in 
notation, we will u~e 1 1n the impedance expressions, and the impedance 
units will be ohm·cm . The measurable impedance will be Z/A. 
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(capacitor, capacitance) 
1 

is -j we (¢ = - ~/2); - the impedance of an 

inductor L is jwL (¢ ~/2), and for a pure resistance¢= 0. 

The impedance can equivalently be defined in terms of Laplace 

transforms. The impedance transfer function is the ratio of the Laplace 

transform of the voltage to the Laplace transform of the current, where 

the Laplace transformation variable is s = jw (see equation 1-66), or 

more generally one may choose s = a + jw. 

The total potential V is composed of several potential contribu-

tions. 

V - (V - ~ ) + ~~ + ~~~ 
m o c u 

[1-22] 

~ is the potential measured with a hypothetical reference electrode of 
0 

a given kind in the solution just outside the entire double layer, ~~ 
\ c 

is the potential difference due to concentration gradients in the solu-

tion (diffusion potential), and ~~O is the ohmic potential drop in the 

solution, assuming the conductivity is constant and equal to its bulk 

value. (V - ~ ) is also the potential driving force which is usually 
m o 

included in the kinetic expression for electrochemical reactions. For a 

rigorous treatment of the electrode-electrolyte interface; the structure 

of the double layer should be considered, and thus (V - ~ ) is the sum 
m o 

of potential differences between the double-layer planes (inner Helmhotz 

plane IHP, outer Helmholtz plane OHP). The potential in the kinetic 

expression for electron-transfer reactions would then be (Vm - ~IHP) 

rather than (V - ~ ). 
m o 
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The total (measurable) current is also the sum of several contribu-

tions. The current can pass from the electrode to the solution either 

through electron-transfer (faradaic) reactions or by charging the 

electrical double layer. The current due to electron-transfer (charge-

transfer) reactions is known as the faradaic current (iF), and the 
~ 

current due to accumulation of charge is known as the double-layer 

charging current. The total current density is thus given by (125, 89) 

+£g at [1-23] 

For steady-state conditions and thus double-layer charging is 

not important, but for transient conditions, double-layer charging as 

well as reactions at the electrode need to be considered. The double 

layer and electrode reaction theory is presented in References ( 126, 

127' 89) . 

An elementary electron-transfer reaction is written in symbolic 

form as (89) 

z. 
\ M.l -~ si,l 1 ~ nl e 
1 

[1-24] 

Multiple electron-transfer reactions may occur, and iF is then the sum 

of the partial current densities (i
1

) due to each electron-transfer 

reaction: 

i -F [1-25] 

The nonlinear character of an electrochemical system arises mainly 

from the exponential dependence of the partial current densities due to 

charge-transfer reactions on the potential driving force. This 
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dependence is given by Butler-Volmer type kinetic expressions. The 

expression for each partial current density is linearized using a Taylor 

series expansion about the steady state (ss) to solve the unsteady part 

of the impedance problem. 

For - [1-26] 

where xm represent the variables on which i
1 

depends, namely the poten

tial driving force for the reaction and the (surface) concentrations of 

the species involved. The rates of adsorption/desorption reactions at 

the interface also depend on potential and species concentrations and 

may be linearized in the same way. 

Upon substitution the linearized reaction expressions given by 

equation 1-26 and the variable form given by equations 1-16 and 1-17, 

the equations for the unsteady part of the problem become linear. The 

linearization procedure shown in equation 1-26 requires knowledge of 

partial derivatives evaluated at steady-state conditions, and that is 

why the calculation of the electrochemical impedance requires first the 

solution of the steady-state problem. 

The electrode reactions and double-layer charging occurring at the 

electrode-electrolyte interface are coupled and cannot be separated a 

priori (128-130, 125). The interfacial processes are further coupled to 

the electrolytic solution outside the interface (diffusion layer and 

bulk solution). A rigorous determination of the impedance therefore 

requires solving the transient equations describing the double-layer and 

the solution simultaneously. More specifically~ the equations describ-
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ing the interface including the double-layer structure are boundary con

ditions for the mass-transfer equations for each species in the solution 

(128-130, 123, 125). The general problem for the electrochemical 

impedance is thus difficult to solve. 

Appel ( 125) has obtained the most general solution available for 

the electrochemical impedance of a rotating disk electrode, accounting 

for the double layer, mass transfer and ohmic potential drop in the 

electrolyte solution, 

includes only a 

and radial variations. 

simple electron-transfer 

However Appel's model 

reaction and no 

adsorption/desorption reactions, and therefore it cannot be used to test 

multiple-step reaction mechanisms. In addition Appel's model requires 

excessive computer time, which limits its application for electrochemi

cal impedance studies. 

Other models focus on certain parts of the electrochemical 

impedance problem, or solve a special case of the general problem. For 

example, Delahay and coworkers (129) and Levart and Schuhmann (130) have 

obtained analytic results for the impedance without a priori separation 

of the double-layer charging and faradaic reactions, making other sim

plifying assumptions. Epelboin, Keddam, and coworkers (131, 20, 22-24, 

132) account for multiple electrode reactions including adsorbed inter

mediates, but without considering the double layer, and they use their 

impedance model to elucidate reaction mechanisms. A recently developed 

model (133) includes the microscopic structure of the electrode

electrolyte interface and accounts for multiple electron- transfer and 

adsorption/desorption reactions, in the absence of mass-transfer limita-
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tions. Overall, further theoretical work is needed to develop a general 

model which can be easily applied for electrochemical impedance studies. 

Double Layer -- Electrode Reactions Interactions 

Let us consider the interactions between the double layer and elec

trode reactions more specifically. 

Consider first the early classical treatments of the electrochemi

cal impedance. Randles (100) did not consider double layer charging in 

his theory.· He measured the total electrochemical impedance and also 

measured the double-layer capacity in separate experiments in the 

absence of faradaic reactions. Randles then assumed that the double

layer capacity was the same for the two types of experiments. Grahame 

(103) discussed the effects of interactions between the faradaic and 

charging currents on the measured impedance and decided that they were 

negligible. except for the effect of concentration changes produced by 

the double-layer charging current. Grahame included the latter effect 

in the equations for the derivation of a faradaic impedance, treating 

the double-layer as a constant capacity. 

The double-layer capacity is a function of composition and poten

tial (134). In general, the capacity and structure of the double layer 

depend on potential and composition, which depend on the reactions 

occurring, and electrode reactions are influenced by the double-layer 

capacity and structure. Interactions between the double layer and elec

trochemical reactions are greater when ionic species participating in 

reactions are adsorbed at the interface (128, 129). 
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A priori separation of the faradaic and· double-layer charging 

currents requires the assumption of a constant double -layer capacity, 

Cd' independent of frequency. If there are no concentration variations 

a (V - ~ ) 
m o and cd is independent of frequency, then cd at can be substi-

tuted for £.9. in equation 1-23. at · However, impedance models in the 

literature often assume this substitution even when concentration varia-

tions are important. 

Most impedance models in the literature assume that the faradaic 

current and the double-layer charging current are separable a. priori and 

treat the 'faradaic impedance' in itself. Since the total current is / 

the sum of the faradaic and double-layer charging currents (equation 1-

23), the faradaic impedance is considered to be connected in parallel to 

the 'double -layer impedance,' which is assumed to be an ideal capaci-

tance. 

1.6.1.2. Faradaic Impedance 

The faradaic impedance is not a rigorously defined concept, since 

fundamentally the faradaic current cannot be separated from the double-

layer charging current and the faradaic impedance is not a measurable 

quantity. In a theoretical model, one can define a faradaic impedance 

which is given by expressions in the model, but experimentally, the 

total electrode impedance is obtained, and it is not generally possible 

to isolate a faradaic impedance. 

A definition for the faradaic impedance consistent with the way the 

term is most commonly used in the literature is 
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-v 
z = 0 

F IF 
[1-27] 

where V is the potential in the kinetic expression for charge-transfer 
0 

reactions. In most models of the faradaic impedance, V is equivalent 
0 

to (V - ~ ). Using the definition given by equation 1-27 and linear-
m o 

-
ized expressions for i

1
, we may then obtain a more explicit expression 

for the faradaic impedance. 

The rate of a charge-transfer reaction is a function of potential 

and composition. 

[1-28] 

The composition variables c. 
0 

should strictly be the surface concentra
~. 

tions (moljcm
2

) of each species at the inner Helmholtz plane (IHP). to 

account for the double-layer structure. In his classical theory of the 

faradaic impedance, Grahame (103) states that, since the surface concen-

trations are themselves functions of the potential across the interface 

and the concentrations (moljcm
3

) in the solution just outside the double 

layer (assuming that the double layer remains in equilibrium with the 

adjacent solution), i
1 

can be written as a function of V
0 

and the con-

centrations in the solution just outside the double layer. More pre-

cisely, the latter concentrations are extrapolated concentrations 

representing the expected values at the interface if the double layer 

were absent (103). Grahame then uses these concentrations in his 

analysis. Most models of the faradaic impedance also use concentrations 

in the solution just outside the double layer for the i
1 

function (f). 
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Epelboin and coworkers (25, 110, 20) treat solution concentrations 

of diffusing reactants and surface concentrations of adsorbed intermedi-

ates in a similar way including them all in the function f, without 

accounting for the double -layer structure. The treatment of Epelboin 

and coworkers thus yields relatively simple expressions for the faradaic 

impedance, including multiple reactions and adsorbed intermediate 

species. 

The function f, is used in the linearization procedure, and hence 

in the expression for the Faradaic impedance. i 1 is linearized accord-

ing to equation 1-26. 

-
i -1 [:~1] 

0 ss 
c. 0 
. l. ' 

[1-29] 

Adding equations 1-29 for each charge-transfer reaction, we obtain the 

faradaic current. 

-i co 

F 
[1-30] 

Consider now the first term in equation 1-30. A charge-transfer 

resistance for reaction 1 is defined as 

R t,l [:~1]-1 
0 ss 

and a total charge-transfer resistance Rt is given by 

I [:~1] 
1 0 ss 

I R -1 - [aa~Fl 
1 

t,l 
0 ss 

[ 1- 31] 

[1-32] 
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Thent 

[1-33) 

The above equation is a general expression for the faradaic impedance. 

One could use any variable representing species concentration (surface 

or solution) in the place of c. 
0 

in equation 1-33, since a specific 
l, 

choice was not necessary in the mathematical derivation. 

Equation 1-33 shows that the faradaic impedance includes the 

effects of the kinetics of faradaic reactions (in the first term) and 

also mass- transfer effects (in the second term). The name 'faradaic 

impedance' is thus not precise, but it has been adopted in the electro-

chemical literature. 

To proceed further in evaluating the faradaic impedance, it is 

necessary to'determine the partial derivatives [;~ll and 
0 ss 

as 

well as the alternating concentrations c. 
0

. To determine the deriva
l' 

tives we need a specific model for the reaction kinetics* (a specific 

form of equation 1-28), and to determine the alternating concentrations 

we need to consider transient mass transfer. 

Let us then consider some fundamental kinetic and mass- transfer 

equations that can be used to determine the faradaic impedance, ignoring 

t By substituting R from equation 1-32 in equation 1-30, multiplying 
both sides of l-30t by (R )/(IF)' and using the definition of ZF 
according to equation 1-27. t 

; For the special case where a single reaction occurs and the steady
state potential . is equal to the equilibrium potential, the charge
transfer resistance R 

1 
defined by equation 1-31 is equal to 

RT/(nFi 
1
), where i 

1 
\s the exchange current density (108). 

o, o, 
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the double layer. The composition variables c. 
0 

in the remaining part 
~. 

of section 1. 6 will be the concentrations (mol/cm
3

) in the solution 

adjacent to the interface. More precisely, c. 
0 

will represent the con
~. 

centration of species i in the electrolytic solution, extrapolated to 

the interface without considering the presence of the double layer, 

i.e., c. 0 =c. I 0 where y is the normal distance from the electrode 
~. ~ y= 

surface. 

The kinetics of an elementary electron-transfer reaction can be 

expressed by (89) 

-s. 1 ;L, 
c. 0 
~. 

[l-34] 

The first product ( n) is only for anodic reactants (s. l > 0), and the 
1. 

second product is only for cathodic reactants (s. 
1 

< 0). For an ele-
1, 

mentary reaction, the reaction orders in the kinetic expression are 

presumably given by the stoichiometric coefficients for each species 

(equation 1-24). 

The normal component of the flux (N. - c. v.) of a species at the 
-1 ~-1 

interface is related to the partial current densities (89, 124) 

s. 1 
N \' ~' . 

i,O -- t n
1

F ~1 [1-35] 

Note that the above equation ignores the charging current, but it is 

consistent with most analyses of the faradaic impedance. The flux N. 
0 1. 

is also determined by a material balance 
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[1-36] 

where R. is the rate of production by homogeneous chemical reactions. 
~ 

According to dilute-solution theory, mass transfer of a minor 

species is due to migration in an electric field, diffusion, and convec-

tion, and is described by the following law 

N. -- z.u.Fc.V'~- D.V'c. + c.v 
-~ ~ ~ ~ ~ ~ ~-

[1-37) 

If migration is negligible and R. is zero, then insertion of the above 
~ 

transport equation into equation 1-36 gives a simplified material bal-

ance 

aci 2 
-a--= D. V' c. - v·V'c. 

t ~ ~ - ~ 

[1-38) 

This is the convective diffusion equation, which can be used to deter-

mine the concentration distribution in an infinitely dilute solution. 

N. 
0 

is then given by 
~. 

N. O ""- D. 
~. ~ [

ac ·] 
ay~ y=o . [1-39) 

The dilute-solution theory has been applied successfully to many 

electrochemical problems, but it may not be applicable for concentrated 

solutions. A more generally valid description of mass transport in mul-

ticomponent solutions is given by the Stefan-Maxwell equation. A modi-

fied form of the Stefan-Maxwell equation is (124) 

c.Jk- ckJ. I ~- -~ 

k . cD.k 
"'~ ~ 

[1-40) 

where J. is the flux of species i relative to the mass-average velocity, 
-~ 

and~. is the electrochemical potential, which may be defined by 
~ 
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v~. = z.F v~ + RT V(lnc.) 
l l l 

[1-41] 

assuming the activity coefficients are equal to one. 

The transient mass- transfer problem for the impedance has been 

treated by many authors using dilute-solution theory. Section 1.6.1.4. 

considers the dilute-solution analysis and shows the resulting expres-

sion for the faradaic impedance. A concentrated solution model for the 

· faradaic impedance has been recently developed (124), and it is used to 

calculate the impedance for the Fe/H
2
so

4 
system (chapter 5). 

1.6.1.3. Limits as w ~ oo and w ~ 0 

This section considers the limits of the electrochemical impedance 

at zero and infinite frequencies of perturbation. The existence of 

these limits is important for obtaining parameters for the electrochemi-

cal system from experimental impedance data, for checking the con-

sistency of impedance data with data from other techniques, and also for 

checking the internal consistency of mathematical impedance models. 

At very high frequencies, the impedance due to the capacitive 

behavior of the double layer approaches zero. The electrochemical 

impedance then approaches the ohmic resistance of the solution (R ) . 
s 

lim Z - R s [1-42] 

Rs should be equal to R
0 

given by equations 1-14 and 1-15 for a hemis

pherical and a disk electrode respect;vely. The primary current distriQ 

bution is approximated at high frequencies (135). 
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At very low frequencies, steady-state conditions are approached, 

and the electrochemical impedance approaches the value of the slope of 

the steady-state (DC) polarization curve. 

lim Z = (d~) 
w--0 d~ ss [1-43] 

Note that the zero- frequency limit of the electrochemical impedance 

includes the effects of the kinetics of charge-transfer and adsorption 

reactions, the effects of mass-transfer,t and the solution ohmic resis-

tance. The slope of the DC polarization curve not including ohmic 

potential drop is often referred to as the polarization resistance (R ) 
p 

and is given by 

R 
p - lim Z 

w--0 
lim Z . [1-44] 

When the impedance is measured at the open-circuit potential for a 

corrosion system, R can be correlated to the rate of corrosion, which 
p 

is expressed as a corrosion current density. Measurements of R accord
p 

ing to equation 1-44 are often used in corrosion studies to determine 

the corrosion rate. However there has been some controversy in the 

literature (112, 116, 110) about the determination of corrosion rates 

from electrochemical impedance measurements. Epelboin et al. ( 112) and 

Gabrielli (110) have argued that the parameter most directly correlated 

with the corrosion rate is the charge transfer resistance (Rt) rather 

than the polarization resistance (R ) ' p 
which is most commonly used. 

This controversy seems to be due to differences in the interpretation 

t See section 1.6.1.4. for the zero-frequency limit of the mass-
transfer impedance. 
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(definition, analysis) of the corrosion rate rather than differences in 

the interpretation of the electrochemical impedance itself. 

The infinite and zero frequency limits of the electrochemical 

impedance given by equations l-42 and 1-43 are generally valid, no 

matter what specific theoretical model one chooses for the impedance. 

\..Tflen a specific model is used, further analysis of the high and low fre-

quency limits can be carried out, yielding more useful information 

(parameter values) about the electrochemical system. For example, 

modeling the convective diffusion contributions to the impedance indi-

cates that the diffusion coefficient can be obtained from the faradaic 

impedance at low frequencies (136-138). 

Considering the faradaic impedance, the charge-transfer resistance 

defined by equation 1-32 is also given by 

Rt- lim ZF [1-45] 
w--co 

as the other terms of ZF tend to zero at infinite frequencies. (See 

equations 1-33, 1-60, and 1-63.) Rt values according to both equations 

1-32 and 1-45 are readily obtained in theoretical models of the faradaic 

impedance. However direct estimation of R according to equation 1-45 
t 

from experimental impedance data is not possible without making restric-

tive assumptions, because in general ZF cannot be defined from the meas-

ured data. 

Note that for systems with no mass-transfer effects and no 

adsorption/desorption processes, R (equation 1-44) 
p 

is equal 

since the double-layer charging current becomes zero as w ~ 0 and for 
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such systems ZF = Rt at all frequencies. 

1.6.1.4. Convective Warburg Impedance Dilute-Solution Analysis 

Consider now the impedance due to mass transfer, which is included 

in the second term of the general expression for the faradaic impedance, 

equation 1-33. Specifically this section considers the impedance asso-

ciated with periodic concentration changes induced by an alternating 

electrode current or potential for species (i) that are involved in 

electrochemical reactions and can diffuse in the electrolytic solution. 

This impedance (Z
0

) was first analyzed theoretically by Warburg (98) and 

is known as the (convective) Warburg impedance, or (convective) diffu-

sion impedance, or mass- transfer impedance. Adsorption/desorption 

processes are not considered in the analysis. 

Species in the electrolytic solution which do not participate in 

reactions affect the value of the mass-transfer impedance only 

indirectly (since [ ai 1 l 
aci,O ss = 

0 for such species), by affecting the 

values of the concentrations of the reactant species. Considering 

double-layer effects, all ionic species affect the value of the electro-

chemical impedance, as the double-layer capacity depends on the concen-

trations of all ionic species. However this section considers only the 

faradaic impedance analysis, which by definition ignores double-layer 

effects. 

Warburg (98) determined the transient concentration for a reactant 

species diffusing in a one -dimensional, stagnant, semi-infinite diffu-
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sian layer, and not undergoing homogeneous chemical reactions. The surD 

face concentration was found to have a -~/4 phase angle relative to the 

current. The faradaic impedance for this case can be written as (110) 

where 

and .-~ 
J 

1 
"" (1-j). 

/2 

R + Z
0 

t D 

S, 1 _L 
-~-·- 'l 

F 
D. 

nl ~ 

is the 

increases without limit as w ~ 0. 

[1-46] 

with 1 - 1 and s. 1 ~' 
± 1 [1-47] 

classical Warburg impedance, which 

Convection results in a finite steady-state diffusion layer; the 

mass· transfer impedance then reaches a finite limit as w ~ 0. The 

mass-transfer impedance including convection, has been analyzed by 

several authors ( 138-144). Approximate analytical expressions as well 

as exact numerical solutions are available. 

Next we consider the convective Warburg problem for a rotating disk 

electrode, with the follmving assumptions: application of dilute-

solution theory; negligible migration (large excess of supporting elec-

trolyte); no radial variations (one-dimensional problem); large Schmidt 

1/ number (Sci - ~); no homogeneous chemical reactions; constant transport 
~ 

and thermodynamic properties. Note that solutions of the problem 

without making certain of these assumptions are available in the litera-

ture. The solution considered below can be easily applied to several 
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electrochemical systems to estimate the mass transfer impedance. 

According to the mathematical formulation of Homsy and Newman 

(140), the concentration distribution of a species i in the solution is 

given by the convective diffusion equation (equation 1-38), written as 

ac. 2 
2 aci a c. 

1 1 0 
a~: 

3 ~ i a~. = 

* at. 1 
1 1 

[1-48]. 

* ~. and t. are the dimensionless normal distance and time defined by 
1 1 

1/3 

[~p/2 [3~il * (sci)-1/3 (~]2/3 [1-49] ~. - y and t. - t n 
1 1 

and -3~: is a dimensionless normal velocity for a rotating disk. More 
1 

generally the normal velocity for a rotating disk is a power series of 

For a sinusoidal perturbation, the concentration can be expressed 

as (140) 

* c . - c . + Re {A. e . exp (j K. t . ) ) , [ 1- 50 ] 
1 1 1 1 1 1 

where A. is represents the amplitude of the alternating concentration 
1 

and K. is a dimensionless frequency 
1 

Ki - ~ (sci)l/3 (~J-2/3 . [1-51] 

8. is a dimensionless, complex alternating concentration. In terms of 
1 

the general notation described in section 1. 6 .1.1, the dimensionless 

complex concentration defined by equation 1-50 may also be written as 



e. -
l 

c. 
l 

c. 0 
l' 
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Substitution of equation 1-50 into the convective diffusion equa-

tion 1-48 yields an equation for e.(~.), (140) 
l l 

jK. e. -
l l 

d2e. 
l 

d~~ 
l 

2 de. 
3~. l - 0 

l * dt. 
l 

subject to the boundary conditions* 

and 

de. 
l 

d~ = specified constant at ~- ""0 l 
(at the interface) 

or e. = 1 at ~- - o 
l l 

e. ~ 0 as ~- ~ ~ . 
l l 

[1-55] 

The expression for the impedance involves the alternating concen-

trations and the alternating faradaic current. Here we shall consider 

only a simple reaction (1 = 1 only). If more than one elementary reac-

tions which include diffusing reactant species occur, then the expres-

sion for the faradaic impedance is more complicated, while· the deriva-

tion procedure is the same. According to equations 1-35 and 1-39, the 

alternating faradaic current density for a simple reaction is proper-

tional to the flux at the electrode surface, which is proportional to 

the concentration gradient. 

* The following development for the convective Warburg impedance is not 
affected by choosing either of the boundary conditions at ~. - 0, as 
long as one uses the correct values of 9.'(0) in the final ex~ression. 
(See Ref. 144) 1 

' ) 



n
1

F _ 

N. 0 s. 1 ~, 
~. 

A dimensionless flux is 

8.'(0) 0: _l 
~ c. 0 

~. 

1 
[9)_112 [~]-

113 [aci] 
v 3D. ay 

0 ~ y-c. 0 
~. 
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[1-56] 

[1-57] 

where the prime denotes differentiation w.r.t. e .. Analytic and numeri-
. ~ 

cal results for 8.' (0) are available in the literature (e.g., 141, 144). 
~ 

Substituting equation 1-57 into 1-56, 

-
i = 

F 

n1F 
--D. c. O 
s. 1 ~ ~, 
~. 

For convenience in notation, we introduce 

8., (0) 
~ 

-1/3 

'i ~ [§)-1/2 [J';;'J r(4/3) . 

[1-58] 

[1-59] 

5. is a steady-state diffusion layer thickness for species i at a rotat
~ 

ing disk electrode. 

Finally, substituting equation 1-58 into the general expression for 

the faradaic impedance (equation 1-33), we get a more specific expres-

sian, for 1 - 1. 

[1-60] 
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The second term in the above equation is the convective Warburg 

impedance (ZD). The function {ei~io)} is called the dimensionless con

vective Warburg impedance. Figure 1-11 shows a complex-plane plot of 

this function. If more than one diffusing species i are involved in the 

kinetic expression for the reaction, equation 1-60 assumes an infinitely 

dilute solution where the alternating concentrations are so small that 

the transient convective diffusion equation 1-53 can be solved indepen-

dently (separately) for each species 

identical for each species i. 

i· , the function e., (0) is then 
~ 

This section has considered the solution of the transient convec-

tive diffusion problem explicitly for a rotating disk electrode, which 

has been more widely studied. A similar solution procedure is used for 

a rotating hemispherical electrode (and other rotating electrodes), and 

a similar solution is obtained (90, 143). The convective diffusion 

equation and the definitions of the dimensionless variables are modi

fied, and the values of {ei~;O)} for a rotating hemisphere are different 

from those f9r a disk (same order of magnitude). 

Consider now the limits of ZF in equation 1-60 at zero and infinite 

frequencies. To determine the limits of ZF, we need to determine the 

limits of {ei~io)} For w - 0, a limiting solution of equation 1-53 

with boundary conditions 1-54 and 1-55 is readily obtained (after set-

ting the first term in 1-53 to zero). 
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1 . l • exact so utlon 



88 

[1-61] 

Therefore 

f(4/3) = 0.89298 . [1-62] 

Note that if more terms in the series expansion for the normal velocity 

are included in the convective diffusion equation and/or if migration is 

accounted for, the zero-frequency limit of {-l/8.'(0)} is still a number 
l 

- 1. The .zero-frequency limit of ZF is thus equal to the sum of Rt and 

the zero-frequency limit of z
0

, which may be called a mass-transfer or 

diffusion resistance. 

The infinite-frequency limit is (144) 

lim 
K. --. co 

l 
{ 

-1 } (J·Ki)-1/2 8i'(0) = [1-63] 

which agrees asymptotically with the classical Warburg expression (see 

equation 1-46). Therefore as w --+ co the convective diffusion impedance 

z0 - 0, and the faradaic impedance becomes equal to Rt, as already 

indicated in equation 1-45. 

An approximation which is sometimes used in the treatment of mass-

transfer problems is a stagnant diffusion layer of finite thickness 

(Nernst model). An analytic solution for e.' (0) is obtained for this 
1" 

approximation (145, 142). 



r(4/3) 
tanh (jwoi;oi)~ 

(jwoi;oi)~ 
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[1-64] 

where o. is given by equation 1-59 for a rotating disk. This analytical 
1 

solution gives an approximate account of convective diffusion. Epelboin 

and coworkers ( 146, 20, 25) use this solution to treat mass- transfer 

impedances. The same expression might also be used to estimate the 

mass-transfer impedance due to a porous film, where a zero velocity and 

a finite diffusion layer may be a good apptoximation. 

The expression for z
0 

given by equation 1-60 can be simplified for 

the case of a simple reaction where either only the anodic or only the 

cathodic term is considered and there is a single reactant species. z
0 

then becomes 

* z = 
D 

* 

2 
RT(s. 

1
) 

1, 

* 2 t3
1 

(nF) 
-~1- -r-< :.....;~:.....3-) {e

1
. ~ ~ o)} · 

c. O D. 
1, 1 

[ 1- 65] 

where t3
1 

is (1 - t3
1

) for the anodic reaction term or t3
1 

for the cathodic 

reaction term. The above expression is the same as that given by Homsy 

and Newman (140), who set z
0 

equal to the ratio of the alternating con-

centration overpotential to the alternating current density. 

1.6.2. Experimental Measurement 

The measurement of the impedance of electrochemical systems 

requires careful design of experimental arrangement and procedure and 

sophisticated instrumentation. Several techniques have been used to 
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measure the electrochemical impedance: AC bridges, Lissajous figures, 

simultaneous plotting of current and voltage, lock- in amplifiers, and 

more recently, digital frequency response (transfer function) analysers, 

and fast Fourier transform techniques. 

A digital frequency response analyser (FRA) is used in this work to 

measure the impedance of the iron-sulfuric acid system. The principle 

of the measurement using a frequency response analyser is brie~ly 

described. 

A small sinusoidal perturbation of a particular frequency (w) is 

applied to the electrochemical system, and the response of the system is 

measured. The perturbing signal can be either .a voltage or a current. 

The FRA measures both the electrode potential and the cell current 

simultaneously, and through an integration-correlation process it calcu-

lates the real and the imaginary parts (i.e., the in-phase and out-of-

phase components relative to the perturbing signal) of the two signals. 

This correlation process is equivalent to a Laplace transformation of 

the measured potential and current, 

<X) 

F(jw) - J f(t) e-jwt dt 
0 

<X) co 

- J f(t) cos(wt) dt - j J f(t) sin(wt) dt , 
0 0 

[1-66] 

where f(t) represents the potential or current, but the integration is 

carried out over a finite time. The FRA then calculates automatically 

the impedance as the transfer function between the transformed potential 

and current signals. A series of measurements is performed, using a 
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perturbing signal of different frequency for each measurement, to obtain 

the impedance as a function of frequency. 

An alternative to this frequency-by-frequency measurement method is 

the fast Fourier transform (FFT) method (147-151, 114), which uses a 

multiple-frequency perturbing signal, consisting of several harmonics 

superimposed. The FFT algorithm then calculates the impedance at each 

frequency included in 

multiple-frequency-FFT 

the signal. 

method over 

A potential advantage of the 

the frequency-by-frequency-FRA 

method is savings of measurement time, since data are collected for many 

frequencies at the same time. This time savings may be significant when 

the impedance at low frequencies is to be measured. 

However a short measurement time can impair the measurement accu

racy (152). The FFT technique is inherently less accurate than the FRA 

technique due to more noise and errors in the multiple-frequency signal 

processing, and the measurement has to be repeated several times to 

obtain average results with a reduced error. The FRA technique is gen

erally more accurate and convenient. A thorough comparison between the 

two methods is not available, but the FFT method may be advantageous for 

electrochemical systems that change with time, such as corrosion systems 

(114, 110). The FFT method has been applied to copper corrosion by 

Smyrl (114, 115, 137). 

Some important as pee ts of e lee trochemical impedance measurements, 

which must be considered for any measurement method, are now discussed. 
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Linearity 

Linearity is a requirement for the definition of the impedance 

according to .the generalized Ohm's law (equation 1-19). A system is 

linear if the measured impedance is independent of the amplitude of the 

perturbation. An electrochemical system responds as a linear system 

when the amplitude of the perturbation is small enough. 

The maximum amplitude for which the system is in the linear domain 

depends on the polarization point (steady-state potential) as well as 

the perturbation frequency ( 110). A Taylor series expansion of the 

Butler-Volmer expression for the electrochemical kinetics shows that the 

[F I t:.RVTO ']2 magnitude of the nonlinear terms is of the order of and 

therefore the linearization error will be of the order of l% for poten-

tial perturbations smaller than 5 mV, as a general rule. However one 

cannot use an arbitrarily small perturbing signal. Noise and the 

signal-to-noise ratio that can be accepted by the measuring instrument 

determine the low limit of the applied signal. 

Frequency Range 

For a complete analysis of complex electrochemical systems, where 

many processes may occur at different rates, impedance measurements need 

to be made over a wide frequency range, usually from a few mHz to 

several kHz. Measurements at very high frequencies are required to 

obtain the infinite- frequency limit of the electrochemical impedance, 

which will be equal to the electrolytic solution resistance (R ) and 
s 

measurements at very low frequencies are required to obtain the zero-
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frequency limit of the impedance, which will b~ equal to the slope of 

the polarization curve (polarization resistance R ) . 
p 

The maximum and 

minimum frequencies for electrochemical impedance measurements are lim-

ited by the experimental arrangement and instrumentation as well as by 

the electrochemical system itself. 

At very high frequencies, the measured data may contain significant 

errors and artifacts due to extraneous resistive, inductive or capaci-

tive components in the electrical leads or instruments. In particular, 

the phase-measurement accuracy of the digital frequency re~ponse ana-

lyser decreases significantly at frequencies above 10 kHz, and phase 

shifts may arise from the potentiostat ( 117, 118). One could perhaps 

avoid some of the problems at high frequencies by making 'fou·r-point' 

impedance measurements, taking the ratio of quantities measured at the 

electrochemical cell. 

At low frequencies, the stability of the electrochemical system 

with time may be critical. Low- frequency measurements ar'e generally 

time consuming, and the steady state of the system may shift during the 

impedance measurement time. This shift may be particularly important 

for corrosion systems, which inherently change with time. Specifically, 

as the metal dissolves, the electrode-surface morphology and geometry as 

well as the surface or bulk concentrations and hence the ~hermodynamic 

equilibrium or open-circuit potential change. An analysis of the effect 

of these changes on the measured impedance is not available. 
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Noise 

Noise can be a serious problem in electrochemical impedance meas-

urements where small signals are used. Design of the experimental 

apparatus for impedance measurements therefore becomes more demanding 

than for steady-state measurements. Digital frequency response ana-

lysers can give acturate and precise measurements even in the presence 

.of noise, by integrating the current and voltage signals over a suffi-

ciently ;arge number of signal periods. An infinite integration time 

would be required for complete elimination of noise, but the measurement 

time is limited by variations of the electrochemical system with time, 

especially at low frequencies, as indicated earlier, and one needs to 

choose an optimum measurement time. 

Current Distribution and Frequency Dispersion 

A nonuniform current distribution in the experimental system can 

lead to errors or artifacts in impedance measurements. Nev:man (135) 

showed that the nonuniform primary current distribution on a rotating 

disk electrode causes significant frequency dispersion in capacity meas

urements, i.e., a variation in the apparent double-layer capacity with 

perturbation frequency. This frequency dispersion was found to be 

greater at high frequencies, where the primary current distribution is a 

good approximation for the distribution. on the electrode (135). 

Frequency dispersion may appear as distortion in. the idealized sem

icircular shape of complex-plane impedance diagrams. Glarum and 

Marshall (153) measured the impedance of platinum rotating disk elec-
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trades in sulfuric acid; the data displayed a depressed semicircle in a 

complex-plane plot. They subsequently corrected the data for the nonun

iform current distribution using a variational-approximations method 

(154). The corrected data displayed a complex-plane plot that was 

closer to a semicircle than the measured data, illustrating that 

depressed semicircles, which are often observed for experimental 

impedance data, can be partly due to a nonuniform current distribution. 

Ni~ancioglu (155) calculated the error in measurements of the 

polarization resistance and the double-layer capacity from impedance 

data for a corroding rotating disk electrode due to the nonuniform pri

mary current distribution, neglecting mass-transfer and adsorption 

effects and assuming that the faradaic resistance is in parallel with 

the double-layer capacity. The calculated error Rp/Reff varied from 

about 1/2 to greater than 10, and the error Cd/Ceff varied from about 1 

to 20, depending on the magnitude of the impedance, the frequency range, 

the solution conductivity, and the disk diameter. (Reff and Ceff are 

the effective or apparent polarization resistance and double-layer capa

city respectively.) 

Errors in the analysis of electrochemical impedance measurements 

due to a nonuniform current distribution are very difficult or impossi

ble to correct a posteriori (46), and the best way to avoid such errors 

is to use an electrode with a uniform distribution. The rotating hemis

pherical electrode with its uniform primary distribution i,s therefore 

preferable to the rotating disk electrode for impedance measurements. 

Another useful electrode geometry which has both a uniform primary 
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current distribution and a uniform mass-transfer-limited current disti-

bution is the rotating cylindrical electrodes (89). An alternative 

electrode geometry and arrangement for impedance measurements has been 

used by Cahan and coworkers (46, 156). 

Several other factors, besides a nonuniform current distribution, 

can cause frequency dispersion in capacity measurements. These factors 

include primarily surface roughness (157), which is hard to eliminate 

for solid electrodes, and interactions between the double-layer charging 

and the faradaic processes, especially in systems with specific adsorp-

tion (129). Delahay and cm.:orkers (129.) shm.:ed that the double-layer 

capacity calculated from analysts of impedance data based on a pos-

ter ior i separation of the electrode impedance into double -layer and 

faradaic components can vary with frequency. 

1.6.3. Presentation and Analysis of Experimental Results 

1.6.3.1. Graphical Presentation 

Mathematically the impedance Z is a complex function of frequency, 

and it can therefore be represented in two different forms as sho\.;n in 

equation 1-20. These different forms lead to different ways of graphi-

cal presentation of electrochemical impedance results: a complex-plane 

plot (also known as a Nyquist plot), which is a plot of the imaginary 

parttt vs. the real part of the impedance, and Bode plots, which are 

tt For electrochemical systems, the imaginary part and the phase angle 
of the impedance as defined in equations 1-20 and 1-21 are usually 
negative, indicating a capacitive behavior. Hence -Im(Z} and-¢> are 
plotted; impedance diagrams below the horizontal axis (through 0) then 
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plots of the logarithm of the magnitude and the --phase angle t t vs. the 

logarithm of frequency. Results are sometimes presented as complex

-1 
plane plots of the admittance (Z ) . Figure 1-12 shows examples of 

complex-plane and Bode plots for a simple electrical circuit. 

The complex-plane and the Bode plots are equivalent, and they con-

tain the same information if the frequency is indicated in the complex-

plane plot; therefore a choice of either form of presentation may be a 

matter of preference. Complex-plane plots are often more picturesque 

and are more popular in the electrochemical impedance literature, 

whereas Bode plots display the frequency dependence of the impedance 

more clearly. Cahan et al. (46, 158) discussed the features of· the two 

types of plots. They showed .several illustrative examples and argued in 

favor of using Bode plots. 

A choice of form of presentation becomes important when a particu-

lar plot is used as an essential part of data analysis, which is often 

the case. For example, a graph may be used as a diagnostic tool provid-

ing qualitative information .about what processes are important in the 

system and providing estimates of parameter values, or a graph may be 

used as a criterion of the agreement between experimental and theoreti-

cal results. 

1.6.3.2. Determination of Parameters 

This section summarizes various methods that have been proposed for 

the determination of parameters from experimental impedance data. 

indicate an inductive behavior. 
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Figure 1-12. (a) Electrical circuit representing an idealization of a 
simple electrochemical system. 
(b) Complex-plane plot of the impedance of circuit (a). 
(c) Bode plots of the impedance of circuit (a). 
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Specifically these parameters are the charge-transfer resistance (Rt ) 

and hence reaction rate constants, the ohmic resistance of the electro-

lytic solution (Rs)' the double-layer capacity (Cd)' and diffusion coef-

ficients. 

All of the methods of analysis considered in this section assume 

separation of the electrochemical impedance into a faradaic impedance 

and a double-layer capacitance connected in parallel. Delahay and 

coworkers (129) pointed out that for systems where a priori separation 

is not a good approximation, such analyses actually yield composite 

parameters depending on both kinetic and double-layer characteristics. 

In addition, t~se methods do not require independent theoretical model-

ing for their application, since each method is already based on a cer-

. 
tain, relatively simple model. We will then refer to these methods as 

conventional methods of analysis of experimental impedance data. 

Sluyters ( 105) introduced a method using complex-plane plots for 

the determination of R , R , Cd' and the parameter l in the classical 
t s 

Warburg impedance (equations 1-46 and 1-47) This method is based on the 

model of the electrochemical impedance shown in figure 1-10; the method 

is illustrated in figure 1-lO(c) and figure l-12(b) in the absence of 

mass-transfer effects. Note that Bode plots can also be used to obtain 

parameter values (Rt, R ' s 
Cd) as illustrated in figure l-12(c). 

Sluyters-Rehbach and Sluyters (106) present additional complex-plane 

methods for different cases. 

Figure 1-13 illustrates another graphical method proposed by 

Sluyters ( 105) for the determination of Rt and C d, also based on the 
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Figure 1-13. Graphical method proposed by S1uyters (105, Fig. 6) for the 
determination of the charge-transfer resistance and the 
double-layer capacity based on the impedance model shown in 
figure 1-10. The point corresponding to w -11 (R · C d) is 
equidistant from the points correspondibg to 
w - 0 and w - ao • 
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impedance model sho\vn in figure 1-10. This method uses a plot of Re{Z} 

vs. -wim{Z}, which is linear with slope -Rt·Cd over a range of frequen

cies where mass-transfer effects are negligible. Extrapolation of the 

straight line to w = 0 gives Rt. 

We note here that for systems where equation 1-60 applies and there 

·are significant mass-transfer effects a similar plot of the faradaic 

impedance, Re{ZF} vs. -wim(ZF}' is linear at low frequencies with slope 

proportional to Sc
1/ 3 . (137) This linear behavior is expected from the 

properties of the dimensionless convective Warburg impedance and can be 

used to obtain diffusion coefficients from impedance measurements (137, 

136). 

Figure 1-14 shows a method proposed by de Levie ( 159) for the 

determination of the double-layer capacitance from electrochemical 

impedance measurements. Cd is obtained as the extrapolated value of 

Im {:•} as w _. ~. This method is more generally applicable than the 

other conventional methods of analysis. The only assumption about the 

electrochemical interface is that the double-layer capacity is constant 

and connected in parallel to the faradaic impedance. No assumption is 

made about the faradaic impedance, in contrast to the other methods. 

However to apply this method, one needs to knO\v the solution ohmic 

resistance, R , and also have impedance measurements at frequencies suf
s 

ficiently high for a feasible extrapolation to w ~ oo. A small error in 

the R value may r~sult in a larger error· in the admittance Y obtained 
s e 

by subtraction of R from the measured impedance and hence an error in 
s 

C d. For systems with a nonuniform current distribution, there is no 
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Method proposed by de Levie (159) for the determination of 
the double-layer capacity from electrochemical impedance 
measurements, assuming the impedance is represented by the 
equivalent circuit in (a). 
(b) Complex-plane admittance plot. Y 
Two limiting cases are shown: (i)e 
mass-transfer and adsorption effects). 
(ii) ZF = Z~ (Rt << Z~). 

-1 
- (Z - R ) . 
ZF = Rt s(negligible 
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constant R value valid for all frequencies, and for such systems this 
s 

method is practically inapplicable. 

Electrochemical impedance data in many cases do not follow the 

behavior considered by the conventional methods for the determination of 

parameters, or different methods may give different values for the same 

parameters. In conclusion, these methods are useful for discerning the 

important processes in the system and estimating some parameter values, 

but are not adequate in themselves for a complete characterization of 

electrochemical systems, which requires further analysis using the 

approach outlined in section 1.6.1. (See section 1.2.) 

Parameter values are often obtained in electrochemical impedance 

studies by fitting experimental impedance data to an 'equivalent electr-

ical circuit' in which Cd, Rs, Rt, and usually more parameters are con-

sidered as circuit components. 

1.6.3.3. Equivalent Circuits 

In numerous electrochemical impedance studies, the electrochemical 

system is represented by an 'equivalent circuit' composed of resistors, 

capacitors, sometimes inductors, and other components. ·The extensive 

use of equivalent circuits requires some discussion. 

A question that arises first is whether it is possible to represent 

an electrochemical system by an equivalent electrical circuit. Even if 

a valid equivalent circuit were found possible, a more important or 

relevant question would be to ascribe a definite physical meaning to 

each component of the circuit, or in mathematical terms, to relate the 
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partial derivatives in the theoretical expression for the electrochemi-

cal impedance to the circ~it components (130, 129). 

Considering the first question, Grahame (103) already indicated in 

1952 that in most cases, no finite combination of resistors, c?ndensers, 

and inductors can represent the frequency variation of the impedance of 

an electrode-electrolyte interface. 

At a given frequency or in a specified limited frequency-range, if 

a priori separation of the faradaic and double-layer charging currents 

is assumed, it is possible to represent ~he electrochemical impedance by 

a simple circuit with resistors, capacitors, and inductors, which are 

constant only as long as the perturbation frequency is not varied signi-

ficantly. For some simple cases, specifically when the impedance 

• 1 d 1 • 1 (J.W)±l ~nc u es on y terms proport~ona to (e.g.' when there are no 

mass-transfer limitations), it is also possible to represent the elec-

t!ochemical system by an electrical circuit with a finite number of com-

ponents over the entire frequency range, assuming again a priori separa-

tion of the faradaic and charging currents. In addition impedance terms 

proportional to (jw) -~ (classical Warburg impedance) are equivalent to 

an (infinite) R-C transmission line (130). If the electrochemical 

. d . 1 h . 1 (. )±l (. )-~ ~mpe ance ~nvo ves terms t at are not proport~ona to Jw or JW , 

which is generally the case (e.g., convective Warburg impedance), then 

it is not possible to represent the electrochemical system by an 

equivalent circuit valid over the entire frequency range. 

Ascribing a physical meaning to components in an equivalent circuit 

depends on how an equivalent circuit is used in the analysis of 
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electrochemical impedance. 

More fundamentally, interactions between the double layer and the 

faradaic processes imply that it is impossible to represent an electro

chemical system by a meaningful equivalent circuit, since no independent 

components can be defined. 

An Approach 

If separation of faradaic and double-layer impedances is assumed, 

an equivalent circuit can be useful, having illustrative and pedagogical 

value, when it is used "as a short-hand (but exact) notation"(ll9) of a 

theoretical model consisting of fundamental equations which describe the 

physical system. Each component in the equivalent circuit then 

corresponds to a term in the model equations and thus has a defined phy-

s ical meaning. Such a circuit is indeed equivalent to a theoretical 

model of the system and contains no assumptions other than those of the 

theoretical model. The equivalent circuit then is not an essential and 

independent part of the analysis. 

As mentioned earlier, it is possible to represent terms in the 

theoretical impedance equations by resistors and capacitors (or induc

tors) only for certain simple cases. If the model considered accounts 

for more complex cases, one would have to use special symbols, e.g., 

boxes or letters, for some components in the equivalent circuit (see for 

example, 103, 102), and the equivalent circuit therefore would not be a 

normal (electrical) circuit. 
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The way the various components are connected is also given by the 

model equations. For example, equation 1-60 for the faradaic impedance 

shows that ZF is the sum of a kinetic term (Rt) and a mass-transfer term 

(2
0

). Therefore if one wanted to illustrate ZF by an equivalent cir

cuit, Rt and z
0 

would be connected in series, and the series combination 

of Rt and z
0 

would be connected in parallel to a double-layer capaci

tance, since a priori separation was assumed in the analysis of ZF. 

Without considering the fundamental equations, it is not evident what 

circuit components may be present and how they are connected. 

Examples of this approach of analyzing the electrochemical 

impedance theoretically and subsequently using an equivalent circuit 

merely as a convenient notation and illustration, which may also be used 

to obtain model parameter values, are found in References ( 131, 120, 

103' 160). 

Another Approach 

A different approach is used by many investigators using the elec

trochemical impedance technique. In this approach, the equivalent cir

cuit is an essential and independent part of the analysis. Examples of 

this approach are found in References (161-163). 

In this approach an equivalent circuit is assumed, and values of 

the circuit components are determined by fitting the experimental data 

to an expression describing the impedance of the circuit. The 

equivalent circuit is chosen usually by inspection without independent 

theoretical modeling of thi system, sometimes based on previous studies 
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employing equivalent circuits for similar systems, or at best according 

to the theory developed for simple electrochemical systems (figure 1-

10). (This last choice is more like the previous approach for 

equivalent circuits.) If the fit with the experimental data is not 

considered satisfactory, the equivalent circuit may be modified. 

When this approach is used, the components of the equivalent cir

cuit have no well-defined physical meaning. For example, a film on the 

electrode may be assigned a· capacitance and a resistance, with little or 

no discussion of the physical behavior of the film which gives rise to a 

particular impedance behavior and its variations with frequency. There

fore analysis based on such equivalent circuits offers little insight 

into the physical processes in the system. Particularly when the elec

trochemical impedance exhibits behavior more complicated than the simple 

cases illustrated in figures 1-12 and 1-10, an equivalent circuit would 

have many not clearly defined components, which would tend to obscure 

rather than elucidate the physical processes. 

Equivalent circuits obtained according to this analysis are some

times labeled 'theoretical models,' but they are rather a way to avoid a 

fundamental theoretical analysis. As Grahame (103) pointed out, "The 

objection to this procedure is that one has no way of knowing whether or 

not a given equivalent circuit is, in fact, equivalent to the interface 

under consideration except by carrying out an independent analysis of 

the problem which it is the objective of those who use this method to 

avoid." 
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This method of analysis is often chosen in ~orrosion applications, 

presumably because the investigators emphasize determination of parame-

ters such as the polarization resistance (R ) , which 
p 

is subsequently 

used to determine the corrosion rate. However the values of parameters 

obtained in this way are questionable; furthermore for corrosion con-

trol, a more complete understanding of the corrosion processes is 

needed, which this approach avoids. 

The Early Classical Approach 

The early classical treatments of the electrochemical impedance, 

which also introduced equivalent circuits, followed an approach similar 

to the first approach discussed in this section regarding equivalent 

circuits. 

The impedance was analyzed theoretically by solving the fundamental 

equations for certain cases, particularly Fick's second law of diffusion 

subject to appropriate boundary conditions. The resulting solution for 

the (faradaic) impedance was denoted as an equivalent combination of a 

'resistance' and a 'capacitance.' The so-called equivalent series or 

parallel 'resistance' and 'capacitance' were not a resistance and capa-

ci tance; they were explicit functions of frequency and also depended 

explicitly on the electrochemical parameters of the system. The 

equivalent 'resistance' and 'capacitance' were simply alternative names 

for the real (in-phase) and imaginary (out-of-phase) parts of the 

impedance function. 
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For example, Randles (100), Ershler (101), and Grahame (103) solved 

the impedance problem and presented expressions for the equivalent 

series or parallel 'resistance' and 'capacitance', for several cases. 

Sometimes the expression for the faradaic impedance was illustrated by 

an equivalent circuit, including resistors, capacitors, and special sym

. bols for terms that did not correspond to an electrical circuit com-

ponent (103) . 

The equivalent 'resistance' and 'capacitance' notation for the 

impedance was used because it was convenient for the experimental meas

urement of the electrochemical impedance with the instrumentation avail-

able at that time, particularly AC bridges (46). Measurement of the 

electrochemical impedance with an AC bridge consists of applying an 

alternating signal of a particular frequency and adjusting the values of 

a variable resistor and a variable capacitor, connected in series or in 

parallel, until the impedance of the R-C combination balances the 

impedance of the electrochemical cell. The values of the adjustable 

resistor and capacitor normally have to be different for different AC 

frequencies. It was not necessary to express the theoretical electro

chemical impedance in terms of an equivalent 'resistance' and 'capaci

tance' and in terms of an equivalent circuit, but it was a convenient 

representation, which in a sense seemed natural in relation to the meas

urement technique. This can be seen for example in the classical paper 

of Randles (100). 
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List of Symbols 

rotating-disk hydrodynamic constant, 0.51023 

2 electrode area, em 

anodic Tafel slope for iron dissolution, mV/decade 

total concentration, mol/cm3 

3 concentration of speci~s i, mol/em 
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c. 0 concentration of species i in the electrolytic solution 
l, 

d 

D. 
l 

e 

f 

F 

i 

3 extrapolated to the electrode surface, mol/em ; 

alternatively, surface concentration of species i at IHP, 

2 mol/em 

2 
double-layer capacity, F/cm 

electrode diameter, em or mm 

diffusion coefficient of species 2 
i, em js 

diffusion coefficient for interactions of species i and k, 

2 em /s 

symbol for the electron 

function in the kinetic expression for an electron-transfer 

reaction 

Faraday's constant, 96487 C/eq 

normal component of total current density at the electrode 

2 surface, A/em 
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i avg 

il. un 

I 

j 

k a,l 

k 
c,l 

K. 
l 

M. 
l 

N. 0 
l' 

p 

2 
anodic current density for iron dissolution A/em 

2 
average current density, A/em 

faradaic current density, A/cm
2 
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partial current density due to electron-transfer reaction 1, 

2 
A/em 

limiting current density, A/cm2 

total current, A 

)-1, imaginary number 

flux of species i relative to the mass-average velocity, 

-2 -1 mol·cm ·s 

anodic rate constant for reaction 1 

cathodic rate constant for reaction 1 

dimensionless perturbation frequency based on species i, 

defined by equation 1-51 

symbol for the chemical formula of species i 

number of electrons transferred in reaction 1 

. -2 -1 flux of species 1, mol·cm ·s 

normal component of flux of species i at the interface, 

-2 -1 mol·cm ·s 

reaction order for an anodic reactant 

reaction order w.r.t. the solution pH or equivalently the OH-

concentration for anodic iron dissolution (equation 1-8) 



112 

q surface charge density on the metal side of the double layer, 

r 
0 

R 

R. 
~ 

R 
p 

R 
s 

s 

2 
C/cm 

electrode radius, em 

-1 -1 universal gas constant, 8.3143 J·mol ·K 

rate of production of species i by homogeneous chemical reac-

. -3 -1 
t~ons, mol·cm ·s 

polarization resistance, slope of De-polarization curve not 

2 including ohmic potential drop, O·cm 

2 ohmic resistance of electrolytic solution, O·cm 

total charge-transfer resistance, O·cm2 

2 charge-transfer resistance for reaction 1, O·cm 

ohmic resistance (equations 1-14 and 1-15), 0 

Laplace transformation variable, -1 
s 

s. 
1 

stoichiometric coefficient of species i in reaction 1 
~' 

Sc. Schmidt number, vjD. 
~ ~ 

t time, s 

* t. dimensionless time defined by equation 1-49 
~ 

T absolute temperature, K 

2 -1 -1 
u. mo~ility of species i, em ·mol·J ·s 
~ 

v fluid velocity, cm/s 
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v P-A 
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z. 
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z 
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velocity of species i, cm/s 

total potential difference between working electrode and 

reference electrode, V 

potential where the active-passive transition is observed, V 

potential of the metal electrode, V 

potential driving force for electrochemical reaction, usually 

equivalent to (V 
m ~ ) ' v 

0 

potential where the passive-active transition is observed, V 

normal distance from the electrode surface, em 

·electrode admittance obtained after subtraction of R from 
s 

-1 -1 -2 the electrochemical impedance, (Z- R ) , 0 ·em 
s 

charge number of species i 

2 electrochemical impedance, O·cm 

convective Warburg, or diffusion, or mass-transfer impedance, 

2 O·cm 

classical Warburg impedance, O·cm2 

faradaic impedance defined by equation 1-27, O·cm2 

Greek letters 

Q 
a,Fe 

tll 

anodic transfer coefficient for iron dissolution 

symmetry factor for elementary reaction 1 



r(4/3) 

0. 
~ 

8 

e. 
l 

e.· (O) 
~ 
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0.89298, the gamma function of 4/3 

salt-film thickness, em 

steady-state diffusion layer thickness for species i at a 

rotating disk electrode, defined by equation 1-59, em 

transient (oscillating) part of variable x 

salt-film porosity 

angle from the hemisphere pole 

dimensionless, complex alternating concentration of species i 

defined by equation 1-50 

derivative of 9 w.r.t. €. evaluated at €. = 0 
~ ~ 

dimensionless convective Warburg impedance function for 

species i 

{ 
-l } dimensionless convective Warburg impedance function using the 

8Ni'(0) 

ICf 

Nernst diffusion layer approximation 

-1 -1 conductivity, 0 ·em 

conductivity of electrolytic solution in the pores of a salt 

-1 -1 
film, 0 ·em. 

parameter in classical Warburg impedance expression, given by 

-~ equation 1-47, s 

electrochemical potential of species i, Jjmol 



v 

~ 
0 

~ I 

0 

X 

X 

2 
kinematic viscosity, em /s 

dimensionless normal distance defined by equation 1-49 

phase angle of the impedance, degrees 

phase angle of variable x 

electric potential, V 
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potential measured with a hypothetical reference electrode of 

a given kind in the solution just outside the diffuse 

double-layer, V 

potential in the solution just outside the diffusion layer, 

solution of Laplace's equation in the bulk solution extrapo-

lated to the electrode surface, V 

potential of a reference electrode of a given kind in the 

bulk solution, V 

potential drop due to concentration gradients in the solution 

(diffusion potential), V 

ohmic potential drop in the solution, assuming the conduc-

tivity is equal to the bulk value, V 

ohmic potential drop in the in the pores of the salt film 

general symbol for a dependent variable in electrochemical 

impedance problem 

steady-state value of x 
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-X complex oscillating part of x 

transient (oscillating) part of x 

dummy variable 

w perturbation frequency, rad/s 

electrode rotation speed, rad/s 

Subscripts 

f. salt film 

i species i 

IHP inner Helmholtz plane 

1 elementary reaction 1 

RE reference electrode in the bulk solution 

ss steady state 

SCE saturated calomel reference electrode 

Supersripts 

(overbar) steady-state value 

(tilde) oscillating part 
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CHAPTER 2 

Anodic Polarization Curve, Passivation, 

and Current Oscillations: 

Experimental Results 

2.1. Introduction 

139 

This chapter presents experimental polarization curves, particu

larly passivation curves, and experimentally observed current oscilla

tions for rotating hemispherical iron electrodes. 

The purpose of these experiments is to elucidate the passivation 

and oscillatory behavior of the iron-sulfuric acid system. In particu

lar, the objective of these experiments is to answer questions such as: 

what is the effect of electrode geometry on the shape of the observed 

passivation curve? how does a uniform or nonuniform primary current 

distribution affect the observed behavior of the system? does an iron 

hemisphere passivate uniformly? do hemispherical electrodes of dif-

ferent sizes undergo sustained current oscillations? 

Another objective of these experiments is to determine the anodic 

polarization cur:e for the Fe/H
2
so

4 
system so that we can then carry out 

the AC impedance experiments at selected points along the polarization 

curve. A knowledge of the steady-state behavior of the system, specifi

cally of the polarization curve, is necessary before investigating the 

dynamic behavior of the system by the electrochemical impedance tech

nique. 
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The characteristics of the Fe/H
2

so
4 

system and the significance of 

ohmic potential drop and current distribution effects were discussed in 

section 1. 3; the current distribution characteristics of the rotating 

hemispherical electrode were described in section 1.5. The hemispheri

cal electrode has a uniform primary current distribution, whereas the 

disk electrode has a highly nonuniform primary distribution. Four 

rotating hemispherical iron electrodes with different diameters were 

used in these experiments. The hemisphere diameter affects the degree 

of uniformity of the current and potential distributions as well as the 

relative significance of ohmic drop effects. Comparison of the results 

for hemispheres with results for disks as well as comparison of the 

results for different hemispheres may therefore elucidate the effects of 

current distribution and ohmic potential drop on the system behavior. 

The diameters of the rotating hemispherical electrodes used in 

these experiments ranged from 3 to 8. 5 mm. The electrode rotation 

speeds were 400, 900, and 1600 rpm (41.9, 94.2, and 167.6 rad/s). Some 

representative experimental results are sho\vn in this chapter. 

All the potential values in this chapter are relative to the 

mercury-mercurous sulfate-saturated potassium sulfate (Hg/Hg
2
so

4
) refer

ence electrode. The current in the presented results is given as meas

ured (in A units) and is also expressed in terms of an average or 

apparent current density (i] (A/cm
2

), which is defined as the measured 

current divided by the area of the hemispherical electrode calculated 

from the measured diameter. 
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2.2. Principles of Polarization Control 

The interaction between the electrochemical system under study and 

the experimental apparatus and procedure can give rise to phenomena that 

are not characteristic of the electrochemical system itself. Specifi-

cally the Fe/H
2
so

4 
system can exhibit different behavior depending on 

the .experimental apparatus, particularly the polarization control dev-

ice, used to investigate the behavior of the system. (See for exampl'e 

figure 1-1). One therefore needs to consider the principles of polari-

zation control before carrying out an experiment. 

Epelboin et al. (1) have presented the principles of polarization 

control necessary to study electrochemical systems such as the Fe/H
2

so
4 

system. We will briefly discuss these principles here. The constraint 

imposed by the polarization device on the electrochemical system can be 

represented by a relationship bet,veen current and potential called a 

load line. 

Consider an electrochemical system with the current-potential 

characteristics shown in figure 2-1 ( 1, 2). A conventional (normal) 

potentiostat provides a vertical (infinite- slope) load line (L ). 
0 

An 

alternative polarization control device, equivalent to a voltage source 

E in series with a negative internal resistance p, provides a load line 

(L) with a finite positive slope. ~~en a conventional potentiostat is 

used in a potential sweep experiment, curve a-b-c-d-e is obtained for a 

positive sweep, while e-d-f-b-a is obtained for a negative sweep. Thus 

a hysteresis is observed, and curve c-f, which is assumed to be charac-

teristic of the electrochemical system, is obscured. When a 
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Figure 2-1. Current-potential diagram for a passivating electrochemical 
system illustrating the principles of polarization control. 
L - vertical load line for a normal potentiostat, U ~ E . 
L0 

- load line for an alternative polarization cont~ol 
device, e.g., a Negative Impedance Converter, U- E- pl. 
E , E, and p are adjustable parameters in the devices. 
(gaken from 1, 2) 
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polarization control device with a positive-slope load line is used, 

points such as P along c-f can be. reached. Then curve a-b-c-f-d-e is 

obtained for a positive potential sweep, and the reverse curve is 

obtained for a negative sweep. 

In this study we useJ a potentiostat (Stonehart BC 1200) that had a 

positive feedback circuit and was therefore capable of providing either 

a vertical or a positive-slope load line, and we observed two different 

types of behavior. For systems including a nonuniform current or poten

tial distribution, localized electrode dissolution, and ohmic potential 

drop, the question remains --which of the observed types of behavior is 

closer to the fundamental behavior of the system that we seek to deter-

mine? 

2.3. Experimental Apparatus and Procedure 

The hemispherical electrodes were manufactured by Pine Instrument 

Company using 99.9985% pure iron shrouded into a Teflon insulating 

cylinder with a diameter of 1. 9 em. The diameter of the hemispheres 

decreased slightly during the experiments due to iron dissolution, and 

probably the hemispherical shape of the electrodes was slightly dis

torted. The hemisphere diameter at the equator was measured before and 

after each experiment with a micrometer. 

The hemisphere surface was polished before each experiment, using 

first 600 grit silicon carbide abrasive paper and next polishing cloths 

with 9, 3, and 1 ~m diamond pastes. The electrode was rotating while it 

was being polished to avoid deformation of the hemispherical shape. 
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After polishing, the electrode was washed with acetone and rinsed with 

purified water. Finally the hemisphere was immersed in 1 M H
2
so4 for -5 

minutes and immediately transferred to the experimental cell. 

An analytical rotator (Pine Instrument Model ASR2) was used to 

rotate the electrode. Electrical connection to the rotating electrode 

shaft was made by a silver-carbon brush holder assembly (Pine Instrument 

ACAR917). It was necessary to polish the silver-carbon brush (with 

abrasive paper, followed by acetone wash) before each experiment to 

avoid noise in the electrical signals due to the brush. Since a brush 

is inevitably deformed by contact with the rotating shaft, a better 

arrangement to avoid noise in rotat~ng electrode experiments would be 

electrical contact through a "liquid mercury chamber. However such an 

arrangement was not available in the equipment used in this work. 

The electrolyte solution consisted of reagent grade sulfuric acid 

(Fisher Scientific or Mallinckrodt) and purified water with a specific 

resistance of 17 MO-cm, prepared with a Barnstead NANOpure water purifi-

cation system. The electrolyte solution was sparged with nitrogen 

(Liquid Carbonic, Hi-Pure) for at least one hour before each experiment. 

Nitrogen sparging continued during the experiment at a much lower rate 

so that it would not interfere with the hydrodynamics for a rotating 

hemisphere. 

The glass cell used in the~e experiments is shown schematically in 

figure 2-2. The cell had separate compartments for the counterelectrode 

and the reference electrode. The counterelectrode was a platinum screen 

with surface area much larger than the working electrode, and the 
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Figure 2-2. Schematic diagram of the experimental cell. Approximate 
dimensions in em are given. WE - working electrode, RE -
reference electrode, CE - counterelectrode. 
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reference electrode was a mercury-mercurous sulfate-saturated potassium 

sulfate electrode, Hg/Hg
2
so

4 
(Radiometer, K601 electrode). In this 

experimental cell arrangement, the reference electrode was located in 

the bulk solution, essentially at infinity. The cell was placed in a 

constant temperature bath maintaining the temperature at 25.0 ± 0.5° C. 

Polarization of the cell was controlled using a Stonehart poten

tiostat with the input voltage provided by a universal programmer 

(Princeton Applied Research Model 175). The current and potential sig

nals were monitored with a digital storage oscilloscope (Nicolet Model 

206), and current -potential plots were recorded with an X- Y recorder 

(Hewlett-Packard Model 7047A). A power-line filter was used to avoid 

noise from extraneous sources. A schematic diagram of the experimental 

apparatus is shown in figure 2-3. The apparatus used in this work was 

nearly the same as that used by Russell (2, 3, 4). 

Three types of experiments were carried out: 

1. Potentiodynamic sweep experiments in which the load line of the 

potentiostat was vertical to determine the anodic polarization curve, 

particularly the region in the limiting current plateau where current 

oscillations occur and the hysteresis associated with passivation. 

2. Potentiodynamic experiments in which the positive-slope load line of 

the potentiostat was used to -determine whether the anodic polarization 

curve for iron hemispheres is Z-shaped displaying a continuous and 

reversible passivation curve. 

3. Potentiostatic experiments in which the current oscillations were 

recorded. 
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Figure 2-3. Schematic diagram of the experimental apparatus. 
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In the first type of potentiodynamic experiments, the potential was 

swept positively from the open-circuit potential to a value within the 

passive range and vice versa. The sweep rates ranged from 2 to 30 mV/s. 

If the positive potential sweep was carried out continuously from the 

open-circuit potential to the passive range, the limiting current pla

teau and the region where oscillations occur could not be clearly 

obtained. The current would go through a maximum above the limiting 

current value and then through a minimum below the limiting value; the 

current would subsequently reach the limiting value, and finally the 

electrode would passivate. In order to trace out the limiting current 

plateau, it was therefore necessary to stop the positive sweep 20-50 mV 

before the active-to-passive transition potential and reverse the direc

tion of the sweep. This procedure was used by Russell (3, 4) to deter

mine the li~iting current plateau for rotating disk electrodes. By sub

sequently sweeping the potential positively, a vertical active-passive 

transition was observed at VA-P' and by reversing the sweep, a vertical 

passive-active transition was observed at VP-A' which was less anodic 

than VA-P' i.e., there was a hysteresis. Some representative results of 

these potentiodynamic sweep experiments are shown in section 2.4. 

In the second type of potentiodynamic experiments, the potential 

was first swept from the open-circuit value to a value E, which was usu

ally -0. 27 V, at a sweep rate of 20 or 30 mV /s. Then the slope of the 

load line was decreased continuously at a rate slow enough to approach 

steady-state conditions. Sometimes it was necessary also to vary E in 

order to trace part- of the passivation curve. There was a lower limit 
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to the slope of the load line prov ided b y the potentiostat, and there

fore the lowest-current part of the passivation curve was inaccessible. 

In some cases the potentiostat overloaded, becoming unable to control 

the system, perhaps due to violent oxygen evo lution at high potentia ls 

or high currents. 

section 2.5. 

The results of these experiments are discussed in 

For the third type of experiments, the electrode was polarized at a 

potential within the range where oscillations occur at the limiting 

current plateau . The limiting current plateau was reached following a 

procedure similar to that for t he potentiodynamic s weep experiments . 

The potential was then held at a value roughl y in the middle of the 

oscillatory region, and the current as a function of time was recorded 

b y the oscilloscope. The results of these experiments are presented in 

section 2.6 . 

An interesting phenomenon observed at the end of some experiments 

was the formation of spiral markings on the surface of the hemispherical 

electrode as shown in the photograph in figure 2-4. This phenomenon was 

more often observed at higher rotation speeds and in the experiments 

recording the current oscillations, when the electrode spent more time 

at high currents. The formation of spiral markings on rotating elec-

trodes is discussed in section 1 .5. Since the Re yno lds number s in our 

experiments were orders of magnitude lowe r than tha t for transition to 

turbulence, the observed spirals were probably due to hydrodynamic dis

turbances produced by surface defects, which developed during the disso

lution process . 
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Figure 2-4. Photograph of a hemispherical 
electrode with spiral markings 
on its surface. 
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2.4. Anodic Polarization Curve-- Discontinuous -Active - Passive Tran

sitions 

Figure 2-5 shows a polarization curve obtained in a potentiodynamic 

positive.-sweep experiment in which the load line of the potentiostat was 

vertical. The polarization curve displays a limiting current plateau 

and a vertical transition from the active to the passive state. The 

current oscillations are not shown to scale in figure 2-5 (as well as in 

the other polarization curves presented), because they were beyond the 

time-response capabilities of the X-Y recorder. Before reaching a pla

teau, the current went through a maximum above the limiting current 

value and then through a minimum below the limiting value. This 

maximum-minimum phenomenon obscured the region where current oscilla

tions would occur, and thus only part of the oscillatory region is evi

dent in figure 2-5. 

The maximum-minimum or 'overshoot-undershoot' phenomenon for the 

Fe;H
2

so 
4 

system was previously observed by Epelboin et al. ( l, 5) and 

Russell and Newman (2, 3), who also discussed the origins of the 

phenomenon. The appearance of the maximum depends on the potential 

sweep rate and disappears under steady- state conditions; it may there

fore be an experimental artifact due to a fast sweep rate (1). Alterna

tively, the maximum-minimum phenomenon may be due to the initial precip

itation of salt crystals from a supersaturated solution and subsequent 

growth and rearrangement of the salt crystals, as observed by Beck (6) 

for iron in perchloric acid. 
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Figure 2-5. Polarization curve obtained in a positive potential sweep 
experiment in which the load line of the potentiostat was 
vertical. Rotating hemispherical electrode: d - 3 mm, n = 

400 rpm. The potential sweep rate was 20 mV/s up to about 
60 mA and was then reduced to 5 mV/s. 



153 

Figure 2-6 is a typical polarization curve, including the limiting 

current plateau, the region where current osciliations are observed, and 

the sharp active-passive and passive-active transitions with the associ-

ated hysteresis. The current maximum and minimum behavior around the 

limiting current plateau is not shown in figure 2-6, for clarity. The 

limiting current plateau was traced out by following the procedure 

described in section 2.3. 

A peculiarity of the polarization curve shown in figure 2-6 (and 

less clearly in figure 2-5) is a step increase in the current before 

passivation. This step increase has also been observed by Russell (4), 

but its cause is not known. 

Figure 2-6 shows that the passive-active transition occurred at 

VP-A- -0.14 V, whereas the active-passive transition occurred at VA-P' 

which was 0.38 V higher. A rough estimate of the ohmic potential drop 

included in V A-P is 0. 28 V, which is the product of the theoretical 

ohmic resistance of the hemisphere (equation 1-14 with 

-1 . -1 
~ = 0.40 0 ·em ) and the limiting current value (153 rnA). Furthermore 

the passivation potential according to condition 1-10 would be 

Epelboin et al. (7) as well as Russell and Newman (2) obtained a 

value of VP-A- -0.17 V for a 5 mm diameter disk electrode in 1M H2so4 . 

Russell and Newman (2) observed that VP-A became less negative as the 

disk electrode size increased, and they rationalized this trend by con-

sidering that a bigger disk electrode has greater potential and concen-

tration fluctuations over its surface and such fluctuations may lead to 
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Figure 2-6. Polarization curve from a potentiodynamic sweep experiment 
for a rotating hemispherical electrode (d - 4.4 mm, 0 - 400 
rpm). tN indicates the region of the limiting current 
plateau 3fiere current oscillations are observed. The 
current maximtun-minimtun phenomenon is not shown in the 
figure, for clarity. 
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earlier breakdown of the passive film covering the electrode. The value 

Vp - -0.14 V obtained here for a 4. 4 mm diameter hemisphere appears 
-A 

consistent with previous results for disk electrodes. 

In general the results of potentiodynamic sweep experiments for 

rotating hemispherical electrodes using a normal potentiostat were very 

similar to the results for disk electrodes as one might expect. 

2.5. Anodic Polarization Curve-- Continuous Passivation 

2.5.1. Experimental Curves 

Experimental results obtained using the positive-slope load line of 

the potentiostat are discussed in this section . 

. Figure 2-7 shows an experimental Z-shaped polarization curve for a 

3 mm diameter hemispherical electrode. We notice that the minimum below 

the limiting current plateau reached a quite low value and occurred in 

the vicinity of the passivation potential given by equation 1-10. Fig-

ure 2-8 shows polarization curves for hemispheres of roughly the same 

diameter at different rotation speeds, and figure 2-9 is a polarization 

curve for a bigger hemisphere. 

Figure 2-7 illustrates that active dissolution around the limiting 

current plateau extends into potentials higher than VA-P observed with a 

normal potentiostat, but this extended region is unstable; large-

magnitude, uncontrolled current fluctuations occur there. In some 

experiments, big bubbles, most probably evolved oxygen gas, appeared on 

the electrode in this region; the system could no longer be controlled, 
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Figure 2-7. Experimental Z-shaped polarization curve for a rotating 
hemispherical electrode (d - 3 mm, 0 - 400 rpm) obtained 
using the positive-slope load line of the potentiostat. 
The corresponding polarization curve obtained using a 
vertical load line is shown in figure 2-5. The dotted line 
indicates the active-passive transition observed in the 
experiment in figure 2-5. 
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Figure 2-8. Polarization curves for a -3 mm hemisphere at different 
rotation speeds: (a) 400 rpm (also shown in figure 2-7), 
(b) 900 rpm. The dashed lines represent the unstable 
region of the limiting current plateau. 
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Figure 2-9. Polarization curve for a rotating hemispherical electrode 
(d- 6.73 mm, 0- 900 rpm) obtained using a positive-slope 
load line. The dashed line represents the unstable region 
of the limiting current plateau. 
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and those experiments had to be terminated there. Current fluctuations 

that could not be controlled in the extended limiting current region 

were also reported by Epelboin et al. (1), who used a polarization con

trol device referred to as a Negative Impedance Converter, and by 

Russell (3, 4). 

Small-magnitude fluctuations also occurred along the passivation 

curve in these experiments. Significant random fluctuations were 

observed by Russell (4, 3); however Epelboin et al. (1) did not report 

fluctuations during passivation in their experimental Z-shaped curves. 

Som~times we repeated potentiodynamic experiments using the same 

electrode (with a slightly smaller diameter in each experiment), under 

the same conditions and observed different magnitude or shape of the 

fluctuations in the extended limiting current region and during passiva

tion. Overall the fluctuations in the extended region of the limiting 

current plateau and along the passivation curve appear to be strongly 

dependent on the experimental electronic equipment, in contrast to the 

more regular current oscillations observed within the limiting current 

plateau (section 2. 6), which are characteristic of the electrochemical 

system itself (3). 

Recall now figure 1-6 (Fig. 6 in Ref. 2), which shows a trend of 

steeper passivation curve with decreasing disk electrode diameter and 

hence decreasing ohmic potential-drop effect. We would like to see 

whether hemispherical electrodes follow the same trend. 
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The slope of the passivation curve for an electrode passivating 

nonuniformly reflects the rate of change of active area with changing 

potential and therefore the distribution of the potential ~ near the 
0 

electrode surface (see equation 1-10). The passivation curve is 

expected to be steeper for a more uniform potential distribution. For a 

rotating disk electrode, which has a nonuniform primary distribution and 

a uniform mass-transfer distribution, the potential distribution becomes 

more uniform as the disk size decreases; thus the passivation curve 

becomes steeper as the disk diameter decreases. A rotating hemispheri-

cal electrode has a uniform primary distribution and a nonuniform mass-

transfer distribution. At limiting current conditions, the distribution 

of the ohmic potential ~ ' becomes more nonuniform as the hemisphere 
0 

diameter increases, according to equation 1-13, but it is not clear 

whether at appreciable fractions of the limiting current the potential 

distribution will be less uniform as the diameter of the passivating 

hemisphere increases. 

Figure 2-10 gives current-potential curves for three hemispherical 

electrodes, each having a different diameter. The smallest hemispheri-

cal electrode (C) has the steepest passivation curve, but there is no 

clear difference between the slopes of the passivation curves of the two 

bigger electrodes (A, B). Thus, a monotonic relationship between the 

slope of the passivation curve and the hemispherical electrode diameter 

is not evident in figure 2-10, while a monotonic relationship between 

the magnitude of the ohmic potential drop and the diameter is evident. 

We tried to measure polarization curves for a much bigger hemispherical 

I I 
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Figure 2-10. Polarization curves for three rotating hemispherical 
electrodes obtained using a positive-slope load line. 
Electrode diameters: A- 6.73 rnrn (also in figure 2-9), B-
4.57 rnrn, C - 2.85 rnrn (also in figure 2-B(b)). Rotation 
speed: 0 - 900 rpm. The unstable region of the limiting 
current plateau is represented by dashed lines. For 
clarity, the small-magnitude fluctuations along the 
passivation curves are not shown; lines representing the 
average of these fluctuations are given. 
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electrode (8. 5 rnrn diameter) to clarify (reveal) any possible relation-

ship, but we could not obtain the complete limiting current plateau and 

the active-passive transition, because the current reached very high 

values and it was difficult to control the system. 

We should note that the average current density 

plotted in figure 2-10 h not a true current density, since the elec-

trode would passivate partially and dissolve nonuniformly in some ranges 

and also since the electrode diameter decreased slightly during the 

experiment. Thus [ i] is a somewhat arbitrary representation of the 

current on the electrode and may obscure the comparison of results from 

different electrodes. 

Iron rotating disk electrodes passivate nonuniformly (as discussed 

in section 1. 3. 2), and apparently so do hemispherical electrodes. An 

important question for elucidating iron passivation is: what is the 

electrode dissolution profile during passivation? In this work, after 

experiments where hemispherical elec trades were polarized at the pas-

sivation curve for a sufficiently long time' we observed much greater 

dissolution near the equator (see section 3.6.2), i.e., preferential 

passivation near the pole. An implication of the observed dissolution 

profile is that along the passivation curve, the effective electrode 

geometry is not a hemisphere but a different segment of a spherical sur-

face; the potential and concentration distributions for such an elec-

trade geometry are not readily predicted. 

Considering the condition for passivation given by equation 1-10 

and the potential, current, and concentration distributions for a 
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rotating hemispherical electrode, how can one explain the observed 

dissolution-passivation profile? 

2.5.2. Probable Passivation Configurations 

\ 

According to condition 1-10, to determine whether a part of the 

electrode will passivate, we need to know the values of the potential 

+ difference (V - ~ ) and the H concentration near the surface. 
m o 

(~ is 
0 

the potential in the solution adjacent to the electrode, outside the 

diffuse double layer.) (V - ~ ) is also the potential driving- force 
m o 

for electrochemical reaction in the Butler-Volmer expression. In addi-

tion the electrode may be covered by a porous ferrous-salt film acting 

as a precursor to oxide passivation. 

Consider the case just before passivation starts where the elec-

trode is near limiting current conditions. Figure 2-11 illustrates 

probable potential distributions for a rotating hemispherical electrode. 

Ni~ancioglu and Newman (8) have calculated the potential (~ ' 0 • the 

potential in the bulk solution just outside the diffusion layer) and 

current distributions for a hemispherical electrode at the limiting 

current. These distributions are sho\vn in figure 1-7; they are both 

nonuniform. 

Initially, considering the ~ ' potential distribution, 
0 

one might 

expect that as ~ ' 
0 

is lower near the equator of the hemisphere, the 

electrode would passivate preferentially near the equator. But it is ~ 
0 

rather than ~ ' that is important for passivation. The limiting current 
0 

density is higher near the pole, and the potential driving force 
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Figure 2-11. (a) Schematic diagram showing the electrode-salt film
solution interfaces. The dots illustrate that these 
interfaces are not clearly separated (or defined) and the 
layers may overlap. 
(b) Schematic diagram showing probable potential variations 
for a hemispherical electrode near limiting current 
conditions. 
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(V - ~ ) should therefore be larger near the pole. Larger (V - ~ ) 
m o m o 

values then favor passivation near the pole. 

However the passivation potential depends on the value of the pH 

near the electrode surface, and we also need to consider variations of 

the H+ concentration along the hemispherical electrode. + The H concen-

tration is determined by convective diffusion and electrolytic migration 

through the solution in the diffusion layer and the salt film (if there 

is one). The convective diffusion flux is higher near the pole of a 

+ hemisphere than near the equator (8, 9), tending to increase the H con-

centration near the pole, but the flux due to migration through the 

potential drop (~ 
0 

- ~ 
0
'), illustrated in figure 2-11, would be lower 

near the pole tending to decrease the H+ concentration there. 

We may also consider whether a salt film forms uniformly over the 

electrode surface. Since the mass-transfer rate is highest near the 

pole of the hemisphere and decreases toward the equator, the concentra

tion of Fe++, which is produced by the electrode reaction, may be higher 

near the equator. Ferrous salt film precipitation would then be greater 

near the equator, and the salt film thickness might be larger or the 

of 
A higher - value would yield a 

€f 
porosity smaller near the equator. 

greater potential gradient and hence a greater pH change across the salt 

film (see equation 1-9) and would tend to favor passivation near the 

equator due to a higher pH value. 
of 

A higher value is also consistent 
€f 

with a greater potential drop (~ -~')near the equator. 
0 0 
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In addition, the electrode surface coverage by a porous sali film 

and other adsorbed species may be nonuniform, and such nonuniformi ty 

would affect the passivation behavior of the electrode. Furthermore, if 

nonuniform dissolution and passivation proceed over a long-enough period 

of time, the shape of the electrode will change, and consequently the 

mass transfer and ohmic potential drop characteristics of the electrode 

will change in a way that is difficult to determine. 

In summary, there are several coupled and sometimes competing 

effects which tend to favor preferential passivation of a hemispherical 

electrode either near the pole or near the equator. We have experimen-

tally observed preferential passivation of hemispheres near the pole 

(more precisely, much greater dissolution near the equator), and this 

observation may be explained by a dominant effect of the higher (V - ~ ) 
0 

value near the pole, under those experimental conditions. At different 

conditions there could be more balance between the opposing effects 

resulting in a more uniform passivation of the hemispherical electrode. 

Russell and Newman (10) discussed (qualitatively) the probable 

radial variations in the potential, the concentrations, and the salt 

film thickness for a rotating disk electrode at the limiting current 

plateau and concluded that the disk will preferentially passivate near 

the periphery. However, experiments sometimes give other results. 

The above discussion for the hemispherical electrode is only a 

qualitative and phenomenological attempt to provide some rationalization 

of experimental observations. Because multiple interacting· phenomena 

occur in the system, a rigorous quantitative treatment would be required 
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for a definitive characterization of the system. 

2.6. Current Oscillations 

Figure 2-12 shows the current oscillations observed for a 3 mm hem-

isphere rotating at n = 400 rpm at a constant potential V 
OS 

-0.198 v. 

The current- time plot (figure 2 -12a)) displays uniform cycles repeated 

at a frequency of 17.0 Hz; the minimum current is lower than the maximum 

current by a factor of 6. An interesting feature of the current- time 

waveform is the noise or high-frequency oscillations in the increasing-

current part of the overall cycles, near the minimum current. A clearer 

picture of these high-frequency oscillations is given in figure 2-12(b), 

which was obtained using a higher recording rate of the digital oscillo-

scope (~ore sensitive time scale), during the same experiment. The fre-

quency of the faster oscillations is about 1700 Hz. 

Figure 2-13 shows current oscillations for a 3 mm rotating disk 

e lee trade at n -= 400 rpm. The ratio of the minimum to the maximum 

current is about 3.5 for this case. The values of the limiting current 

density and the overall oscillation frequency for the disk in this case 

are close to the values for the hemisphere in figure 2-12 (even though 

the applied potential V is quite different), and one may compare the 
OS 

observed oscillations for the two electrodes. The cycles in the oscil-

lations for the disk electrode are also quite uniform. In the rising-

current part of the waveform, a feature like a step change is observed 

for the disk, rather than the high-frequency oscillations observed for 

the hemisphere. 
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Figure 2-12. Sustained current oscillations observed for a rotating 
hemispherical electrode, d - 3 mm, 0 - 400 rpm, at a 
constant potential V - -0.198 V (indicated on the 
potentiodynamic sweep c8fve in figure 2-5). 
(a) Overall waveform. Average frequency for 20 cycles: f = 
17.0 Hz. 
(b) High-frequency oscillations or noise, f- 1700 Hz. 
This current-time curve was recorded during the same 
experiment as curve (a), using a higher recording speed of 
the digital oscilloscope. / 
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Figure 2-13. Sustained current oscillations observed for a rotating disk 
electrode. d- 3 mm, 0- 400 rpm, V - -0.303 V. Average 

OS frequency (11 cycles) f- 23.5 Hz. 
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Comparing figures 2-12(a) and 2-13, we also notice that the oscil-

lating current density reaches relatively much lower values and the 

ratio of the maximum to the minimum current is greater for the hemi-

sphere than for the disk. · If we assume that the lower current values 

during the oscillations are associated with a larger part of the elec-

trade surface being passive, this observation may indicate that a larger 

fraction of the hemispherical electrode becomes passive compared to the 

disk electrode, and this may imply a more uniform potential distribution 

on the hemisphere in this range. t However this is not a well esta-

blished conclusion. Comparing current waveforms for several hemispheres 

and several disk el~ctrodes, we don't always see lower minimum currents 

for the hemispheres. Moreover it is not clear when one can directly 

compare results between hemispherical and disk electrodes; under what 

conditions of current, potential, electrode size, rotation speed, and 

oscillation frequency. 

Russell (4, 3) has presented several oscillatory current-time 

c;:urves with a variety of shapes for rotating disk electrodes, and we 

have observed several oscillatory current-time curves with a variety of 

shapes ·for rotating hemispherical electrodes. The oscillations for the 

hemispherical electrodes are generally similar to those for the disk 

electrodes. We present some of the observed oscillations for hemispher-

ical electrodes in this section. The waveform in figure 2-12 for the 

smaller hemisphere at the lower rotation speed was the most uniform 

t Using equation 1-13 for the hemisphere and the corresponding equation 
for the disk electrode, we get an estimate for the maximum potential 
difference~~ ' of about 100 mV for both cases. 

0 

I 
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among the observed oscillatory curves for hemispheres. 

Before presenting more results, we should note that in many of 

these experiments, particularly for larger hemispheres, the current kept 

oscillating for about ~ to 5 minutes and then abruptly decreased to near 

zero, i.e., the electrode passivated, even though the potential was less 

than the expected VA-P value. By contrast, we have observed the current 

for rotating disk electrodes oscillating continuously for more than 15 

minutes (until we decided to terminate the experiment) without passiva-

tion. Therefore the current oscillations for rotating hemispherical 

electrodes did not appear to be as 'sustained' as for disk electrodes. 

Assuming that the current oscillations are due to part of the electrode 

making continual transitions between the active and passive states, this 

observed difference in the behavior of hemispherical and disk electrodes 

indicates that the entire hemispherical surface can passivate more 

readily than the entire disk surface, perhaps due to a more uniform 

potential distribution on the hemisphere in the range where current 

oscillations occur. 

Another related phenomenon occurred during an experiment recording 

the current oscillations for an 8. 4 mm hemispherical electrode at 0 = 

400 rpm. ~ile the potential was held at a value V where the current 
OS 

was oscillating, the current suddenly dropped to near zero, and a few 

moments later the current suddenly rose to a value near the limiting 

current value and then continued oscillating for some time. This exper-

iment seems to illustrate a bifurcation point where two stable steady 

states exist, the active state and the passive state, and the system can 



172 

be at either of the two states. 

The current oscillations for a 4.4 mm diameter hemisphere at dif

ferent potentials and rotation speeds are illustrated in figure 2-14. 

The current-time curves in figures 2-14(a) and 2-14(b) were recorded 

during the same experiment at different potentials within the oscilla

tory region of the limiting current plateau; they have different shapes 

and not much different frequencies. A weak dependence of the frequency 

of oscillations on the potential was also reported by Russell and Newman 

(3) for a hemispherical electrode. At a higher rotation speed (figure 

2-14(c)), the current cycles became more nonuniform and irregular, in a 

way that it was difficult to assign a frequency to the oscillations. 

Significant instabilities or noise appeared near the minimum current in 

the waveforms at both rotation speeds. 

Comparing figure 2~14(b) with figure 2-12, we see more high

frequency noise near the minimum current for the bigger hemisphere. 

Russell and Newman (3, 4) often observed noise near the position of 

minimum oscillation current for rotating disk electrodes, and they 

attributed the noise to rapid transitions between the active and passive 

states, at some parts of the electrode. Increasing the disk electrode 

size or increasing the rotation speed appeared to promote the occurrence 

of this noise in their results. 

The current oscillations for a bigger hemispherical electrode at 

three rotation speeds are illustrated in figures 2-15 and 2-16. No sig

nificant noise or high- frequency oscillations were observed · in these 

oscillations. 
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Figure 2-14. Current oscillations observed for a 4. 4 mm hemispherical 
electrode. 

v<a) (a) 0 - 400 rpm, - -0.197 v (marked in figure 2-6) 0 

f- 8 Hz. OS 
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(c) 0 - 900 rpm, v - 0.174 v. f = 8 Hz. 
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Figure 2-16. Current oscillations observed for a 6. 5 mrn hemispherical 
electrode. 0- 1600 rpm, V - 0.58 V. f = 18Hz. Spiral 
markings were seen on the giectrode surface at the end of 
the experiment recording these oscillations. 
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The frequency of oscillations for rotating hemispherical electrodes 

is plotted vs. the square root of the electrode rotation speed, in fig

ure 2-17. For a hemispherical electrode of a given diameter, the oscil

lation frequency is a relatively weak function of the rotation speed; 

generally, the frequency increases with increasing rotation speed. The 

frequency of oscillations for rotating disk electrodes was found to be a 

linear function of the rotation speed ( 11, 3), and it is not clear why 

the frequency for hemispherical electrodes is a weaker function of the 

rotation speed. For a given rotation speed, the oscillation frequency 

appears to vary significantly with the hemisphere diameter, but a sys

tematic relationship between oscillation frequency and hemispherical 

electrode size is not evident in figure 2-17. For rotating disk elec

trodes, the oscillation frequency was found to be nearly independent of 

electrode size (3). 

2.7. Conclusions 

Overall the anodic polarization curves for rotating hemispherical 

iron electrodes are similar to those for disk electrodes. For both 

electrode geom~tries, the polarization curves obtained using a normal 

potentiostat exhibit discontinuous active-passive transitions and a hys

teresis, whereas the polarization curves obtained using a polarization 

control device with a positive-slope load line are Z-shaped displaying a 

limiting current plateau and a continuous and reversible passivation 

curve. Both electrodes also display current oscillations at constant 

potential within certain potential ranges on the limiting current pla-
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teau. 

Some observed differences between hemispherical and disk electrodes 

are: 

(i) The slope of the passivation curve for disk electrodes was found to 

increase with decreasing electrode diameter (2), but no monotonic rela

tionship between the slope of the passivation curve and the hemisphere 

diameter is evident. 

(ii) The frequency of current oscillations for hemispherical electrodes 

is a weak function of the rotation speed compared with that for disk 

electrodes. 

(iii) The frequency of current oscillations at a given electrode rota

tion speed appears to vary more widely with the hemisphere electrode 

diameter than with the disk diameter. 

(iv) Some more subtle differences are observed in the waveform shape and 

sustenance of current oscillations between hemispherical and disk elec

trodes as well as between hemispheres of different diameters. 

Qualitatively the differences between hemispherical and disk elec

trodes may be attributed to differences between the current, potential, 

and concentration distributions of the two electrode geometries. The 

primary current distribution seems to play an important role in the sys

tem. However several other factors are also present, and a detailed 

quantitative analysis would be required to elucidate the system behavior 

conclusively. 
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CHAPTER 3 

AC Impedance: Experimental Results 

3.1. Introduction 

Chapter 2 has shown the steady-state behavior of the iron-sulfuric 

acid system. The transient behavior of the system is next considered. 

This chapter gives the results of alternating current impedance measure

ments. The experimental apparatus and procedure are described, and the 

results are presented. 

The impedance was measured at several points along the polarization 

curve as illustrated in figure 3-1. Several rotating hemispherical as 

well as disk electrodes were used in these experiments. The results for 

the hemispheres are compared with the results for the disks in order to 

elucidate the effect of a nonuniform current distribution on impedance 

measurements. The results obtained here are also qualitatively compared 

with those obtained by other investigators. 

The data are presented first as complex-plane plots of the 

impedance. We chose this form of presentation mainly for esthetic rea

sons. Bode plots are also given for selected experiments. 

Four experiments, labeled A, B, C, and D, are analyzed using the 

Kramers-Kronig relations, in chapter 4. 
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Figure 3-1. Diagram of the anodic polarization curve. A, B, C, D, E, 
and F indicate the points where the impedance was measured. 
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3.2. Experimental Apparatus and Procedure 

Three hemispherical electrodes with different diameters were used 

in the impedance experiments. The configuration and surface preparation 

of the hemispherical electrodes were described in section 2.3. In addi

tion, three rotating disk electrodes, each with a different diameter, 

were used. These disk electrodes were fabricated by Russell (1) in this 

laboratory. The surface preparation procedure for the disks was the 

same as for the hemispheres, except for the use of a polishing wheel 

(Ecomet III, Buehler, Ltd.) for the disks. The polishing wheel has a 

flat surface and therefore cannot be used for hemispherical electrodes. 

The experimental cell arrangement was the same as for the steady

state experiments (figure 2-2). The potentiostat, th~ sweep generator, 

and the oscilloscope were also used in the same way. The impedance 

experiments at the open-circuit potential were carried out under gal

vanostatic control and at all other potentials under potentiostatic con

trol, which is generally preferable for metal-dissolution reactions. 

The measuring resistor of the potentiostat was set at a value close to 

that of the system under study (10 or 100 0). This choice for the 

measuring resistor value allows a more accurate measurement (2). The 

pump of the constant temperature bath was turned off during the 

impedance measurement to avoid noise and distortions of the signals. 

The temperature still remained at 25 ± ·0.15° C. 

The main instrument performing the impedance measurement was a 

Solartron 1254 frequency response analyser (FRA). The principle of 

measurement is described in section 1.6.2. The small- amp 1 i tude 
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s.inusoidal signal generated by the FRA was superimposed on the steady

state potentiostat input to control the polarization of the electrochem-

ical cell. The resulting voltage between the working and reference 

electrodes and the current were measured simultaneously by the FRA. 

The DC (steady-state' component of the voltage and current signals 

was approximately subtracted from each of the signals before they 

reached the FRA to increase the sensitivity of the measurement. A dev

ice fabricated by the LBL Electronics Shop was used for the subtraction, 

and triaxial cables were used to transmit the voltage and current sig

nals from the potentiostat to the input channels of the FRA. The input 

channels were set at the direct (DC) coupling configuration, which 

minimizes phaie shift, particularly at low frequencies. In some experi

ments, the DC component of the signals was not subtracted, and the FRA 

input channels were set at the AC coupling configuration to block the DC 

component. 

Figure 3-2 gives a schematic diagram of the experimental apparatus. 

The meastired impedance data were temporarily stored in the memory file 

of the FRA and then stored on data cartridges using a Hewlett Packard 

9825 desktop computer. The data were subsequently transferred to a 

large-scale computer for further treatment. 

Some important aspects of the experimental impedance measurement, 

introduced in section 1.6.2, are now discussed more specifically. 
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Linearity. 

Perturbing signals of small amplitude are required to satisfy the 

linearity condition. The Solartron FRA can generate a sinusoidal signal 

of amplitude between 10 mV and 10.23 V. Since digital generators have a 

low signal-to-noise ratio for small amplitude signals, it is better to 

use a bigger amplitude signal from the generator and reduce the signal 

by another device, e.g., it is better to use a 10 V signal reduced by a 

factor of 1000 rather than a 10 mV signal directly (3). In this work, 

we used a voltage-dividing device consisting of a parallel combination 

of high-precision resistors, which reduced the generator signal by a 

factor of 1000. 

In order to determine the appropriate perturbation amplitude for 

the iron-sulfuric acid system, we first did some preliminary experiments 

measuring the impedance at a particular frequency using several dif

ferent amplitudes for some polarization points. In these experiments, 

the measured impedance did not vary with the amplitude for amplitudes of 

1 to 5 mV rms. A strict linearity check would require a very large 

number of preliminary experiments at several frequencies for each polar

ization point and for each electrode. We carried out a small number of 

preliminary experiments for a linearity check and finally decided to use 

perturbing signals of 2 to 5 mV rms amplitude. Using smaller signals 

would probably result in more significant noise problems. 
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Frequency Range. 

The Solartron FRA can provide a sinusoidal signal in the frequency 

range 10 ~Hz to 65.5 kHz and can automatically perform impedance meas

urements sweeping the frequency from a chosen minimum to a chosen max

imum value, or vice versa, in a number of frequency steps. In these 

experiments, five frequency steps per decade were typically used. 

Increasing as well as decreasing frequency sweeps were carried out for 

some experiments, and this provided a good check for the accuracy and 

reproducibility of the data. 

The maximum frequency was usually set at 65 kHz, and the minimum 

frequency was set at 0.01 to 0.05 Hz for low-current experiments and at 

0.10 to 0.50 Hz for high-current experiments, where the electrode sur

face changed dramatically with time. The maximum available experimental 

frequency was often not sufficiently high to give the infinite-frequency 

limit of the electrochemical impedance, and the minimum experimental 

frequency used was often not sufficiently low to give the zero-frequency 

limit of the impedance. 

The measurement time was 2 to 5 minutes for the frequency range 

0. 100 Hz to 65 kHz and 15 to 20 minutes for the range 0. 010 Hz to 65 

kHz. However additional time was required for setting up the experiment 

and reaching a steady-state. Moreover, two or more successive frequency 

sweeps were carried out for some experiments. Thus the time for an 

experiment, from the moment the electrode was immersed in the electro

lyte until the end of the impedance measurement, varied from 10 minutes 

to 2 hours. 
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Noise. The experimental arrangement was carefully designed to 

reduce noise as far as possible. The "auto-integration" feature of the 

Solartron FRA was used in order to obtain accurate measurements, even in 

the presence of noise, within a reasonable time. With auto-integration, 

the analyser continues the measurement of the voltage and current sig

nals at each frequency until the measured results become self

consistent, or until a specified maximum measurement time is reached. 

The criterion for consistent measurements can be set to either < 1% 

error or< 10% error, with 90% confidence, and if the criterion is not 

met, the instrument reports an error message indicating.noisy data. 

In this manner, it was possible to obtain impedance data with a 

precision generally within 1% at low currents and within 10% at high 

currents. In some cases, particularly at very high current densities, 

noise could not be eliminated, and the data had poor precision. A pre

cision within 1% for electrochemical impedance measurements, with 

currently available instrumentation and techniques, is considered good. 

For instance, the typical precision of several run averages using a 

multiple-frequency perturbation and a fast Fourier •transform analysis 

was found to be 0.5 to l% for copper corrosion (4). 

3.3. Corrosion at I = 0 (Open-Circuit Potential) 

3.3.1. Experimental 

The impedance measurements at the open-circuit corrosion potential 

were carried out under galvanostatic control. The open-circuit poten

tial for the iron-sulfuric acid system is not very stable and can change 
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by a few mV during an experiment. Galvanostatic control was therefore 

chosen to ensure that the steady-state current was always zero, 

corresponding to open-circuit conditions. The applied current perturba

tion had an amplitude of 20 ~A (unless otherwise noted), and the DC com

ponent of the potential was subtracted from the potential signal as 

described in section 3.2 (unless otherwise noted). 

Three or four successive frequency sweeps were performed for each 

of the open-circuit experiments. The impedance measurement time was 10 

to 15 minutes for a sweep with a minimum frequency of 20 rnHz and -20 

minutes for a sweep with a minimum frequency of 10 rnHz. The· impedance 

measurement started -10 minutes after the electrode was immersed in the 

electrolyte, and additional time was required for adjusting settings on 

the instrumentation before each frequency sweep. Thus the duration of 

an experiment was 1 to 2 hours. 

During the open-circuit experiments for the hemispherical elec

trodes at 900 rpm, a small ring-shaped gas bubble (evolved H
2

) was some-

times observed around the equator of the electrode. This bubble was 

removed by momentarily increasing the rotation speed between frequency 

sweeps. 

The impedance data changed significantly during the first 30 to 50 

minutes of measurement and then became reasonably constant. However the 

data obtained from two consecutive frequency sweeps in an experiment 

were never identical. At the end of the experiment, the electrode sur

face appeared a little different from the beginning of the experiment. 

The electrode surface still appeared smooth, but somewhat cloudy, and a 
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very mild dissolution texture could be seen. Thus we decided that it 

was not meaningful for a fundamental analysis to carry the measurements 

any further. 

Keddam et al. (5) performed impedance measurements for iron disks 

in 1 M H
2
so4 near the open-circuit potential. They observed that, at a 

potential 60 mV cathodic to the open-circuit potential, a steady-state 

current was reached only after a 20-hour polarization, and they indicate 

that this slow approach to a steady state is due to hydrogen adsorption, 

which is still significant at the open-circuit potential. This process 

may explain why the iron-sulfuric acid system reaches a steady state 

slowly at the open-circuit potential. 

Mansfeld et al. (2, figure 15) report impedance data for iron in 

weakly acidic sulfate solution, taken over a 24-hour period. They show 

• that the impedance measured after 0.3 hr of polarization was much larger 

than the impedance after 2 hr and the impedance after 5 hr of polariza

tion was approximately the same as that after 2 hr; the impedance data 

after 22 hr were much different. Those data illustrate hm.;r corrosion 

systems can change with time. In contrast, Smyrl and Stephenson ( 6) 

measured the impedance of copper in 0.1 N HCl (a system with a rela

tively small corrosion rate), and they report that the measurements 

after 10 and 30 minutes were identical to the 2-minute measurements. 

Practical determinations of corrosion rates from AC impedance data 

would probably require impedance measurements over longer periods of 

time than those used here. However determining the corrosion rate was 

not the focus of this work. 
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3.3.2. Results 

The impedance data from several experiments for a hemisphere with 

diameter d = 4.0 mm at a rotation speed 0 = 900 rpm are shown in figures 

3-3 through 3-5. 

Figure 3-3 is a complex-plane plot of four sets of impedance data 

from an experiment which lasted 75 minutes. Notice how the measured 

impedance changes with time. Bode plots.of the same data are shown in 

figures 3-4. The Bode plots give a clearer picture of how the impedance 

at each frequency varies. 

Figure 3-5 shows the impedance measured in four different experi

ments under similar conditions. Each set of data was obtained about one 

hour after the immersion of the electrode, and thus this figure illus-

trates the reproducibility of the data. The hemisphere diameter was 

slightly different for each experiment, and expressing the impedance in 

units of ohm·cm2 allows a direct comparison of the data from each exper

iment. Notice that the data from these experiments agree fairly well. 

The data from the fourth experiment seem to deviate more than the other 

"data. This deviation may be due to poor reproducibility of the data, or 

due to the larger perturbation amplitude for the fourth experiment, 

which may have violated the linearity condition. 

Figure 3-6 shows the impedance of a bigger hemisphere (d = 8.2 mm) 

at two different rotation speeds, and thus indicates the significance of 

mass transfer effects. The impedance appears to be smaller at 1600 rpm 

than at 900 rpm, especially at low perturbation frequencies, indicating 

an enhancement of the current due to increased mass transfer rate. At 
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Figure 3-3. Complex-plane plot of the impedance of a rotating 
hemispherical electrode (d - 3.97 mm, n - 900 rpm) at the 
open-circuit (corrosion) potential. Increasing frequency 
sweeps. The parameter is frequency in Hz. t is the time 
at the end of the impedance measurement in minutes after 
the moment the electrode was immersed in the electrolyte. 
(Run 3 is labeled experiment A.) 
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figure 3-3. 



50 

40 

-N 

E 30 
(.) 

E 
.s:::. 
0 20 --N -
E 10 

0 

-10 

0 10 20 

Re {Z} 

0 Experiment 1 

~ Experiment 2 

.. Experiment 3 

• Experiment 4 

30 40 50 

(ohm cm2
) 

60 

XBL 877-3158 

194 

Figure 3-5. The imp~dance of a rotating hemisphere (d- 4.0 mm, 0- 900 
rpm) measured in four different experiments under similar 
conditions. 
Experiment 1: run 3 in figure 3-3 (increasing frequency 
sweep). 
Experiment 2: increasing frequency sweep. 
Experiment 3: decreasing frequency sweep; the DC component 
of the potential signal was not subtracted during the 
measurement. 
Experiment 4: decreasing frequency sweep; I~II - 25 ~Arms. 
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Figure 3-6. The impedance of a rotating hemisphere (d - 8.2 mm) at two 
different rotation speeds (two separate experiments). 
1600 rpm ---- Decreasing frequency sweep. 
900 rpm ---- Increasing frequency sweep. 
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high perturbation frequencies the curves for the two rotation speeds 

coincide. However one cannot draw any definitive conclusion about the 

significance of mass transfer e:fJects for iron at the open-circuit 

potential from these data, since a completely steady state was not 

reached in these experiments. The polarization curves presented in 

chapter 2 show no increase in the current with increasing rotation 

speed, until potentials more than -0.5 Volt anodic to the open-circuit 

potential are reached. Also, Keddam et al. (5) state that the iron dis-

solution current is free of mass transfer effects at low current densi-

ties. 

Two interesting features of these impedance diagrams for the hemis

pherical electrodes are the low-frequency data having negative imaginary 

parts and the small capacitive loop at high frequencies (above 10kHz), 

in addition to the big capacitive loop which is generally assumed to be 

due to the double-layer capacity. The low- frequency data were noisy, 

and a well-defined inductive loop was never obtained in these experi

ments. Thus one cannot determine from these data alone whether a low

frequency inductive loop exists for the iron hemispheres at the open-

circuit potential, or the obtained data contain iandom errors.t Simi-

larly, considering the possibility of experimental artifacts and the 

presence of noise in the data at high frequencies, one cannot determine 

with certainty from these data whether the high- frequency capacitive 

loop is a real characteristic of the electrochemical system. 

t See the Kramers-Kronig test for a set of these data, in chapter 4. 
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Figure 3-7 illustrates the uncertainty at high frequencies. This 

figure is a Bode plot of the phase angle measured in two experiments. 

The main difference in the conditions for these two experiments was that 

the DC component of the voltage signal was not subtracted before reach

ing the FRA in experiment 3 and was subtracted in experiment 4. The 

direction of the frequency sweep was downward in both experiments. The 

two experiments disagree significantly at high frequencies: the data 

from experiment 4 exhibit two capacitive time constants, whereas the 

data from experiment 3 exhibit only one capacitive time constant. 

The data from all the other experiments with hemispherical elec

trades presented in this section show two capacitive time constants. 

The data from a few other experiments, not presented here, where the DC 

component was not subtracted show only one capacitive time constant. 

Consider now some results obtained for a rotating disk electrode 

(d- 3.2 mm, 0- 1600 rpm). Figure 3-8 shows the data from two experi

ments in the complex plane, and figure 3-9 shows Bode plots of the data. 

Notice again how the measured impedance changes with time. Notice also 

that the phase angle of the highest-frequency points is still away from 

zero, which means that the ohmic limit of the impedance was not reached 

in these experiments. 

The shape of the complex impedance d~agram as well as the values of 

the capacitive and inductive time constants agree with the results of 

Keddam et al. (5, Fig. 2) for a rotating disk (d - 3 mm, 0 = 1600 rpm) 

at the open-circuit potential. However the magnitude of the impedance 

measured in this work is about half of that measured by Keddam et al. 
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Figure 3-8. Complex-plane plot of the impedance of a rotating disk 
electrode (d - 3.2 mm, 0 - 1600 rpm) at the open-circuit 
potential. 
Run 1, run 2, and run 3: increasing frequency sweeps. 
Run 1' and run 2': decreasing frequency sweeps. 
The parameter is frequency in Hz. t is the time at the end 
of the impedance measurement in minutes (after the moment 
the electrode was immersed in the electrolyte). 
(Run 2 is labeled experiment B.) 



200 

lOOD~t--,-,,,r:.-,,~::-.-l~:':~,l~.ij--~l'lrr!;~ii:-1 -,l~l'l'li~::'q-.-rl nll~il~ilj~-rT:Ti~ll'lil'j-,''~ 

I IZI 

90 

~~ ..... , .. ' ' ·---·-·--~ -. - -.""10...,o.r_ --w:-.._,w._,L.;;...._~._,w._u- _IE 
D.'-6'-~'-,.li~'-3:--u w u ~ 

Phase 75 

60 -(/) 
I Q) 

10 0 :- Q) 
.. ~ 

0> 
Q) 

45 "0 

E 
J::. Q) 
0 i -

r Run 1 0> • c: N <x: ! 

30 r 
! 0 Run 2 Q) 
I (/) 

I co 
10 t Run 3 ..r=. {j, c.. t 15 

0 

I ! I II ! 'I i -15 

10-2 10-1 
10° 10

1 
10

2 
10

3 
10

4 
10

5 

Frequency {Hz} 
XBL 877-3087 

Figure 3-9. Bode plot of the data shown in the complex plane in 
figure 3-8. 



201 

This difference may be due to longer measurement times in the work of 

Keddam et al. (5). Lorenz and Mansfeld (7, Fig. 6) also give a complex 

impedance diagram with the same shape for iron in 0. 5 M H
2
so

4 
aerated 

solution at 0 = 3600 rpm. 

There are two main differences between the impedance results for 

the disk electrode and the results for the hemispherical electrodes 

shown in this section. The impedance for the disk has a low-frequency 

inductive loop, which is apparently absent in the impedance for the hem

ispheres, and a second high- frequency capacitive loop is not observed 

for the disks (compare e.g., figures 3~4 and 3-9). 

The reason for the observed different behavior at low frequencies 

is not evident. The different behavior at high frequencies can be 

either due to artifacts in the measuring instrumentation, or due to the 

different primary current distributions for the hemispherical and the 

disk electrodes, since the electrode approaches the primary current dis

tribution at high frequencies (8). Considering that the hemisphere has 

a uniform primary current distribution (9) and the disk has a highly 

nonuniform primary distribution (10), one may expect that the experimen

tal results obtained with hemispheres are closer to the true behavior of 

the electrochemical system. 

3.4. Anodic Dissolution at Low Currents 
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3.4.1. Experimental 

The impedance was measured at two different anodic potentials in 

the low-current range: V = -0.850 V, which corresponds to current densi

ties of 20 to 40 mA/cm2 (depending on the electrode used) and V -0.800 

2 V, which corresponds to current densities of 40 to 200 rnA/em . All the 

steady- state electrode potential values V given in this chapter are 

measured relative to the Hg/Hg2so4 reference electrode located in the 

bulk solution, essentially at infinity. A few experiments were done at 

V - -0.900 V, but the data from those experiments are not shown here. 

The potential was stepped from the open-circuit potential value to the 

desired value, and a small potential perturbation was superimposed. The 

DC component of the current and potential signals was subtracted during 

the impedance measurements (unless otherwise noted). 

The minimum frequency was usually set at 0. 01 Hz for the experi-

ments at V = -0.850 and at 0.03 to 0.05 Hz at V = -0.800 V. The 

impedance measurement started -10 minutes after the electrode was 

immersed in the electrolyte. Thus the duration of an experiment was 15 

to 30 minutes, and the electrode surface changed significantly during 

this time due to dissolution of the metal. The diameter of the hemis-

pherical electrodes decreased by a few hundredths of a millimeter. The 

surface of the hemisphere was still nearly smooth, but did not appear 

completely homogeneous; in particular some parts of the surface were 

shiny and some parts were not. For the disk electrodes, a slight step 

was formed between the metal disk and the insulator as the disk dis-

solved, and granular corrosion of the metal was evident. 
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In the experiments at low (as well as high) anodic currents, the 

solution ohmic resistance (which corresponds to the infinite-frequency 

limit of the impedance) was a significant part of the measured 

impedance, in contrast to the experiments at the open-circuit potential. 

A relatively high ohmic resistance impairs the accuracy of the measure

ment of the electrochemical interface impedance, and various techniques 

can be used to compensate for the ohmic resistance in impedance measure

ments (3). However ohmic compensation can yield stability problems (3). 

Moreover the solution ohmic resistance is not known exactly a priori and 

does not have a unique value for electrodes with a nonuniform current 

distribution. Thus we decided not to attempt to compensate for the 

solution resistance in any of the impedance measurement experiments. It 

is perhaps better to try to account for the solution resistance 

rigorously in a theoretical model rather than compensating for the solu

tion resistance incorrectly in the experimental measurement. 

3.4.2. Results 

Figures 3-10 and 3-11 show the impedance of a hemisphere (d = 4 mm) 

at V- -0.850 V. Figure 3-11 illustrates that mass transfer effects are 

not important at low anodic potentials. The impedance of a bigger hemi

sphere at the same potential is given in figure 3-12, and the impedance 

of a disk is given in figures 3-13 and 3-14. 

Figure 3-14 shows a discrepancy between the two experiments for the 

disk. The discrepancy is probably due to a difference in the time when 

the impedance was measured rather than nonreproducibility of the data. 
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Figure 3-10. Complex-plane plot of the impedance of a rotating 
hemispherical electrode (d - 3. 93 mm at the beginning of 
the experiment~ 3.91 mm at the end of the experiment, 0 = 
1600 rpm) at low current. 
v--0.8SOV,I-6mA(25mA/cm2), ID.VI 2 mV rms. 
Increasing frequency sweep. The parameter is frequency in 
Hz. (Labeled experiment C) 
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Increasing frequency sweeps. 
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Figure 3-12. Complex-plane plot of the impedance of a rotating 
hemispherical ~lectrode (d- 8.12 mm, 0- 1600 rpm). 
V- -0.850 V, I- 23 rnA (22mA/cm ), I~VI - 2 mV rms. 
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Figure 3-13(b). Bode plot for the same experiment. 
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Figure 3-14. Complex-plane plot of the impedance measured in two 
experiments for a rotating disk electrode (d- 3.2 mm, n-
_!600 rpm). _ 

2 
V- -0.850 V, I- 3 rnA (37mA/cm ) , jt.VI 2 mV rms. 
Experiment 1: increasing frequency sweep (also shown in 
figure 3-13). 
Experiment 2: decreasing frequency sweep. 
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Sp-ecifically the impedance at frequencies between 65 kHz and -1 Hz was 

measured after -20 minutes of polarization at V in experiment 1 and 

after only -5 minutes of polarization in experiment 2. Keddam et al. 

( 5) have observed that at low anodic currents the current reaches a 

steady state within 10 minutes for the Fe/H
2
so

4 
system. Thus it seems 

that the system had not yet reached a steady state in experiment 2 at 

frequencies above 1 Hz. 

Each of the figures 3-10 through 3-14 shows two inductive loops. 

The first inductive loop occurs in the ·frequency range 100 Hz to 1 Hz 

approximately, and the second inductive loop occurs at fr~quencies below 

1 Hz, for all of these experiments. The bottom of the first inductive 

loop occurs at 20 to 50 Hz. Bechet et al. (11, Fig.l) and Keddam et al. 

(5, Fig.2, also shown here in figure 1-2) also observed two inductive 

loops in the same frequency ranges in their impedance measurements for 

iron rotating disks. Note especially diagram D in Fig. 2 of Reference 
0 

(5), which corresponds to figure 3-13. These authors (5, 11) attribute 

the two inductive loops to adsorbed intermediate species in the iron 

disso~ution mechanism. 

Again we observe a difference between the impedance for the hemis-

pherical and the disk electrodes at very high frequencies. The 

impedance for the hemispheres shows a second capacitive time constant 

which is absent in the impedance for the disks. However the second 

high-frequency capacitive loop for the hemispheres is now nearly indis-

tinguishable from the bigger capacitive loop. 
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Som~ experiments at V "" -0.900 V (lower anodic current density) 

using hemispherical as well as disk electrodes also showed two inductive 

time constants, but the two time constants were almost indistinguishable 

from each other. Bechet et al. (11) and Keddam et al. (5) made the same 

observation in their experiments. Then as the current density increased 

2 (up to 200 rnA/em ) , they observed two inductive loops that were more 

readily separate. They attribute the lowest-frequency inductive loop 

observed at very low currents (near the corrosion potential) to the 

adsorption-desorption of hydrogen, which no longer occurs at current 

2 
densities above -15 rnA/em . 

Let us now look at the results for V -0.800 V. Figures 3-15 and 

3-16 show the impedance of two hemispheres of different diameters. The 

impedance exhibits an inductive loop at frequencies between about 200 Hz 

and 2 Hz, which is nearly the same frequency range as the first indue-

tive loop observed at V = -0.850 V. 

However a second inductive loop at frequencies below 1 Hz is no 

longer observed for the bigger hemisphere, and the impedance rather 

appears to have a capacitive character at those frequencies. This 

behavior is similar to that observed by Keddam et al. (5, Figures 4 and 

5) for a disk electrode in Na
2

so
4

;H
2
so

4 
electrolyte solution of pH 

greater than 2, where the lower-frequency inductive loop was transformed 

into a capacitive loop as the anodic potential increased. We repeated 

the experiments with the hemispheres several times, but could not obtain 

reliable data free of noise at frequencies below 0.5 Hz, and the lower-

frequency behavior was not clearly discerned as either an inductive or a 
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Figure 3-15. Complex-plane plot of the impedance of a rotating 
hemispherical electrode (d - 3 0 86 - 3 0 84 mm, n - 1600 
fpm). - 2 
V- -0.800 V, I- 13.5 rnA (58mA/cm ), I~VI - 2 mV rms. 
Increasing frequency sweep. 
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Figure 3-16. Complex-plane plot of the impedance of a rotating 
hemisphere (d- 6. 03 - 5. 9~ mm, n 900 rpm). 
V- -0.800 V, I- 22 rnA (39mA/cm ), I~VI 2 mV rms. 
Decreasing frequency sweep. The DC component of the 
current and potential signals was not subtracted during the 
impedance measurement. 
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capacitive loop. 

Consider now the results for the disk electrodes. Figures 3~17 and 

3-18 give the impedance measured in two experiments for disk electrodes 

(d = 3 mm). Two inductive loops are clearly seen. The bottom of the 

first inductive loop occurs at a frequency of about 100 Hz, which is 

higher than that at V -0.850 v. These data agree with the data of 

Keddam et al. (5, Fig.2, diagrams E and F ) for the same system. 
0 0 

An interesting feature of the impedance for the disks at this 

potential is the intersecting loop (loopy-loop) between the two indue-

tive loops, illustrated in the expanded view in figure 3-18. A loopy-

loop was observed at this potential for disk electrodes with different 

diameters in some experiments, and in other experiments a loopy-loop was 

not clearly observed. 

Figures 3-19 and 3-20 show the impedance measured in two consecu-

tive frequency sweeps in an experiment with a smaller diameter disk 

electrode. At the end of the impedance measurement the open-circuit 

potential had shifted by -30 mV in the cathodic direction relative to 

the open-circuit potential at the beginning of the experiment. The 

impedance measured in the first frequency sweep (figure 3-19) shows two 

inductive loops and is similar to the impedance of the bigger disk (fig-

ures 3-17 and 3-18). However the impedance measured in the second fre-

quency sweep (figure 3-20) shows only one inductive loop. (Note that 

all the data points in figures 3-19 and 3-20 have a precision within 1% 

according to the FRA.) 
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Figure 3-17. Complex-plane plot of the impedance of a rotating disk (d-
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Figure 3-18. Complex-plane plot of the impedance of a rotating disk (d-
1.2 mm, 0- 16QO rpm). 

2 V- -0.800 V, I- 8 rnA (100 rnA/em), jl:.VI 5 mV rms. 
Decreasing frequency sweep. The DC component of the 
current and potential signals was not subtracted during the 
measurement. 
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Figure 3-19. Complex-plane plot of the impedance of a rotating disk 
~lectrode (d -_1 mm, n- 1600 rpm)2 
V- -0.800 V, I- 1.8 rnA (230mA/cm ), IAVI - 2 mV rms. 
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Figure 3-20. Impedance data obtained immediately after the data in 
figure 3-24. The measurement started 15 minutes after the 
immersion of the electrode and lasted for 6 minutes. 
Increasing frequency sweep. 
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If the inductive loops in the impedance arise from intermediate 

species in the reaction mechanism, one does not normally expect these 

loops to disappear with time. It is not evident whether the difference 

between these two sets of impedance data was due to the shift in the 

open-circuit potential, or due to the change in the electrode geometry 

and morphology, or perhaps due to not having reached a steady state 

before the first measurement, or due to some other experimental 

artifact. 

3.5. Anodic Dissolution at High Currents-- Limiting Current Plateau 

3.5.1. Experimental 

Accurate impedance measurements at high current densities were hard 

to perform with the available experimental setup. More accurate meas

urements at these currents could be possible if a mercury chamber 

instead of a silver-carbon brush were used for the electrical connection 

of the rotator to reduce noise problems (see section 2.3) and if the DC 

component of the current and voltage signals were accurately subtracted. 

During these experiments, the electrode surface changed much more 

than during the lower-current experiments. The hemispherical electrode 

appeared to dissolve more near the pole than near the equator, as 

expected under mass-transfer limitations (9). At these conditions the 

hemispherical electrode no longer has the advantage of a more uniform 

current distribution than the disk electrode. The disk electrodes 

receded into the insulator as they dissolved, and two different dissolu

tion morphologies were observed. Near or at the lower-potential end of 
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the limiting current plateau, granular dissolution was observed. At the 

higher-potential end of the plateau, beyond the oscillatory region, the 

disk appeared to dissolve more uniformly, and the disk surface looked 

smooth after the experiment. These observations are consistent with the 

observations of Miller (12), who used optical and electron microscopy 

for iron disks subjected to an impinging jet of sulfuric acid. 

The data obtained at the lower-potential end of the limiting 

current plateau generally had a precision within 10% at frequencies 

above 1Hz, but at lower frequencies the signals became very noisy. The 

data obtained at the higher-potential end of the plateau had poorer pre

cision. The data from several experiments at the same conditions gave 

similar impedance diagrams. 

To obtain good impedance results under these conditions of rapid 

dissolution, alternative measurement methods much faster than the one 

used here are perhaps needed. For example, fast Fourier transform (FFT) 

techniques could be used. The presence of a porous salt film at the 

limiting current plateau for the Fe/H
2
so

4 
system probably makes accurate 

impedance measurements inherently more difficult. 

3.5.2. Results 

\Je do not consider the results obtained here reliable, but we 

prese~t some results in figures 3-21 through 3-23 to illustrate the com

plex behavior of the system. 

Very few experimental .impedance data are available in the litera

ture for the Fe/H2so4 system near or at the limiting current. \Je have 
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Figure 3-21. Complex-plane plot of the impedance of a rotating 
hemispherical electrode (d - 6.37 ~ 6.22 mm, 0- 400 rpm) 
~ear the limi!ing current plateau. 
V- 0.103 V, I - 0.3 A, I~VI - 3.5 mV rms. 
Decreasing frequency sweep. The DC component of the 
current and potential signals was not subtracted during the 
impedance measurement. The parameter is frequency in Hz. 
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Figure 3-22. Complex-plane plot of the impedance of a rotating disk 
electrode (d - 3. 2 mm I 0 - 1600 rpm) at the limiting 
current plateau before the oscillatory region. The data 
obtained in two separate experiments under the same 
£Onditions are_ given. 

2 
V- -0.255 VI I- 0.10 A (1.25A/cm ) I I~VI 5 mV rms. 
Decreasing frequency sweeps. The DC component of the 
current and potential signals was not subtracted during the 
measurements. 
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found only one experimental impedance diagram for an iron rotating disk 

in 1 M H
2
so4 at the limiting current (13, Fig. 33), exhibiting a partie~ 

ularly complicated behavior and two other impedance diagrams for Fe in 

H
2
so4;Na

2
so4 electrolyte near the limiting current (13, Fig. 31 and 33; 

also 14, Fig. l(c)). 

At the limiting current, the impedance becomes infinite as w ~ 0, 

since the zero-frequency limit of the impedance is equal to the slope of 

the steady-state polarization curve. We could not clearly observe the 

low-frequency behavior in these experimental results because of noise 

and rapid dissolution of the electrode. 

Consider the data in figure 3-22. The impedance diagram has three 

capacitive loops: a loop at frequencies above -5 kHz, another loop with 

a time constan\ corresponding to -40 Hz, and another loop at frequencies 

below -1 Hz. The lowest- frequency loop is usually considered to show 

the influence of convective diffusion and is absent in the impedance at 

lower currents where mass-transfer limitations are negligible (see also 

14, Fig.l). Notice also that the frequency range of the highest-

frequency loop is the same as that of the highest-frequency capacitive 

loop observed for hemispherical electrodes at low currents as well as at 

the open-circuit potential; this indicates that the highest-frequency 

loop propably arises from the reaction mechanism for iron dissolution 

and is more readily evident in experiments with hemispherical elec

trodes. 

The impedance diagram in figure 3-22 is similar to the one given in 

References (13, 14). The latter diagram however does not clearly show 
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three capacitive loops. A theoretical impedance diagram with three 

capacitive loops has also been obtained from the model of Epelboin et 

al. (14, 15), which is discussed in detail in section 1. 3. 2. The model 

includes a multiple-step dissolution mechanism with an adsorbed inter

mediate species and Nernst-diffusion of an artificial reacting species. 

Other experimental data with three capacitive time constants at high 

current densities are presented by Keddam et al. (16) for Fe-Cr alloys 

in sulfuric acid. 

3.6. Passivation 

3.6.1. Experimental 

The impedance was measured along the passivation curve for several 

hemispherical as well as disk electrodes. The electrode was polarized 

at a point usually near the middle of the Z- shaped passivation curve 

using the positive-slope load line provided by the potentiostat, as 

described in section 2.3, and a voltage perturbation was superimposed. 

The DC component of the current and potential signals was not subtracted 

during the impedance measurement. 

The obtained data generally had a precision within 10% at frequen

cies above 50 Hz and were noisy at lower frequencies. Often the 

steady-state polarization point appeared to shift during the impedance 

measurement as illustrated in figure 3-24, perhaps because the perturba

tion was not small enough, or because the system regulation along the 

passivation curve was not completely stable. 



-c: e ... 
:l u 

226 

F' 

XB L 876-6306 

Figure 3-24. Shift of the steady-state polarization point from F to 
F' during the impedance measurement. 
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3.6.2. Electrode Dissolution Profiles 

An interesting part of these experiments was observing the elec

trode dissolution profile, which can give insight into the passivation 

process. A part of the electrode dissolved rapidly, i.e., was active, 

while the remaining part appeared unattacked, i.e. , was passive. The 

active part of the electrode appeared to dissolve uniformly, and its 

surface looked smooth and shiny after the experiment. The difference 

between the parts of the electode was so sharp, and the experiment 

lasted long enough that the overall shape of the dissolution profile 

could be seen after the. experiment even without a microscope. Schematic 

diagrams of the observed dissolution profiles for the rotating hemis

pherical and disk electrodes are given in figure 3-25. 

Under the experimental conditions used, the hemispherical elec

trodes dissolved much more near the equator than near the pole forming a 

sharp step. At higher currents (closer to the limiting current plateau) 

the same shape of the dissolution profile was observed with a larger 

area of the hemisphere dissolving, indicating that the hemisphere pas

sivates first near the pole and as the system moves along the active

to-passive-transition curve, the passivated area increases toward the 

equator. The dissolution profiles of a passivating rotating hemisphere 

are not well understood. Some tentative qualitative explanations for 

the observed profiles are given in section 2.5.2. 

Under the conditions used, the rotating disk electrodes dissolved 

rapidly in the outer ring part, while the center disk appeared passive. 

The area of the dissolved outer ring decreased as the electrode was 
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Figure 3-25. Schematic diagrams of the experimentally observed electrode 
dissolution profiles at the passivation curve. The shaded 
area represents the insulator and the dotted area 
represents the metal. 
A - rotating hemisphere 
B - rotating disk 
C - rotating disk polarized successively at four points 
along the active-to-passive transition curve. 
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polarized at lower currents along the passivation-curve. A particularly 

interesting profile was obtained for a disk electrode that was polarized 

successively at four points along the passivation curve (active to pas

sive transition), spending 2-3 minutes at each point. Using a conven

tional optical microscope, four steps were seen on the electrode surface 

with the outer ring always dissolving more than the center disk (diagram 

C in figure 3-25). Dissolution profiles of a rotating disk electrode 

with a dissolved outer ring and a passive center disk were also observed 

by Epelboin and Gabrielli et al. (13, 17) at rotation speeds in the same 

range as those used here. 

3.6.3. Results 

The experimental impedance results are given in figures 3-26 

through 3-29 for hemispherical and disk electrodes. All these impedance 

diagrams exhibit similar behavior. One may notice that the low-

frequency capacitive loop occurs at roughly the same frequency range as 

one of the capacitive loops observed at the limiting current (figure 3-

27). 

These impedance diagrams are similar to those obtained by Gabrielli 

(13, Fig. 46) and Epelboin et al. (18, Fig. 14) for a rotating disk 

electrode. Some experimental impedance results for a rotating ring 

electrode along the passivation curve are given in (13, 14, 18). These 

authors (13, 14, 18) emphasize that having a zero-frequency-limit 

impedance (polarization resistance) greater than the infinite-

frequency-limit impedance (solution ohmic resistance) corresponds to a 
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Figure 3-27. Complex-plane plot of the impedance of a rotating 
hemisphe!e (d - 6 ._2 mm, 0 - 400 rpm) at the passivation 
curve. V- 0.7 V, I= 180 rnA, I~VI - 5 mV rms. 
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Figure 3-29. Complex-plane plot of the impedance of a rotating disk 
electrod~ (d - 4. 9_ mm, 0 - 1600 rpm) at the passivation 
curve. V- 0.4 V, I = 70 rnA, I~VI - 5 mV rms. 
Decreasing frequency sweep. 
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positive slope of the passivation curve and indicates multiple steady 

states of the electrochemical system even after correcting for the ohmic 

drop. Howeve7 since the electrode is partly active and partly passive, 

such a straightforward interpretation of the impedance diagrams without 

rigorously taking into account all the occurring phenomena may not be 

valid. 

3.7. Summary 

The results of these experiments are summarized in figures 3-30 

through 3-33, which show how the impedance varies with perturbation fre

quency and potential (or current). 
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Figure 3-30. The impedance of a rotating hemispherical electrode (d - 4 
!!!III) at different potentials. a: _I - 0 (experiment A); b: 
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Figure 3-32. The impedance of a rotating disk electrode (d- 3.2_ mm, 
0- 1600 rpm) at dilferent potentials. a: I - 0 
_{,experiment B); b: V - -0.850 V (experiment D); c: 
Y- -0.255 V, limiting current (see figure 3-22); d: 
V- 0.35 V, passivation (see figure 3-28). 
Bode plots -- impedance magnitude. 
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Figure 3-33. Bode plots - phase angle for the same experiments as in 
figure 3-32. 
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CHAPTER 4 

Application of the Kramers-Kronig Relations 

to Test the Consistency of 

Electrochemical Impedance Data 

4.1. Introduction 

242 

Chapter 3 has presented a variety of experimental impedance 

results, exhibiting positive and negative imaginary parts or multiple 

loops in a complex plot. Such results are not well understood, and one 

may question the validity or accuracy of impedance data, especially con

sidering the difficulty of obtaining reproducible experimental data at 

very high or very low frequencies. 

The Kramers -Kronig (K-K) relations provide a means of· testing the 

consistency of electrochemical impedance data. The use of the K-K rela

tions is analogous to the use of the Gibbs-Duhem equation in thermo

dynamics for testing the consistency of multicomponent equilibrium data. 

The K-K relations arise on a mathematical basis and give the interrela

tionship between the real and imaginary parts of complex functions that 

satisfy certain conditions. 

In this chapter, we first outline the equations and underlying 

assumptions for the Kramers-Kronig relations, and briefly review the 

literature on the use of these relations in electrochemistry. We then 

discuss the significance of the K-K relations for electrochemical 

impedance studies and introduce the questions that arise in their appli-
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cation. We then prese.nt, in detail, a method for calculating ·the real 

part of the impedance from the imaginary part, and vice versa, by means 

of the K-K relations. 

More specifically, we apply the method to test the consistency of 

data from four different experiments (A through D in chapter 3) with the 

K-K relations. These experimental data are chosen because they show 

some interesting behavior and they are fairly reproducible, so that one 

may expect that the data will satisfy the K-K relations. The. method 

given here is general and can be applied to experimental data as well as 

theoretical results. 

4.1.1. The Kramers-Kronig Relations for the Impedance 

The impedance Z of a system is expressed as a complex·function of 

the frequency w : 

Z(w) = ZR(w) + jZ1 (w) [4-1] 

The Kramers-Kronig relations (1 '2) for the impedance are: 

00 Z
1

(w) 
ZR(wc) - z 1 :f dw [4-2] CX) 7r w- w 

-CX) c 

and 

CX) ZR(w) - ZCX) 
ZI(wc) 

1 :f dw [ 4- 3] =-
7r w- w 

-a> c 

where :f denotes the Cauchy principal value of the integral and 

z lim Z(w) 
00 

w--+a> 
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Si.nce ZR(w) is even and z1 (w) is odd w.r.t. w , the Kramers-Kronig 

relations become 

2 
CXl wz

1 
(w) 

f 2 2 dw 
11' 0 w w 

[4-4] 

c 

and 

dw . [ 4-5] 

A complete mathematical derivation of these equations is given by 

several authors (1-5). Thus the Kramers-Kronig relations give the real 

part of the impedance at a particular frequency (w ) as an integral of 
c 

the imaginary part over all frequencies from zero to infinity, and vice 

versa. 

Several alternative forms of the K-K relations are given by Bode 

(3). Equations 4-6 through 4-8 are forms that have been used in the 

electrochemical literature, but will not be used here. 

Z (w ) - Z (0) = ~ 
R c R 11' 

CXl z
1

(w)/w 
f 2 2 dw 
0 w - w 

c 

lP(wc) - ~ f d lnl:(w) I ln (coth I~IJ du 
-CXl 

IZ(wc) I 
ln ---

. IZ I 
CXl 

1 
11'W 

c 
JCXl~ [ M] du ln coth 2 du , 

-<XI 

[4-6] 

[ 4- 7] 

[4-8] 

where u- ln(w/w ) and lP is the phase angle. The last two equations (6) 
c 

allow one to calculate the phase angle from the amplitude of the 



245 

impedance, and vice versa.. However, they involve differentiation of 

numerical data in addition to integration, and calculations based on 

these equations would be less accurate. 

The main feature that the impedance function Z(w) must have in 

order to satisfy the Kramers-Kronig relations is being analytic in the 

lower half of the complex frequency plane. This feature is a conse-

quence of the causality principle in physics, which· requires the time 

variable to be positive in a Laplace transform formulation of the 

impedance ( 4, 5) . Physically, the conditions that an electrochemical 

system must fulfill in order to have an analytic impedance function, 

which would therefore obey the K-K relations, may be stated as: 

Linearity. The system must have a linear relationship between 

current and voltage. This condition is usually fulfilled by using small 

amplitude perturbations. 

Finite values. The impedance function Z(w) must be well behaved 

near w - 0 and finite for all w > 0 , including w ~ ~ The impedance 

of an electrochemical system normally has these properties. 

Stability. The system must be stable so that there are no poles, 

other than the simple poles w- w and w- 0 , in the lower half-plane. 
c 

Physically, the effect of the perturbation should die out when the per-

turbation ceases so that the system returns to its original steady 

state. This could be a controversial condition, particularly for a cor-

roding system, which inherently changes with time. 
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4.1.2. Literature Review 

The Kramers-Kronig relations are used in physics (4) and in the 

analysis of electrical circuits ( 3). They have been used in electro-

chemistry, only recently, by some investigators. 

In the early 1970's, Tyagi and Kolbasov (7) used the K-K relations 

to calculate the phase angle at some frequencies from measurements of 

the amplitude of the impedance for two redox systems. Van Meirhaeghe et 

al. ( 8) have advocated the importance of the K-K relations in the 

analysis of electrochemical impedance. Tuck (9) has carried out some 

calculations using the K-K relations to examine the validity of experi

mental impedance data for aluminum in acetate solution. 

Kendig and Mansfeld (10) have proposed a method for determining the 

polarization resistance and hence the corrosion rate, using a simplified 

expression based on.the K-K relations (equations 4-4, 4-6). They only 

integrate the imaginary part of the impedance over a limited range, from 

the highest experimental frequency to the frequency corresponding to the 

maximum value of -z1 , assuming that z1 is symmetric w.r.t. ln w . This 

assumption severely limits the applicability and accuracy of the pro

posed method. 

D. Macdonald et al. (11) also use equations 4-4 and 4-6 to calcu

late the polarization resistance from experimental impedance data for 

corrosion systems. They then compare the calculated value for the 

polarization resistance with that obtained by subtracting the infinite

frequency intercept from the zero-frequency intercept of the experimen

tal complex plot, and claim that this method is a simple, accurate, and 
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convenient tool for assesing the validity of co~rosion impedance data. 

This is rather a limited and approximate test, as it relies on the cal

culation of a single value, it ignores the integrals at w -- 0 and 

w-- co and it includes significant uncertainty in determining the 

polarization resistance directly from experimental impedance plots. 

Note also that these authors give the opposite sign in equation 4-4 and 

in equation 4-6. 

Cahan et al. (6) use another form of the K-K relations (equation 

4-7) to calculate the phase angle from the magnitude of the impedance 

and thus test the consistency of experimental data. A disadvantage of 

this method is that it involves differentiation of experimental data, 

which magnifies errors. Cahan et al. include extrapolation of the 

experimental data to zero and infinite frequency in their calculations, 

contrary to the previous workers, who assume that the integrals at the 

low and high frequency ends are negligible. 

More recently, M. Urquidi -Macdonald et al. (12) present an alga

rithm for calculating the real part of the impedance from the imaginary 

part, and vice versa, using the K-K relations for experimental data. 

This algorithm includes polynomial fitting of the data, numerical 

integration, and some not adequately specified extrapolation. No tic~ 

that Macdonald et al. (12) treat the singularities in the integrals 

incorrectly. 

Jak~ic and Newman (5) give a more rigorous method for evaluating 

the real part from the imaginary part of the theoretical impedance for a 

disk electrode, and vice versa, from the K-K relations (equations 4-4, 
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4-5). They show that the theory for the impedance of a rotating disk 

electrode, developed earlier by Newman (13), is consistent with the K-K 

relations. 

4 .1. 3. Significance of the Kramers-Kronig Relations for the Electro-

chemical Impedance 

The Kramers-Kronig relations allow the calculation of either th~ 

.. 
real or imaginary part of a complex function, such as the impedance or 

the dielectric constant, from the corresponding part. Thus they can be 

valuable in physics for calculating certain unknown quantities from 

available empirical data (4). The K-K relations are also important for 

the analysis of electrical circuits (3). 

In electrochemical impedance studies, one is very unlikely to use 

the K-K relations to calculate a quantity that is not already known. 

Experimental measurements give both the real and imaginary parts of the 

impedance with roughly the same accuracy, and theoretical models natur-

ally give expressions for both parts. The significance of the Kramers-

Kronig relations then is that they provide a test for the accuracy and 

consistency of experimental data, or for the validity of theoretical 

results. The test consists of calculation of the real or imaginary part 

of the impedance through the K-K relations and comparison of the calcu-

lated results with the experimental or theoretical values. 

Such a test is pareicularly valuable because it is difficult to 

obtain reliable impedance data, as we have emphasized earlier, and one 

needs to subject impedance data to rigorous checks before one can draw 
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any definitive conclusions about the system behavior from the available 

data. 

4.1.4. Some Questions 

How can we interpret the results of a Kramers-Kronig consistency 

test for a set of data? The conditions for the application of the K-K 

relations are quite general, with the possible exception of the stabil

ity condition for certain systems, and so we expect good data to obey 

the K-K relations. If a set of data is found to be consistent with the 

K-K relations, the data may still contain other errors or artifacts. 

For instance, extraneous resistances, capacitances, or inductances, in 

the measuring instrumentation, will produce data which satisfy the K-K 

relations. 

If a set of data is found to be inconsistent with the K-K relations 

and if we assume that the basic applicability conditions are not 

violated, we ~eed to consider whether the data contain serious errors, 

or the evaluation of the integrals over an infinite frequency range is 

not accurate enough. Comparing the values calculated through the K-K 

relations with the data values can give insight into the source and mag

nitude of the discrepancy. In particular, a significant deviation over 

some frequency range suggests a systematic error in the data, and devia

tions of single points suggest random errors, such as reproducibility of 

experimental data or noise. 

How do we carry out calculations with the Kramers-Kronig relations? 

There are several questions we need to conside~. First, how should we 
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treat experimental data? It is common practice to fit experimental data 

by a smooth or piecewise smooth analytic function to reduce the effect 

of noise or random errors and subsequently compare the smoothed experi

mental values with calculated values or predicted trends. The results 

may then depend on the accuracy of the fit; furthermore, useful informa

tion (insight into any deviations) may be lost through the process of 

forcing the data to be smooth. Alternatively, we can use the experimen

tal data directly, perhaps assuming an interpolating function between 

successive experimental points. However, this procedure may overem-

phasize individual data points, which may be bad. 

Another critical question is how to extrapolate data in frequency 

ranges where there are no data. According to the K-K relations, the 

integrals are to be evaluated over the entire frequency range from zero 

to infinity, but data are available over only a finite range. One may 

assume that the integrals at the low and high frequency ends are negli

gible, but this can be a bad assumption. Therefore one needs to inves

tigate the asymptotic behavior of the system as w ~ 0 and w ~ oo 

This is not a straightforward task, since good experimental data 

a.re most difficult to obtain at very low or very high frequencies, where 

several experimental artifacts may be present. The theoretical analysis 

of the electrochemical impedance is also most uncertain or controversial 

at those frequencies. Therefore we need to make a priori assumptions 

about the least well known behavior of the system in order to calculate 

any results from the K-K relations, and then change our assumptions, if 

necessary, to obtain a consistent behavior. 
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Finally, when can we. say that the data are consistent with· the 

Kramers -Kronig relations? With c1;1rrently available impedance measure-

ment equipment, good experimental data have a precision within 1% 

(chapter 3). Considering also the uncertainty in the calculations, what 

is the maximum acceptable difference between the data and the results 

calculated by the K-K relations? 

These questions will be explored as we discuss in detail the method 

of using the Kramers-Kronig relations and as we apply the method to four 

different experiments (chapter 3, figures 3-3, 3-8, 3-10, and 3-13): 

Experiment A: hemisphere, d- 4.0 rnrn, 0- 900 rpm, I = 0. 

Experiment B: disk, d = 3.2 rnrn, 0- 1600 rpm, I = 0. 

Experiment C: hemisphere, d- 3.9 rnrn, 0- 1600 rpm, V ~ -0.850 V. 

Experiment D: disk, d- 3.2 rnrn, 0- 1600 rpm, V- -0.850 V. 

The computer programs used to implement the method are given in 

appendix A. 

4.2. Integration Scheme 

4.2.1. Integrals 

We need to evaluate the integrals in the Kramers-Kronig equations 

4-4 and 4-5, to calculate the real part of the impedance from the ima-

ginary part, and vice versa. These integrals have a singularity at 

w - w and therefore cannot be evaluated directly. The behavior of the 
c 

integrals is illustrated in figures 4-1 and 4-2, which give the 

integrand calculated for each data point, for experiment A. Notice that 
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the integrand for both the real and the imaginary part approaches ~ as 

w - w from the negative (left) side and +co as w - w from the posi-
c c 

tive (right) side. 

To avoid this singularity, we use the relation 

[ 4-9] 

and write the integrals in a different form: 

2 
co wZ

1
(w) - wcZ1 (wc) 

ZR(wc) z I dw 
co 11' 2 2 

0 w w 
[4-10] 

c 

2w co ZR(w) - ZR(wc) 
ZI(wc) ... 

c I dw 
11' 2 2 

0 w w 
[4-11] 

c 

Equations 4-10 and 4-11 represent a form of the Kramers-Kronig relations 

that contains no singularities. Since the singularities have been 

effectively eliminated from the integrals, there is no longer a need to 

refer to the Cauchy principal value. Now the integrals are well behaved 

and should present no numerical difficulties in their evaluation. 

The integrands in equations 4-10 and 4-11 are shown in figures 4-3 

and 4-4 respectively, for experiment A. The magnitude of the integrand 

changes drastically within roughly two frequency decades, near w = w , 
c 

and varies much less away from w - w 
c 

The integrands approach zero as 

w - co and some constant non-zero value as w - 0 . This is the general 

b h i d d h f ( 2 2) . h d . e av or expecte ue to t e actor w - w ~n t e enom~nator. 
c 

Alternatively, we can write the integrals in equations 4-10 and 4-

11 as 
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w d(ln w) [4-12] 

w d(ln w) , [4-13] 

where the integration variable is ln w instead of w . Figures 4-5 and 

4-6 show the integrands above, for experiment A. 

Evaluating the integrals according to equations 4-12 and 4-13 may 

be advantageous if the integrand is a simpler function of ln w rather 

than w . Evaluating the integrals both linearly, according to equations 

4-10 and 4-11, and logarithmically, according to equations 4-12 and 4-

13, provides a check on the accuracy of the calculations. 

In the following discussion, we will focus on equations 4-10 and 

4-11 for the calculation of the real and imaginary part of the 

impedance. The integrals are evaluated as the sum of three terms: 

w 
min 

w 
co max co 

-I I + I + I [4-14] 
0 0 w 

min 
w max 

where w 
min s w s w is the experimental data frequency range. 

max 

4.2.2. Fitting I Interpolation Functions 

In this section, we consider integration over the experimental fre-

quency range only. We will consider integration over the low and high 

frequency ends in section 4.3. 
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We need to integrate experimental data according to the Kramers-

Kronig relations (equations 4-10, 4-11). For good data, we cpn perform 

a direct numerical integration. However, typical data consists of a few 

points per frequency decade (five points in the examples treated here), 

and numerical integration using only these points would be inaccurate. 

We therefore need functions to fit the data over an extensive frequency 

range, or functions to interpolate between adjacent data points, so that 

we can integrate accurately. 

Ideally, we would like to have accurate analytic functions for the 

real and the imaginary parts of the impedance, valid over the entire 

frequency range. Practically, in the absence of a complete theoretical 

model that describes the data, or for data that exhibit complicated 

behavior, we do not have such an ideal function, and we have to proceed 

through approximate methods. We begin by seeking functions that corre-

late the data. Specifically we need a function for wZ
1

(w) and a func-

tion for ZR(w) 

Figure 4-7 shows wZ
1

(w) vs. the logarithm of frequency, for experi

ment A. wz1 is roughly linear with ln w over small frequency intervals. 

Such a linear relationship has been found empirically for several elec-

trochemical systems, within a limited frequency range (8). Newman's 

(13) solution to the rotating-disk impedance problem also gives a linear 

asymptote at high frequencies: 

* 1 * * (- wZ1 ) ~ 0.563 + 4 ln w as w ~ ~ [4-15] 

where the asterisk indicates dimensionless quantities. Figure 4-8 shows 

ZR vs. frequency on a log-log graph, for experiment A. Plotting the 
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Figure 4-7. Frequency dependence of the imaginary part of the impedance 
for experiment A. 
0 data values. 

interpolating function defined by equation 4-16. 
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Figure 4-8. Frequency dependence of the real part of the impedance for 
experiment A. 
0 data values. 
-- interpolating function defined by equation 4-17. 



263 

data in this way is similar to a Bode plot, with ZR instead of IZI 

Figures 4-9 through 4-14 show the same functions, for experiments B, C, 

and D. 

All these graphs are roughly linear oyer small frequency intervals. 

We conclude that a set of convenient, general, ·and accurate fitting or 

interpolating functions is: 

[4-16] 

for the imaginary part and 

[4-17] 

for the real part, where the coefficients AI , BI , ~ , and BR are 

determined for each interval between adjacent data points. These are 

the functions plotted in figures 4-7 through 4-14. 

Using equations 4-16 and 4-17, we can numerically evaluate the 

integrals in the K-K relations, equations 4-10 and 4-11 (or 4-12 and 4-

13). Trapezoidal rule integration with an appropriate number of points 

should be sufficient. 

Note ·that 

L' Hospital's 

and 

the limits of the integrands as w-

rule, are now given by 

lim 
w-w 

lim 
w-w 

c 

wZI(w) - w ZI(w ) c c AI 
2 

w c 

ZR(w) - ZR(wc) 

2 2 
w w 

c 

2 2 
w 2w 

c c 

~ ~ 
--- B w 

2w2 R c 
c 

w 
' 

determined by 
c 

[4-18] 

[4-19] 
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for experiment B. 
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Figure 4-10. Frequency dependence of the real part of the impedance for 
experiment B. 
o data values. 

interpolating function defined by equation 4-17. 
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Figure 4-12. Frequency dependence of the real part of the impedance for 
experiment C. 
0 data values. 

interpolating function defined by equation 4-17. 
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for experiment D. 
0 data values. 
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where A1 , ~ , and BR are the coefficients for the interval containing 

w 
c 

These expressions illustrate that the singularities in the origi-

nal form of the K-K relations have been removed. 

A feature of this method for interpolation and integration is that 

it follows exactly each experimental data point, which may not be desir

able in some cases. Consider, for example, the low-frequency data for 

experiment A in figure 4-7 (also see the complex-plane impedance plot, 

figure. 3-3). These data obviously contain a lot of noise, and one might 

say a priori that these particular points are bad and therefore decide 

not to use them at all, or try to use a smoother fitting function in 

that region. However we decided to carry on the calculation for all the 

data points in this experiment in order to see how the apparently bad 

points can affect the calculated results and what conclusions one can 

draw from them. 

An alternative method is to use fitting functions that allow ana

lytic integration. A convenient choice is to use third order polynomi

als: 

[4-20] 

[4-21] 

where the a-coefficients are fitted for chosen intervals, containing at 

least four data points. The coefficients are determined by a least 

squares technique (14). Different order polynomials can also be used in 

the same manner. Notice that these polynomial fitting functions are 

smoother than the fitting functions represented by equations 4-16 and 
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4-17, but they follow the data less closely, i.e. they are less accu-

rate. This polynomial fitting procedure is similar to the one used by 

Mcdonald et al. (11). 

Substituting equations 4-20 and 4-21 into equations 4-10 and 4-11 

results in an approximate form of the K-K relations, involving analytic 

integrals in the experimental range. The integrals needed are listed 

below: 

dw 1 lw - w I 
I ln c 

2 2 2w w + w [4-22] 
w - w c c c 

I wdw 1 
lw 

2 w21 
2 2 

- ln 
2 c 

w ..-: w 
[4-23] 

c 

w2
dw 1 lw - w I 

I ln c 
2 2 2 

w + w c w + w [4-24] 
w w c c 

I w
3

dw 1 2 ln lw 
2 w21 1 2 

2 2 2 
w - + 2 w c c [4-25] 

w - w c 

For simplicity, the integration constants have been omitted from these 

expressions. The integrals above are evaluated at the endpoints of each 

frequency interval where a polynomial is fitted. 

We applied both methods to experiments A through D and obtained 

similar results. The results presented in section 4.4 have been calcu-

lated according to the first method (equations 4-16, 4-17). 
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4.3. Extrapolation to Zero and Infinite Frequency 

So far, we have evaluated the integrals over the frequency range 

where data are available (wmin to wmax) . Now we need to estimate the 

value of the integrals in the range where data are not available, 

specifically in the low-frequency .range, 0 s w < w . , and the high
m~n 

frequency ·range, w < w < CX) • 

max 

Having little knowledge of the system behavior in these ranges, it 

is not meaningful to use any complicated mathematical expressions to 

describe the system behavior. One may simply use linear extrapolation 

of the data, ·consistent with the expected asymptotic behavior. Inevit-

ably,. there is some arbitrariness in extrapolating data, and one can try 

to reduce the arbitrariness by changing the parameters involved and 

observing the results. This is the approach used here. 

4.3.1. Extrapolation tow- 0 

Consider first the low-frequency end. Extrapolation of the ima-

ginary part, wZ
1

(w) , is relatively easy. Since z
1
(w)- 0 (finite) as 

w- 0 , for any electrochemicai system, wZ
1

(0) = 0. Consider then how 

z
1

(w) approaches zero as w- 0. If the electrochemical interface 

behaved simply like a capacitance connected in parallel with a resis-

tance, then Z
1

(w) would be proportional tow for w- 0. The imaginary 

part of the convective Warburg impedance is also roughly proportional to 

w for w- 0 (see e.g. figure 5-l). When the electrochemical impedance 

displays an inductive cha~acter, the low- frequency behavior is not 

readily predicted, but we may still expect z
1

(w) to be roughly 
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proportional to w. 

An extrapolation consistent with the expected asymptotic behavior 

is then given by 

with 

for 0 5 w 5 w . 
m1n 

z
1 

(w • ) 
A = mln 

IO ·W • 
m1n 

[4-26] 

Figure 4-15 illustrates several possibilities for extrapolation of 

the real part of the impedance. In this case, Z - R as w- 0 
R 0 

where R
0 

is a constant corresponding to the polarization resistance.. An 

extrapolation is defined by 

with 

for 0 5 w 5 w . 
m1n 

ZR(w . ) - R0 mln 
2 

w . mln 

[4-27] 

[4-28] 

The extrapolation of ZR thus involves one unknown or adjustable 

parameter, R
0 

. The value of R0 will be close to the value of ZR(w . ) 
mln 

if w . is small enough. m1n We can get an estimate for R
0 

from the experi-
' 

mental data, but there is considerable uncertainty in such an estimate, 

especially for data that exhibit inductive behavior at low frequencies. 

One may also want to treat ZR(w . ) as an adjustable parameter, if one 
m1n 

thinks that particular data value is bad, but doing so would contradict 

including the same point in. the experimental range integration. 
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Figure 4-15. Extrapolation of the real part of the impedance to w = 0 
(equations 4-27, 4-28). Lines a through e illustrate 
several possible configurations corresponding to different 
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Using equations 4-26 through 4-28 for extrapolation leads to ana-

lytic approximations for the integrals in the low-frequency end. Let us 

consider the effect of this extrapolation on the calculated real and 

imaginary part of the impedance. 

Calculations including the low-frequency extrapolation of the ima-

ginary part, for experiments A through D, show that the extrapolation 

has a small effect on the calculated real part at small w . Specifi
c 

cally, for w within the three lower frequency decades of the experimen
c 

tal data range, the contribution of the integral in the low frequency 

end is about three orders of magnitude smaller than the contribution of 

the integral in the experimental range; then, as the frequency w 
c 

increases, the contribution of the extrapolation becomes negligible. 

Calculations including the low-frequency extrapolation of the real 

part, for several different parameter values, show the following general 

trends: The extrapolation has an effect on the calculated imaginary part 

of the impedance at small w values 
c 

and no effect at higher w 
c 

Specifically, for w within the two lower frequency decades of the 
c 

experimental range, the contribution of the integral in the low-

frequency end is one or usually two orders of magnitude smaller than the 

contribution of the integral in the experimental range. For w in the 
c 

next higher frequency decade, the contribution of the extrapolation is 

three orders of magnitude smaller than the experimental contribution, 

and for higher w , the extrapolation contribution becomes negligible. 
c 

Varying the parameters, within some reasonable limits, gives varying 

results, but does not change the order of magnitude of the extrapolation 
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effect. Using obviously unreasonable parameter values gives calculated 

results that disagree significantly with the. experimental data. 

4.3.2. Extrapolation to w ~ ~ 

Consider now the high- frequency end. Extrapolation in this range 

is more uncertain than the extrapolation in the low frequency range. 

Let us look at the behavior of the imaginary part. As shown in 

figures 4-7, 4-9, 4-11, and 4-13, - wZ1 (w) is increasing rapidly at high 

frequencies. Initially, one may think that - wz1 (w) increases without 

limit as. w ~ ~ , but this may not be the case. We usually expect an 

electrochemical interface to have a capacitive behavior due to the 

double-layer capacity, as w ~ ~. z
1

(w) would then be inversely proper-

tional to w as w ~ ~ , and therefore lim wZ1 (w) should be a finite 
w- ~ 

constant (C). t 

Thus we expect - wZ1 (w) to increase at a decreasing rate, at high 

frequencies, and finally approach asymptotically a constant value. An 

approximation of this behavior, using straight line segments, ·is illus-

trated in figure 4-16 and is represented by 

for w :Sw:Sw max ~ 
[4-29] 

t This expected behavior is not always valid. For a rotating disk 
electrode, Newman's theoretical model ( 13) yields the high- frequency 
asurnptote given by equation 4-15, and there is no infinite-frequency 
limit. The disk behavior results from an infinite primary current 
density at the edge. Experimentally, the disk electrode may not be 
exactly on the same level as the insulator, and this geometric effect 
would yield a finite limit as w ~ ~ 
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where 

for w 2:: w CX) 

C = AI w + B1 . CX) CX) CX) 
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[4-30) 

The extrapolation of the imaginary part, defined by the equations above, 

includes three adjustable parameters, the straight-line coefficients, 

A1CX) and B1CX) , and the frequency wCX) where wz1 stops changing. 

Similarly, we can extrapolate the real part of the impedance 

according to 

where 

R CX) 

R 

w CX) 

CX) 

w 
max 

for 

for 

and 

w :Sw:Sw max CX) 

w 2:: w CX) 

[4-31] 

[4-32] 

Here ZR is allowed to vary linearly with w until it reaches the value RCX) 

at w == w CX) Beyond wCX) , ZR is assumed to remain constant. R is an CX) 

important parameter, corresponding to the infinite frequency or ohmic 

limit of the e lee trochemical· impedance ( ZCX) = R
0 

) . We have already 

discused the uncertainties involved in determining this limiting value 

from experimental data. 

This extrapolation scheme for ZR(w) is illustrated in figure 4-17. 

The extrapolation includes two adjustable parameters, R and w CX) CX) As in 

the low-frequency extrapolation of ZR , one may also treat ZR(wmax) as 

an adjustable parameter' rather than using the data value directly. 

Then the extrapolation would include three adjustable parameters. 

I 
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Figure 4-17. Extrapolation of the real part of the impedance to w ~ ~ 
(equations 4-31, 4-32). Lines a through d illustrate 
several possible configurations. 
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Equations 4-29 through 4-32 lead to analytic approximations for the 

integrals in the high-frequency end. Let us consider now the effect of 

the· high- frequency extrapolation on the calculated real and imaginary 

part of the impedance. 

Calculations using several different parameter values show that the 

high-frequency extrapolation of the imaginary part adds a roughly con-

stant value to the calculated real part. The value of the integral in 

the high-frequency end is usuqlly one or two orders of magnitude smaller 

than the value of the integral in the experimental range, for w 
c 

throughout the experimental frequency range. The calculated values 

depend significantly on the parameters w~ and A1~ (slope of the extended 

line), and so one needs to be careful in the choice of values for these 

parameters. 

Calculations including the high-frequency extrapolation of the real 

part show general trends similar to those for the low-frequency extrapo-

lation of the real part (section 4.3.1). The extrapolation has a signi

ficant effect on the calculated imaginary part at high w and a less 
c 

significant, and finally negligible ·effect at smaller w 
c 

4.3.3. Concluding Remarks 

We conclude that it is important to include extrapolation of the 

data to both zero and infinite frequency in the calculations for the K-K 

relations. As expected, extrapolation in the low (high) frequency end 

generally has a small but significant effect on the calculated 

impedance, within the two or three lower (higher) frequency decades of 



281 

the data range. For higher (lower) frequencies, the extrapolation has a 

decreasing and finally negligible effect. 

The infinite-frequency extrapolation of the imaginary part to cal

culate the real part has the greatest effect and does not follow the 

general trend described above. This extrapolation affects the calcu-

lated real part of the impedance significantly, throughout the data fre

quency range, because the imaginary part varies greatly at high frequen

cies. 

The experimental data examples treated here cover a wide frequency 

range, from very low to very high frequencies. Extrapolation to zero 

and infinite frequency would probably be more critical for data that 

cover a more limited frequency range. 

4.4. Results 

Finally, let us look at the calculated results for experiments A, 

B, C, and D. The results are presented as graphs of the real and ima

ginary part of the impedance vs. the logarithm of frequency. The exper

imental data are given together with two sets of calculated results. 

The first set has been calculated by integrating over the experimental 

frequency range only, and the second set has been calculated by includ

ing extrapolation to zero and infinite frequency as well. The parame

ters used for extrapolation are also given. 

In order to choose values for the extrapolation parameters, we 

first carried out calculations including extrapolation in the low

frequency end only, for several different parameter values, and compared 
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the results. We chose the parameters that seemed physically meaningful 

and gave relatively good agreement with the experimental data. We 

repeated the same procedure, including extrapolation in the high

frequency end only, and finally calculated the results including extra

polation in both the low and high frequency ends, using the chosen 

parameter values. 

Figures 4-18 and 4-19 show the results for the real and imaginary 

parts of the impedance, for experiment A. Overall, the calculated 

results are in agreement with the experimental results, and extrapola

tion does not seem to have an important effect. Notice the low

frequency values (frequency < 1 Hz) in figure 4-19 for the imaginary 

part. Here there is a significant difference between experimental and 

calculated values, and this difference could not be eliminated, even 

though we have tried several different parameter values for the low-

frequency extrapolation. As noted in section 4. 2. 2, these particular 

experimental points are noisy, having a precision between 1 and 10% or 

worse. The precision given by the measurement instrument, for higher 

frequencies in experiment A, as well as for most of the other experimen-

tal data in this section, is within l%. For higher frequencies in 

experiment A, there is no discrepancy between calculated and experimen

tal values. Thus we may conclude that noisy data, which are likely to 

be bad data, will probably not satisfy the K-K relations. 

Figures 4-20 and 4-21 show the results for experiment B. The cal

culated values agree well with the experimental values everywhere in the 

data range. Figure 4-21 illustrates the effect of extrapolation to zero 
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Figure 4-18. Real part of the impedance for experiment A. 
experimental data, assuming Z - R - 2.00 0. 

• values calculated from the K-K rel:tion (equation 4-10) 
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Figure 4-19. Imaginary part of the impedance for experiment A. 
experimental data. 

• values calculated from the K-K relation (equation 4-11) 
~ithout extrapolation. 
0 values calculated from the K-K relation including 
extrapolation to w - 0 and w ~ =, with: 
R0 - 195 0 (estimated zero-frequency 
experimental complex-plane plot), 
(experimental value- 203), and 

intercept of the 
ZR(w . ) - 195 0 

m~n 

R - 2.00 0 (- theoretical R h value), ZR(w ) - 2.00 0 = o m max (experimental value- 1.98). 
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Figure 4-20. Real part of the impedance for experiment B. 
experimental data, assuming Z - R 1.27 0. 

CX> CX> 
• values calculated from the K-K relation (equation 4-10) 
without extrapolation. 
0 values calculated from the K-K relation including 
extrapolation to w - 0 and w ~ <X>, with: 

5 -1 w - 2~x10 s · 
CX> ' determined by 

higher-frequency 

A1CX>- 5.76, B1CX>- 4.312xl0 5 (coefficients 
linear regression including the three 
experimental points). 
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~-· Figure 4-21. Imaginary part of the impedance for experiment B. 
~ experimental data. 
1 .. • values calculated from the K-K relation (equition 4-11) 

without extrapolation. 

.... . 
. .. •' 

0 values calculated from the K-K relation including 
extrapolation to w - 0 and w ~ ~. with: 
R0 - 394 n (estimated zero-frequency 
experimental complex-plane plot), 
(experimental value- 418), and 

intercept 
ZR(w . ) 

m~n 

R - 1.27 n, ZR(w ) - 1.27 n (experimental value) . 
~ max 

of the 
394 n 
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frequency -- the values calculated at low frequency, without extrapola-

tion, deviate from the experimental values; including extrapolation 

brings the calculated values very close to the experimental ones. We 

may conclude that this data set is consistent with the K-K relations. 

Figures 4-22 through 4-24 give the results for experiment C. Now 

we can observe clearly the difference between the experimental ZR data 

and the ( ZR- Z~ ) values calculated according to the K-K relations, as 

well as the effect of extrapolation on the calculated values. These 

features are not apparent in figures 4-18 and 4-20, showing the real 

part of the impedance for experiments A and B, perhaps because the 

impedance scale there is not sensitive enough. 

Figure 4-22 compares the experimental ZR(w) data with the 

(ZR (w) - Z~) values, calculated from the K-K relations without any 

extrapolation. The distance between the experimental and calculated 

curves (marked by the vertical lines in the figure) corresponds to the 

value of Z and should therefore be a constant for consistent data. In 
~ 

addition, the high- frequency limit of the calculated values should be 

zero. Figure 4-22 shows that the distance between the curves is approx-

imately constant and the calculated results are approaching zero, at 

high frequencies. Thus these data initially appear consistent with the 

K-K relations. 

Since we don't know with certainty the value of z we have to 
~ 

assume z :::::: R and use the assumed R value, for a more direct com-
~ ~ ~ 

parison between the experimental and calculated real part, as well as 

for the high-frequency extrapolation of the real part in order to 
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Figure 4-24. Imaginary part of the impedance for experiment C. 
experimental data. 

• values calculated from the K-K relation (equation 4-11) 
without extrapolation. 
0 values calculated from the K-K relation including 
extrapolation to w - 0 and w ~ ~. with: 
R0 - 8.453 0, ZR(w . ) - 8.453 0 (experimental value), and 

m~n 

5 -1 
w -211'(l.lxlO)s ,R -2.700 (estimated infinite-
~ . ~ 

frequency ~ntercept of the experimental complex-plane 
plot), ZR(w ) - 2.867 0 (experimental value). max 
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calculate the imaginary part. Figure 4-23 then compares the experimen-

tal and calculated values for (ZR(w)- R~). The values calculated 

without any extrapolation are about 0. 5 ohm below the experimental 

values, whereas the values calculated 'including extrapolation are very 

close to the experimental values. The difference between the two sets 

of calculated results is essentially the effect of extrapolating the 

imaginary part to infinite frequency, as discussed in section 4.3. The 

trends illustrated in figures 4-22 and 4-23 indicate that the data are 

consistent with the K-K relations. 

The imaginary part of the impedance for experiment C is shown in 

figure 4-24. Notice the point at a frequency of 20 Hz -- a single point 

deviating from the experimental curve. The most likely explanation for 

such a random deviation is that the experimental data values near that 

frequency are bad. In fact, the experimental measurement near that fre

quency indicated that the data did not satisfy the 1% precision cri-

terion, contrary to the rest of the data. Note also that a curve 

through the calculated points, including the point in question, would be 

smoother than the experimental curv,e around that frequency. 

Consider now the effect of extrapolation illustrated in figure 4-

24. At high frequencies ( > 1 kHZ), the values calculated without 

extrapolation deviate from the experimental values. Including extrapo

lation, particularly to infinite frequency, brings the calculated values 

closer to the experimental ones. At low frequencies, the calculated 

values are in agreement with the experimental data, and extrapolation 

has no significant effect. We can rationalize why the low- frequency 
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extrapolation has no significant effect, whereas the high-frequency 

extrapolation has a significant effect for the data in figure 4-24, by 

considering that the minimum experimental frequency is very close to 

zero, and there is no more significant change in the real part of the 

impedance, lwhereas the maximum experimental frequency is still away from 

the limiting frequency where the impedance stops changing. We conclude 

that this data set is consistent with the K-K relations. 

Figures 4-25 through 4-27 show the results for experiment D. The 

results for both the real and the imaginary parts of the impedance are 

similar to those for experiment C. Two differences are that there is no 

deviating single point for experiment D and the low-frequency extrapola

tion has an effect, bringing the calculated values closer to the experi

mental curve. Again we conclude that this experiment satisfies the K-K 

relations. 

In conclusion, the data for experiments A through D have been shown 

to be consistent with the Kramers-Kronig relations. The values calcu

lated for the real and imaginary part of the impedance, through the K-K 

relations, are in good agreement with the experimentally measured 

values, with the exception of a few points where random deviations 

occur. Generally, the difference between calculated and experimental 

values is a few percent, which may be considered satisfactory, as the 

measurement precision was generally about 1%. Moreover the calculations 

have shown that the results follow the trends one generally expects from 

the K-K relations. However one should always keep in mind the questions 

and uncertainties in the application of the K-K relations. 
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Figure 4-26. Real part of the impedance for experiment D. 
experimental data, assuming Z - R - 2.40 0. 
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• values calculated from the K-K relation (equation 4-10) 
without extrapolation. 
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extrapolation to w - 0 and w ~ co, with: 

5 -1 5 
wco- 2~(~.5xl0 ) s ; Alco -. 1.006, B1co- 3.545xl0 
(coeffic1ents of the stra1ght line connecting two high
frequency experimental points). 

/ 



-
~ 2 
0 -
N 1 

I 

0 

_, 

· Figure 4-27. 

I I I Ill 'I II IIi di I lllllli I, lllllj 

10° 10
1 

10
2 

10
3 

Frequency {Hz) 

I ), lid! 

Imaginary part of the impedance for experiment D. 
8 experimental data. XBL 877-312 

295 

• values calculated from the K-K relation (equation 4-11) 
without extrapolation. 
0 values calculated from the K-K relation including 
extrapolation to w - 0 and w ~ =, with: 
R0 - 12.20 0 (estimated zero-frequency intercept of the 
experimental complex-plane plot), ZR(w . ) - 12.20 0 

mln (experimental value- 12.46), and 

w - 211'(1.5xl0
5

) s-
1

, R. - 2.40 0 (estimated infinite-= = frequency intercept of the experimental complex-plane 
plot), Z_(w ) - 2.682 0 (experimental value). -R max 
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It is also interesting to note that experiments A and C are for a 

rotating hemispherical electrode, while experiments B and D are the 

corresponding experiments for a rotating disk electrode. The results of 

the K-K analysis for these experiments have shown no systematic differ

ence between the hemisphere and the disk electrodes, and therefore the 

consistency with the K-K relations appears to be unaffected by the uni

formity or non-uniformity of the primary current distribution. 

As noted in chapter 3, the experimental results for the disk elec

trode, B and D, are very similar to the experimental results of Keddam 

et al. (15). However Cahan and Chen (16) state, without any evidence, 

that the latter results are an example of experimental data, "which will 

produce semicircles and other curves in a complex plane plot, but which 

do not satisfy the Kramers-Kronig relations!" They also write that, 

"Such curves cannot, then, be interpreted as impedance." Contrary to 

these apparently arbitrary statements, the results obtained here show 

that one can rather expect data such as experiments A through D or the 

experiments of Keddam et al. ( 15) to be consistent with the Kramers

Kronig relations. 

An important implication of the work presented here is that elec

trochemical impedance data having inductive loops (negative imaginary 

parts) ---- a characteristic which has been controversial in electrochemi

cal research and literature ---- can be consistent with the Kramers-Kronig 

relations, and this consistency is an indication that such behavior is a 

valid characteristic of the electrochemical interface. 
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CHAPTER 5 

Theoretical Models of the Electrochemical Impedance: 

Application to the Fe/H
2
so

4 
System 

5.1. Introduction 

This chapter presents some calculated impedance results for the 

iron - sulfuric acid system, using the theoretical formulation described 

in section 1.6.1. 

The characteristics of the Fe/H
2
so

4 
system include multiple 

electron-transfer and ad~orptionjdesorption reactions, mass transfer of 

species in the electrolytic solution, formation of porous salt and pas

sivating oxide films on the electrode, and double-layer charging under 

alternating current conditions. A mathematical impedance model account

ing for all these phenomena is not currently avai~able, and the results 

presented here are only preliminary. The purpose of this analysis is to 

investigate some aspects of the system and to indicate directions for 

further research. 

In particular, the analysis in this chapter focuses on the effect 

of mass transfer of the Fe++ ion produced by the dissolution reaction on 

the impedance of the Fe/H
2
so

4 
system. We have discussed the controversy 

about the role of OH- ion (or an analogous reactant species) in the 

reaction mechanism and the limiting current and passivation behavior of 

the Fe/H
2
so4 system, in section 1.3. An objective of the analysis is to 

help resolve this controversy, using the electrochemical impedance tech-
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nique. 

The experimental results in chapter 3 indicate that the mass-

transfer impedance is negligible at low currents but significant at·high 

currents in the limiting-current region. Calculations are carried out 

at two regions of the anodic polarization curve, at low currents 

corresponding to the experiments in section 3. 4 (specifically experi-

ments C and D) and around the limiting current plateau corresponding to 

the experiments in section 3. 5, in order to find out whether the 

employed models can predict the observed mass- transfer effects on the 

impedance of the system. All calculations are for a rotation speed 0 = 

1600 rpm -= 167.6 radjs. The high-current calculations are performed at 

a steady- state current 2 density of 1. 3 A/em , which is the limiting 

current density observed experime.ntally by Russell (5, 4) for rotating 

disk electrodes. 

The faradaic impedance is first estimated using analytical expres-

sions from infinitely-dilute-solution theory. At low current densities 

where the electrolytic solution remains fairly dilute, calculations 

based on infinitely-dilute-solution theory may be adequate, but at high 

current densities where the electrolytic solution near the electrode is 

nearly saturated with Feso4 , application of concentrated-solution theory 

may be necessary. The faradaic impedance is then calculated numerically 

at low as well as high current densities with a concentrated solution 

model (1), which uses the Stefan-Maxwell equation for multicomponent 

diffusion. In addition, the effect of a porous Feso4 film on the elec-

trochemical impedance of the system is roughly estimated. 
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5.2. Reaction Kinetics -- Charge-Transfer Resistance 

The reaction mechanism for iron dissolution involves multiple reac-

tions including adsorbed intermediates (see section 1.3.1). However in 

these preliminary calculations, the iron dissolution reaction is treated 

as a simple (elementary) reaction 

[5-1] 

and the reaction kinetics are expressed by a Butler-Volmer relationship 

(equation 1-34) 

where v 
0 

v 
m 

~ 
0 

nFk 
c 

- (3nF 
RT 

[5-2] 

i
1 

is the current density due to reaction 5-1, and the subscript 2 

++ refers to the Fe ion. This kinetic equation has the same form as that 

used by Law and Newman (2) and was also used by Russell and Newman (3-

5), assuming~ c 1/2. The potential values in the kinetic equation are 

relative to a normal hydrogen reference electrode (NHE). 

Values of k and k were obtained by Russell and Newman (3) by fit-
a c 

ting the kinetic equation to steady-state polarization data for a rotat-

ing hemispherical electrode. The same values are used in these calcula-

tions and are listed in table 5-l with other input parameters. 

Note that the partial current density due to the cathodic (second) 

term in equation 5-2 is several'orders of magnitude smaller than the 

partial current density due to the anodic term in the range of interest 

here. One can then obtain a value of the potential driving force V at 
0 



a specified value of the steady-state current density i 1 . 

v ::=: 
0 

RT 
(1 - f3)nF ln [n~.] 
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[5-3] 

Near the open-circuit potential, hydrogen evolution should also be 

considered. 

[5-4) 

Hydrogen evolution on iron also occurs in a multi-step mechanism (6, 7). 

Kinetic data for the cathodic hydrogen reaction near the open-circuit 

potential for iron corrosion are given, for example, in References (7-

9). A kinetic equation for the cathodic hydrogen reaction, determined 

by Bockris et al. (8) and Kelly (7), is 

i c,H 
[5-5) 

where aH is the activity of the hydrogen ion. The partial current den

sity due to hydrogen evolution is negligible in the range considered 

here, and it is not included in the calculations. 

In addition, hydrogen ions participate in the homogeneous chemical 

reaction 

- + -2 
HS04 ~ H + so4 . , [5-6) 

which is assumed to be near equilibrium conditions, described by (10) 

K 
eq 

[5-7] 
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With the simple description of the reaction_kinetics given by equa-

tion s~z. the charge-transfer resistance is obtained. 

[:~1]· 
0 ss 

[5-8] 

(nF) 2 { k ( 1 - {3) exp [ ( 1 - @.2nF - J 
RT a RT Vo 

+ k {3 c2 0 exp [ 
- @_nF voJ} · c 

' 
RT 

5.3. Infinitely-Dilute-Solution Calculations 

In an infinitely dilute solution, the current is given by (equa-

tions 1-35 and 1-39) 

[
ac 2] 
ay y=O . 

[5-9 J 

The faradaic impedance from dilute-solution theory is given by equation 

1-60, using the kinetic equation S-2. 

- @.nF 
RT 

The second term in the above equation is the convective diffusion 

impedance z0 , according to the dilute- solution theory; and the dimen

sionless convective Warburg impedance function e. ~~O) is discussed in 
~ 

section 1.6.1.4. 

For a more convenient notation we write 



= R 
t 

- f3nF 
RT 

R
0 

is approximately equal to the zero-frequency limit of z
0

. 
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[5-11) 

To calculate the impedance, particularly Rt and R
0

, we first need 

values of the steady- state variables i
1

, v ' 0 
and c 2 , 0 . The Nernst 

diffusion-layer approximation is used to get a relationship between the 

steady-state current and the Fe++ concentration at the interface. Equa-

tion 5-9 then gives 

Since c 2 ,a) 
- 0 and s = -1 2 ' 

D2 
i 1 - nF - c 

02 2,0 

[5-12] 

[5-13) 

Equations 5-2 and 5-13 allow calculation of V
0 

and c
2

, 0 at a speci

fied i 1 . Rt and R0 are then calculated from equations S-8 and 5-11. 

5.4. Concentrated Solution Model 

An impedance ·model using concentrated- solution theory has been 

presented by Tribollet and Newman (1). 
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Brief Description of the Model 

The central equation in the model is the Stefan-Maxwell equation 

for multicomponent diffusion, written in the form (see equations 1-40 

and 1-41) 

z.F 
~ 

V'xi + RT X. 
~ 

[5-14] 

where the activity coefficients are assumed to be equal to one. This 

equation describes the motion of species i relative to the surrounding 

fluid, accounting for composition gradients, electrostatic potential (~) 

gradients (migration), and interactions with other species. J. is the 
-l. 

molar flux of species i relative to the mass-average velocity, and Dik 

is a diffusion coefficient describing the interaction of species i and k 

(Dik- Dki). The composition is expressed in terms of the mole fraction 

xi of every species including the 'solvent' H
2
o, and c is the total con-

centration. 

The set of equations 5-14 for each species is used in conjuction 

with material balance relations (equation 1-36), which also account for 

any number of homogeneous chemical reactions. These equations together 

with the electroneutrality equation provide a sufficient number of equa-

tions to solve for all the unknowns, which are the mole fractions of 

each species and the potential ~-

The relationship between the molar fluxes and partial current den-

sities at the interface (equation 1-35) is a boundary condition for this 

set of equations. The model has provision for multiple electron-
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transfer reactions at the interface, but it _/has no provision for 

adsorption/desorption reactions or adsorbed species. Another boundary 

condition is that far from the electrode surface, the mole fractions 

approach their values in the bulk solution. 

The mathematical model is one-dimensional, considering variations 

only in the direction y normal to the surface of a rotating disk elec-

trode. It uses rotating disk hydrodynamics described by 

where 

o.616 r4) 
6 [5-15] 

It is also possible to deal more exactly with the governing hydrodynamic 

relations to handle a nonzero interfacial velocity and composition-

dependent viscosity and density (11). 

The equations are solved numerically with a finite difference tech-

nique. The mathematical model first treats the steady-state problem and 

then solves the alternating problem at specified perturbation frequen-

cies. Finally it calculates the faradaic impedance, according to equa-

tion 1-33, as a function of frequency, without considering double-layer 

effects. 

Application to the Fe/H
2
so4 System 

In this application of the concentrated-solution model, the simpli-

fied description of electrochemical kinetics given in section 5.2 (equa-

tions 5-l, S-2, and S-8) is used. The homogeneous reaction of partial 

dissociation of HSO~ (equation 5-6) is included only in the boundary 



308 

condition- specifying the bulk solution composition. Specifically, the 

bulk concentrations and HSO~ are calculated from the 

equilibrium condition (equation 5-7) and the bulk concentration of sul-

furic acid (i.e., 1M H
2
so4 ). 

table 5-2. 

The bulk concentrations are given in 

An important question that arises in the application of 

concentrated- solution theory is whether there are sufficient data for 

the diffusion coefficients Dik' which describe the interactions between 

the species in the system. Sufficient data are not available for the 

Fe/H2so4-H 2o system, and the interactions between ionic species are not 

adequately accounted for in the present application. 

The coefficients D il where 1 denotes the H
2
o species and i is an 

ionic species are expected to be reasonably constant, independent of 

composition (10). The available values of the diffusion coefficients D. 
~ 

for each ion at infinite dilution in H
2
o should therefore be a reason-

able approximation for Dil" 

However the coefficients D ik when both i and k are ionic species 

are functions of composition, and we do not have enough data for their 

values in this system. A rough order-of-magnitude estimate is used in 

the application of the model. In effect,_ the contributions of ion-ion 

interactions, embodied in Dik' to the concentration and potential dis

tributions are made negligible relative to the ion-H2o interactions 

With the diffusion coefficients set in this manner, the 

concentrated-solution mode~ comes close to a dilute-solution model 

including the effect of migration. 
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We visualize using a concentrated-solution impedance model with a 

more realistic description of the reaction mechanism and more accurate 

transport properties, in the future. 

5.5. Parameter Values Used in Calculations 

Physical property data, kinetic parameters, and other parameters 

are given in table 5-l. 

The product of D. and viscosity is approximately constant, at con-
1 

stant temperature (10). 
++ D

2
, the diffusion coefficient of Fe , as well 

as D3 , D 4 , and D5 , have bee.n therefore reduced from their values at 

infinite dilution in H
2
o (given in Ref. 10), by a factor approximately 

equal to the ratio of the viscosities of 1 M H
2
so4 aqueous solution and 

H2o (given in Ref. 12). For the concentrated-solution calculations, the 

diffusion coefficients D21 , D31 , D41 , and D51 are then set equal to D2 , 

D3 , D4 , and D5 respectively. 

For the high-current calculations, different values of D. ( i - 2, 
1 

3, 4, 5) and kinematic viscosity v (sets a, b) are used in order to test 

the effect of these parameters. In set a, the kinematic viscosity of 

1 M H2so4 at 20° C (12) and values of Di as discussed in the paragraph 

above are used. In set b, the values of D. used by Russell and Newman 
1 

(3, 4) (which are reduced by a factor of 4 from their infinite dilution 

values) and the v value used in (3, 4) are used. In set c, the values 

of D1 and v used by Russell and Newman (3, 4) are used. 
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K eq 

T 

Table 5-l. Parameter values used in the calculations 

Kinetic Parameters For Reaction 5-l (Ref. 3) 

2.0052 x 10-3 mol·cm-2 ·s-l 

2.6701 x l0-15 cm·s-l 

2 

Diffusion Coefficients 

species 

Fe++ 

so-2 
4 

H+ 

HS04 

0.01142 (a) 

(a) 

0.50 

0.7987 

6.984 

0.997 

Other Parameters 

2 0.0398 (b) em js 

5 2 -1 D. x 10 (em ·s ) 
~ 

(b) (from Ref. 

0.1658 

0.2663 

2.328 

0.3323 

5 x 10-5 moljcm3 , Equilibrium constant for reaction 
5-6, (3) 

298.15 K 

0.40 n-1 .cm-l (18) 

310 

3) 
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Table S-2. Bulk solution composition 

i Species c. X 103 
~ 

3 (mol/em ) 

1 H
2
o 55.5 

2 Fe++ 0 

3 so-2 
4 0.0456 

4 H+ 1.0456 

5 HS04 
0.9544 

Total concentration c 57.5 

I 

I 
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5.6. Results and Discussion 

Table S-3 shows the calculated results for three cases using the 

dilute-solution expressions. The values of i
1

, v ' 0 
and Rt from the 

concentrated- solution model are the same as those shown in table 5-3, 

while the c
2 0 

values are smaller; the concentration c
2 0 

is 0. 02565, 
' ' 

0.03762, 0.8479, and 1.697 M for cases I, II, III(a), and III(b), 

respectively. 

Figures 5-l and 5-2 show a comparison of the mass-transfer 

inpedance according to the infinitely-dilute-solution and 

concentrated-solution calculations for cases II and III(b), respec-

tively. For the low-current case (II), figure 5-l shows good agreement 

between the infinite-dilution and concentrated-solution values, while 

for the high-current case (III), significant differences are displayed 

in figure S-2. The difference between the dilute-solution and 

concentrated-solution results, is mainly due to the effect of migration, 

which is not accounted for in the analytic infinitely-dilute-solution 

calculations. Figure S-3 shows the concentrated-solution-model results 

for case III(a) and III(b). 

Notice that the calculated mass-transfer impedance is 8 to 10 ord-

ers of magnitude smaller than the charge-transfer resistance. Different 

but Di or v values affect the calculated c 2 , 0 and z0 , for case III, 

still z
0 

remains negligible relative to the charge-transfer resistance. 

For cases I and II, the calculated charge transfer resistance 

corresponds approximately to the low-frequency intercept of the capaci-

tive loop on the real impedance axis. 

I 
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Table 5-3. Results of infinitely-dilute-sol~~ion calculations 

- - - 3 
Case i. v c

2 
x 10 Rt RD 

number ~ 0 

2 3 (A/em ) (V vs. NHE) (mol/em ) eq. S-8 eq. 5-11 

2 (O·cm ) 2 (O·cm ) 

I(a) 0.0250 -0.2478 0.0262 1. 0276 -9 

I 
8. 577xl0 

II (a) 0.0370 -0.2378 0.0387 0.6944 -9 3.916xl0 

III(a) 1.300 -0.1463 1. 361 0.01976 3.173x1o-12 

III (b) 1.300 -0.1463 3.498 0.01976 8.156xlo-12 
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Figure 5-1. Convective Warburg impedance calculated according to 
infinitely-dilute-solution theory _and a con2entrated
solution model for case II ( i
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Figure 5-2. Convective Warburg impedance calculated according to 
infinitely-dilute-solution theory 2nd a conc2ntrated
solution model for case III(b) (i
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infinite-dilution values are calculated from equation 5-10 
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The most significant result of these calculations is that the 

mass-transfer impedance z
0 

is negligible for all the cases considered. 

A negligible mass-transfer impedance for cases I and II is in agreement 

with the experimental results. However in both steady-state and 

impedance experiments at high currents, corresponding to case III, sig-

nificant mass-transfer effects appear. 

Remember the model of Epelboin et al. (14, 15, see discussion in 

section 1.3) which considerered diffusion of a OH- reactant species and 

required concentration values about ten orders of magnitude greater than 

the bulk OH concentration or a diffusion coefficient -10 orders of mag-

nitude greater than the expected value for OH- to yield the experimen-

tally observed limiting current value. 

We may conclude that mass transfer of Fe++ in itself has negligible 

effect on the observed impedance behavior of the system, mainly because 

Fe++ is involved in the cathodic iron reaction which is a slow reaction 

and produces a negligible partial current density at the high anodic 

potentials corresponding to high currents. 
++ 

However Fe mass-transfer 

can affect the electrochemical system in other indirect ways, which have 

not been included in the calculations above. 

A major way in which limitations in the transfer of Fe++ are mani-

fested in the Fe/H
2
so

4 
system is formation of a porous FeS04 film (see 

sections 1.3.2 and 1.3.3). Mass-transfer limitations in electrochemical 

systems usually appear in steady-state experiments as a current plateau. 

Russell and Newman (4) give an analysis of the steady-state limiting 

current showing that the steady-state current can remain constant while 
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the applied potential changes, if certain conditions are satisfied; 

these conditions are relationships between the salt film thickness, the 

film porosity, the fraction of the electrode covered by Feso4 , and the 

potential. 

Let .us then consider probable effects of the salt film on the elec-
( 

trochemical impedance. 

Effect of Porous Salt Film·on the Electrochemical Impedance 

Here we are interested in order-of-magnitude estimations of the 

effect of the salt film to see whether it can be significant. A 

rigorous treatment of the impedance of the Fe/H2so4 system would then 

require a model that includes the salt film as an integral part, in a 

way similar to the model of Russell and Newman (3) transformed for 

alternating current conditions, in addition to the electrode and 

double-layer processes and the electrolytic solution. 

At first, the salt film is expected to result in an additional dif-

fusion impedance. The mathematical formulation for this diffusion 

impedance would be very similar to that described in section 1.6.1.4. 

If negligible convection in the pores of the film is assumed and 

migration is ignored, a simplified material balance for the ferrous ion 

in the porous film may be written (16). 

2 a c2 
[5-16] 

ay2 

where o2e is an effective diffusion coefficient in the porous film and 

may be approximated by 
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D D ( ~f )1.5 
2e ... 2 " [5-17] 

where ef is the porosity of the salt film, ·which, as a first approxima-

tion, is assumed to be a constant. 

As a first approximation, assume a (constant) steady-state film 

thickness of; the solution for the dimensionless mass-transfer impedance 

is then given by equation 1-64 (Nernst model), substituting 5f for 5i 

and D2e for Di. 

Note that according to previous studies of salt films in similar 

systems (see section 1. 3. 2), the film thickness is about 1 to 20 J,Lm, 

which is of the same order of magnitude as the diffusion-layer thickness 

in the electrolytic solution for this application, and the porosity may 

be - 1 %, corresponding to a slightly porous film. 

Equation 1-56 relating the current to the flux at the electrode is 

modified to account for the porosity of the film; the faradaic current 

density is divided by ef in the modified equation. 

The resulting expression for the impedance due to diffusion of Fe++ 

in the solution in the pores of the salt film, using the approximations 

discussed above, is 

[
ai l lavg 

ac2,0 ss 
[5-18] 

{-l;eN2 •(Q)} varies with frequency (equation l-64); it is of the order 

of 1 for finite frequencies and approaches zero as w ~ ~ 

The average (superficial) current density i
1 

is included in the 
avg 

impedance expression because a fraction of the electrode surface may be 
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blocked by the salt film (see footnote after equation 1-19). The 

charge-transfer resistance is also modified. 

R -1 _ [ailavg] 
t av 

0 ss 
[5-19] 

If the free fraction of the electrode surface is denoted by es' then 

i == es i 1 lavg 

with i 1 given by the kinetic equation 5-2. 

[5-20] 

For simplicity we assume e 
s 

is constant. Then the zero-frequency limit of z
0 

f in equation 5-18 is 
' 

[5-21] 

Besides acting as a diffusion barrier, the salt film results in an 

additional potential gradient. The total potential may be written as 

(see equation 1-22) 

v - v + 6~ f + 6~~ f + 6~ + 6~~ . 
0 c, u, c,s u 

[5-22] 

The ohmic potential drop through the salt film is given approximately by 

[5-23] 

6~ f and 6~ are the potentials associated with concentration gra-
c' c' s 

dients in the solution within the pores of the film and in the solution 

outside the film, respectively. 6~0 is the ohmic potential drop in the 

solution assuming a conductivity equal to its bulk value, and it is 

equal to i AR where R~ is given by equation 1-15 for a disk elec-avg 0' u 

trade and A is the electrode area. 

u 

I ' 
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Consider the potential ~~O f' which is expected to be much larger 
' 

than ~~ f' c, At a first glance, ~~Of may be expected to influence the 
' 

electrochemical impedance in a way analogous to the ohmic resistance in 

the bulk solution (R
0

). However ~~O f is a function of the FeS0
4 

film 
' 

thickness and porosity, which are determined by the flux of Fe++. Since 

species concentrations and fluxes are oscillating under alternating 

current conditions, ~~n f results in an impedance term varying with fre-
' 

quency, perhaps in a manner similar to the diffusion impedance. The 

magnitude of the impedance arising from the potential drop ~~O,f may be 

Kf' the conductivity of the solution in the pores of the 

f 'l · · db R 11 d N (4) to be 0.132 ,..,-l·cm-l for 1 m, 1s estlmate y usse an ewman u 

We can now make some rough calculations to estimate the order of 

magnitude of the salt film effects on the electrochemical impedance, for 

the case of a rotating disk electrode at the limiting current 1.3 A/cm
2 

(0 - 1600 rpm) . We may use some of the data from the steady-state 

analysis of Russell and Newman (4), for the same case. 

For example, assume f 10-2 . This f value requires 
s s 

v -0.028 v, calculated from equation S-3 with il according to equa-
0 

tion 5-20. We may also assume c2 0 is at the FeS0
4 

saturation value, 
' 

which is about 2 M ( 17). The value of c5 f/ f f estimated by Russell and 

Newman (4) for cell potentials near the beginning of the limiting 

current plateau is - 100 J,Lm; if ff is taken as - 10-2 
this value 

corresponds to of - 1 J,Lm. The impedance due to the ohmic resistance 
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2 
through the film is - 0. 08 0 ·em , for this value of 6 f/ f f. For com-

parison, the bulk solution ohmic resistance for a 3 mm disk is 

2 
0. 3 0· em . 

Rt and R0 f are calculated from equations 5-19 and 5-21. For this 
' 

case, Rt is 0.0197 O·cm2 . which is about the same as without the film, 

and R
0 

f is 1 x l0-11 , which is a little larger but of the same order of 
' 

magnitude as the mass-transfer impedance without considering the film. 

As · another example, assume f 
s 

Then V 
0 

= -0.087 v, and 

2 0.0198 O·cm . From the analysis of Russell and Newman (4), 6f/ff -

200 ~m. for this case. If we take ff = 0.05 (corresponding to 

6 f - 10 ~m), then R0 , f is 2 x 10-lO, which is - 25 times greater than 

the mass-transfer impedance without the film. 

From these estimates, we may conclude that even though the diffu-

sion impedance due to the Feso4 film may be 10 or 100 times greater than 

the mass transfer impedance without considering the film, the mass-

transfer impedance is still found to be negligible. But the impedance 

due to the potential drop ~00 f may be important; it may be greater than 
' 

the charge-transfer resistance and of the same order of magnitude as the 

bulk ohmic resistance. Thus a salt film can account for the mass-

transfer influences apparent in experimental results. 

As indicated in section 3. 5, very limited and not so reliable 

experimental impedance data exist for the Fe/H2so4 system in the limit-

ing current region. More experimental as well theoretical work is 

therefore needed to elucidate the effect of porous salt films. 

' \ 
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c ********************************************************************* 
c KRAMERS-KRONIG PROGRAM KKl 
c ********************************************************************* 
c Numerical integration over the experimental frequency range 
c Trapezium Rule Integration w.r.t. (F) or LN(F) 
c Straight Line Segments interpolating between 
c each 2 successive experimental data points 
c Extrapolation of experimental data 
c to F = 0 and F = infinity 
c Analytic or numerical integration in the extrapolated regions 
c ********************************************************************* 
c N - # experimental data points 
c F = frequency (Hz) 
c ZR = real component of impedance 
c ZI = - imaginary component of impedance 
c ZIF- (ZI)*Frequency(Hz)*(2*3.14) 
c Zohm = theoretical value for the ohmic resistance 
c FC - the frequency at which ZR and ZI will be calculated 
c according to the Kramers-Kronig relations 
c ZRFC - ZR at FC 
c ZIMFC - ZI at FC 
c ZIFC = ZIF at FC 
c ZRC - calculated value for (ZR - ZRINF) 
c ZRINF = value of ZR at F = infinity 
c ZIC = calculated value for ZI 
c ************************************* 
c NFC = # frequencies FC 
c NLOG - 0 -- Numerical integration w.r.t. (F) -- linear scale 
c NLOG = 1 -- Numerical integration w.r.t. LN(F) -- logarithmic scale 
c NP = # points on each line segment 
c (K,NP) - experimental point index 
c KFC - index # for FC = K-index of lowest frequency 
c experimental point with F > FC 
c FLOG = LN (F) 
c HFLOG - (FLOG) logarithmic interval size -- generally constant 
c HF- (F) linear interval size -- not constant 
c HM - frequency interval variable for trapezium rule integration 
c NEXTR - parameters to choose what extrapolation will be used 
c NEXTRO - 0 no extrapolation to F - 0 
c NEXTRO - 1 extrapolation to F - 0 
c NEXTRH 0 no extrapolation to F = INFINITY 
c NEXTRH - 1 extrapolation to F INFINITY 
c using subroutine EXTRAl 
c NEXTRH- 2 -- extrapolation to F- INFINITY 
c using subroutine EXTRA2 
c ZRO and ZRl - parameters for extrapolation to F = 0 
c ZREl, ZRE2, FE2, AIE, BIE, NE- parameters for extrapolation 
c to F - INFINITY 
c NPRI - parameters used to print information if NPRI = 1 
c NPRil Print experimental data 
c NPRI2 -- Print calculated integrand values at each 
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c experimental point for each FC __ 
c NPRII -- Print calculated integral values in the 
c experimental and extrapolated ranges 
c NPRIAB -- Print calculated straight line coefficients (A,B) 
c NPRIFC -- Print FC, ZRFC, and ZIMFC 
c ********************************************************************* 
c 

implicit double precision (a-h,o-z) 
dimension zi(40),zrc(40),zic(40),zrinf(40),dzr(40),dzi(40), 

1 zir(40,150),zii(40,150),sumzr(40),sumzi(40) 
common /all/f(40,150),zif(40,150),np,nfc,fc(40), 

1 zrfc(40),zifc(40),fc2(40) 
common 

1 
/linear/n,nlog,npriab,nprifc,flog(40,150), 

ar(40),br(40),expbr(40),ai(40),bi(40), 
zr(40,150),zrlog(40),f2(40,150),kfc(40), 
zimfc(40),hm(40,150) 

1 
1 

common jextr0/zire0(40),ziie0(40),zr0,zrl 
common jextrh/zireh(40),ziieh(40),fel,ne,zrel, 

1 are,bre,aie,bie 
common jextrc/zirec(40),ziiec(40),zre2,zife2,fe2 

c ********************************************************************* 
c 
c Read program parameters 

read(S,*)nac,n,nfc,zohm,nlog,np,nextrO,nextrh 
read(S,*)zr0,zrl,zrel,zre2 
read(S,*)fe2,ne,aie,bie 
read(S,*)npril,npri2,nprii,npriab,nprifc 
write(6,82)nac,zohm 
write(6,83)np,nlog,nextr0,nextrh 
write(6,84)zr0,zrl,zrel,zre2 

c 
c Read and print experimental data 

if(npril.eq.l)write(6,10) 
do 2 k=l,n 
read(S,*)f(k,np),zr(k,np),zi(k) 

c Calculate variables for lines 
flog(k,np)-dlog(f(k,np)) 

c 

f2(k,np)-f(k,np)**2 
zrlog(k)-dlog(zr(k,np)) 
zif(k,np)-zi(k)*f(k,np)*6.2831853d00 
if(npril.eq.O)go to 2 
write(6,20)k,f(k,np),zr(k,np),zi(k),zif(k,np) 

2 continue 

c Read frequencies FC(I). FC can be at an experimental point 
c or between experimental points 

do 3 i-l,nfc 
read(S,*)kfc(i),fc(i) 

3 fc2(i)-fc(i)**2 
c ************************** 
c Calculate straight lines 



call LINES 
c 
c ************************** 
c Set all extrapolated integral values to zero 
c for the case of no extrapolation 

nextra=nextrO*nextrh 
if(nextra.eq.O) then 
do i=l,nfc 
zireO(i)=O.OdOO 
ziieO ( i) =0. OdOO 
zireh(i)=O.OdOO 
ziieh ( i )=0. OdOO 
end do 

end if 
c ***************************************************** 
c 
c 
c 

c 

Extrapolation to F = 0 

if(nextrO.eq.l) call EXTRAO 

c ***************************************************** 
c 
c Extrapolation to F - INFINITY 
c 

The high frequency range is divided 
1 st region: FEl to FE2 -- ZR and 

into 
ZIF 

choose method EXTRAl or EXTRA2 

2 regions: 
changing with 
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Frequency 
c 
c 
c 
c 
c 
c 

2 nd region: FE2 to INFINITY -- ZR and ZIF assumed constant 

c 

c 

subroutine EXTRAC 

if(nextrh.eq.O)go to 4 
fel-f(n,np) 
write(6,86)fel,fe2,ne 

if(nextrh.eq.l) then 
call EXTRAl 

else 
call EXTRA2 

end if 

write(6,87)are,bre,aie,bie,zife2 
call EXTRAC 

c calculated integral values 
do 4 i-l,nfc 
zireh(i)-zireh(i)+zirec(i) 
ziieh(i)-ziieh(i)+ziiec(i) 

4 continue 
c ************************************************** 
c 
c Integration in experimental frequency range 
c 
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c Calculate integrands ZIR and ZII for each FC value 
c 

do 6 i=l,nfc 
c 

if(npri2.eq.l)write(6,30)fc(i) 
c We need to calculate zir,zii for 1st experimental point separately 

denom=f2(1,np)-fc2(i) 

c 

c 

if(nlog.eq.l) denom=denom/f(l,np) 
zir(l,np)-(zif(l,np)-zifc(i))/denom 
zii(l,np)=(zr(l,np)-zrfc(i))/denom 
sumr-zir(l,np)*hm(l,np) 
sumi=zii(l,np)*hm(l,np) 
k=l 
if(npri2.eq.l)write(6,40)k,f(l,np),zir(l,np),zii(l,np) 

do 55 k=2,n 
do 5 m-l,np 

c Check if FC - F(K,M) 
if(fc(i).eq.f(k,m)) then 

c write(6,70) 
c limits of integrands when F - FC 

denom-fc2(i) 

c 

c 

if(nlog.eq.l) denom-fc(i) 
zir(k,m)-0.5dOO*ai(kfc(i))/denom 
zii(k,m)-0.5d00*ar(kfc(i))*expbr(kfc(i)) 
zii(k,m)-zii(k,m)*fc(i)**ar(kfc(i))jdenom 

else 
denom=f2(k,m)-fc2(i) 
if(nlog.eq.l) denom=denom/f(k,m) 
zir(k,m)-(zif(k,m)-zifc(i))/denom 
zii(k,m)-(zr(k,m)-zrfc(i))/denom 
end if 

c Calculate sum for trapezium rule 
sumr-sumr+zir(k,m)*hm(k,m) 

5 sumi-sumi+zii(k,m)*hm(k,m) 
c ******************************** 
c Print calculated ZIR and ZII at experimental points only 

if(npri2.eq.O)go to 55 
write(6,40)k,f(k,np),zir(k,np) ,zii(k,np) 

55 continue 
c ******************************** 
c 

c 

sumzr(i)-sumr*0.5d00 
sumzi(i)-sumi*O.SdOO 

c Add integral values in extrapolated regions 
sumr-sumzr(i)+zireO(i)+zireh(i) 
sumi-sumzi(i)+ziieO(i)+ziieh(i) 



c Finally calculate ZR and ZI from K-K relations 
c 

c 

zrc(i)=sumr/9.8696044d00 
zic(i)-sumi*fc(i)*0.636619772d00 

c Calculate fractional difference between calculated and 
c experimental I interpolated Z values 
c ZR-difference assuming ZRINF = Zohm 

'\ 
dzr(i)=(zrc(i)+zohm-zrfc(i))/zrfc(i) 
dzi(i)--(zic(i)+zimfc(i))/zimfc(i) 

c calculated value for ZRINF This should 
zrinf(i)-zrfc(i)-zrc(i) 

6 zic(i)--zic(i) 
c 

be a constant 

c ********************************************************** 
c Print calculated integral values 

if(nprii.eq.O)go to 11 
write(6,80) 
do 7 i=l,nfc 

7 write(6,85)fc(i),sumzr(i),zire0(i),zireh(i) 
write(6,81) 
do 8 i-l,nfc 

8 write(6,85)fc(i),sumzi(i),ziie0(i),ziieh(i) 
c 
c Print results 

11 write(6,50) 
write (7, 52) 
do 12 i-l,nfc 
write(7,6l)fc(i),zrc(i) 

12 write(6,60)fc(i),zrc(i),zrinf(i),dzr(i) 
write(6,51) 
write(8,52) 
do 13 i-1, nfc 
write(8,6l)fc(i) ,zic(i) 

13 write(6,60)fc(i),zimfc(i),zic(i),dzi(i) 
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c ******************************************************************** 
10 format(//7x,'EXPERIMENTAL DATA' /7x,'K' ,5x,'F(K) Hz' ,12x, 

1 'ZR(K) (ohm)' ,3x,'-ZI(K)' ,9x,'ZIF(K)'/) 
20 format(5x,i3,4x,el2.5,7x,el2.5,4x,el2.5,3x,el5.7) 
30 format(//9x, 'FC- ',el2.5, 

1 /7x, 'K' , 7x, 'F(K)' , 16x, 'ZIR(K) ' , 12x, 'ZII (K) '/) 
40 format(5x,i3,5x,el2.5,5x,el5.7,4x,el5.7) 
50 format(//lOx,'CALCULATED VALUES'//8x,'FC (Hz)' ,9x, 

1 'ZRC - ZRINF (ohm)'2x, 'ZRINF' ,13x, 'DZR'/) 
51 format(//8x, 'FC (Hz)' ,12x, '-ZI (ohm)' ,5x, '-ZIC' ,13x,'-DZI'/) 
52 format(' "K-K CALCULATION"') 
60 format(5x,el2.5,6x,el3.6,5x,el3.6,6x,el3.6,5x,el3.6,5x,el3.6) 
61 format(el2.5,' , ',el3.6) 
70 format(lOx,'FC- F(K,M)') 
80 format(//6x,'FC (Hz)' ,lOx, 'SUMZR' ,14x, 'ZIREO' ,13x, 'ZIREH'/) 
81 format(//6x,'FC (Hz)' ,lOx,'SUMZI' ,14x, 'ZIIEO' ,13x, 'ZIIEH'/) 



82 format(//lOx,'AC EXPERIMENT ## 'i4,10x,'Zohm = ',f8.5/) 
83 format(6x,'STRAIGHT LINES NP = ',i3,' NLOG =' ,i2, 

1 NEXTRO -' ,i2,' NEXTRH =' ,i2) 
84 format(/6x,'ZRO -· ,fl0.4,3x,'ZR1 -· ,fl0.4/ 

1 6x,'ZRE1 =' ,f8.4,4x,'ZRE2 =' ,f8.4) 
85 format(Sx,el2.6,3x,el5.7,3x,el5.7,3x,el5.7) 
86 format(/lOx,'EXTRAPOLATION TO F =INFINITY'/ 

1 Sx,'FEl- ',el2.5,5x,'FE2 = ',el2.5,Sx,'NE ',i3) 
87 format(/Sx,'ARE -· ,el5.7,3x,'BRE =' ,el5.7/ 
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1 Sx,'AIE =' ,el5.7,3x,'BIE =' ,el5.7,2x,'ZIFE2 =' ,el5.7) 
c ********************************************************************* 

stop 
end 

c 
c ********************************************************************* 

SUBROUTINE LINES 
c ********************************************************************* 
c Straight line segments between each 2 successive experimental points 
c Equation used for ZR : ZRLOG = AR*FLOG + BR 
c Equation used for ZI : ZIF - AI*FLOG + BI 
c Calculate line equation coefficients 
c Generate new points on line segments 
c Set frequency interval size variable HM (K,M) 
c for trapezium rule integration (linear or logarithmic) 
c N - # experimental points 
c NP - # points on each line segment including 
c one experimental point with index (NP) 
c NPRIAB -- print line coefficients (A,B) if npriab = 1 
c Each line segment with index (K) contains 1 experimental point with 
c index (K,NP) and (NP - 1) other points, (K,M) 
c to the left of the experimental point 
********************************************************* 
c 

implicit double precision (a-h,o-z) 
dimension dflog(40),hflog(40),hf(40,150) 
common jall/f(40,150),zif(40,150),np,nfc,fc(40), 

1 zrfc(40),zifc(40),fc2(40) 
common 

1 
1 
1 

/linearjn,nlog,npriab,nprifc,flog(40,150), 
ar(40) ,br(40),expbr(40),ai(40) ,bi(40), 
zr(40,150),zrlog(40),f2(40,150),kfc(40), 
zimfc(40),hm(40,150) 

c ******************************************************* 
c 
c Calculate line coefficients 
c 

if(npriab.eq.l)write(6,100) 
do 21 k-2,n 
dflog(k)-flog(k,np)-flog(k-l,np) 
ar(k)-(zrlog(k)-zrlog(k-1))/dflog(k) 
ai(k)-(zif(k,np)-zif(k-l,np))/dflog(k) 
br(k)-zrlog(k)-ar(k)*flog(k,np) 



bi(k)=zif(k,np)-ai(k)*flog(k,np) 
expbr(k)-dexp(br(k)) 
if(npriab.eq.l)write(6,200)k,ar(k),br(k),ai(k),bi(k) 

21 continue 
c ********************************* 
c 
c Calculate new points on ~ach line 
c 
c first calculate Z at FC 

if(nprifc.eq.l) write(6,300) 
c write(7,500) 
c write(8,500) 

do 22 i=l,nfc 
fclog-dlog(fc(i)) 
zrfc(i)=dexp(ar(kfc(i))*fclog+br(kfc(i))) · 
zifc(i)=ai(kfc(i))*fclog+bi(kfc(i)) 
zirnfc(i)-zifc(i)/(fc(i)*6.2831853d00) 

c write(7,600)fc(i),zrfc(i) 
c write(8,600)fc(i),zirnfc(i) 

c 

if(nprifc.eq.l) write(6,400)kfc(i),fc(i),zrfc(i) ,zirnfc(i) 
22 continue 

nf~np-1 

do 25 k=2,n 
c Use equal size intervals on logarithmic frequency scale 

hflog(k)-dflog(k)/np 
c for 1st new point on each line 

flog(k,l)-flog(k-l,np)+hflog(k) 
do 24 rn=2,nf 

24 flog(k,rn)-flog(k,rn-l)+hflog(k) 
c 
c Calculate F, ZR, and ZIF for new points 

do 25 rn=l,nf 
f(k,rn)=dexp(flog(k,rn)) 
f2(k,rn)-f(k,rn)**2 
zr(k,rn)-dexp(ar(k)*flog(k,rn)+br(k)) 

25 zif(k,rn)-ai(k)*flog(k,rn)+bi(k) 
c ********************************************** 

if(nlog.eq.O) then 
c 
c Calculate corresponding linear frequency interval size (HF) 
c generally: HF(K,M) - F(K,M) · F(K,M-1) 
c 

do 26 k-2,n 
c for 1st point of each line 

hf(k,l)-f(k,l)·f(k-l,np) 
do 26 m-2,np 

26 hf(k,rn)-f(k,rn)-f(k,rn-1) 
c 
c for last point of each line, except the last line 

nl-n-1 
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do 27 k=2,nl 
27 hf(k,np+l)=hf(k+l,l) 

c for last (final) experimental point 
hf(n,np+l)-O.OdOO 

c *********************** 
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c Set frequency interval variable (HM) for linear integration 
do 28. k==2,n 
do 28 m=l,np 

28 hm(k,m)=hf(k,m)+hf(k,m+l) 
c for 1st experimental point 

hm(l,np)=hf(2,1) 
c ***************************************************** 

else 
c 
c Set frequency interval variable (HM) for logarithmic integration 
c 
c for last experimental point 

hflog(n+l)-O.OdOO 
c 

do 31 k=2,n 
c for each experimental point 

hm(k,np)==hflog(k)+hflog(k+l) 
c for non-experimental points 

do 31 m-l,nf 
31 hm(k,m)-hflog(k)*2.0d00 

c for 1st experimental point 
hm(l,np)-hflog(2) 

c 
end if 

c ************************************************************** 
100 format(//7x, 'STRAIGHT LINE EQUATION COEFFICIENTS'/7x, 

1 'K' , 7x, 'AR(K)' , 13x, 'BR(K)' , 13x, 'AI (K)' , 13x, 'BI (K) '/) 
200 format(Sx,i3,3x,dl5.7,3x,dl5.7,3x,dl5.7,3x,dl5.7) 
300 format(//6x,'KFC' ,4x,'FC (Hz)' ,lSx, 'ZRFC' ,13x, 'ZIMFC'/) 
400 format(Sx,i3,3x,el2.5,8x,el5.6,3x,el5.6) 
500 format(' "EXPERIMENTAL"') 
600 format(el2.5,' , ',el3.6) 

c ******************** 
return 
end 

c 
c ********************************************************************* 
c SUBROUTINE EXTRAO ** From FMIN to F = 0 
c ********************************************************************* 
c Extrapolate experimental data from the minimum experimental frequency 
c Calculate integrals ZIREO and ZIIEO in extrapolated region 
c First approximation : 
c Straight line quadratic extrapolation for ZR(F) and ZIF(F) 
c ZR - ZRO at F - 0 and ZR - ZRl at F = FMIN 
c ZIF - 0 at F - 0 and ZIF - ZIF(FMIN) at F - FMIN 
c ZR (F) - ARO*F**2 + ZRO from FMIN to F - 0 



c ZIF(F) = AIO*F**2 from FMIN to F = 0 
c Then we can integrate analytically 
c ********************************************************* 

subroutine extraO 
implicit double precision (a-h,o-z) 
common jall/f(40,150),zif(40,150),np,nfc,fc(40), 

1 zrfc(40),zifc(40),fc2(40) 
common /extrO/zire0(40),ziie0(40),zrO,zrl 

c ********************************************************* 
c 

fmin=f(l,np) 
c Calculate straight line equation coefficients 

ar0-(zrl-zr0)/fmin**2 
ai0-zif(l,np)/fmin**2 

c 
c Calculate integrals ZIIEO and ZIREO for each FC 

do 2 i=l,nfc 
clogl=O.SdOO*dlog((fc(i)-fmin)/(fc(i)+fmin)) 
ziieO(i)-arO*(fc(i)*clogl+fmin) 
ziieO ( i)-zi.ieO ( i )+(zrO- zrfc ( i) )*clogl/fc ( i) 

2 zireO(i)=aiO*(fc(i)*clogl+fmin)-zifc(i)*clogl/fc(i) 
c ************** 

return 
end 

c 
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c ********************************************************************* 
c SUBROUTINE EXTRAl ** From FEl to FE2 
c ********************************************************************* 
c Extrapolate experimental data from the maximum experimental frequency 
c FEl to a chosen higher frequency FE2 
c Calculate integrals in extrapolated region : ZIREH and ZIIEH 
c First approximation : 
c Straight line extrapolation for ZR (F) and ZIF (F) 
c ZR - ZREl at F - FEl 
c ZR - ZRE2 at F - FE2 
c ZR (F) - ARE*F + BRE 
c ZIF (F) - AIE*F + BIE 
c For ZR specify both ZREl and ZRE2 and calculate line coefficients 
c For ZIF specify line coefficients 
c Then integrate analytically 
c ************************************************* 
c 

subroutine extral 
implicit double precision (a-h,o-z) 
common /all/f(40,150),zif(40,150),np,nfc,fc(40), 

1 zrfc(40),zifc(40),fc2(40) 
common jextrh/zireh(40),ziieh(40),fel,ne,zrel, 

1 are,bre,aie,bie 
common /extrc/zirec(40),ziiec(40),zre2,zife2,fe2 

c ************************************************* 
c 



fel2-fel**2 
fe22=fe2**2 

c Calculate straight line coefficients for ZR (F) 
are=(zre2-zrel)/(fe2-fel) 
bre=zrel-are*fel 

c 
c Calculate integrals (ZIREH and ZIIEH) for each FC 

c 

do 2 i=l,nfc 
fll=(fe2-fc(i))*(fel+fc(i))/((fe2+fc(i))*(fel-fc(i))) 
cll-O.SdOO*dlog(fll)/fc(i) 
cl2-0.SdOO*dlog((fe22-fc2(i))/(fel2-fc2(i))) 
ziieh(i)-cll*(bre-zrfc(i))+cl2*are 

2 zireh(i)-cll*(bie-zifc(i))+cl2*aie 

c Calculate ZIFE2 for subroutine EXTRAC 
zife2=aie*fe2+bie 

c ********************** 
return 
end 

c 
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c- ********************************************************************* 
c SUBROUTINE ~TRA2 ** From FEl to FE2 
c ********************************************************************* 
c Extrapolate experimental data 
c Calculate integrals in extrapolated region : ZIREH and ZIIEH 
c -- Second approximation 
c Straight line equations in extrapolated region (E) 
c LN(ZRE) - ARE*LN(FE) + BRE 
c i.e. ZRE(FE) - (FE**ARE)*exp(BRE) 
c ZIFE(FE) - AIE*LN(FE) + BIE 
c ********************************** 
c Then use Trapezium Rule to integrate numerically 
c Integration w.r.t. LN(FE) -- Logarithmic frequency scale 
c FEl - lower frequency end of extrapolated region 
c FE2 - higher frequency end of extrapolated region 
c NE - # points used in extrapolated region 
c not including the endpoints FEl and FE2 
c M - extrapolated point index # 

c HLOG - logarithmic frequency interval size (constant) 
c ************************************************************* 

subroutine extra2 
implicit double precision (a-h,o-z) 
dimension fe(l50),felog(l50),f2e(l50), 

1 zre(l50),zife(l50),zire(40),ziie(40) 
common /all/f(40,150),zif(40,150),np,nfc,fc(40), 

1 zrfc(40),zifc(40),fc2(40) 
common /extrh/zireh(40),ziieh(40),fel,ne,zrel, 

1 are,bre,aie,bie 
common /extrc/zirec(40),ziiec(40),zre2,zife2,fe2 

c ************************************************************* 
c 



c Endpoints 
fellog=dlog(fel) 
fe2log-dlog(fe2) 
f2el-fel**2 
f2e2==fe2**2 
hlog-(fe2log-fellog)/ne 

337 

c Calculate line coefficients for ZRE (F) from specified ZREl and ZRE2 
are==dlog(zre2/zrel)/(fe2log-fellog) 
bre==dlog(zrel)-are*fellog 

c ******************************* 
c 
c Points at equal logarithmic frequency intervals 
c 
c first point 

felog(l)=fellog+hlog 
fe(l)-dexp(felog(l)) 
f2e(l)=fe(l)**2 

c 
c other points 

c 

do 2 m-2,ne 
felog(m)-felog(m-l)+hlog 
fe(m)-dexp(felog(m)) 

2 f2e(m)-fe(m)**2 

c Calculate ZRE and ZIFE for extrapolated points 
zifel-aie*fellog+bie 
zife2-aie*fe2log+bie 
do 3 m-l,ne 
zre(m)-dexp(are*felog(m)+bre) 

3 zife(m)-aie*felog(m)+bie 
c ************************************************* 
c 
c Calculate integrals for each FC 
c 

do 6 i-l,nfc 
c endpoints separately 

c 

denom-(f2el-fc2(i))/fel 
sumre-(zifel-zifc( i)) /denom 
sumie-(zrel-zrfc(i))/denom 
denom-(f2e2-fc2(i))/fe2 
sumre-(sumre+(zife2-zifc(i))/denom)*O.Sd00 
sumie-(sumie+(zre2-zrfc(i))/denom)*O.Sd00 

c other points 
do 5 m-l,ne 

c Calculate integrands 
denom-(f2e(m)-fc2(i))/fe(m) 
zire(m)-(zife(m)-zifc(i))/denom 
ziie(m)-(zre(m)-zrfc(i))/denom 

c Trapezium rule sum 
sumre-sumre+zire(m) 



5 sumie=sumie+ziie(m) 
c ***************************** 
c Finally the integral values 
c 

c 

zireh(i)=sumre*hlog 
6 ziieh(i)=sumie*hlog 

c ***************************** 
return 
end 

c 
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c ********************************************************************* 
c SUBROUTINE ~TMC ** From FE2 to F = INFINITY 
c ********************************************************************* 
c Extrapolate data from the chosen frequency FE2 to infinity 
c ·calculate integrals in extrapolated region : ZIREC and ZIIEC 
c In this region, assume : 
c ZR (F) - ZRE2 - CONSTANT 
c ZIF (F) z ZIFE2 - CONSTANT 
c Then integrate analytically 
c ************************************************* 

subroutine extrac 
implicit double precision (a-h,o-z) 
common /all/f(40,150),zif(40,150),np,nfc,fc(40), 

1 zrfc(40),zifc(40),fc2(40) 
common /extrc/zirec(40),ziiec(40),zre2,zife2,fe2 

c ************************************************* 
c 

c 

do 2 i-l,nfc 
clog=O.SdOO*dlog((fe2-fc(i))/(fe2+fc(i)))/fc(i) 
ziiec(i)-clog*(zrfc(i)-zre2) 

2 zirec(i)-clog*(zifc(i)-zife2) 

return 
end 



I 
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c ********************************************************************* 
c KRAMERS-KRONIG PROGRAM KKPOLY 
c ********************************************************************* 
c Polynomial Fitting of experimental data 
c over chosen frequency intervals (segments) 
c Use 3 rd order polynomials for 
c ZR (F) 
c ZIF (F) 
c The experimental data are divided into segments 
c A different polynomial is used for each segment 
c to obtain the best possible fit 
c Analytic Integration of resulting functions 
c Linear extrapolation of experimental data to 
c F ~ 0 and F = infinity 
c Analytic integration in extrapolated regions 
c **************************************************************** 
c N = # experimental data points 
c F - frequency (Hz) 
c ZR = real component of impedance 
c ZI - - imaginary component of impedance 
c ZIF- (ZI)*Frequency(Hz)*(2*3.14) 
c Zohm - theoretical value for the ohmic resistance 
c FC - the frequency at which ZR and ZI will be calculated 
c according to the Kramers-Kronig relations 
c ZRFC - ZR at FC 
c ZIMFC - ZI at FC 
c ZIFC - ZIF at FC 
c ZRC - calculated value for (ZR - ZRINF) 
c ZRINF - value of ZR at F = infinity 
c ZIC - calculated value for ZI 
c ************************************* 
c 
c 
c 
c 
c 

NFC - # frequencies FC 
NORDER= the order of the polynomials. NORDER 
NPOLY - # segments 
K - experimental point index # 

KFC - K-index of FC 

3 

c KFIRST - K-index of first experimental point in each segment 
c KLAST - K-index of last experimental point in each segment 
c NEXTR - parameters to choose what extrapolation will be used 
c NPRI - parameters used to print information if NPRI = 1 
c NPRil Print experimental data 
c NPRII Print calculated integral values 
c in experimental and extrapolated ranges 
c NPRIZ Print calculated polynomial fit Z-values 
c NPRIA Print calculated polynomial coefficients 
c ***************************************************************** 
c 

implicit double precision (a-h,o-z) 
dimension zr(40),zi(40),zif(40),zrc(40) ,zic(40), 

1 zimfc(40),dzr(40),dzi(40),zrinf(40) 
common /most/n,f(40),npoly,norder,a(6,20), 
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1 kfirst(20),klast(20) _. 
common 
common 
common 
common 
common 

/fcvari/nfc,fc(40),kfc(40),fc2(40),zrfc(40),zifc(40) 
/fit/z(40),npriz,npria,zpoly(40),zzpoly(40),dzpoly(40) 
/integr/zinteg(40),zfc(40) 
jextr0/zire0(40),ziie0(40),zr0,zrl,zifl 
jextrh/zireh(40),ziieh(40),fel,zrel, 

1 
common 
common 

are,bre,aie,bie 
jextrcjzirec(40),ziiec(40),zre2,zife2,fe2 
jmatrix/s(6,6),zm(6,13) 

c ********************************************************************* 
c 
c Read some program parameters 

read(S,*)nac,n,nfc,zohm,nextrO,nextrh 
read(S,*)zr0,zrl,zrel,zre2 
read(S,*)fe2,aie,bie 
read(S,*)npril,nprii,npriz,npria 
write(6,115)nac,zohm 
write(6,116)nextr0,nextrh 
write(6,117)zr0,zrl,zrel,zre2 

c 
c Read and print experimental data 

if(npril.eq.l)write(6,101) 
do 2 k-l,n 
read(S,*)f(k),zr(k) ,zi(k) 

c calculate ZIF 
zif(k)-zi(k)*f(k)*6.2831853d00 
if(npril.eq.O)go to 2 
write(6,102)k,f(k),zr(k),zi(k),zif(k) 

2 continue 
c 
c Read frequencies FC(I) and set FC-variables 
c All FC values are taken at experimental points 
c that are not endpoints of segments 
c 

do 3 i-l,nfc 
read(S,*)kfc(i) 
fc(i)-f(kfc(i)) 
zrfc(i)-zr(kfc(i)) 
zimfc(i)-zi(kfc(i)) 
zifc(i)-zif(kfc(i)) 

3 fc2(i)-fc(i)**2 
c ********************************************** 
c 
c Polynomial fit for ZR (F) 
c 

read(S,*)norder,npoly 
write(6,103)norder,npoly 
do 4 k-l,n 

4 z(k)-zr(k) 
c Read endpoints of segments 

do 5 i-l,npoly 



5 read(S,*)kfirst(i),klast(i) 
c 

call POLY 
c ******************** 
c 
c Integrate ZR(F) according to K-K relations to calculate ZIC 
c 
c Set values for subroutine !POLY 

do 6 i=l,nfc 
6 zfc(i)=zrfc(i) 

c 
call !POLY 

c 
do 7 i-l,nfc 

7 zic(i)=zinteg(i) 
c ***************************************** 
c 
c Polynomial fit for ZIF(F) 
c 
c read(S,*)norder,npoly 

write(6,104)norder,npoly 
do 8 k=l,n 

8 z(k)-zif(k) 
c read endpoints of segments if they are different from ZR(F) 
c do 9 i-l,npoly 
c 9 read(S,*)kfirst(i),klast(i) 
c 

call POLY 
c **************** 
c 
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c Integrate ZIF(F) to calculate ZRC according to the K-K relations 
c 
c Set values for subroutine 

do 12 i=l,nfc 
12 zfc(i)-zifc(i) 

c 
call !POLY 

c 
do 13 i-l,nfc 

13 zrc(i)-zinteg(i) 

!POLY 

c ***************************************************** 
c· 

c Set all extrapolated integral values to zero 
c for the case of no extrapolation 

nextra-nextrO*nextrh 
if(nextra.eq.O) then 
do i-l,nfc 
zireO(i)-O.OdOO 
ziieO(i)-O.OdOO 
zireh(i)-O.OdOO 
ziieh( i )-0. OdOO 



end do 
end if 

c ***************************************************** 
c 
c 
c 

c 

Extrapolation to F ,. 0 

zifl=zif(l) 
if(nextrO.eq.l) call EXTRAO 

c ***************************************************** 
c 
c Extrapolation to F = INFINITY 
c 
c The high frequency range is divided into 2 regions: 
c 1 st.region: FEl to FE2 -- ZR and ZIF changing with Frequency 
c subroutine EXTRAl 
c 2 nd region: FE2 to INFINITY -- ZR and ZIF assumed constant 
c subroutine EXTRAC 
c 

c 

c 

c 

if(nextrh.eq.O)go to 14 
fel-f(n) 
write(6,113)fel,fe2 

call EXTRAl 

write(6,114)are,bre,aie,bie,zife2 
call EXTRAC 

c calculated integral values 
do 14 i-l,nfc 
zireh(i)-zireh(i)+zirec(i) 
ziieh(i)-ziieh(i)+ziiec(i) 

14 continue 
c ************************************************** 
c Print calculated integral values 

if(nprii.eq.l) then 
write(6, 110) 
do i-1, nfc 
write(6,112)fc(i),zrc(i),zire0(i),zireh(i) 
end do 
write(6, 111) 
do i-l,nfc 
write(6,112)fc(i),zic(i),ziieO(i) ,ziieh(i) 
end do 

end if 
c ************************************************* 
c 
c Finally calculate ZR and ZI from K-K relations 
c 

do 15 i-l,nfc 
c 
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c 

zrc(i)=(zrc(i)+zireO(i)+zireh(i))/9.8696044dOO 
zic(i)=(zic(i)+ziie0(i)+ziieh(i))*fc(i)*0.636619772d00 

c Calculate fractional difference between calculated and 
c experimental Z values 
c ZR - difference assuming ZRINF = Zohm 

dzr(i)-(zrc(i)+zohm-zrfc(i))/zrfc(i) 
dzi(i)=-(zic(i)+zimfc(i))/zimfc(i) 

c calculated value for ZRINF This should be a constant 
15 zrinf(i)=zrfc(i)-zrc(i) 

c 
c ************************************************* 
c Print results for ZRC 

write(6,106) 
do 18 i-1,nfc 

18 write(6,108)kfc(i),fc(i),zrc(i),zrinf(i),dzr(i) 
c 
c Print results for ZIC 

write(6,107) 

c 

do 19 i=l,nfc 
zic(i)--zic(i) 

19 write(6,108)kfc(i),fc(i),zimfc(i),zic(i),dzi(i) 

c ************************************************************** 
101 format(//7x,'EXPERIMENTAL DATA'/7x,'K' ,5x,'F(K) Hz' ,12x, 

1 'ZR(K) (ohm)' ,3x,'-ZI(K)' ,9x,'ZIF(K)'/) 
102 format(5x,i3,4x,e12.5,7x,el2.5,4x,el2.5,3x,el5.7) 
103 format(//7x,'POLYNOMIAL FIT FOR ZR (F)' ,5x, 

1 'POLYNOMIAL ORDER- ',i2/7x,'## SEGMENTS= ',i3) 
104 format(//7x, 'POLYNOMIAL FIT FOR ZIF (K)' ,5x, 

1 'POLYNOMIAL ORDER- ',i2/7x,'## SEGMENTS= ',i3) 
105 format(/9x,'FC- ',e12.5) 
106 format(//lOx, 'CALCULATED VALUES'//7x, 'K' ,5x, 'FC(K) Hz', 

1 lOx, 'ZRC- ZRINF (ohm)' ,3x, 'ZRINF' ,llx, 'DZR'/) 
107 format(//lOx, 'CALCULATED VALUES'//7x,'K' ,5x, 'FC(K) Hz', 

1 13x,'-ZI(K) (ohm)' ,3x,'-ZIC' ,9x,'-DZI'/) 
108 format(5x,i3,4x,el2.5,7x,el3.6,4x,el3.6,3x,e15.7,3x,el3.6) 
110 format(//7x, 'INTEGRAL VALUES'/6x, 

1 'FC (Hz)' ,lOx, 'ZIRPOLY' ,12x, 'ZIREO' ,13x, 'ZIREH'/) 
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111 format(//6x,'FC (Hz)' ,lOx,'ZIIPOLY' ,12x, 'ZIIEO' ,13x, 'ZIIEH'/) 
112 format(5x,el2.6,3x,el5.7,3x,el5.7,3x,el5.7) 
113 format(/lOx,'EXTRAPOLATION TO F- INFINITY'/ 

1 5x,'FE1- ',el2.5,5x,'FE2 = ',el2.5) 
114 format(/5x, 'ARE-' ,el5.7,3x, 'BRE -· ,el5.7/ 

1 5x, 'AIE -' ,el5.7,3x,'BIE -' ,el5.7,2x, 'ZIFE2 =' ,el5.7) 
115 format(//lOx,'AC EXPERIMENT ## 'i4,10x,'Zohm = ',f8.5) 
116 format(/6x,'NEXTRO -'i2,3x,'NEXTRH -' ,i2) 
117 format(/6x,'ZRO -' ,fl0.4,3x,'ZR1 -' ,fl0.4/ 

1 6x,'ZRE1 -' ,f8.4,4x,'ZRE2 -' ,f8.4) 
c ********************************************************************* 

stop 
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end 
c 
c ********************************************************************* 

SUBROUTINE POLY 
c ********************************************************************* 
c Fit Polynomials to data points Z (X) 
c The data points can be divided in segments 
c A polynomial is determined for each segment 
c Least - Squares method 
c MATINV is used to solve the matrix equation 
c ********************************************** 
c [A] - matrix of polynomial coefficients 
c [S] - matrix of sums of X-powers (X**L) 
c [ZM] - matrix of sums Z(X)*(X**L) 
c Matrix equation [S] [A] - [ZM] 
c Solution [A] - [ZM] [S inverse] 
c ********************************************** 
c N - # data points 
c NORDER - order of polynomial (highest X-power) 
c NPOLY = # segments of data points 
c NA - # coefficients A to be determined 
c NA - NORDER + 1 - # linear equations - # rows in matrices 
c IP - segment index # 

c A (L,IP) -polynomial coefficient of X**(L-1) 
c X (K,L) - X to the L power at data point (K) 
c I - matrix row index # 

c J - matrix column index # 

c NPRIZ -- print polynomial Z(K) if npriz = 1 
c NPRIA -- print polynomial coefficients A if npria = 1 
c ********************************************************** 
c 

implicit double precision (a-h,o-z) 
dimension x(40,10),sumx(l0),sumz(6) 
common /most/n,f(40),npoly,norder,a(6,20), 

1 kfirst(20),klast(20) 
common /fit/z(40),npriz,npria,zpoly(40),zzpoly(40),dzpoly(40) 
common /matrix/s(6,6),zm(6,13) 

c ********************************************************** 
c 
c Subroutine Matinv requires matrix [ZM] to be a 2-dimensional array 
c Here, [ZM] is a 1-column matrix 
c Initially set all [ZM] elements to zero 

na-norder+l 

c 

m-na*2+1 
do 2 i-l,na 
do 2 j-l,m 

2 zm(i,j)-O.OdOO 

c highest power of X involved in the matrix equation 
np2-norder*2 

c ****************************** 



c 
c Determine polynomials for each data segment 
c 

if(npriz.eq.l)write(6,201) 
do 15 ip=l,npoly 
if(npriz.eq.l)write(6,202)ip 

c endpoints of segment 
kl=kfirst(ip) 
k2=klast(ip) 

c ## data points in segment 
nk=k2-kl+l 

c 
c Evaluate sums -- SUMX (L) = sum of X**L 
c First, sums with X to the 1st power, and sum of Z 

sumx(l)=O.OdOO 
sumz(l)~O.OdOO 

do 3 k=kl,k2 
x(k,l)-f(k) 
sumx(l)=x(k,l)+sumx(l) 

3 sumz(l)=z(k)+sumz(l) 
c Now, higher power sums 

do 4 l-2,np2 
sumx(l)-O.OdOO 
do 4 k-kl,k2 
x(k,l)-x(k,l-l)*x(k,l) 

4 sumx(l)-x(k,l)+sumx(l) 
c remaining Z-sums 

do 6 l-2,na 
sumz(l)-O.OdOO 
do 5 k~kl,k2 

5 sumz(l)-z(k)*x(k,l-l)+sumz(l) 
c 
c Elements of 1-column [ZM] matrix 

6 zm(l,l)-sumz(l) 
c first element 

zm(l,l)-sumz(l) 
c 
c Elements of [SJ matrix 
c first column 

s(l,l)-nk 
do 7 i-2,na 

7 s(i,l)-sumx(i-1) 
c other elements of [S] matrix 

do 8 i-l,na 
do 8 j-2,na 

8 s(i,j)-sumx(i+j-2) 
c ************************************ 
c 
c Solve matrix equation to obtain [A] coefficients 
c 

call matinv(na,m,determ) 
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c 
c Check if matrix is singular 

if(determ.ne.O.OdOO)go to 9 
write(6,200) 

9 continue 
c 
c Matinv returns calculated variable in the [ZM] matrix 
c calculated coefficients 

do 11 l=l,na 
11 a(l,ip)-zm(l,l) 

c ************************************* 
c 
c Calculate Z(F) given by polynomial fit at experimental points 
c 

if(npriz.eq.O) go to 15 
do 13 k-kl,k2 
zpoly(k)=a(l,ip) 
do 12 1•2,na 

12 zpoly(k)-a(l,ip)*x(k,l-l)+zpoly(k) 
c Calculate error in polynomial fit -- fractional difference 

zzpoly(k)=zpoly(k)-z(k) 
dzpoly(k)=zzpoly(k)/z(k) 

13 write(6,203)k,f(k),zpoly(k),zzpoly(k),dzpoly(k) 
c 

15 continue 
c **************************** 
c 
c Print polynomial coefficients 

if(npria.eq.O)go to 22 
write(6,204) 
do 21 ip-l,npoly 

21 write(6,205)ip,(a(l,ip),l-l,na) 
c 
c ********************************************************** 

200 format(//5x, 'MATRIX IS SINGULAR TO WORKING PRECISION') 
201 format(/6x,'K' ,5x, 'F(K) HZ' ,lOx, 'ZPOLY(K)', 

1 9x,'ZZPOLY(K)' ,9x,'DZPOLY(K)'/) 
202 format(9x,'POLYNOMIAL ## ',i3) 
203 format(4x,i3,4x,el2.5,4x,el3.6,2x,el6.8,2x,el6.8) 
204 format(//7x,'POLYNOMIAL COEFFICIENTS'/5x, 'IP' ,7x, 'Al', 

1 15x,'A2' ,15x,'A3' ,15x,'A4' ,15x,'A5' ,15x,'A6'/) 
205 format(4x,i3,3x,el5.7,2x,el5.7,2x,el5.7,2x,el5.7,2x, 

1 el5.7,2x,el5.7) 
c *************** 

c 

22 return 
end 
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c ********************************************************************* 
SUBROUTINE IPOLY 

c ********************************************************************* 
c Analytic integration of polynomial fit functions 

I 



c Integration segment by segment, for each FC value 
c ZINTEG - calculated value of integral over experimental range 
c SEGMEN (IP) = integral value over segment IP 
c ****************************************************** 
c 

implicit double precision (a-h,o-z) 
dimension segmen(20) 
common /most/n,f(40),npoly,norder,a(6,20), 

1 kfirst(20),klast(20) 
common /fcvari/nfc,fc(40),kfc(40),fc2(40),zrfc(40) ,zifc(40) 
common /integr/zinteg(40),zfc(40) 

c ****************************************************** 
c 

c 

do 5 i=l,nfc 
zint==O.OdOO 
do 4 ip=l,npoly 

c Evaluate integral terms at the 2 endpoints of each segment 
c 

c 

c 

c 

c 

c 

k=kfirst(ip) 

2 clogl-Q.5d00*(dlog(dabs(f(k)-fc(i)))-dlog(f(k)+fc(i))) 
clog2-0.5dOO*dlog(dabs(f(k)**2-fc2(i))) 
term-f(k)*(a(3,ip)+a(4,ip)*f(k)/2.0d00) 
cl-(a(l,ip)-zfc(i))/fc(i)+a(3,ip)*fc(i) 
c2-a(2,ip)+a(4,ip)*fc2(i) 
term-term+clogl*cl+clog2*c2 

if(k.eq.klast(ip))~o to 3 
terml-term 
k-klast(ip) 
go to 2 

3 segmen(ip)-term-terml 

4 zint-segmen(ip)+zint 

5 zinteg(i)-zint 
c ********************* 

return 
end 

c 
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c ********************************************************************* 
c SUBROUTINE EXTRAO ** From FMIN to F = 0 
c ********************************************************************* 
c Extrapolate experimental data from the minimum experimental frequency 
c Calculate integrals ZIREO and ZIIEO in extrapolated region 
c First approximation : 
c Straight line quadratic 
c ZR - ZRO at F - 0 
c ZIF - 0 at F - 0 

extrapolation for 
and ZR - ZRl 
and ZIF - ZIFl 

ZR(F) 
at 
at 

and ZIF(F) 
F = FMIN 
F - FMIN 



c ZR (F) = ARO*F**2 + ZRO from FMIN to F 0 
c ZIF(F) - AIO*F**2 from FMIN to F = 0 
c Then we can integrate analytically 
c ********************************************************* 

subroutine extraO 
implicit double precision (a-h,o-z) 
common /most/n,f(40),npoly,norder,a(6,20), 

1 kfirst(20),klast(20) 
common /fcvari/nfc,fc(40),kfc(40),fc2(40),zrfc(40),zifc(40) 
common /extr0/zire0(40),ziie0(40),zr0,zrl,zifl 

c ********************************************************* 
c 

fmin==f(l) 
c Calculate straight line equation coefficients 

ar0=(zrl-zr0)/fmin**2 
ai0-zifl/fmin**2 

c 
c Calculate integrals ZIIEO and ZIREO for each FC 

.do 2 i-1, nfc 
cfl-O.SdOO*dlog((fc(i)-fmin)/(fc(i)+fmin)) 
ziieO(i)-arO*(fc(i)*cfl+fmin)+(zrO-zrfc(i))*cfl/fc(i) 

2 zireO(i)-aiO*(fc(i)*cfl+fmin)-zifc(i)*cfljfc(i) 
c ************** 

return 
end 

c 
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c ********************************************************************* 
c SUBROUTINE EXTRAl ** From FEl to FE2 
c ********************************************************************* 
c Extrapolate experimental data from the maximum experimental frequency 
c FEl to a chosen higher frequency FE2 
c Calculate integrals in extrapolated region : ZIREH and ZIIEH 
c First approximation : 
c Straight line extrapolation for ZR (F) and ZIF (F) 
c ZR - ZREl at F - FEl 
c ZR - ZRE2 at F ~ FE2 
c ZR (F) - ARE*F + BRE 
c ZIF (F) - AIE*F + BIE 
c For ZR specify both ZREl and ZRE2 and calculate line coefficients 
c For ZIF specify line coefficients 
c Then integrate analytically 
c ************************************************* 
c 

subroutine extral 
implicit double precision (a-h,o-z) 
common /fcvari/nfc,fc(40),kfc(40),fc2(40),zrfc(40),zifc(40) 
common /extrh/zireh(40),ziieh(40),fel,zrel, 

1 are,bre,aie,bie 
common /extrcjzirec(40),ziiec(40),zre2,zife2,fe2 

c ************************************************* 
c 



fel2=fel**2 
fe22-fe2**2 

c Calculate straight line coefficient for ZR (F) 
are=(zre2-zrel)/(fe2-fel) 
bre=zrel-are*fel 

c 
c Calculate integrals ZIREH and ZIIEH for each FC 

c 

do 2 i=l,nfc 
fll=(fe2-fc(i))*(fel+fc(i))/((fe2+fc(i))*(fel-fc(i))) 
cll=O.SdOO*dlog(fll)/fc(i) 
cl2=0.5dOO*dlog((fe22-fc2(i))/(fel2-fc2(i))) 
ziieh(i)-cll*(bre-zrfc(i))+cl2*are 

2 zireh(i)=cll*(bie-zifc(i))+cl2*aie 

c Calculate ZIFE2 for subroutine EXTRAC 
zife2-aie*fe2+bie 

c ********************** 
return 
end 

c 
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c ********************************************************************* 
c SUBROUTINE EXTRAC ** From FE2 to F = INFINITY 
c ********************************************************************* 
c Extrapolate data from the chosen frequency FE2 to infinity 
c Calculate integrals in extrapolated region : ZIREC and ZIIEC 
c In this region, assume : 
c ZR (F) - ZRE2 - CONSTANT 
c ZIF (F) - ZIFE2 - CONSTANT 
c Then integrate analytically 
c ************************************************* 

subroutine extrac 
implicit double precision (a-h,o-z) 
common /fcvari/nfc,fc(40),kfc(40),fc2(40),zrfc(40),zifc(40) 
common /extrc/zirec(40),ziiec(40),zre2,zife2,fe2 

c ************************************************* 
c 

c 

c 

do 2 i-l,nfc 
clog-O.SdOO*dlog((fe2-fc(i))/(fe2+fc(i)))/fc(i) 
ziiec(i)-clog*(zrfc(i)-zre2) 

2 zirec(i)-clog*(zifc(i)-zife2) 

return 
end 

c ********************************************************************* 
SUBROUTINE MATINV(N,M,DETERM) 

c ********************************************************************* 
c MATINV solves a matrix equation of the form 
c [B) (X) - [D) 
c The answer (X) is put into the first column of [D] 
c Matrix [D) should be dimensioned (N x M), where 
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c M - (2*N + 1) 
c All columns of [D], except the first, should be initiallized with 
c zeros (0) 
c ************************************************************** 
c 

c 

c 

implicit double precision (a-h,o-z) 
dimension ID(6) 

common jmatrix/B(6,6),D(6,13) 

DETERM=l.OD+OO 
DO 1 I=l,N 

1 ID(I)==O 
DO 18 NN=l,N 
BMAX==l.lD+OO 
DO 6 I=l,N 
IF(ID(I).NE.O) GOTO 6 
BNEXT•O.OD+OO 
BTRY-O.OD+OO 
DO 5 J-l,N 
IF(ID(J).NE.O) GOTO 5 
IF(DABS(B(I,J)).LE.BNEXT) GOTO 5 
BNEXT-DABS(B(I,J)) 
IF(BNEXT.LE.BTRY) GOTO 5 
BNEXT-BTRY 
BTRY-DABS(B(I;J)) 
JC-J 

5 CONTINUE 
IF(BNEXT.GE.BMAX*BTRY) GOTO 6 
BMAX-BNEXT/BTRY 
I ROW-I 
JCOL=JC 

6 CONTINUE 
IF(ID(JC).EQ.O) GOTO 8 
DETERM==O.OD+OO 
RETURN 

8 ID(JCOL)=l 
IF(JCOL.EQ.IROW) GOTO 12 
DO 10 J-1,N 
SAVE-B(IROW,J) 
B(IROW,J)-B(JCOL,J) 

10 B(JCOL,J)-SAVE 
DO 11 K-1 ,M 
SAVE-D (I ROW, K) 
D(IROW,K)-D(JCOL,K) 

11 D(JCOL,K)-SAVE 
12 F-l.OD+OO/B(JCOL,JCOL) 

DO 13 J-1,N 
13 B(JCOL,J)-B(JCOL,J)*F 

DO 14 K-1,M 
14 D(JCOL,K)-D(JCOL,K)*F 



DO 18 I-1,N 
IF(I.EQ.JCOL) GO TO 18 
F-B(I,JCOL) 
DO 16 J=1,N 

16 B(I,J)-B(I,J)-F*B(JCOL,J) 
DO 17 K-1,M 

17 D(l,K)=D(l,K)-F*D(JCOL,K) 
18 CONTINUE 

RETURN 
END 
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