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Abstract

The Féurier—Bessel expansion is utiiized for the exact evaluation of
the DWBA amplitude in transfer reacticns. The partial wave radial components
of-the elastic scattering wave function in.the outgoing channel and one of.
the bound-state wave functions of the transferred particle are expanded in
terms of a complete_set of spherical Bessel functions over a finite interval.
For a fadial wave function of a given angular momentum, the basis is chosen
" to be a complete set of spherical Bessel functions of the same angular
momentum, so that the addition theorem for the product of spherical Bessel
function.and spherical Harmonic can be utilized. It is shown that the'
method proposed has the distinct advantage,that the recoil angular momentum
appears as a natural expaﬁsion parameter, and that the various approximate
methods can be retrieved as simple limits-of the exact expression. The method
is appliéd to the transfer of a single nucleon or a cluster, and to the transfer

of several nucleons.

* N . ! ] »
Work performed under the auspices of the U. S. Atomic Energy Commission.
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1. Introduction

Reactions between complex nuclei- in which one or several nucleons
are tfansferréd tQ form discrete states in’thé-product nuclei are thought
to be difect reactions, analogoué-to light ion reactions suqh as the (d4,p)
reagtionl).. In this case,'in lowest order, tﬁe réaction may be computedlby
the distorted_wave Born-approximation (DWBA)-H
The DWBA involves the evaluation of multidimensiqnal.integrals,
.:which ié difficult because the integrands.conSist of products of a number
of functions wﬁich-depend on different vector coorainates, with, however,
oﬁly several 6f tﬁem being independent. In the case of light nuclidel
reactions, such és (d,p), the evaluation is simplified by neglecting the
_effect of the finite size of the light nuclide (d in the case of (d4,p)
reaction). For reactions between complex nuclei, the neglgct of their finite
size is not jusﬁified, however. In addition to this, ﬁhe small de Broglie
wavelength of typical heavy-ion reactions requires that the particular
dependence of the_functidns in the,integranq on their vector .coordinates be
. retained with an accuracy éommehsurate with the wavelength. Evaluation of
the ihfegralS.which apéroximaté>the vector dependences of the integrénds
)
thile retaining the finite rangez) are referred to as no~recoil approximations.
(The zeré—ranée aéproximation of the integrals automatically neglécts recoil,)
There appear to be three.distinct approaches to evaluating the DWBA
integral without ﬁaking either the zero-range or recoilless épproximation.
These are usuélly referred to as "exact", the sense of the word being thag

~

any errors are due to the finite accuracy of the numerical methods, and not
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to the negleét-of ph?sical effecté. One approaéh;evaiuates directly the
multidiﬁensional integral, as in the work of BaymanB). A second approach
employs a Legendre expansion in twé vectors by which ﬁhe,angle integrals
can then be doﬁe in closed form,_ There remains a douﬁle—radial integral,
This is the formulation of Austefn, 35.él’4); originally dgveiopéd‘for (a,p)
reactions. It is the methqd'employed in the work of Yoshida et EL.S),
-of Devries6), aﬁd of Low and Tamura7)_ The third approach expands ghe
functions of the dependent coordinates in terms of functions for which a
separation into thé independent coordinates is possible. Thé most transparent
Way'§f>achie§ing this is the expansion of the distorted waves on a plane wave basis.
Then the coordinates separate trivially. This method wés formulated by
Charlton and Robsons), Sawaguri and Tobocmaﬁg) had earlier expanded the
distorted waves on an oscillator function basis which also permits a separation
of coordinates.
So far the direct evaluation of the multidimensional integrals for
heavy ion réactidhs has'beén'done bnly for angular momentum transfer equal
to.zero, perhaps because the method takes much computer time. .Computer
programs based on the approach of Austern SE_EL. also have turned out to be
costly to execute. In this connection, Low and Tamura have discussed how to
choose the integration regions judiciously so as to save computér time,
apparently at the cost ofbaccuracy in absoiﬁte, though ﬂot in relative, cross
sections. Of the third approach, the expansions of Sawaguri and Tobocman
converge slowly and have cénsequenfly been applied only to light systems
(N + 0). ‘The expansion in plane waves used by Charlton has been thus far

applied only to very light ion reactions.
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 In‘vi¢w of.the ébove critiqﬁe there is evidently a néed for a fast
and accﬁratg.method_of evaluating the DWBA integralg. ‘We propose the method
digéuséed in'détail in the next section, which appears to us to be a fast
‘method, and one in which fhe convergence with reSpect to reéoil angular
_momeﬁtum can be exploited. The  method is based first on the existence of an
addition theorem'for the product of a spherical Beséel function and spherical
harménic, analogous to that for a Hankel function. This addition theorem
which'is the vehicle for the separation‘of coordinates, can be exploited
by. :gpresentiﬁg the functions whose coordinates are to be separated, by a
Fourier-Bessel series. Our approach belongs to the third éategory mentioned
above. A viftue of our.particular-formulation is*that the recoil angular
>’momentum appears as the natural ekpansioh parametér. ‘This fact can be
éxplqited in nqmerical calculatiohs by truncating the series when satisfactory
convergence is achieved.

In Section 2 the method is formulated. The# the recoil angular momentum
aﬁd selection rules are discussed in Section 3, while in Sgction 4 webretrieve
earlief_apprqximate solutions from our general resulf, The Fourier-Bessel
series’is discussed with several examples in Section 5. The general case of -

.multinucleon transfer is formulated in the Appendix.
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2 Formulation of the Problem

We shall use a notation that is suggestive of a (d,p) reaction though,

of course, our interest is in heavy ions. We label the reaction as.

‘D+A->P + B

where -
D=P+ N

and show the coordinates in fig. 1. We write the wavefunctions for D and B as

M

. ) . : D
D . .
® " (D) = E B .. (P,D) [® (p) ¢ (R )] (1)
‘ JD _ LlSlJl _JP LlSlJl ~PN JD
JPLlSlJl
. M . M .
B ] B
® °(B) = > B_ (2,B) [@ (a) ¢ (R >] (2)
Iy e L,S,7, T L,8,0, ~AN g
“AaT272"2

in which the B's are parentage amplitudes. As usual in DWBA, the nuclei A and P

are regarded as inert cores of D and B.

The transferred object N may be either a single nucleon or a cluster
of several nucleons whose intrinsic angular momentum is S. In the

latter case RPN and RAN are to be interpreted as the centers of mass of the

group of transferred nucleons and Ll and L2-the orbital angular momenta

)
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of their center of mass. about P and A, respectively. Also ¢ depends in this

case on the internal coordinates of the clﬁster. These details are, howéver;

irrelevant to our method so we shall proceed as though N were a nucleon.
The more. general case of multinucleon transfer in which the cluster
condition is relaxed is treated in.appendix_A.

- The DWBA amplitude for the reaction is

D A D

3 D4 A {+)
T —ff (RP) <‘1> PlV(RPN) I(DJ q)J ) Yy " (Bp) dRp dRyy (3)

which upon introducing the parentage expansions,  appears more explicitly as

2 B ; ' _ ' (4)

(-)* : (+) . .-
_/Sf.w ®) o, ) V(R ) ¢ ( . (R) dR_ @R .
~P L232J2M2 R DN Lllelml ka Ry) ARy ARy -

The difficulty'mentioned above of evaluating this six-dimensional

integral is now apparent. The coordinates of integration, R, and-BPN, appear

1
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as arguments of only three of the functions, but appear in the other two in

the combinations

<A, _ANHM
AR "E®% " 5p B

. P
N = + - ’ : B
Ban T 5 Y T By _ . (6)

(In this context we use A to.denote the mass of nucleus A.) The recoilless

approximation.cénsists in neglecting the second term.on the right side of BP'
Aside from the trivial scaling factor A/B,‘the arguments of the two distorted
waves are then the same. Thi; simplifies the integration very much. . However,

this neglect would be justified only when wk (Rp) varies slowly over distances
' ' P

(7

o
]
ol=
wi=
2]

where we use r, to denote the. radius of D which is the approximate bound on
'RPN imposed by the presence of V(R in . (5). Hence recoil effects will
be small only if the.de Broglie wavelength X = l/kp is large compared -

to d, i.e. S , ;
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]
i

ul=z

W=
<

r <<1 . ' o (8)

This inequality‘is rarely satisfied (see Table 1);

To evaluate the integral (5) without makihg the zero-range or:reCOiiless
approkimation, We seek‘to’expresssthe functions W(Rp)vand ¢(RAN).each as the
prqduct of a function of RD'and of ﬁPN', To this end we first introduce,

as usual, the partial wave expansions

*
' ic. L VS V!
(+) - E D, D D, D A
- Y (R) =4m ) @ i F_(k,R) Y (k)Y {(R)
'k ~D L, DD "L "D "L "D

Tpfp

: ]
v 10 -L H u_*
(=) * _ E: *p . 7Vp : P~ P A
wk (RP) =41 ) e i FL.(kP'RP) YL-(kP) YL (RP) . (9)
L_u : P P P
PP

~

If F;, were a spherical Bessel function, then the addition theorem mentioned
in the introduction could be used. This we arrange by use of the Fourier-Bessel

expansion

. . - P . P - ..=< a{l '
P GprRy) Za @F®r) ©<RSSR) . (10)

n

In section 5 we discuss this expansion in more detail. The , important
fact, shown there, is that only a few terms, about 10 generally, are .needed -

to represent FLP in the necessary range to good accuracy.
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. The range, Rm,,over which the representatién is made is arbitrary in
principle. The convergence is faster the smaller the R.mo On tﬁe other hand,
R.m muét be chosen large enough to obtain éll significant contributioﬁs tovthé
integral (5). In éractice this is achieved if R.m is a few fermi's larger

than the sum of the radii of D and A.

s g Bayd PY Uy

Similarly, if we denote the radial part of ¢
| 4 S T 1%, 2"2

¢ Ry = up 5 Ry [y (R, 8,15

L_S.J 295 L,

2722 2

we can expand it

Uy, 5. Ran =Z b 3 B Ran! - , (11)

'
X i~ o P A
j, (GR)) Y (R) = E: A (=) = 5 (¢ = R)
LP P LPuP P SLPJLRLP !LP B D
2L
P R
(12)
N M oA A *
x j, (0= =R )[Y (R) Y, (-R )]
SLR D B PN Q,p D RR PN LPuP

and
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Iy, (BRyy) L’ }: ML, ! Ip (B%)
2 .
(13)
X 3y ® 5 5 Fpn’ [YA (Rp) ¥y (RPN)]Lzlvx2 y
Now the integral (5) can be written
. i(o, +0,) Ca
£ = (4m) ZZ DLPY* (k)Y (k)
p“p P
Lp¥p | - '
- £+
.y P R E: A
XZAQQL(’ L A, )
PR P . 2
QPQR : A
<'[y4 ®) ¥ (?)]- - .[[Y'(ﬁ) Y (?)_] ) S ] |
Q,P , JLR LoHp ' | A L L, 2 T,My
: ' (14)
x |Y: (R [Y (r),s ] )
R R R J1my
L L - L ) L, 5
X Z 'anp b‘mzf j,Q, (ang-%l—;-r R.(B —r) V(r) ur g (r) ™ ar
R , 171
nm o . . . .
p L L
f“nz @F &R 560 R F R R? 4R
. D .
(o] . .

The main result of_our’paper is expressed in eq. (14). 'The six-fold integral

representing the t-matiix has been reduced to products of two one-dimensional

&

'integrals.
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The angle integrals appearing in eq. (14) can be evaluated in closed

form as

‘ ' BLD J195 £
(angle integra; ) = GS S GS < §:

(15)

L +H +J_+M
D

D -2 2 S
(=) G(JlJZLlLZLPLDSLAJLRJLP sL)

where "G 1is a geometric factor

' 2 AL L. 4L
1 LD+Llle+s+SC< b D> < R 1>

G == (-)
am 0 00 0O 00

(16)

.LZJ;'_LI Lpi LD' ﬁ:AgAAAAAAA 1/2
(PR112'2PD)

Lza(’ Ll]

J, s aJ

1 5 lR 2 A A KP QR

. For convenience let us define

7 (LlSJ'lLZSJz)‘;( ® - Z Z A (_)LP
‘ L L : . 2 'Q'RLP

P D P
%pZR M.

G(J I, L LPLDR.A,Q,RZPSZ) " (17)

27172

L. L L : L
P 2 . . P A R 2
X E a b Inm(LleLPQRR) jzp(an gz R JA(Bm_ R)
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where Ihm denotes the r integral in eq. (14). ' Then the result for t is

i(o +0) L -L_ . N
£ = (am?2 Z e P DD P Ry y (k)
L UL ’ Lphp P Lpup' P
SHooHp . : -
£ JC (18)
LpLD J1J2 S (n,n )Jf
Vf KL
Lu Hpip WM, ¥ E:D
where’
L= 2L + 1, . n = Lls:r‘l ;o my = LST, (19)
and
(nlnz)Ji ’ (n n Lif : S
= —f }7’ (R) F (kD,R) R dr . (20)
p d - D

This.is the.distorted wavgvintegral as it appears in this formulatiop. In the
appropriate limit, the usua1 zer6—range expression is retrieved, as discussed
in section 4,

 Since the scattered functions FL(k,R) are complex, the expansion (10)
is.doné'for both real and imaginérylparts.although we have not carried this
throﬁgh'in our nbtatioﬁ, for the sake of simpiicity of appearance.

' Usually_in transfer réaétionbcalculatiohs, the asymptoﬁic region of all
compoﬁents of a given state are chosen to be equal (to the separation energy
for example).. Thérefore, the séme expan;ion paiameters bm.and Bm in (11) apply

generally to all components independent of L2.
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‘The differential cross section is related to the transition amplitude,

Eq. (4), through the expression

do _ Hoa Mpp ]:_Il v 1 Z ITIZ . (21')
das? (2ﬂh2)2 kD (2JD+l) (ZJA+1) M M
] A B
MPMD

where U and‘uPB are the reduced masses ‘in the initial and final channels

DA

of the reaction. Utilizing Egs. (4) and (18), we obtain

- ' 5 .

g0 _Yonles o Mem L | 8 | 2
3 — 3 ) i
an (2ﬂh2)2 Ky 23, +1 J1J2x’u (ng+1) (2J2+l) J,3,Zu
where
By g £y (4m® Z Z B?S g (BsD) By o 5 (A,B)
172 LS LS, L H Lo ‘1 171 2°2%2
L-Ly d(ogto) o o <LPLD‘j:>
X i e Y (kDY I\ (22b)
LpHp D LMy P \Mp=H - M
(nlnz)af
X KL L. 6s ] 55 S
pD 1 T2

The contributions from different Jl'J7 andsl add incoherently.

&
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3., Recoil Angular Momentum and Selection Rules

The angular momentum couplings are exhibited in fig. 2. It is observed

‘tﬁat ;i is the angdlar momentum transfer, It is a particular virtue of this
approach that the recoil angular momentum QR appears explicitly. We give it
this name because in the recoilless limit N/D.- O

N

M N . . ;
$ — " e & e ) 23
jQR(an DB r) > 62 (0] as 3 0 ° : (23)

Thus QR is thé'angulaf-momentum associated with the recoil.

From an examination of.ﬁhe'geometrical.factors,we can derive the parity

selection rules,

L _+L L_+L )
P Payt P . | (24)

The first two factors express the conservation of parity and the third indicates

“that the angular momentum transfer Jf, which is subject to the vector selection

rules, . ¢

L = 14, = 34, (25)
is not restricted by the parity selection rule. Only when ZR'= 0 does A'+££ '
in -which case the recoilless selection rules hold. In general

L =N+ 2

R * (26)

That the angulaf momentum transfer Jf is not genérally restricted by the parity

L . . 0
change has very important consequences as observed in earlier workl ).
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It is a convenient. feature of this formalism that the recoil angular
momentum appears éXplicitly because we anticipate that this quantity is .
restricted to smal1 values., Thus, the-convergénce in this vériable can be
exploited in numérical calculations. The convergerice in QR dgpends:on the
‘ magnitude_of.the- r integrals in gq; {14) for various %R. This in_turn
.depends_on the siée of the argument for ng. The.gmaller this érgumenf thg

faéter the convérgehce; It will be clearer in the néxt seétiqn that} as
concerns the Sum'oﬁ'n; the most.important terms are‘OLn o kp.i Because.of the

appearance ofV(r)uL J (r) in the r integral, the main contribution comes.
1Y v . - -

from r < X the "sizef of D. Thus, the argumént of jZR is typically.bounded
by
N M ) (27)
X ===k -
DB p D
Since a Bessel”function jz(x) has the property that its first maximum occurs
at xmax.> 2(2%1) , Wwe conclude that the recoil angular momentum RR'is
restricted to values.
' . N M
S == (28)
VRR(£R+1) 55 kP r

_ This limit is_consistent with the one already diScussed following eq. (6) from which
we learned tﬁat'x muét be much smaller than unity before recoil can, & priori, be
negleéted;  NoQ we learn from eq. (28) what range of recoil angular momenta
will be significant. For a few typical réactions we show x, and the maximum

recoil angular momentum expected in Table 1.
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4, Retrieval of Earlier Results
Here we briefly show how several special cases can be retrieved from

the exact result given above. These can be used as necessary conditions of

a computer programs correctness, -

4.1. ZERO-RANGE

The zero-range approximation used in (d,p) calculations can be obtained

by choosing

V() u. - (£) =D.8(r) § i | | | (29)
| RO 0 L0 | :

Then"'

Lom (BBl def) —> Dy _GSLRO %00 GL‘lo. . (30

The n and @  sums now yiéld back the original functions so that we obtain

CIES

R) u; _ (R) j (31)

- ("R)-——>‘FG G. F. (k_,
}LPLD o, 0, e 272

2 P

Thus, XK_ becomes the usual DWBA integral. . The geometrical factor. is denoted
. oD o
" in this limit by GO.
" We note that for cdnveﬁience in checking a computer program in this
limit, it can also be achieved by taking §-+ o, §-+ 0. Referring to the r

integral, eq. (14), we see this has the same effect as written above, since

in these limits jzR > 62R06(r)' and j, > 620 8(r), respectively.
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4,2. BUTTLE-GOLDFARB

These authors tfeated the finiﬁe'range in fhe problem but neglected
recoilz). They also used Hankel function téils to represent the bound state
wavefunctions, which we do not. We obtain the recoilless approximation by

taking N/D +~ O in eq. (14). This yields

—

' N -+ ‘ . .
62 0 S (x) as 0 . (32)

3
e : R

Referring to fig. 2, we see that as a consequence of QR = 0, then £ - L, »
A +>X and zp +'Lp. This is the finite range recoilless approximation in which

the correct bound state wavefunction, u is still employed. If instead it

L2
is replaced by a Hankel function,
v /f -L, A(l) - _
. . Yy . .
up L i hL (i K2 r) (33)

2 ' 2 o2

then the nm sum of the two integrals in eq. (14) becomes

'-LZ * P 2
'/i:_fj (1 K. =x) V(r) u (r) r~ dar
1 D LlJl

(34)
| A L (DF 2 |
x f FLp(kp, ZR) h (i K, R) ‘FLD(kD-’R) R® dr

which is recognized as the result of Buttle and Goldfarb.

-
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4.3. RECOIL CORRECTIONS BY TAYIOR EXPANSION

The fifst order treatments discussed by Négarajanlo) and by Baltz and
Kahanall) involve expanéions in the mass ratio N/D. The first order approximation
thus treats.QfR = 0 and i approximately, that is to first ordér in N/D., They
could be Festgd against tbe 2R7= 0 and 1 terms of our formulation which

compute these contributions to all orders in N/D. From eq. (14) their

approximation would be retrieved by replacing ' N
1 ’.,QIR=0
. N M N M s L. =1 :
_— —_— — .
JQR(an 5B r) an 55 ¥t R | . (35)
: 0 ,5LR>2

The second order recoil correctionl2) can be obtained by keeping QR

v K _ . . ' 2
up to 2 and approximatlng the Bessel function (35) by its series up to (N/D) .
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5. Fourier-Bessel Expansions

This expansion isléspeciélly useful fqr reaction calculations because
it allows the representation of a function in a specified interva113), The
appropriate interval is of course the one extending to the maximum distance
at which the trénsfer reactions can occur with appreciable probability. This
is typicaily 15 to 20 Ff' This expansion allows the representation of an

arbitrary function F(r) in the interxrval

0 <r <Rr - » (36)
by
P = ) ey ten) - (37)

n=1

where the O ard determined by the condition

.' dv'. -
A jz(an) + B 3R Jz(ung = 0 | (38).
and
A _ -f1aFr | : : .
5 - \far . (39)
r=R . , :

We see that the series has the property that it has the same logarithmic
derivative at the boundary as the functioh'itself.' In particular, if R is
chosen to be a zero of F(r) then we choose B = 0, and every term in the

series vanishes at the boundary R.
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A The order £ of the Bessel functions is arbitrary, but clearly since
we want to use the addition theorem (12), if F(r) is associated with angular
momentum L, weé should ¢hoose £ = L.

The coefficients in the expansion are given by
_ R
2

a = - - F(r) j, (o r) r dr . (40)
n 3.2 . . . / 2 n
R™[j5 (@ R) - 3, J (@RI . (aR)] o _ :

For the pufpose of exhibiting the accuracy of the method for a scattering
function, we display in Fig. 3 a Coulomb function corresponding to
_ - -1
£ =85 |, k=10pFf ., n =21
(typical of O + Sn, E =.160 MeV). In this case we choose to represent the

function. up to its zero at

R = 15.408 F

aﬁd choose therefore the boundary condition B = 0 in f38). ‘Since a élot of its
Fourier-Bessel representation with 10 or more térms‘would lie generally within
a line‘width on the graph, we plot instead the percentage error corresponding
to 10 terms. This is seen to be small exceét.where the function itself is
»shall,.and there even 100% error is immaterial. Where the function is large,
the error is seen to be less than several percent. A 15 term series represents
the function at its maxima to an accuracy of better than 1/10%.

For'a bound state, where the functio; does not have é zero in the
asymptotic region, the loga;ithmic derivative of the representation is matched

to the function in accord with (39). For a 24 function shown in fig. 4, R
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is chosen to be 15 F.'.Again the percentage error corresponding to 10 terms is
seen to be smali except when the function itself is small. Even so, with 15
terms the error is less than several percent at its worst point, on the

boundary R.

It is worth noting, that for. a scattered function, the best choice
for the boundary is a zero of the function, for then, by construction, the

basis functions vanish at the same point.
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APPENDIX A

We wish to generalize the formulation to include multinucleon transfer.
For simélicity, we assume that the interaction causing the transfer depends only
updn the separation betwéen the center of ﬁass of the nucleons being transferred
and the_residual‘core; Suppose’ a group of N nucleons is transferred.

' We have to replace eq. (1) by the following parentage expression

I L1517 Jp o 51T ~ S
plll : . '

My ' . : "5
QJD (D) = EZ:4 B 7. (B/D) [® () ¢ (§PN,01-~-QN]J (A1)

Where RPN represents the separation of the centers of mass of the N transferred
nucleons and the residual core, and pl,pz"' represents the rest of the internal
co-ordinates of the group. One separates the internal motion.of the cluster

~and the motion of its center-of-mass by a transformation of the form

' L
- AN 1
0 s g BpyrRyttofy) = E: Cx A (a2
1°1°1 - _
)\lAl

. . M
- - _ 1
X [}¢Al(§PN? ¢Al(91"'9N)} Ll’Si]J.
1

A similar representation is sought for the other nucleus B; .

Mg

MB ) .
¢, (B) = Ez Bl s g (A+B) [éJ Rl s g (BAN'QI...QN{]J (3)
“B JLs g 222 “a 2722 B *

A"272"2 |
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M ' L, L M,
, 2 ... - ..
O 5 g “(RygrPy o0y EEI W) [}¢A (Ray) & (B° QN)}I?'SZJ (n4)
2725, 2 LUA, 2 J
A, 2

¢

Again we have‘an_equation like (5) with the ¢ given by the.above (A2) and

LsJ

(a4). Just as before the function of R

namely ¢p can be expressed in
AN’ A2 .

terms of RD and R?N by use of a Fourier-Bessel series as in (11) and (13).

Proceeding as before, we obtain, analogous to (14) the eQuation

. i{(oc_+0_) L _-L YA a -
(am 2 f{: 2{: e P D jD P (k) ¥ (k,)

L M LU
L L D
p'p “pYp : D BP

-
I

_ 9_+2 L, L
P R 1 3 E: A
8 E::Azpz . ) "EZ: “u, CAAZ AAQAé-)
8 A%

¢ [Yz RI¥ "”]L ’ [{[YA(R)YSL(r)]Az “’A‘Ql"'EN)}Lz'Sz]
) 4

P R J2M2
lv. @, GY RN >}1,,s ] ) (a5)
LpHp Al ATl AN AT I M ,
v : : 11
v L. A Bm 1 A
§ P. 2 . PNM . 2P 2
- % Z an bm »[ 32' (un B- _B— r) jZ(Bm B r) V(r) uL J (r)r dr
: o) R 11
R _
m L_ - A, :
o PA . 2 2
X '[o J,Q,P <an B R) Iz (Bm R> FLD (kD'R) R dR

- The angle bracket can be evaluated to' vield
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| . | | LPLD;Z JJz;(
(angle integral ) = § 8 E:

'Sls -SlS2 up-uD u “1"“2 u
- Lu
L+ ,)'+M' v '
X (=) G(J1J2L1L2A1A2}\LPL L8 s,f)
with -
L KLY [2.2A
. = _Si (_)L1+A1+A2—S—)\+JI+LD P D R ‘1
an 0 0.0 0 0 O
Lz "{ Ll . A2 i,Al Q’P‘iLD Al 9371\2 (A7)
X
Jl ] J2 SLR SL:A A ALP !LR L2 A Ll
XI‘AAAAA/\AA/\/\_AA ]/2
'(gPAQ“QR 1717272°P DAlA2)
and
A(BD) = fapytrrdeg bgy (90t eRy) Opy (Rt Ry) - (r8)

is thevdverlap‘integral for the internal state of thé group of N as they appear
_in'the composite nuclei B .and D, respectivély.
One can obtain the earlier results- (14), (15), and (16) for transfer

of a cluster from the above general result by setting

» 1 . (A9)

' L
A+>o0 , Q 1, Cyp
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We shall iliustrate how the representations (Al) and (A2) may be
typically obtained.by considering a two-nucleon transfer reaction. It is
usual to express shell model wavefunctions on a jj coupled basis. - The nuclear

state of D for example can be expressed as

=) B,.,. (@0 [o_,0.. ' | -
° > 5509 (BeD) [J ,¢JJ,J]_ | o (A10)
D ) P J
- - D -
where Bjj'J will be, in general, a product of a two particle coefficient of

fractibnal parentage and a configuration mixing coefficient;v The jj. coupled

two particle symmetrized state ¢jj'J is of the form

' 1 ™ :
¢--| = [(b--' (1,2) + (-1) ¢.(2,1)] . ) (all)
33°3 QTT:K;;TT- jj'g | j3raTn _

Where we have used the shorthand notation

=8 88,
83+ 7 °mnr 8 7330

For like nuclebns, we must choose T = 1.

We obtain the répresentation (Al) by use of the LS-jj transformation

coefficient,

L 1/2 3
1

b.o0 = — zij & 172 3¢ [¢ - (1,2) + (=) 9,,, (2,1ﬂ.
Jj3°'J /ETT:Z;;T ) . 22°'LSJ LU'LsT

LS L s J

Combining eqgs. (Al2) and (A10), we obtain

L 1/2 3

B =) |2 172 5 B, S (a13)

LSJ ij'g

j5* L s 3

(Al12)
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" If now we use the Moshinsky transformation to separate the center-of-mass

and relative motion, we obtain'

) 2 1/2 3
¢...J. = -——i—— Z 1 /2 5! <\))\NA;L|nQ,n'Q,';L)
31 VZ(1+h_ ) :
o 33 L 8§ J
(A14)
A+S+T >
X (1-(=) ] 100y @) 0y (BT, 853 .
Comparing this with (A4), we obtain .
S ML | .
[P ) RS SRS § L (VANA;L[n&n' 2" ;1L ) (A15)

V2 (1+Ajj )
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APPENDIX B
The addition theorem (Eq. 12) is easily obtained by using the relation

. .*. l\.rr ‘ i-L ~ ia’ﬁ % . ‘ ' (Blj
JL(qR) YLM (R) = T dg e YLM (q) -

where the integral is-over the direction of the vector gq. If

O T -
= N ’ EER . - (BZ
R arl+ Br2 = _ ‘ )

one obtains.(see Eqn, .12)

. 2 E: ' L
jp, (aR) Y . (R) = AL p(5) 73 toar)
» L1 172° 1
172
(B3)
A A *
x j. (Bar.,) Y, (r,) Y (r)]
L, 2 [ L1 L, 2 -
wheféi
p
4m (2L +1) (2L_+1) 2 L ~-L.~L ’
AL L= [“ — 2 ] . 120ty LIOLZOILO y . (B4)
172 (2L+1) ‘ .

For completeness we add that the addition theorem given by Buttle and Goldfarb

for the Hankel function is

L, e Z A RS a : :
h: "' (igR)Y.  (R) ~ = A (=) ~ h "7 (igar )3 (igBr >[Y ()Y, (x )]
L ™ L L,L Ly 19, (e [ P T
-LlLZ |

. (B5)
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Table I, For a few typlcal reactlons the parameter X Whlch glves a measure of

thevimportance of recoil- (Eq._8) is llsted.-‘The largest recoil angular momentum

&R is given by'VRR(£R+l)ﬁ=‘x which for such a rough estimate we solve as QR-: X.

I
=

" Reaction . . .. - - B (MeV). o T x
: T B - Lab . :

ﬂ13C(12c,13C)12c{_ N 87 R 2

2oa (16 15N)209 Bi | 104 - R "5
1205, (18 16o)122 Sn - | 100 4

12,20, 160)16 o | : s | | 5
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XBL745-3030

Fig. 2.

The angular momentum coupling is displayed by this figure. The
relative angular momenta in the entrance and exit channels, D and P
are labelled LD and LP" The anyular momentum of the center-of-mass

of N in D = P+N is J, = L, + S and it is transferred to J. = L

+
1T T2 I S

2

in B = A+N. The total angular momentum transfer is ;fwhich is the sum

" of the recoil angular momentum Qk and A.
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50

Error
o

Function
o

10 11 12 13 14 15

XBL 745-867

4

- Pig. 3

A Coulomb function for L = 85, k = 10 F“l, n = 21 is shown together with the error
with which it is represented by a 10 term Fourier-Bessel series.: Except'where the

function itself is small, the error is umall.

|
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50
2 AN
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-1 r— -
r -
- -1
X L
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. Fig. 4

A bound 2d state is shown together with the error with which it is represented by

a 10 term Fourier-Bessel series.



LEGAL NOTICE

This report was prepared-.as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.




- s ¥

TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720



