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Abstract 

LBL-2378 

The Fourier-Bessel expansion is utilized for the exact evaluation of 

the DWBA amplitude in transfer reacticns. The partial wave radial components 

of the elastic scattering wave function in the outgoing channel and one of 

the bound-state wave functions of the transferred particle are expanded in 

terms of a complete set of spherical Bessel fUnctions over a finite interval. 

For a radial wave function of a given angular momentum, the basis is chosen 

to be a complete set of spherical Bessel functions of the same angular 

momentum, so that the addition theorem for the product of spherical Bessel 

function and spherical Harmonic can be utilized. It is shown that the 

method proposed has the distinct advantage that the recoil angular momentum 

appears as a natural expansion parameter, and that the various approximate 

methods can be retrieved as simple limits of the exact expression. The method 

is applied to the transfer of a single nucleon or a cluster, and to the transfer 

of several nucleons. 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
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1. Introduction 

Reactions between complex nuclei in which one or several nucleons 

are transferred to form discrete states in the product nuclei are thought 

to be direct reactions, analogous to light ion reactions such as the (d,p) 

. 1) 
react'~on • In this case, in lowest or.der, the reaction may be computed by 

the distorted wave Born-approximation (DWBA). 

The DWBA involves the evaluat.ion of multidimensional integrals, 

~hich is difficult because the integrands consist of products of a number 

of functions which depend on different vector coordinates, with, however, 

only several of them being independent. In the case of light nuclide 

reactions, such as (d,p), the evaluation is simplified by neglecting the 

effect of the finite size of the light nuclide (d in the case of (d,p) 

reaction). For reactions between complex nuclei, the neglect of their finite 

size is not justified, however. In addition to this, the small de Broglie 

wavelength of typical heavy-ion reactions requires that the particular 

dependence of the functions in the integrand on their vector.coordinates be 

retained with an accuracy commensurate with the wavelength. Evaluation of 

the integrals which approximate the vector· dependences of the integrands 
I 

while retaining the finite range 2) are referred to as no-recoil approximations. 

(The zero-range approximation of the i.ntegrals automatically neglects recoil.) 

There appear to be three distinct approaches to evaluating the DWBA 

integral without making either the zero-range or recoilless approximation. 
, 

These are usually referred to as "exact", the sense of the word being that 
I 

any errors are due to the finite accuracy of the numerical methods, and not 
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to the neglect of physical effe<::ts. One approach evaluates directly the 

3 
multidimensional integral, as in the work of Bayman). A second approach 

employs a Legendre expansion in two vectors by which the. angle integrals 

can then be done in closed form. There remains a double-radial integral. 

This is the formulation of Austern, et al. 4); originallY d.eveloped for (d,p) 

reactions. It is the method employed in the work of Yoshida et al.
5
), 

. 6) . d 7) of Devrl.es ,and of Low an Tamura • The third approach expands the 

functions of the dependent coordinates in terms of functions for which a 

separation into the independent coordinates is possible. The most transparent 

way of achieving this is the expansion of the distorted waves on a plane wave basis. 

Then the coordinates separate trivially. This method was formulated by 

8 9 
Charlton and Robson). Sawaguri and Tobocman ) had earlier expanded the 

distorted waves on an oscillator function basis which also permits a separation 

of coordinates. 

So far the direct evaluation of the multidimensional integrals for 

heavy ion reactions has been done only for angular momentum transfer equal 

to zero, perhaps because the method takes much computer time. Computer 

programs based on the approach of Austern et ale also have turned out to be 

costly to execute o In this connection, Low and Tamura have discussed how to 

choose the integration regions judiciously so as to save computer time, 

apparently at the cost of accuracy in absolute, though not in relative, cross 

sections. Of the third approach, the expansions of Sawaguri and Tobocman 

converge slowly and have consequently been applied only to light systems 

(N\+ 0). The expansion in plane waves used by Charlton has been thus far 

. 
applied only to very light ion reactions. 
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.Inview of the above critique there is evidently a need for a fast 

and accurate method of evaluating the DWBA integrals. We propose the method 

discussed in detail in the next section, which appears ·to US to be a fast 

method, and one in which the convergence with respect to recoil angular 

momentum can be exploited. The<method is based first on the existence of an 

addition theorem for the product of a spherical Bessel function and spherical 

harmonic, analogous to that for a Hankel function. This addition theorem 

which is the vehic~e for the separation of coordinates, can be exploited 

by. representing the functions whose coordinates are to be separated, by a 

Fourier-Bessel series. Our approach belongs to the third category mentioned 

above. A virtue of our particular formulation is'that the recoil angular 

momentum appears as the natural expansion parameter. This fact can be 

exploited in numerical calculations by truncating the series when satisfactory 

convergence is achieved. 

In Section 2 the method is formulated. Then the recoil angular momentum 

and selection rules are discussed in Section 3, while in Section 4 we retrieve 

earlier approximate solutions from our general result. The Fourier-Bessel 

series is discussed with several examples in Section 5. The general case of 

multinuclean transfer is formulated in the Appendix. 
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2. Formulation of the Problem 

We shall use a notation that is suggestive of a (d,p) reaction though, 

of course, our interest is in heavy ions. We label the reaction as. 

D+A+P+B 

where 

D = P + N B = A + N 

and show the coordinates in fig. 1. We write the wave functions for D and B as 

B SJ (P,D)·[¢J (P) 
Ll 1 1 P 

(1 ) 

BL S J (A,B) [~J (A) 
2 2 2 A 

(2) 

in which the Bls are parentage amplitudes. As usual in DWBA, the nuclei A and P 

are regarded as inert cores of D and B. 

The transferred object N may be either a single nucleon or a cluster 

of several nucleons whose intrinsic angular momentum is S. In the 

latter case Rand R are to be interpreted as the centers of mass of the 
~PN ~AN 

group of transferred nucleons and Ll and L
2
.·the orbital angular momenta 
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of their center of mass about P and A, :r:.espectively. Also <p depends in this 

case on the internal coordinates of the cluster. These details are, however, 

irrelevant to our method so we shall proceed as though N were a nucleon. 

The more general case of multinucleon transfer in which the cluster 

condition is relaxed is treated in appendix A. 

The DWBA amplitude for the reaction is 

which upon introducing the parentage expansions, . appears more explicitly as 

BL S J (P,D) BL S J (A,B) 
1 1 1 222 

c c t (4) 

The difficulty mentioned above of evaluating this six-dimensional 

integral is now apparent. The coordinates of integration, Bo and~N' appear 



-6- LBL-2378 

as arguments of only three of the functions, but appear in the other two in 

the combinations 

R =~R NM 
:vp B -0 - B D ~N 

p 

+ 0 ~N (6) 

M B + P A + 0 

(In this context we use A to denote the mass of nucleus A.) The recoilless 

approximation consists in neglecting t.he second t.erm on the right side of ~p. 

Aside from the trivial scaling factor A./B, the arguments of the two distorted 

waves are then the same. This simplifies the integration very much. However, 

this neglect would be justified only when I}Jk (R ) varies slowly over distances 
p p 

d = (7) 

where we use r to denote the radius of 0 which is the approximate bound on o 
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'x - ~~ k « 1 D B P r D ' (8) 

This inequality is rarely satisfied (see Table 1). 

To evaluate the integral (5) i'lithout making the zero-range or recoilless 

approximation, we seek to'express 1;he functions ljJ(Rp'> and <P(RAN) each as the 

pr~duct of a function of RDand of ~N. To this end we first introduce, 

as usual, the partial wave expansions 

(9,) 

If FL were a spherical Bessel function, then the addition theorem mentioned 
p 

in the introduction could be used. This we arrange by use of the Fourier-Bessel 

expans'ion 

=L 
n 

(0 ~ R ,~ R ) 
P Jl\ 

In section 5 we discuss this expansion in more detail. The ,important 

(10) 

fact, shown there, is that only a few 'terms, about 10 generally I are·. needed 

to represent FL in the necessary range to good accuracy. 
p 
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° The range, Rm,over which the representation is made is arbitrary in 

principle. The convergence is faster the smaller the R 0 

m On the other hand, 

R must be chosen large enough to obtain all significant contributions to the 
m 

integral (5). In practice ti1is is achoieved if R is a few fermi's larger 
m 

than the sum of the radii of 0 and A. 

Similarly, if we denote the radial part of <PLS J (~AN) by uL J 
22222 

we can expand it 

=L 
m 

The addition theorem is written for these as (see appendix B) 

Q, 

- \' A (-) p J' Il (ct AB Ro) -L Q,9.L N 

Q, Q, P R P P 
P R 

and 

(ll) 

(12) 
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(13) 

Now the integral (5) can be wri tten 

L' R, +R, L A p R' 
x , AR, R, L (- ) ,AAQ,L (-.) 

R,R, PRP AR. 2 
P R 

(14) 

L L R L 
x L p b 2 fm. (' p ~!i . ) a, In a D r 

n m ""R n B 
nm 0 

R r 'L , .. P A 
x 'In (a - R) 

"" ' nB o p . 

The main result of our paper is expressed in eq. (14). The six-fold integral 

representing the t-matrix has been redu.ced to products of two one-dimensional 

integrals. 



-10·- LBL-2378 

The angle integrals appearing in eq. (.14) can be evaluated in closed 

form as I 

(angle integral) = 

(15) 

where G is a geometric factor 

(16) 

For convenience let us define 

r:/, (L
l 
SJ

1 
L

2
SJ 2) I . 

/' L L (R) 
P 0 

(17) 
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where I denotes the r integral in eq. (14). Then the result for t is 
run 

t = 

(

L L .£) (J J ;£.) [. P D 1 2 . If 
...p' J.l -J.l J.l M -M J.l V" 
.?-J.l P D 1 2 

where 

A 

;J: = 2:l + 1 nl - LISJl n2 = L2SJ2 

and 

, (n
l

n
2

).;( 
1 f l n1n

2>L 2 
K = Il 

.' . (R) F L (kD,R) R dR 
LpLd LpLD D 

(18) 

(19) 

(20) 

This is the distorted wave integral as it appears in this formulation. In the 

appropriate limit, the usual zero-range expression is retrieved, as discussed 

in section 4. 

Since the scattered functions FL(k,R) are complex, the expansion (10) 

is.done for both real and imaginary parts although we have not carried this 

through' in our notation, for the sake of simplicity of appearance. 

Usually in transfer reaction calculations, the asymptotic region of all 

components of a given state are chosen to be equal (to the separation energy 

for example) . Therefore, the same ~xpansion parameters band 13 in (11) apply 
m m 

generally to all components independent of L
2

• 
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The differential cross section is related .. to the transition amplitude, 

Eq. (4)~through the expression 

dO ].lOA ].lPB k 
1 L ITI2 P 

dD = 
(27Th2) 2 ko (2Jo+l) (2J

A
+l) 

M M 
A B 

MpMO 

where ].lOA and].lPB are the reduced masses in the initial and final channels 

of the reaction. Utilizing Eqs. (4) and (18), we obtain 

1 

where 

·X 

The contributions from different J
l
,J

2 
andot: add incoherently. 

(21) 

(22a) 

(22b) 
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3. Recoil Angular Momentum ,and Selection Rules 

The angular momentum couplings are exhibited in fig. 2. It is observed 

that ~ is the angular momentum transfer. It is a particular virtue of this 

approach that the recoil angular momentum iR appears explicitly. We give it 

this name because in the recoilless limitN/D-r 0 

. ( N M ) ___ ~ 
J>I. an DB r ' 

R 
as !-rO 

D 

'Thus >l.R is the angular momentum associated with the ,recoil. 

(23) 

From an examination of the geometrical factors we can deriV'e the parity 

selection rules. 

L +L 
(_) P D = 

L
l

+L
2 

(-) 
A+>I. 

= (_) R (24) 

The first two factors express the conservation of parity and the third indicates 

'that the angular momentum transfer i:, which is subject to the vector selection 

rules, 

(25) 

is not restricted by the parity selection rule. Only when iR = 0 does A -r;e , 

in ,'which case the recoiliess selection rules hold. In general 

c[ = ~ + ~R (26) 

That the angular momentum transfer £ is not generally restricted by the parity 

change has very important consequences as observed in earlier work
lO

). 
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It is a convenient feature of this formalism that the recoil angular 

momentum appears explicitly because we anticipate that this quantity is 

restricted to. small values. Thus, the convergence in this variable can be 

exploited in numerical calculations. The convergence in iR depends on the. 

magnitude of the r integrals in eq. (14) for various i
R

• This in turn 

depends on the size of the argument for ji. The smaller this argument the 
R 

faster the convergence. It will be clearer in the next section that, as 

concerns the sum on n, the most important terms are ex '" k. Because. of the 
n p 

appearance of v(r)uL J (r) in the r integral, the main contribution comes 
1 1 

from r < r D, the "size" of D. Thus, the argument of ji
R 

is typically bounded 

by 

Since a Bessel function ji(x) has the property that its first maximum occurs 

at x> li(i+l) , we conclude that the recoil angular momentum iR is max 

restricted to values 

Ii (i +1) 
R R 

< 

(27) 

(28) 

This limit is consistent with the one already discussed following eq. (6) from which 

we learned that x must be much smaller than unity before recoil can, a priori, be 

neglected. Now we learn from eq. (28) what range of recoil angular momenta 

will be Significant. For a few typical reactions we show x, and the maximum 

recoil angular momentum expected in 'l'able 1. 
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4. Retrieval of Earlier Results 

Here we briefly show how several special cases can be retrieved from 

the exact result given above. These can be used as necessary conditions of 

a computer programs correctness. 

4.1. ZERO-RANGE 

The zero-range approximation used in (d,p) calculations can be obtained 

by choosing 

VCr) u
L 

J (r) 
. 1 1 . 

(29) 

Then 

(30) 

The nand m sums now yield back the original functions so that we obtain 

L L ( R) ---.,> 

pD 
(31) 

Thus, K becomes the usual DWBA integral. The geometrical factor.is denoted 
LpLD 

in this limit by GO. 

We note that for convenience in checking a computer program in this 

limit, it can also be achieved by taking ~-+O !:.-+O D 'D • Referring to the r 

integral, eq. (14), we see this has the same effect as written above, since 

in these limits j~ 
R 

6~ 06(r), and jt -+ 8~o 8(r), respectively. 
R 
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4. 2. BU.TTLE-GOLDFARB 

These authors treated the finite range in the problem but neglected 

They also used Hankel function tails to represent the bound state 

wavefunctions, which we do not. We obtain the recoilless approximation by 

taking N/D + 0 in eq. (14). This yields 

--> as 
N -+0 
D 

Referring to fig. 2, we see that as a consequence of ~R = 0, then ~ + LI ' 

(32) . 

I\. + t: and Q, + L. This is the finite range recoilless approximation in which 
p p 

the correct bound state wave function, u is still employed. If instead it 
L2 

is replaced by a Hankel function, 

(33) 

then the nm sum of the two integrals in eq. (14) becomes 

vf: ,-L2f ,* (' K .!:r) VCr) () r2 dr L ~ . J L ~ 2 D uL J r 
2 1 1 1 

(34) 

* 
F (k I !B R) hell (i K2 R) F (k R) R2 dR 

L P L D, P D. 

which is recognized as the result of Bl:tttle and Goldfarb. 
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4.3. RECOIL CORRECTION'S BY TAYLOR EXPANSION 

The first order treatments discussed by Nagarajan
lO

) and by Baltz and 

Kahana
ll

) involve expansions in the mass ratio N/D. The first order approximation 

thus treats ~. = 0 and I approximately, that is to first order in N/D. They 
.R 

could be tested against the ~~ = 0 and I terms of our formulation which 

compute these contributions to all orders in N/D. From eq. (14) their 

approximation would be retrieved by replacing 

1 ~R = 0 

. ( N M ) N H ~R 1 
J~R an DB r ~ a --r 

n D B 

0 , ~R ~ 2 

The second order recoil correction
12

) can be obtained by keeping ~R 

(35) 

2 
up to 2 and approximating the Bessel function (35) by its series up to (N/D) • 

," 
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5. Fourier-Bess~l Expansions 

This expansion is especially useful for reaction calculations because 

it allows the representation of a function in a specified interval13 ). The 

appropriate interval is of course the one extending to the maximum distance 

at which the transfer reactions can occur with appreciable probability. This 

is typically 15 to 20 F. This expansion allows the representation of an 

arbitrary function F(r) in the interval 

o ~r .~R 

by 

00 

F(r) = L 
n=l 

a j n (a r) 
n N n 

where the a are determined by the condition n 

and 

A 

B = (l dF) 
\F dr r=R 

·We see that the series has the property that it has the same logarithmic 

derivative at the boundary as the function itself. In particular, if R is 

chosen to be a zero of F(r) then we choose B = 0, and every term in the 

series vanishes at the boundary R. 

(36) 

(37) 

(38) 

(39) 
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The order t of the Bessel functions is arbitrary, but clearly since 

we want to use the addition. theorem (12), if F(r) is associated with angular 

momentum L, we should choose t = L. 

The coefficients in the expansion are given by 

a 
n 

= 
2 

R 

J 
o 

(40) 

For the purpose of exhibiting the accuracy of the method for a scattering 

function, we display in Fig. 3 a Coulomb function corresponding to 

t - 85 k 
-1 

10 F ., n = 21 

(typical of 0 + Sn, E = 160 MeV). In this case we choose to represent the 

function. up to its zero at 

R = 15.408 F 

and choose therefore the boundary condition B = 0 in (38). Since a plot of its 

Fourier-Bessel representation with 10 or more terms would lie generally within 

a line width on the graph, we plot instead the percentage error corresponding 

to 10 terms. This is seen to be small except where the function itself is 

·small, and there even 100% error is immaterial. Where the function is large, 

the error is seen to be less than several percent. A 15 term series represents 

the function at its maxima to an accuracy of better than 1/10%. 

For·a.bound state, where the function does not have a zero in the 

asymptotic region, the logarithmic derivative of the representation is matched 

to the function in accord with (39). E'or a.2d function shown in fig. 4, R 
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is chosen to be 15 F •. Again the percentage error corresponding to 10 terms is 

seen to be small except when the function itself is small. Even so, with 15 

terms the error is less than several percen.t at its worst point, on the 

bounda~y R. 

It is worth noting, that for a scattered function, the best choice 

for the boundary is a zero of the function, for then, by construction, the 

basis functions vanish at the same poin-t. 
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APPENDIX A 

We wish to generalize the formulation to include multinucleon transfer. 

For simplicity, we assume that the interaction causing the transfer depends only 

upon the separation between the center of mass of the nucleons being transferred 

and the residual core~ Suppose a group of N nucleons is transferred. 

We have to replace eq. (1) by the following parentage expression 

MD 
<P

J 
(D) = 

D 

M 

(R ~ P ••• P J D 
-PN -1 -N 

J 
D 

Where R represen.ts the separation of the centers of mass of the N transferred 
-PN 

nucleons and the residual core, and £1'£2··· represents the rest of the internal 

co-ordinates of the group. One separates the internal motion of the cluster 

and the motion of its center-of-mass by a transformatio~ of the form 

A similar representation is sought for the other nucleus B~ 

(AI) 

(A2) 

(A3) 
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. (A4) 

Again we have an equation like (S) with the ¢LSJ given by the above (A2) and 

(A4). Just as before th~ function of RAN' namely ¢A can be expressed in 
- 2 

terms of Rand R by use of a Fourier--Bessel series as in (11) and (13). 
-D -PN 

Proceeding as before, we obtain, analogous to (14) the equation 

t 
i(O +0) L -L * A A 

P DiD P (k ) Y (k ) 
e YL ~ D L ~ P 

D D P P 

(AS) 

2: 
L A Rm L A 

x \ a P b 2 f J' (Ci P ~ ~ r) J' ((3 2 ~ r) V (r) u J (r) r 2 dr . ~ n m 1 n DB 1m D L 
o R 1 1 

n m 

The angle bracket can be evaluated to' yield 



with 

and 

-23-

(angle integral) = 

x 

I\. 

. 

(
R-p KLD)· (R-R R- 1\.1) 
000 000 

x. R
P R 

x (i Kii £ 5 £ 5 £ £ K R )1/2 
P R 1 1 2 2 P D 1 2 

S1, (B,D) = .f· dp • ··dp cj>B*' (p ••• p ) cj> (p •.• p) 
A 1 N A -1 -N DA -1 -N 

LBL-2378 

(A6) 

(A7) 

(A8) 

is the overlap integral for the internal state of the group of N as they appear 

in the composite nuclei: BandD, respectively. 

One can obtain the earlier resul.ts (14), (15), and (l6) for transfer 

of a cluster from the above general result by setting 

A + 0 (A9) 
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We shall illustrate how .the representations (AI) and (A2) may be 

typically obtained by considering a two-nucleon transfer reaction. It is 

usual to express shell model wave functions on a jj coupled basis. The nuclear 

state of 0 for example can be expressed as 

=L B .. , (P,O) 
)J J 

r¢J ,cjl .. ,) 
L P JJ ~J 

(AIO) 

- 0 

where B. "J will be, in general, a product of a two particle coefficient of 
JJ 

fractional parentage and a configuration mixing coefficient. The jj coupled 

two particle symmetrized state cjl .. , is of the form 
JJ J 

1 
= 

12 (1+6 .. ,) 
. JJ 

Where we have used the shorthand notation 

6 .. , = <5 ,01111 , <5 .• , 
JJ nn;t.,N JJ 

For like nucleons, we must choose T = 1. 

We obtain the representation (Al) by use of the LS-jj transformation 

coefficient, . 

Combining eqs. 

B
LSJ 

1 

12(1+6 .. , 
JJ 

L [~. 
LS L 

1/2 

1/2 

S 

(A12) and (AIO) , we obtain 

L [i 1/2 

~J = Q,' 1/2 Bjj'J 

jj' L S 

~ ,] 
J 

(All) 

(Al3 ) 

(A12) 
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If now we use the Moshinsky transIormation to separate the center-of-mass 

and relative motion, we obtain· 

cp . . 'J = 
JJ 

x 

1 L 
h (1+6 .. ,) 

JJ LS 

1/2 

1/2 

S 

A+S+T I -+.-+ 
(1-(-) ) [CPVA(r)CPNA(R)], SiJ) 

Comparing this with (A4), we obtain 

'(-1) A+A-L 

. h (1+6 .. ,) 
. JJ 

(A14) 

(A15) 
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APPENDIX B 

The addition theorem (Eq. 12) is easily obtained by using the relation 

.-L 
~ 

41T 

.-+ :t 
~q·K 

e * Y
LM 

(q) 

-+ 
where the integral is over the direction of the vector q. If 

one obtains (see Eqn.12) 

where· 

* jL (qR) Y
LM 

·(R) ::;: 

= 

1 
(2Ll +l) (2L2+l)] 2 

(2L+l) 

(Bl) 

(B3) 

(B4) 

For completeness we add that the addition theorem given by Buttle and Goldfarb 

for the Hankel function is 
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Table I. For a few typical reactions the parameter x which gives a measure of 

the importance of recoil· CEq. 8) is listed. The largest recoil angular momentum 

tR is given by ItRctR +l)=x .wnich for such a rough estimate we solve as Q'R:::' x. 

Reaction 

l3CC 12C, l3C) 12C· 

208pb (16o ,15N)209Bi 

120sn(18o,loo)122sn 

l2c(20Ne,16o )lOO 

E
Lab 

(MeV) 

87 

104 

100 

78 

x - t - R 

2 

2 

4 

5 
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N 

p R· p 

A 

Fig. 1 

The coordinates for the reaction A + (N+p) ~ (MN) + P, "ith D = N+p, 

B ~ A+N. We choose to repreSent all Vectors in terms of the tWo sho~. by heavy li'nes. 
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XBL745-3030 

Fig. 2. 

The angular momentum coupling i.s displayed by this figure. The 

relative angular momenta in tht., entrance and exit channels, 0 and P 

are labelled LO and Lp' The a,nyular momentum of the center-of-mass 

of NinO = P~N is ~l = ~l + S al~ it is transferred to ~2 = ~2 + ~ 

in B = A+N. The total angular momentum transfer is;;l which is the sum 

of the recoil angular momentum Q ... and A. 
t( 
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10 11 12 13 14 15 
R 

XBL 745-867 

o Fig. 3 

A Coulomb function for L = 85, k = 10 Fo·l, n = 21 is shown together with the error 

with which it is represented by a 10 t<;rm Fourier-Bessel series.' Except where the 

function itsplf is small, the error is ~nall. 
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3 6 9 12 15 
R 

XBL 745-866 

Fig. 4 

A bound 2d state is shown together with the error with which it is represented by 

a 10 term Fourier-Bessel series. 
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