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Abstract 

The lattice vortex model of the inertial range in turbulence theory is 
reviewed; the model consists of an array of vortex tubes whose axes coincide 
with the bonds on a regular lattice, subjected to random stretching and 
successive scaling, and constrained by conservation laws for energy, specific 
volume, circulation, helicity, and an energy/vorticity relation. The scaling 
laws for vorticity are examined in detail, a Hausdorff dimension for the 
"active" portion of the vortex array is calculated, the origin of intermittency 
is exhibited, and it is pointed out that the Kolmogorov -5/3 power law already 
accounts for intermittency effects. 
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Introduction 

The inertial range in turbulence is the range of scales far enough from 

the scale of the driving forces to sustain universal statistics yet not so small 

that viscous effects are important in their dynamics. The analysis of the 

inertial range is important for the understanding of turbulence and for the 

design of practical modeling methods. Numerical calculations designed to 

elucidate the structure of the inertial range, in particular by vortex methods 

[2],[5], display surprising patterns of complexity and have not been 

convincingly reconciled with the qualitative theory of Kolmogorov, Kraichnan, 

and others [9],[11],[14]. These calculations do provide strong evidence that 

vortex tubes stretch, bend and bond into fractal structures. 

The lattice model we shall examine stands half way between a straight

forward vortex calculation and a qualitative model. It was suggested by the 

calculations in [ 5], and affords a way of constraining the simple cascade 

models of the inertial range to obey the basic conservation properties of the 

Euler equation. Some aspects of the calculations in [5] have been challenged, 

in particular by Greengard [ 10], but their usefulness as a qualitative guide is 

not impairted, except for one issue that will be discussed below. The model 

explains and reproduces the salient observatiorY made in vortex calculations, in 

particular intermittency. 

The model has been previously presented in [6]. It has been pointed out 

to the author that the earlier presentation contains a number of gaps that 

make it hard to understand. The present paper fills these gaps, in particular 

where the scaling of vortex tubes is concerned, and also repairs an error in 

the derivation of the Kolmogorov spectrum. It prepares the way for a 

full-fledged polymeric model of turbulence to be presented later. 
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Scaling laws for vortex tubes 

Consider flow in a periodic domain of period 1 of a fluid with density I. 

We shall not write down the equations of motion since they will not be used 

explicitly. The kinetic energy T of the fluid can be written as (12] 

T = 
!.(~) . !.(~') 

I~-~' I (1) 

where .!! is the velocity, ~ is the position, .t = curl _!!1 is the 

vorticity, and the integrations are over a periodic box. The enstrophy is 

defined as 

(2) 

and the helicity H as 

(3) 

In the absence of external forces and of viscosity, dT/dt ~ 0, dH/dt = 0 

and Z is a rapidly increasing function of the time t for "most" data (5]. 

Before presenting the lattice model, we need some scaling properties of 

the integrals (1), (2). Consider a vertical cylinder C of height 1 and a 

cross section of area A(r), where r is a linear dimension characteristic of 

that cross section (e.g., if the cross section is circular, A = 1rr2 , r = radius). 

Assume .£.. is vertical inside C, .£.. = (O,O,t 0 ), t 0 = constant. Let T(r,l) be 

the second integral in (1) evaluated over CxC and Z(r,l) the integral in 

(2) evaluated over c. It is understood that div .£.. t 0 unless .£.. is 

continued beyond C and thus the first integral in ( 1) evaluated over C 

does not necessarily equal T(r,1). We need to know the dependence of T 

and Z on r, 1 when the circulation A(r){ 0 is kept fixed, i.e., 
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fo "' 1/ A(r). 

Let ex > 0 be a real parameter. Define the scaling factors SuS 2 by 

where 

T(r,ex.l) = S1 (.1/r,ex) T(r,.l), 

T(exr,.l) = S 2 (1/r,ex) T(r,.l); 

f = (O,O,fo(ex)), f 0 (ex)A(exr) = (o(l)A(r). 

on both their arguments, but not on l,r individually as long as the cross 

sections A(r) are similar. S 11S 2 are not independent. A brief calculation 

shows that 

T(exr,ex.l) = exT(r,l), 

while 

T(exr,ex.l) = S dl/(exr), ex) T(exr,J) 

= S 1 (1/(exr),ex) S 2 (1/r,ex) T(r,.l) 

and thus (4) 

Equation (4) has an important consequence: if one pulls on a vortex tube to 

lengthen it, the energy associated with the vortex increases and thus work 

has to be done. To the extent that our vortex tube will resemble a polymer, 

equations (4) determine the force law for that polymer. Note that a volume 

preserving stretching of the tube multiplies the energy T by S 2 (ex.l/r,l/.ra). 

S 1 (.1/r,ex). If .1/r « 1 (a "fat vortex"), one can readily see that increasing 

the length of the tube by a factor ex increases the volume over which the 

integral T(J,r) is evaluated by ex 2 while keeping the distribution of values 
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of lx-x" I fixed, i.e., S 1 ... cx 2 , and by (4), S ... -1 2 (X 0 At the other extreme, 

if l/r » 1 (a "thin vortex" approximation) a comparison with the expression 

for the energy of a vortex filament [12] suggests S 1 ... ex log ex, S 2 ... 

(log cx.)- 1• Thus if one doubles the length of a "fat" vortex one approximately 

quadruples its contribution to the energy integral, while if one doubles the 

length of a "thin" vortex one does little more than double its contribution. 

In Table I we display some numerical values of S 1 (i/r,2) and of 

q = (log S 1 (.l/r,2)/log 2) for several intermediate values of 1/r, calculated 

numerically for a cylinder of square cross section. For a given value of i/r, 

In [6] it was systematically assumed that the vortex tubes were 

"fat" without adequate comment. We shall show below that the "fat" vortex 

assumption in self-consistent. 

A simple calculation shows that 

Z(cxr,l) 1 = - Z(r,i) 
(X 

= cxZ(r,l) 

We shall refer to r for simplicity as the vortex tube radius even where 

the cross section is not circular. 

Vortex stretching on a lattice 

The main events that occur in the inertial range are breakdowns of 

vortical structures into thinner and more convoluted structures on a smaller 

scale. We shall now produce a lattice model of this breakdown. We shall be 

assuming that the support of the vorticity can be idealized as a union of 

vortex tubes. Since presumably every configuration can be approximated by 

such a union the loss of generality is not substantial. 
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TABLE 1. Energy scaling factor S d.l/r, 2) as a function of .l/r 

.l/r St (J/r, 2) log sl (J/r, 2)/log 2 

.1 3.83 1.94 

.2 3.72 1.90 
~ 

.4 3.i4 1.78 

.6 3.27 1.71 

.8 3.15 1.65 

1.0 3.06 1.61 

1.2 2.99 1.58 

1.4 2.93 1.55 

1.6 2.88 1.53 

1.8 2.85 1.51 

2.0 2.81 1.49 

2.5 2. 76 1.46 

3.0 2.70 1.43 
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Consider a three-dimensional cubic lattice with vertices (io, jo, ko), 

i,j,k integers, 1 ' i,j,k ' m, mo = 1. Consider a vortex tube made up of 

oriented segments of finite thickness whose center lines coincide with the 

bonds .of .the lattice; its configuration is continued .periodically in all 

directions. Assume the tube is connected and does not intersect itself, i.e., 

each vertex of the lattice connects either 0 or 2 segments. Write I = (i,j,k) 

in short instead of (io, jo, ko); denote by u 1 = U:i,j,k a horizontal active 

segment whose leftmost end coincide with I ("active" means "belonging to 

the tube," "horizontal" means "parallel to the x = io axis," "leftmost" means 

"corresponding to the smallest value of x"). Similarly, denote by a 

vertical segment and by v 1 a segment that is transverse. Denote by u 1 , 

v 1, w 1 a variable attached to these segments and taking the value + 1 if the 

segments are oriented in the direction of increasing x,y,z, and the value -1 

otherwise. 

Endow this configuration with an energy T, constructed so as to mimic 

equation (1 ): 

T = TE + Ts, 

TE l: l: 
1 

+l: l: 
1 = UJUI II-I' I vrvr' II-I' I I I':ti I I'H 

+ l: l: 
1 (5) wrwr' II-I' I I I' :1:! 

Ts = l: S(u1 ) +LS(vr) + L S(w1 ) 

I I I 

Where I I-I' I is the distance between I and I'. The sums in TE mimic 

equation (1), the immaterial factor (87T)- 1 has been omitted, and the subscript 

E stands for "exchange". The system being periodic, each segment should 
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interact with every other segment and with all periodic images of every other 

segment; to save effort we keep only the largest of these interactions (for 

details of implementation, see (6]). The domain of integration in formula (1) 

includes values of ~ and ~, belonging to the same segment, giving rise to 

a self energy S; denote this self energy by S(u 1), S(v 1), S{w 1), depending 

on whether the segment is horizontal, transverse or vertical. S(ur ), etc. 

depend on the cross section of the segment as well as on its length; assume 

that at the initial time these self-energies have been computed. Note that self 

energy is different from "self induction". A straight vortex tube has no 

self-induced motion but there is energy in the velocity field that it creates. 

We shall now stretch the vortex tube by a sequence of elementary 

stretchings; the end result of the sequence will be compared with the break-

down of an "eddy". Pick an active segment at random, with all segments 

having an equal chance of being picked. Consider the possible stretching of 

this segment into a ~shaped configuration of three segments (Fig. 1). There 

are four such configurations for every segment. Pick one of them at random. 

If the proposed configuration leads to self-intersection of the vortex tube, 

reject it and pick another segment. If it does not lead to self-intersection, 

accept it if a certain energy constraint is satisfied. This energy constraint 

will be described shortly. 

Note that self-intersection is rejected because it would lead to infinite 

energy and also violate the conservation of helicity. Helicity is conserved as 

long as the "degree of knottedness" of the tubes is fixed, which will certainly 

be the case if they are not allowed to self-intersect [15]. Euler's equations, 

as long as their solutions are smooth, forbid self-intersection. If a small 

viscosity is allowed, self-intersection can happen but the mechanism is at 

present obscure (see e.g. [1)), Some recent theories of quantum turbulence 
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gave a fundamental role to self-intersections of vortex lines but the agreement 

of these theories with experiment has now been shown to be a numerical 

artifact [4]. 

We now examine the change in energy T due to a proposed stretching. 

TE changes because all interactions involving the old segment are deleted 

and interactions involving the new segment are added. Ts changes because 

the self-energy changes as the vortex tube becomes thinner, and because 

there are now three segments with self energy instead of one. To calculate 

the increase in self-energy we need to know the radii of the tubes. We shall 

see below that it is self consistent, under appropriate constraints on m, to 

assume that the vortex. segments are close to being "fat." After stretching, 

each segment has a cross-section 1/3 smaller than the original cross-section 

and its radius is 1!../3 smaller than previously, and thus its self-energy is 

../3 x its original self energy. In moderately fat vortices, the new energy is 

C x old energy, 1 < C < .J3 . The self-energy of the segments can only 

increase. 

Consider a vortex tube that is initially vertical, with the S(wr) initially 

small. Perform a stretching. TE will decrease, since the vertical contribution 

to will decrease and the only horizontal contribution will involve 

segments pointing in opposite directions (Fig. 1) and will be negative. The 

initial increase in Ts will be small. If one keeps on performing stretchings 

(discarding possible self-intersections) S(ur), S(vr), S(wr) will be increasing 

and eventually it is plausible that the energy T = TE + Ts will return to its 

original value. If it does and when it does, we have a new vortex tube; 

larger, thinner and more complicated than the initial tube, but with the same 

energy, volume, helicity and connectivity. For detail of computer 

implementation, see again [6]. 
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The criterion for accepting stretchings is then as follows: as long as 

there are no self-intersections and the energy T is below the initial energy, 

accept the stretchings. If the energy after a proposed stretching exceeds the 

initial energy, reject it and stop until further notice. 

Note that the criterion we have just presented encourages the formation 

of configurations for which TE is negative, to make up for the increase in 

Ts. An example of such a configuration is found in Fig. 2. This creates folds 

("hairpins" in the usual terminology) whose presence is well known from 

numerical and physical experiment. The need for t.his folding to occur as Z 

increases while the energy is kept fixed has been established in [5],(6] on the 

basis of potential-theoretical considerations. Here we have a discrete 

explanation of the reason why vortex stretching coupled with energy 

conservation leads to the formation of hairpins. A one dimensional "cartoon" 

of this fact has been presented in [7]. The intuitive reason for the folds is 

that if the vorticity stretches while energy is fixed cancellation must occur 

between the velocities induced by the stretched elements of vorticity. 

Scaling of the lattice. 

Once the calculation of the preceding section has come to a halt, no 

further stretching with conservation of energy is possible on the given 

lattice. One could hope that if the mesh were refined then stretching would 

become possible again into the newly created smaller scale bonds. Presumably, 

one would have then to keep on refining the mesh until one's computer 

memory were saturated - the standard difficulty in turbulence calculations. 

Instead, one could attempt a scaling - similtaneously halve 6, the bond 

length, and focus attention on an eighth of the computational domain (see 

[5],[6]) by picking it out of the domain, making sure it contains active 
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segments, and then throwing out the rest of the segments and replacing them 

by a periodic continuation of what has been kept. To simplify the book

keeping, one can scale up the piece that has been kept to the original lattice. 

The periodic continuation is made to provide boundary conditions for the 

calculation • 

controlled. 

It clearly changes the calculation in ways that are not well 

Some of the more obvious difficulties· can be suppressed by 

changing units at the beginning of a scaled calculation so that the energy 

remains fixed, but this is not a full solution of the problem. Such problems 

with boundary conditions are common in scaling transformation (see e.g. [3]). 

This is the . biggest gap in the justification of the model. Some confidence in 

the validity of the process can be obtained by noting that the calculation 

reproduces certain bounds on the allowed support of the vorticity that are 

derived through potential theory (see [5], [6] for details). 

It is easy to see that the rescaled calculation may allow some additional 

stretching of the vortex line without an increase of the energy simply by 

creating new allowed configurations, but that after a few scalings vortex 

stretching will come to a halt. Indeed, in each scaling each segment doubles 

its length; every term in is replaced by four terms, each making 

approximately half of the original contribution to TE (because the distance 

II-I' I has doubled). Thus TE doubles, and to make the scaling consistent 

Ts should double. Each old segment is now replaced by two segments, and 

thus after rescaling each new segment (whose ancestor was a half segment) 

retains the value (S(ur ), S(vr ), or S(wr)) of its parent segment. It is clear 

that TE is bounded from below by a value obtained from a perfect antiferro-

magnetic arrangement of tubes, and since the S's are monotonically 

increasing there will soon be no way to stretch the tube further without 

violating energy conservation. In order for the stretching to continue 
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indefinitely, the segments must be allowed to bunch up more tightly than is 

'possible on a regular lattice that fills out all of space. This is the origin of 

intermittency - vortex stretching and energy conservation lead not only to 

folding of the vorteJ[ tubes, but to a bunching of ,the stretched tubes in an 

ever decreasing fraction of the available volume. A one dimensional model of ~ 

this situation also was presented in [7]. This remark may also explain why 

some turbulence models based on global Fourier expansions (that assume a 

regular lattice in physical space) fail to exhibit intermittency. 

Note that in each scaling, like the one we have just described, the spatial 

scale is reduced by a factor 1/2; in a single stretching the radius of a vortex 

tube is reduced by a factor 1!./3 = 0.577. The "fat vortex" approximation is 

self-consistent only if the scale of the calculation shrinks faster than the 

vortex radius, i.e., if between two scalings the numbers of active segments 

increases by a factor less than 3 X 3../3/2 on the average. If the 

stretching comes to a halt, as we have just described, the "fat vortex" 

approximation is automatically self consistent. When intermittency is 

introduced this conclusion will have to be reconsidered. If the scale of the 

calculation shrinks faster then the vortex radius and stretching does take 

place, some of the tubes must explode into subtubes that stretch 

independently, a real effect that we shall ignore. 

Scaling witb intermittency 

We shall bunch up the vortex tubes by scaling up the eighth of the 

calculation that is retained at each scaling into a volume {3 = 2D /2 3 , 

0 < D < 3. D is a similarity dimension, analogous to the one used in [9],[14). 

Such bunching is observed in the calculations in [2],[5]. We shall make the 

arbitrary assumption that the smaller volume has a cubic shape, with side 
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d = ~ = 2(D-3)/3. If one compares the terms in TE, Ts in the smaller 

volume with their values in a unit cube, one sees that the terms in TE are 

multiplied by d because each segment is d times shorter, 

because the distance between segments .has decreased). In the "fat vortex" 

approximation each term in Ts is multiplied by d 2 because its energy is a 

quadratic function of its length, then by ./d because its radius is multiplied 

by v'd, giving a total factor d s/ 2 • Note that the scaling here is different 

from the one that results from considering T(cxr,cx.l), 

to obtain T(cxr,cxl) one multiplies each length by 

conservation of volume, while here volume is conserved. 

ex = d, in equation (4) 

ex without regard to 

Thus, if 

Tn = (Ts)n + (TE)n ·is the energy after the n-th scaling, when intermittency 

is taken into account we find 

When d < 1, Ts becomes smaller compared to TE and the stretching can 

proceed. The "active" part of the volume, i.e., the part in which vorticity 

keeps on stretching, occupies a shrinking part of the total volume, charac

terized by the scaling dimension D. Potential theory [5],[9] shows that D > 1. 

Note that in general T n+ 1 < T n , as indeed must be the · case since the 

vorticity in those parts of the total volume where stretching no longer takes 

place still contributes to the total energy. 

The smaller D (and thus d) the smaller Ts, and thus more stretching 

can occur. Zn., the enstrophy after n scalings, is thus a function of D. 

The relation (Zn+11Zn) = 4(Tn+11Tn) holds for homogeneous turbulence and 

provides an implicit equation for D. This relation is a consequence of the 

relation !. = curl .!!· The resulting equation for D was solved numerically in 
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[6], under the "fat vortex" scaling, and provided the estimate D "' 2.3. Finite 

values of r/ 1 lead to larger values of D, and thus D "' 2.3 is an 

underestimate, consistent with the usual guess D "' 2.5 ([9],[13],[14]). The 

arguments above show that D < 3. 

It should be noted that the object whose similarity dimension has just 

been computed and the object whose similarity discussion was estimated in [5] 

are not the same. 

fraction (1-&) of 

In [5] we estimated the dimension of the support of a 

z while here we are estimating the dimension of the 

collection of cubes whose interior contains the support of all but a negligible 

fraction of z. It is plausible that the two objects are equal, but the 

calculation in [5] was marred by the uncertainty as to what happens when 

£ _. 0, as was pointed out to the author by C. Greengard [10]; the present 

estimate is the better estimate. 

The self-consistency of the "fat vortex" approximation depends on the 

number of stretching per scaling not being large, and thus on m, the number 

of lattice nodes, not being large. This restricts the model with "fat" vortices 

to small m, where m 3 is the number of lattice nodes, i.e., to the case 

where the cascade is local in scale. Recently, the validity of this assumption 

has been challenged [16]. The Yakhot/Orszag model could presumably be 

accomodated by a "thin vortex" approximation. The calculation in [6] were 

made mostly with m = 4 and m = 6, for which values the potential theoret-

ical result D > 1 for finite energy is recovered. However, it should be 

pointed out that for D near 1 the restriction posed by the use of the 

"fat" vortex model are more severe than near D "' 2.5, as can indeed be seen 

from the results in [6]. 
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Some comments on tbe Kolmogorov spectrum 

The spectrum derived by Kolmogorov for the inertial range is E(k) "" 

£ 2 13 k- 5 13 , where k is a wave number and is the rate of energy 

dissipation. A dynamical derivation of this law was given by Kraichnan [11]: 

consider a sequence of eddies of decreasing sizes .In, n = 1,2, ••• , 1n+ 1 < ln, 

with characteristic velocities and characteristic energies 

Suppose that in a time tn "" lnlun, the "turnover time" of the n-th eddy, 

that eddy yields its energy to the eddy of the next size; then 

3 
E /t - u /1 - £ n n n n 

2 
u 

n 

(6) 

(7) 

and the Kolmogorov law follows by a Fourier transform. Equation (6) is very 

attractive because it is a plausible caricature of the Euler equations: if one 

considers an eddy of size .t, then Yx "" u/ .t, 

-gradp "" (!!•!).!:,!, !!at!! "" £ "" u 3 /..t. Note however that' equations (6) and (7) 

contain a paradox. If indeed all of the energy in eddies of size .t n move to 

eddies of size ln+l (as is assumed in deriving equation (6) ), then the 

amount of energy in eddies of size ..In is on the average equal to E 0 tn/T, 

wher~ T is a characteristic decay time for the vertical structures, E 0 is 

the constant available energy, and tn "" 1nlun, Un ... .IE"= constant. Thus 

En ... 1n, and E(k) "' k- 2 , contradicting equation (7). The paradox can be 

resolved if some energy is left behind at each step of the cascade, as a result 

of the integral constraints discussed above and the resulting intermittency, 

and furthermore if the characteristic times and lengths are also modified by 

the intermittency. Thus the difference between a k- 2 and k- 5 13 spectrum 

can be ascribed to intermittency and there is no need for further intermit-

tency corrections as in [9],[14]. This argument was made in [6] in a more 
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precise way, but the more detailed analysis is implausible and must be 

abandoned. Furthermore, assumptions about the contribution of the energy 

left behind as a result of intermittency to the structure of the inertial range 

may well lead to a reconciliation of the cascade picture with the experimental 

data on the higher statistics of the flow in the inertial range. 

Conclusion 

We have provided a lattice vortex model of the inertial range that explains .. 
many of the results of direct numerical calculations. A number of omissions 

and an error in earlier presentations have been corrected, in particular, the 

scaling properties of vortex tubes and the relation between the model and the 

Kolmogorov law have been made explicit. The use of the lattice model in 

turbulence modeling will be explained in a subsequent paper. 
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Figure Captions 

Figure 1. An elementary stretching. 

Figure 2. A configuration that provides a negative contribution to TE • 
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Fig. 1 
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Fig. 2 
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