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Thin plate precipitates in transformations with principal strains of mixed sign are 

approximately in a state of uniaxial stress if the interface contains an invariant line. This 

similarity to a tensile test can be used for the prediction of coherent and semicoherent 

plate hab~ts; to relieve the uniaxial stress the tensile axis must lie in an elastically soft 

direction for coherent plates and at approximately 45° to the operative slip system for 

semicoherent plates. The habit plane is the plane that contains both the invariant line 

and the tensile axis. Predictions of this simple model are shown to be in excellent 

agreement with available experimental observations on plate precipitates in several bee 

interstitial alloys. 

Introduction 

The orientation relationship and the corresponding morphology of precipitates in a 

matrix phase are crucial factors in the link between microstructure and properties of 

materials. In the case of coherent inclusions (precipitates) considerable success has 

~..._) been achieved in the prediction of precipitate shapes and habits through the application 

of classical elastic continuum theory(1-5). While this approach offers the advantages of 

mathematical rigor, application of the results to practical situations is sometimes difficult. 

A complementary approach is to seek to understand the physical principles 

underlying different classes of phase transformation and express the results in a 

simplified form, readily useable by the practitioner. This method has been used 

successfully to describe precipitate morphologies and orientation relationships for a 

wide variety of alloy systems(6-9). In the present contribution the results for the case of 
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coherent and semicoherent precipitate plates in transformations with principal strains of 

mixed sign are derived. This is followed by a comparison of the predictions of the 

model with experimental observations by TEM, which shows excellent agreement. 

Underlying Principles 

It is possible to point to some simple physically plausible principles that can help 

understand and predict basic particle morphologies and orientation relationships. For 

example it is generally true that precipitate dimensions tend to be inverse to their 

transformation strain, i.e., largest in the direction of smallest strain and vice versa(10). 

This is the case for elastic strain accommodation of coherent inclusions as well as 

plastic accommodation of semicoherent precipitates. The modifying influence of crystal 

anisotropy(11-14) is significant only when the transformation strain is isotropic or nearly 

isotropic, e.g., a pure dilatation. In most other cases it is the anisotropy of the 

transformation strain that determines the shape. This is because the coherent strain 

energy and the semicoherent interface energy depend roughly on 1he square of the 

transformation strain. The prediction of precipitation shapes for transformations with 

principal strains of unmixed sign is thus quite straightforward. If one of the principal 

strains, e3, is large and the other two; e1 and e2, are small and equal, the strain has 

cylindrical symmetry and a thin plate would be expected, as shown in Fig. 1 a. However, 

if the principal strains are of mixed sign, as is the case in many alloy systems, the 

prediction of morphologies becomes more complex for both coherent and semicoherent 

precipitates. The present contribution outlines a simple model to predict and 

understand the orientation of a precipitate plate for this case of mixed principal strains. 

Coherent Plates 

An example of a transformation with mixed principal strains is an expansion e3 in 

the [001] direction and a contraction e1=e2 in the (001) plane, as shown in [010] 

projection in Fig. 1 c. An unextended line can be found at an angle e to the (001) plane 

where tan e = .Y-e1/e3. If a coherent precipitate plate is oriented to contain an 

unextended line in the interface, as seen in Fig. 1 d, the state of stress within the plate is v 
approximately the uniaxial stress shown in Fig. 1 e, instead of the plane stress shown in 

Fig. 1 b. The strain energy of a plate under uniaxial stress is only about one third of that 

under plane stress(8, 12). Thus one will always expect to find coherent plates with 

mixed principal strains inclined rather than normal to the plane of the unique principal 

strain. 
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This is the condition of an invariant (unextended and unrotated) line in the 

interface, as it is used for instance in martensite theory (e.g. 15). To a good 

approximation this invariant line condition can predict plate precipitate habit planes if 

the remaining uniaxial stress in the plate is minimized. For coherent plates this is 

achieved if the tensile axis is a direction of small principal strain. If two principal strains 

are equal, the tensile axis must be a direction of low elastic modulus. For semicoherent 

plates the tensile axis must have a high resolved shear stress on the operating slip 

J system. These simple principles will be examined in more detail below fol.lowed by 

applications to known alloy systems. 

First, it must be pointed out that for the elastic case an improved condition is that of 

a stress-free rather than a strain-free direction. This changes the expression for the 

angle Of inclination 8 from tan 8 = ...J-e1/e3 tO tan 8 = ...J-(1 +U)e1/(e3+ue1 ), Where U is 

Poisson's ratio(8, 17). However, the correction is usually small enough to lie within 

experimental error of coherent habit plane determinations. In most cases it is therefore 

sufficient to use the simple invariant line condition. 

If all three principal strains are different (and of mixed sign) the invariant line will 

lie between the two extreme principal strains and the tensile axis will be oriented along 

the smaller of the two unmixed principal strains(12). If the two principal strains of 

unmixed sign are equal (e1 = e2), as for example in a cubic-to-tetragonal 

transformation, the tensile axis in the plate could be any direction in the (001) plane 

containing the uniform strain e1 =e2. The final precipitate would be a plate inclined by 

eo about this direction. In Fig. 1 (d and e) this was chosen arbitrarily to be [01 0]. In an 

anisotropic crystal this tensile axis should lie in a soft direction in the (001) plane to 

lower the strain energy further. The problem of minimum strain energy is then reduced 

to finding the direction Q in the (001) plane with the smallest Young's modulus E(Q). 

This direction will become the tensile axis in the inclined precipitate under uniaxial 

stress. For directions in an (001) plane of an anisotropic cubic crystal, it can easily be 

shown that the <1 00> directions are soft if the anisotropy ratio A > 1 and <11 0> are 

favored if A< 1 (8, 12, 18). Since the tensile axis is contained in the habit plane and 

consititutes the axis of rotation for the plate, the minimum energy plate will lie on a plane 

of the type {okl} with k/1 = ...Je1te3 if A> 1. If A< 1, the habit plane will be of the type 

~) {hhl} with the same angle e of inclination. Since the strain energy is mainly due to the 

elastic distortion of the inclusion, A should be strictly the anisotropy ratio of the 

precipitate. 

Rigorous derivations of the conditions given above(11-14) and solutions for the 

less restrictive case of thick plates(S, 19) can be found in the literature. 
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Semicoherent Plates 

The tensile test analogy is particularly useful in describing the loss of coherency. 

Consider a thin plate in a state of uniaxial tension. If it deforms plastically it is most 

likely to do so on the slip system with the highest resolved shear stress. This depends 

on the relative position of the tensile axis and the slip system; and the resolved shear 

stress is a maximum if both the slip plane and the slip direction make an angle of 45° 

with the tensile axis. The problem of finding a direction in the (001) plane with a low 

Young's modulus in the elastic case now translates to finding the tensile direction in the 

(001) plane with the highest Schmid factor R = cos <1> cos A. (where <1> and A. are the 

angles of the tensile axis with the slip direction and the slip plane normal, respectively) 

for an available slip system. For a given slip plane the slip direction is linked to the 

tensile axis by the geometrical restriction of maintaining an unrotated and undistorted 

habit plane. The calculation of the slip direction is a lengthy process and as a first 

approximation it may be assumed that the Schmid factor is maximized when the tensile 

axis makes an angle of A.= 45° with the slip plane. This geometry is illustrated 

schematically in Fig. 2a and b, and a dark field electron micrograph of an extracted 

semicoherent plate ( yFe4N) showing shear faults on a slip plane at approximately 45° 

to the plate is shown in Fig. 2c. Figures 3a and b show stereographically that for slip on 

the (1 01) or (11 0) planes the tensile axis at 45° to the slip plane is [1 00]. Together with 

the invariant line at the intersection of the cone of unextended lines with the slip plane 

this defines the habit plane which for these two cases must be of the type {okl}. For 

comparison the same situation for coherent precipitates is shown in Fig. 3c. Note that 

here the invariant line and the tensile axis lie at right angles, but the coherent tensile 

axis is [1 00] only for anisotropy ratios A> 1, while for A < 1 it is [11 0]. 

The stereograms in Fig. 3 illustrate the three different geometries used in 

comparing the model with available experimental data, although for some of the 

transformations (e1=e2=e3) the cone of unextended lines will not be circular, but 

elliptical. Also, it must be kept in mind that even though the slip planes and the soft 

tensile axes are expressed in terms of crystal directions of the matrix crystal, the 

important properties are those of the corresponding directions in the precipitate crystal. 

Thus the elastic constants or slip geometry in the precipitate determine the habit planes, v 
and the discussion in terms of the matrix is only a convenient tool. 

Comparison with Experimental Observations 

Table I compares the predictions of the model with selected reliable experimental 

observations available in the literature. It can be seen that in most cases 

straightforward application of the principles outlined above leads to good agreement 
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with experiment. Any apparent disagreement can be understood in terms of groups of 

variants or transformation twins. This phenomenon is perhaps most visible for Fe-N 

alloys. The {049} plates predicted for yFe4N precipitates in Fe are actually found in 

groups of two mirror-related variants joined together in a butterfly-like 

morphology(9,20,21 ). In a similar manner many segments of cqherent Fe16N2 plates, 

all inclined by a predicted angle of .... go to the (001) plane are joined together in a 

puckered sheet with an average habit plane of (001 )(22). TaOy in Ta exhibits similar 

behavior; two (1 01) twin-related variants of the orthorhombic precipitate are arranged 

back-to-back to form an {032} habit plane(23). This agrees with both the prediction for 

the untwinned coherent case where the elastic anisotropy determines the type of habit 

and with the prediction for the semlcoherent case where (1 01) twinning is the 

deformation mode(5,23). Similarly the observed {227} habit of V2H agrees with the 

predictions for a coherent elastically anisotropic plate but observations show 

dislocations in the interfaces(24). It has been shown that the {227} habit for a 

semicoherent plate corresponds to slip on a {112} plane(25), a case not shown in Fig. 3 

but physically plausible and geometrically necessary for an {hhl} type habit. 

Finally, the example of HfN on (001) planes in Mo(26,27) was included to 

illustrate that precipitates are inclined only when the principal strains are of mixed sign. 

For the unmixed strains of HfC, ZrN, ZrC and Hfc in Mo, the rule that precipitate 

dimensions tend to be inverse to the strain must be employed and leads to simple 

(001) habits(26). This condition applies to a large class of alloy systems in which plates 

precipitate on low-index habit planes. 

Most of the precipitation systems considered have been analyzed before using 

either martensite, or elasticity or 0-lattice theory. The present contribution points out the 

underlying physical principles and gives a very simple method for predicting plate 

precipitate habit planes. Some of the approximations and their implications have been 

discussed elsewhere(8, 17) but as shown in the examples in Table I they do not 

significantly affect the accuracy of the predictions, making this a useful method for the 

practical analysis of precipitation reactions. 

Summary 

-In its optimum orientation a plate shaped precipitate formed in a transformation 

with principal strains of mixed sign contains an invariant line in its interface. 

-If coherent such a thin plate is in a state of uniaxial stress, simi liar to a tensile test. 

-This stress is relieved by selecting, within the geometric constraints, a tensile axis 

that is elastically or plastically soft. 
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-The habit plane is defined by the invariant line and the tensile axis. 

-The predictions of this simple model are in good agreement with available 

experimental observations. 
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Table I 

CQmgarisQn Qf Predi~ted and Observ~d Habit Planes 
-~ 

:; System "(Fe4N-Fe TiN-Mo TiC-Mo TaOy-Ta a"Fe16N2-Fe J3V2H-V Mo2C-Mo HfN-Mo 

structure fcc fcc fcc orthorhombic bet bet hcp 

a 0.3795 0.423 0.432 0.3271 0.2861 0.3002 0.3002 0.452 
± 0.001 

Precipitate b 0.3201 

c 0.3610 0.3146 0.3302 0.4724 
± 0.001 

structure bee bee bee bee bee bee bee bee 
Matrix 

a 0.2868 0.3147 0.3147 0.3322 0.2868 0.3032 0.3147 0.3147 

e1 -0.064 -0.050 -0.030 -0.015 -0.002 -0.010 0.172 0.016 

Principal e2 -0.064 -0.050 -0.030 -0.036 -0.002 -0.010 0.064 0.016 
Strains 

e3 0.323 0.344 0.371 0.087 0.097 0.089 -0.043 0.436 

Anisotropy A 1.56 2.38 0.78 

Slip plane 101 101 101 101 112 110 

lnv. Line 494 252 131 032/232 071 031/131 113 none 

Tensile Axis 100 100 100 100 100 110 100 100/ 
010 

predicted 049 025 013 023 017 114-227 031 001 
Habit 

observed 049 -013 013 023 017/001 227 031 001 

References 8,9 26 26 23 8,9,14,19 5,24,25 6,8 26,27 
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Fig. 1. (a) Thin plate precipitate on the (001) plane and 
(b) its state of plane stress. (c) The transformation strain 
is depicted, schematically in the [01 OJ projection with 
unextended lines at an angle e to the (001) plane. In its 
optimum orientation (d) the thin plate is inclined and 
contains an invariant line in the interface. Its state of 
uniaxial stress along [01 OJ is illustrated in (e). 
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Fig. 2. Illustration of tensile test analogy showing 
coherent plate under uniaxial stress in (a), loss of 
coherency by plastic yielding in (b) and dark field 
electron micrograph of extracted semicoherent 
precipitate plate (yFe4N) with shear faults in (c). 
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XBL 877-3364 
Fig. 3. [001] Stereograms showing habit planes determined by the [1 00] tensile axis ( solid 
square) and the invariant line (open circle) at the intersection of the cone of unextended lines 
with the inclined (1 01) slip plane in (a) and the vertical {11 O) slip plane in (b). The habit 
plane poles are marked by a star. The coherent case for A> 1 is illustrated in (c). 

12 

' 



..... t ~: 

LAWRENCE BERKELEY LAB ORA TORY 
TECHNICAL INFORMATION DEPARTMENT 

UNIVERSITY OF CALIFORNIA 
BERKELEY, CALIFORNIA 94720 

.. ., 


