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In this note, scaling laws for rotational diffusivity of dilute 

monodisperse rigid-rod molecules (guest rods) in semi-concentrated and 

concentrated amorphous polymer solutions (host molecules) are derived. The 

coil-like matrix molecules are modeled as a collection of flexibly connected 

rigid sub-units. This allows an analogy with the Doi-Edwards theory for 
' -··· 

monodisperse rigid-rods in semidilute solutions to be used in the analysis. 

Very strong dependencies are predicted for the rotational diffusivity of the 

rods on host polymer volume fraction, coil length and rod length. In semi-

concentrated polymer solutions the coils dramatically hinder the rotational 

2 . -1 
freedom of the rods for r > ~ , r being the rods' aspect ratio and ~ the 

·- p p 

polymer volume fraction. 

For dilute solutions of rod-like molecules in Newtonian solvents, 

Kirkwood and Auer (1) have shown that the rotational diffusion constant Oro 

scales roughly with L- 3 , where'L is the length of the rods (the subscript "o" 

stands for infinite dilution). Doi and Edwards (2) have considered the case 

of semi-dilute rigid-rod solutions where a dependence as strong as L-9 is 

found for Dr. The diffusivity scales with c-2 where c is the rod number 

concentration. Recently Marrucci and Grizzuti (3) extended the theory to 

polydisperse systems. 

The problem we shall consider here is different in that it is relevant to 

the practical preparation and processing of thermodynamically unstable systems 

known as "molecular composites" (4). These blends, consisting of liquid 

crystal polymers in amorphous polymeric matrices, hold much promise as light 

weight, high performance structural materials. The kinetics of phase 

separation of these systems is dominated by the tendency of the rigid rods to 

aggregate and to form liquid crystalline domains. Aggregation requires the 

simultaneous occurrence of translational and rotational diffusion. Since the 
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latter process is expected to be kinetically controlling, we attempt to 

establish scaling laws for the rotational diffusivity of the rigid-rod 

molecules in amorphous polymers. Such knowledge is also essential in 

understanding the rheological properties of molecular composites. Analysis of 

diffusion of an isolated rod in an amorphous polymer matrix is not new, as it 

was first considered by de Gennes (5) for the case in which the amorphous 

polymer is in the molten state. De Gennes assumed the elemental diffusion 

step to be of the order of the average distance between entanglements formed 

by the matrix. This resulted in a dependence of Dr on (Ne L- 5), Ne being the 

number of monomeric segments between entanglements. Because only molten 

systems are treated, the analysis did not address the dependence of Dr on 

polymer concentration. The L-5 dependency of Dr disagrees with results of the 

present calculation in which different exponents are found. 

We begin by considering a dilute rod dispersion in a mixture of flexible 

coils and small solvent molecules. Rod-rod interaction is non-existent 

because of their dilute loading. However, rod-coil hard body interactions may· 

be appreciable. If the coils form an entangled network and the rod length is 

greater than the average distance between adjacent polymeric sub-units the 

rotational freedom of the rods is strongly reduced. Figure 1 illustrates this 

concept schematically. Shown with a test rod are the flexible coils 

represented as a set of flexibly connected rigid sub-units, each of length 

* L • The rod can freely oscillate within these confinements. Translational 

diffusion is similarly allowed in the direction of the rod axis. In 

particular, if the rod diameter is smaller than the mes~ size of the network, 

this motion occurs essentially as it would in a dilute solution of rods in a 

small molecular weight solvent with a translational diffusion constant Dt//o 

given by: 



u 

3 

T ln (I ) 
0 t/ I o ... n L 

s 
{1) 

where n is the solvent viscosity, d the diameter of the rod and T the product 
s 

of the absolute temperature and the Boltzman constant. Long range rotation, 

however, is hampered by the topological constraints imposed by the entangling 

coils. Doi and Edwards have shown that if A and T are the relevant length and 

time scales for rotation, then the rotational diffusivity behaves as: 

.... (~)2 l 0r L T ( 2 ) 

For a monodisperse system of rods, T is the time required by a molecule to 

translationally diffuse over a distance of the order of its own length. This 

motion is characterized by Dt//o• giving (for L/d>>l): 

T ... 
D t//o 

(3) 

Doi and Edwards also calculated the average elemental diffusion step A (2). 

This quantity was shown to be the average minimum distance between adjacent 

rods. It was obtained by expanding an imaginary cylindrical envelope around a 

test rod until just one neighboring rod was touched. For an isotropic rod 

orientation distribution, A is given by: 

( 4) 

where cr is the concentration of the rods (number of rods/volume). Subse-

quently, by extending the theory to account for polydispersity, Marrucci and 

Grizzuti (3) demonstrated that in order for a test rod to accomplish an 

elementary rotation two simultaneous processes must occur, namely, trans-

lational diffusion of the test rod itself over a distance of the order of its 
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own length, and translation diffusion of adjacent rods over a distance of the 

order of their own lengths. In polydisperse systems these processes are not 

equivalent, and the fastest one dictates the predicted rotational diffusivity. 

This concept equally applies to a dispersion of dilute, monodisperse rods in a 

semi-dilute solution of coils. In this case, while the translational dif-

fusion time of the rods, •r• is still given by Eq. 3, the relevant diffusion 

time of the coils becomes their reptation time. As shown by de Gennes (6), in 

a semi-dilute solution of good solvents the coils can be topologically · 

described as a connected sequence of smaller units referred to as "blobs". 

Due to thermodynamic constraints these blobs are impenetrable to each other. 

In this highly entangled system, the size of each blob is then the same as the 

average dimension of the mesh of the network. This characteristic dimension 

~. referred to as the correlation length, scales with the polymer volume 

fraction ~P and hard core diameter dp as follows: 

F; ... d ~-3/4 
p p 

(S) 

In a good solvent the blobs behave as swollen coils, and the average number of 

monomeric units in each blob is : 

g ... -5/4 
4lp (6) 

In translational diffusion the sequence of connected sub-units topologically 

behaves as a·"snake~. 

as: 

The length of the entire strand of· blobs, L , Scales s 

(7) 

t 
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where Lp is the total curvilinear contour length of the polymer backbone. 

Note that each polymer molecule, viewed as a sequence of blobs, behaves as a 

random coil with a mean square end-to-end distance, Rs, given by: 

R 2 (q, ) ... !i ~2 ... N d 2 q,-1/4 
s p g p p 

(8) 

where N is the total number of backbone units in each polymer molecule. 

Equation 7 allows us to calculate the coil reptation time •p: 

T 
p 

1
3 

n 
p s q, 3/2 (f(q, ' T))-1 

T p p 
(9) 

where f (~P,T) is an exponential pre-factor which acounts for the probability 

that a hole large enough is created in the network to allow the diffusion of a 

blob through the mesh. This factor is ignored by de Gennes. Here, we note in 

particul·ar, that f(ljlp,T) must be of the order unity for very small ljlp (dilute 

solutions) and must approach a Fujita-Doolittle type functionality when 

ljlp = 1. If this is the case, then for q,p = 1 Eq. 9 gives the correct scaling 

law for the reptation time. of the coils in a melt. This makes Eq. 9 

applicable to the entire semidilute range up to the concentrated limit 

We now calculate the rotational diffusivity of a rod of length L in a 

semi-dilute polymer solution. Each coil will be topologically represented as 

* * a sequence of N flexibly connected rods each at length L • Following Doi and 

Edwa·rds (2) we assume the rotational diffusivity Dr to be given by: 

A 
2 

1 
0r ... (L) T 

where T is the relevant microscopic translational diffusion time. In 

particular we propose the following criterion to determine T: 

(10) 



or 

T ... T 
r 

T '"" T p 

if 

if 

equivalently, 

L
3n s T ... 

T ln( ~) 

L3 n s s 

T ( T 
r P 

T ) T 
r p 

from Eqs. 

if 

T ... 
T f (<jlp,T) 

if 

6 

(11) 

(12) 

3 and 9: 

L3 < L3 
s 

(13) 

L3 > L3 
s 

(14) 

Note that an inequality of the type L3 S L3 
is much less restrictive than a 

s 
~ statment such as L ~ Ls. Note also that Ls is a function of the polymer 

volume fraction and molecular weight and that a transition of relevant time 

scales can be expected by changing the host composition. 

Similar to the analysis by Doi and Edwards, the average elementary 

diffusiori step, A, is 

A ... 1 

* * L L N 
(15) 

c 
p 

where L is the length of the test rod, and cp the polymer concentration 

(molecules/volume). In Eq.lS the product (N * cp) represents the number 

polymeric sub-units (L *) per unit volume. In order to calculate L * and 

the following limiting cases must be considered: 

(a) The blobs can be readily penetrated by the rods. 

(b) The blobs are inpenetrable. 

of 

N 

In case (a) the rod-like equivalent sub-unit of the coils is the blob 

* 

• 



'"' 

.. 

7 

itseif. Therefore N* represents the number of blobs per coil and 1* is 

comparable in magnitude to ~. We have then: 

* * 1;2 
L N ... L ... L <Pp s p 

(16) 

and 

~- 1 
L 12 L <P 1/2 c p p p 

(17) 

which in terms of polymer volume fraction, <Pp' and hard-core diameter, dp, 

becomes: 

d 2 
p (case a) (18) 

In case (b), the test rod is mu-ch more constrained• The local segmental 

concent_ration of the coil-like polymer is of the same order of magnitude of 

* * the monomer concentration (N • c ), and L is given by the length of a 
p -

monomeric segment of the polymer. Hence, 

* * L N ... L 

Hence: 

A --L 

In terms 

A --L 

L2 

of 

d 
p 

1 

c 
p 

9p 

2 

p 

L p 

and dp Eq. 20 becomes: 

(case b) 

(19) 

(20) 

( 21 ) 
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A slightly different derivation of Eq. 21 is given in Appendix A. It is 

important to note that in the final forms (Eqs. 18 and 21) the undetermined 

* * quantities N and 1 disappear. 

As expected, the average reduced rotational mean free path A/1, is a 

strong function of the rod length and surrounding polymer concentration. From 
\• 

Eqs.lO, 18 and 21 we finally obtain: 

d 4 
Dr- E 

14 cj>3 T 
p 

(case a) (22) 

d 4 

Dr - E 
14 4> 2 T 

p 

(case b) (23) 

where T is given by either Eq.l3 or Eq.l4 depending on the system. Indeed, in 

the two cases discussed previously, Dr will scale as: 

d 
4 

T 1n (~) 
if 1

3 << 1 3 D E d (24) r 17 93 s n 
s p (case a) 

d 4 T 

if 1
3 )) 1 3 D - (25) r 14 L 3 cp 9/2 f(cj> , T) s n p s p p 

d 4 1 

D E 
T ln (-d) 

if 1 3 << 1 3 (26) r 17 cp 2 s n 
s p 

(case b) 

• 
d4 T 

13)) 1 3 D 
p 

if (2 7) 
r 14 1 

3 
cj>p 

7/2 
f(lj> , T) s n p .s p 
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Equations 24 to 27 are valid as long as A/L<<l. If we assume that 

d ' d and case b prevails,the condition A/L<<l can be expressed in terms of 
p 

the rod aspect ratio r= L/d and polymer volume fraction as follows: 

/ 4» » 1 p 
(28) 

In a semi-dilute polymer solution, Eq.28 poses severe limitations on the range 

of rod aspect ratios f~r which rotational motion is not hindered. For 

-3 example, if 4» = 10 (a typical semi-dilute range polymer volume fraction) 
p 

Eq.28 predicts hindrance for r) 30. Furthermore if Lp/dp = 10 4 , and r = 30 

we get from Eqs. 13 and 7: 

(L/d)
3 

' 3 X 10
4

<< (L /d )3 ' 3 X 10
7 

s p 

and a corresponding rotational diffusivity (assuming 

0.01 P and d = 5 A): 

6 -1 2 
D ' 10 sec rad 

r 

which is comparable in magnitude to the infinite dilution rotational 

diffusivity Dro" This prediction is, however, totally altered when ~p 

10-1 • This gives (Eq.26): 

D 
r 

-1 2 
' 500 sec rad 

and a corresponding orientation relaxation time, t: 

t = (6 D )-1 ' 10-4 sec. 
r 

(30) 

(31) 

(32) 

(33) 

which is of the same order of magnitude of the infinite dilution relaxation 

time of a rod 4000 A long (Note that the rod considered here is only 

150 A ). It must be pointed out that these estimates, although reasonable, 

are approximate in nature, since important numerical prefactors are ignored in 

the derived scaling relationships. 

Experimental verification of the rotational diffusivity scaling laws and 

extension of the theory to account for higher rod concentration and poly-

dispersity are the current goals of our research. 



10 

This work was supported by the Director, Office of Energy Research, Office 

of Basic Energy Sciences, Materials Sciences Division of the U.S. Department 

of Energy under Contract No. DE-AC03-76SF00098. The problem of molecular 

composite processing was brought to our attention by Dr. W.F. Hwang of the 

Dow Chemical Company. Financial contribution from Dow to this research 

program is greatly appreciated. 



1 1 

Reference. 

1. J.G. Kirkwood, P.L. Auer, J Chem. Phys., 19, 291 (1951). 

2. J. Doi, S.F. Edwards, J. Chem. Soc., Faraday Trans., J.!:...., 560,918, 
(1978). 

3. G. Marrucci, N. Grizzuti, J. Polymer Sci, polymer Letters , ~, 83, 
(1983). 

4. G. Husman, T.E. Helminiak, W.W. Adams, D.R. Wiff, D.R. Benner, Am. Chern. 
Soc. Symposium Ser., 132, 203, (1980). 

5. P.G. de Gennes, J. Physique, 42, 473, (1981). 

6. P.G. de Gennes, in "Scaling Concepts in Polymer Physics", Cornell 
University Press, Ithaca and London, (1979). 



12 

Figure Captions 

Fig. 1 

Fig. 2. 

Fig. 3 

A rigid rod molecule in a semidilute solution of an amorphous 

polymer. The coils are schematically represented as flexibly 

. * connected rigid sub-un~ts, each of length L • Long range rotation 

of the test rod can be accomplished by either a translational motion 

of the rod itself (parallel to its own axis) or reptation of the 

surrounding coils. The rotational diffusivity of the rigid rod is 

determined by the faster of the two processes, whose relative 

importance depends on a number of system parameters including rod 

length, host polymer molecular weight and concentration. 

Calculation of the average number of times a plane surface E 

{ L L} (defined by E: x = b; - ~a(y(~a; 2 (z(I) is crossed by a random 

coil of radius R. The center of mass of the coil is at a distance d 

from plane a to which E belongs as a subsection. The random coil is 

assumed to be made of a sequence of flexibly connected rigid sub-

units, each of length L*. A second plane, a' (parallel to a) is 

located at a distance L* from a. This defines volume V 

- ~ (z(~} ) in whi~h the average number of 2 2 

(L*) segments is calculated by the argument presented in the 

Appendix. 

A cylinder of radius a and length L surrounded by random coils. The 

end-to-end distance of the coils is R and their number concentation 
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Appendix A 

We begin with the calculation of the average numer of times the plane 

surface E, defined by E: (x = b; ~a( y ( wa; - f ( z ( ~), is crossed by a 

random coil of radius R. The center of mass of the coil is at a distance d 

from plane a to which E belongs as a subsection (Fig. 2). 

* We first calculate the number of segments of length L (along the coil) 

which are contained in the volume -

* L L V: ( b( x ( b + L ; - w a( y (n a; - 2 .;;; z .;;; 2). 

For a random coil the segment density distribution function, p(r), is given 

by: 

p( r) (Al) 

where r is the radial distance from the center of the coil, Lc is the total 

curvilinear contour length of the coil and L* the length of a rod-like segment 

* * (Lc/L is then the total number of such segments of length L per coil). The 

number of rigid segments in volume V is given by: 

L · L/2 
N = c J dz J 

s L*nlnR3 -L/2 

which can be written as: 

na 
dy J 

-na 

* d+L 

d 

* d+L 

Lc L an 
N = -- erf(-) erf(-R) J 

s L*ln ZR d 

R 

R 

2 
-t 

e 

e 

dt 

dx (A2) 

(A3) 
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where erf ( ) denotes the error function. The total number of times (Ni) 

which the surface E is crossed by the random walk is obtained as: 

Ni = lim Ns 

* L + 0 

Taking this limit we obtain: 

(A4) 

(AS) 

Now we let nc be the coil concentration (number of coils/volume) and L the 

length of a test rod contained in a cylinder of radius a and length L (Fig. 3) 

and assume d (the distance of the coil centers from the cylindrical surface) 

to be equal to R. The total number of times, Nt, the cylinder is crossed by 

the surrounding coils is proportional to the number of coils near the rod and 

toNi (: intersections/coil). i.e.: 

. 2 2 
N :! n TT ((a + R) - a ) 1 

t c 

or 

(Total number of coils 
around the cylinder) 

Ni 

From Eq. AS, with d = R, we obtain: 

(Number of intersections 
per coil) 

a L ) ( arr) 
Nt :! 4 /rr nc R L Lc (1 + -) erf(-- erf 

R 2R R 

-1 
e 

(A6) 

(A7) 

(A8) 

In the case of a densely packed system of small blobs of radius ~ = R <<L, 

surrounding a rod of length L, and for 
a 'R «1, the following approximations 



are valid: 

1 + ~"' 1 
!!. «1 { R 
R a'IT 2a/1T 

1. »1 
R 

erf (-) "' R R 

1 5 

Thus, from Eqs. (A8) and (A9) we obtain: 

(A9) 

(AlO) 

which, in terms of polymer volume fraction, ~p• and hard-core diameter, dp~ 

becomes: 

4> L a 
p 

d 2 
p 

We seek the condition for which Nt"' l(a"' A see text), hence: 

and: 

e d 
2 

A p 
.... 32 ~ L 

p 

~ .... 

L 

(All) 

(Al2) 

(Al3) 

which corresponds to case (b) treated in the text. Note that this result is 

independent upon the particular choice made for function p(r) (in this case 

Gaussian). A different density distribution would only produce different 

numerical constants. 
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Figure 1 
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