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Summary 

A similarity solution of the Leslie-Ericksen equations for nematic 

liquid crystals is obtained for flow between converging and diverging planar 

walls (Jeffrey-Hamel flow). There are three regions in the flow:extensional 

or compressional flow near the centerline, shear near the wall, and a wall 

boundary layer in which elastic stresses control the transition from the 

wall-induced orientation to the bulk behavior. The boundary layer thickness 

is obtained in closed form; the scaling with the Ericksen number depends on 

whether or not the boundary layer extends into the region of extensional 

flow. Imposition of a magnetic field with an azimuthal component in a 

converging flow can result in a Freedericksz-like transition from radial to 

transverse orientation at the center line at a critical field strength. This 

transition provides a new means to measure the irrotational viscosity A2 . 
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I. Introduction 

The development of liquid crystalline polymers has led to a renewed 

interest in the mechanics of nematic liquids. A complete dynamical continuum 

theory of nematic liquid crystals has been proposed by Leslie [1,2], 

building on Ericksen's [3] theory of the Transverseley Isotropic Liquid and 

the Oseen [4] - Frank [5] theory of liquid crystalline elasticity; see the 

book by deGennes [6], for example. There is a nice discussion of the Leslie

Ericksen theory in a lecture by Ericksen [7], and Leslie [8] and Jenkins [9] 

have reviewed the theory and solutions to flow problems. More recent 

analyses of flows of nematic liquid crystals have been carried out by 

Carlsson [ 10] . 

Liquid crystals can be aligned at a solid boundary, and the boundary 

alignment might differ fro·m the alignment induced by flow; one of the 

prominent characteristics of the flow is therefore the development of an 

orientation boundary layer, in which the magnitude of the elastic stresses 

controls the spatial transition. A second characteristic of these liquids is 

their orientability in an electro-magnetic field; the competition between 

wall alignment and alignment by the external field in a static nematic 

liquid leads to a "Freedericksz transition" and the creation of another type 

of orientation boundary layer. Finally, for certain values of the 

rheological parameters there is a transition to a "tumbling" state of 

orientation, in which rapid changes of orientation are observed across the 

flow field. 

Studies of the flow of nematic liquid crystals have emphasized 

viscometric geometries. The only fluid mechanical analyses of non

viscometric flows of a Leslie-Ericksen fluid have been restricted to the 
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special case of the Transversely Isotropic Liquid (TIL); Leslie [11] has 

obtained a similarity solution for converging or diverging flow between 

planar walls (Jeffrey-Hamel flow), and Vanderheyden and Ryskin [12] have 

described numerical solutions for converging and diverging geometries. Evans 

[13] and Lipscomb and coworkers [14] have reported numerical solutions of 

converging flow for a theory of dilute fiber suspensions that is equivalent 

to a statistical averaging of the TIL equations over initial orientation 

distributions. The TIL equations do not include the nematic elasticity, and 

hence these solutions cannot accomodate wall-induced orientation and the 

various boundary layer and transition phenomena that characterize liquid 

crystals. 

The .extent to which the Leslie-Ericksen (L-E) theory describes the 

behavior of nematic liquid crystalline polymers is unclear, since the full 

range of behavior of this constitutive theory has not been- fully explored. 

The dynamical terms in the theory arise as the low-deformation rate limit of 

Doi's theory of liquid crystalline polymers [Doi and Edwards, 15], but the 

Doi theory contains no analog of the Oseen-Frank elasticity and cannot be 

applied to flows containing elastic boundary layers. The magnetic field 

experiments of Moore and Denn [ 16] show that the Oseen- Frank elasticity in 

some thermotropic liquid crystal polymers can creep, and that a 

viscoelasticity that is dependent on orientation gradients must be included. 

It is clearly essential to define the full scope of the behavior of the L-E 

theory, with particular emphasis on the non-viscometric flows that are of 

interest in processing applications. 

In this paper we obtain a steady in-plane similarity solution to 

Jeffrey-Hamel flows of nematic liquid crystals using the L-E continuum 

theory. The results are restricted to rheological parameters for which 
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tumbling cannot occur. Several new phenomena are observed because of the 

interaction of center-line extension or compression, wall-region shear, and 

wall-induced orientation. The dependence of the orientation boundary layer 

on dimensionless flow rate (Ericksen number) changes functional form, 

depending on whether the shear or extensional components of the flow 

dominate in the boundary layer; the boundary layer results can be obtained 

in closed form through an asymptotic analysis. Imposition of an 

inhomogeneous magnetic field can cause a flow reversal. An azimuthal 

magnetic field can induce a new Freedericksz-like transition in orientation 

during flow; this transition should provide a stra~ghtforward means of 

measuring one of the viscosity coefficients in the continuum theory. 

II. Theory and Balance Equations 

The average local orientation of rigid molecules is described in the 

Leslie-Ericksen continuum theory by a unit vector g, called the director. 

The theory allows for a microstructure with an internal angular momentum, 

and hence the required balance equations, using cartesian tensor notation, 

are 

(2.1) 

and 

0 - Gl.. + g1 + ~.. . (2.2) 
J l.. J 

The fluid is assumed to be incompressible. p is the density, and the super-

posed dot ( ·) denotes the material time derivative The inertia of the I 

director is neglected. The mechanical quanti ties appearing in the theory 

are defined as follows: 

F. external body force per unit volume l. 

G
1 

extern~l director body force per unit volume 
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t .. stress tensor 
J l. 

1fj i intrinsic director surface stress tensor 

g
1 

= intrinsic director body force. 

The constraints of incompressibility and constant director length introduce 

indeterminancies into the stress tensor and the intrinsic director force 

and stress, as follows: 

"' 
t - p s + t (2.3a) 

j i j i j i 

"' 
gi -yn_ - /3. n + gi (2.3b) 

l. J i. j 

"' 
1f n./3. + 1f (2.3c) 

j i l. J j i 

Here tj i is the extra-stress tensor, g. is the intrinsic director extra body 
l. 

force, ?fj i is the director extra stress, p is the pressure, and -y is the 

director tension. The constitutive equations are [1] 

t 
j i 

where 

aF 
an 

k. j 

n 
k. i 

+ann 
1 k m 

A 
km 

+annA +annA 

gi 

"' 
1f 

j i 

A 
1 

5 j k ki 6 i k kj 

aF 
A N A A an + + 

1 i 2 ij 
i 

aF 
an 

i , j 

a - a 
2 3 

n n 
i j 

n j 

+anN 
2 j i 

+ a n N 
3 i j 

+a A 
4 j i 

(2. 4a) 

(2.4b) 

(2.4c) 

(2.5a) 

(2.5b) 

The {a
1

), i 1, ... 6' are material constants with the dimensions of 

viscosities. The equality between a 6 - a 5 and a 2 + a 3 is due to Parodi [17], 

and is based on arguments from irreversible thermodynamics. The kinematical 
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quantities appearing in the constitutive equations are defined as follows: 

N n - w n (2.6a) 
i i ik k 

0 
(Vi, k v )12 (2.6b) ik k. i 

A 
(Vi, k + v )12 (2.6c) 

ik k,i 

N. is the angular velocity of the director relative to that of the fluid, 
~ 

Oik is the vorticity tensor, and Aik is the rate-of-deformation tensor. The 

static stress is defined in .terms of derivatives of an energy density, F, 

which is related to the director field as follows (4,5]: 

2F (2.7) 

The (Ki i} are elastic constants, referring to splay (11), twist (22), and 

bend (33) deformations, respectively. 

The rheological coefficients (a. ) and (K .. } can be measured using light 
~ ~ ~ 

scattering and in viscometric flows with external fields (see, for example, 

deGennes [6]). The most completely studied monomeric nematic liquid crystals 

are p-azoxyanisole (PAA) and N-(p-methoxybenzylidene)-p'-butylaniline 

(MBBA). Parameter values for these liquids are tabulated in Table 1. The 

data for PAA are those used by Tseng et al. [18]; the elastic con~tants for 

MBBA are those of de Jeu et al. (19], while the viscosity coefficients are 

those reported by Gahwiller [20] at 25°C. These are the parameters used in . f 

all subsequent calculations. 
II 

The remainder of this section is concerned with the detailed development 

of the reduction of these equations to the form appropriate to Jeffrey-Hamel 

flow. Jeffrey-Hamel flows are best described in a cylindrical (r, 1/J, z) 

coordinate system; see Figure 1. The radial distance r is measured from the 
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vertex of the plates. The total enclosed angle between the plates is 2~ . 
0 

We assume that the flow is radial, with no variations in the neutral (z) 

direction, so that v z v~ = 0. Following the classical approach for a 

Newtonian fluid (see, for example, Denn [21]), we then seek a solution of 

the form 

v (2.8) 
r 

with the no-slip condition u(± ~ ) 
0 

0. The flow rate per unit width, q, 

is also a fixed system constant: 

q r -~ 

u(~)d~ (2.9) 

0 

Note that both u and q are positive for diverging flow and negative for 

converging flow. 

Following Leslie [11], we assume that the director is in the ~-r plane: 

nr = cos W(~) n~ = sin W(~) (2.10) 

The components of the director surface stress tensor and the intrinsic 

director body force are then as follows: 

(2.lla) 
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r1t' cos(W) (l+W') 
[K11 + K 3 3 sin 

2 
(W)] (2.llb) 

H 

2 
(2.1lc) r1T' - K 33 sin(W) cos (W) (l+W') 

r>/J 

3 
r1t' K

33
sin (W) (l+W') (2.lld) 

>/Jr 

[ 
2 ] >..2->..1 

- cos(W) [l+W'] K
11 

+ K
33 

sin (W) cos(W) + --2--- sin(W) u' 

(2.12a) 

- >.. 2 cos(W) u 
2 + -y cos(W) 

r 

(2.12b) 
).1+).2 

+ ---
2
-- cos(W) u'+ >.. 2 sin(W) u + -y sin(W) 

A prime denotes differentiation with respect to ~. 

The director balance equations (2.2), take the following form for the 

assumed kinematics: 

0 (2.13a) 

(2.13b) 

By combining these balance equations with the preceding stress and body 

force equations we then obtain a single equation for the director angle, 

W(~): 

f W' (l+W') + gW'' + [>..2 cos(2W) + \] ~· + [\ sin(2W)] u 0 (2.14) 

Here 

(2.15a) 

g'(W)- (K
33

- K
11

) sin (2W) (2.15b) 

I 
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This equation simplifies for the commonly-employed approximation of equal 

elasticity coefficients, K11 = K22 = K33 = K, in which case g(W) K and 

g' (W) 0. We have not used this simplification in our numerical 

calculations, although it is used in the asymptotic analysis of the boundary 

layer. 

The components of the stress tensor, Equation (2. 4a), are as follows 

for the assumed kinematics: 

2 " 
r t 

H 

2 " 
r t 

r,P 

2 " 
r t 

,Pr 

(2 .16a) 

2 
g - 2gW' - g(W') + R

3 
u + R

4 
u' (2.16b) 

··-----2 
g'[l+(W')] 

+ R
5 

u + R
6 

u' (2.16c) 
2 

(2.16d) 

The coefficients {R
1 

}, i = 1 to 8, are functions of the viscosities {a
1

} and 

the director angle W(~); these functions are enumerated in Appendix I. 

The components of the linear momentum balance equations with the assumed 

kinematics are as follows: 

r-component: 

2 
pu 

3 
r 

~-component: 

t 
1 

+ 
r r, r r 

0 
t +t 

r,P ,Pr + 1 t 

t + 
1/1 r, ·r 

t - t 
rr ,P,P 

r 

r r .p.p, .p + t 
r,P,r 

(2.17a) 

(2.17b) 

It should be noted that the stress is asymmetric, so that the order of 

subscripts on stress terms is important. The isotropic pressure must be of 

the following form for consistency: 



p 
a(l/J) 

2 
r 

10 

(2.18) 

Combination of Equations (2.16) through (2.18) then leads to the following 

coupled ordinary differential equations for the scalar functions u(l/J) and 

(1 ( 1/J) : 

2 2 
g(l + W') + pu + a

1
u + a

2
uW' + a

3
u' + a

4
u'W' + a

5
u'' + 2a = 0 

1L 
2 

g' (W') 

(2.19a) 

3 

(2.19b) 

The coefficients { a
1 

} , i = 1, ... 9, which are tabulated in Appendix I, are 

functions only of the viscosities and the function W(l/J). Equations (2 .14) 

and (2.19) define the director orientation, the velocity distribution, and 

the pressure field. 

Equations (2.14) and (2.19) are solved here in dimensionless form; the 

non-dimensionalization and the resulting dimensionless equations and 

boundary conditions are enumerated in Appendix I. The velocity is scaled 

with the flow rate per unit width, q, and the elastic terms with the elastic 

energy coefficient K11 ; the kinematics are then described by two 

dimensionless groups, as follows: 

E (2.20a) 
K 

i i 

2 

R E .e.g_ 
K 

(2.20b) 
i i 

E is the Ericksen number for this flow, defining the relative overall 

weights of the viscous and elastic stress terms. K11 is chosen as the 

normalizing elastic coefficient because the dominant deformation with pl~nar 

boundary conditions is splay (c.f deGennes [6], Chandresekhar [22]); K33 

could be used when bend deformations dominate, but the two coefficients are 

of comparable magnitude in any event. The group RE defines the relative 

• 
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overall weighting of inertial and elastic stress; R is a pseudo-Reynolds 

number equal to · pqj.\ 1 • R is of order 10-
4 

relative to E for parameters 

characteristic of monomeric nematic liquid crystals, so the inertial 

contribution is generally negligible; we have retained the inertial term in 

our numerical calculations for generality, but the effect is never 

significant. 

All calculations of the boundary value problem reported subsequently 

were obtained using the Galerkin finite element technique with quadratic 

shape functions over thirty spatial elements (e.g., Fletcher [23]). Newton

Raphson iteration was used for solution of the nonlinear system of algebraic 

equations. Convergence was very sensitive in many cases to the selection of 

the initial estimate, and . first-order continuation in the material 

properties and the director wall orientation was generally necessary. 

III. Centerline Orientation 

Symmetry of the velocity profile and antisymmetry of the director 

orientation are assumed to exist around the centerline, 1/J = 0. There are 

multiple solutions to the equatio? set, and two possible director 

orientation distributions can exist; these are characterized by aligned (W = 

0) and transverse (W = ±~/2) orientations at the centerline. Convergence to 

the correct solution can be ensured by using only the half space 0 ~ 1/J ~ l/1
0 

and setting the centerline boundary condition, rather than using symmetry. 

The boundary condition can be determined by a linear stability analysis. 

We denote the steady-state director as W
5

(1/J), and we perturb the 

director field about W (l/1) while retaining the steady-state velocity 
s v 

distribution. The orientation is now given by 

W(l/l,r,t) (3.1) 

Neglecting elastic torques, which will be negligible along the centerline at 

sufficiently high values of the Ericksen number, the time-dependent director 
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equation is then 

(3.2) 

and, expanding the sine and cosine about the steady solution and retaining 

only first-order terms in the perturbation, we obtain 

aw 
d+[-2)· at 2 

w 
d 

sin + (2A cos(2W ) W J u 
2 s d 

u' = 0 at the centerline; defining A = A2 /A 1 we thus obtain 

at {~ cos(2W (0)) u(O)} W (0) 
2 s d 

r 

aw (O) 
d 

0 (3.3) 

(3.4) 

A is negative and greater in absolute value than unity for the physical 

parameters considered here; this corresponds to the case of no "tumbling" of 

the director. u(O) is negative for inflow (converging flow) and positive 

for outflow (diverging flow), so the stable solution for converging flow 

corresponds to W (0) - 0 (alignment) and for diverging flow to W (0) = ±~/2 s s 

( tr.ansverse). We shall show subsequently that this boundary condition can be 

changed by introduction of additional centerline torques on the director 

through imposition of an electromagnetic field. 

IV. Similarity Solutions 

The normalized velocity profile in a converging channel with~ = 0.5 is 
0 

shown as curve A in Fig. 2 for the parameters characteristic of PAA and a 

wall anchoring angle for the director of ~/6. Curve B is the profile for the 

same material parameters, but with the elastic coefficients (K
1 1

} set to 

zero the wall anchoring angle is now fixed by the material parameters. 

Curve C is the profile for a Newtonian fluid; the creeping-flow profile for 
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the Newtonian fluid is (see, e.g., Denn, [21]). 

u(l{J) = 
[ . cos2>/> 
s1.n 2l{J 

0 

cos2,P 0 l (4.1) 

Elasticity has no effect on this scale on the velocity profile. The profiles 

for PAA and a Newtonian fluid are also very close for the given flow rate 

and anchoring angle. This invariance of the velocity profile will be 

exploited subsequently in some closed-form analytical approximations. 

The orientation of the.. director as a function of angular position is 

plotted for various anchoring angles in Fig. 3. There is some arbitrariness 

about the quantity to be kept constant in such comparisons; we have selected 

the wall isotropic pressure (which is equivalent to selecting the total 

reference pressure at a point far upstream) as the constant throughout this 

work whenever the point to be illustrated involves changing a physical 

parameter or a boundary condition, in which case the flow rate may vary. It 

can be seen in Fig. 3 that there are two distinct regions in the flow: There 

is a core region, in which the orientation of the director is determined 

solely by the flow effects of shear and elongation; the elastic torques are 

negligible in this region, and the viscous torques must sum to zero. There 

is a boundary layer region close to the wall, in which the elasticity of 

the fluid propagates the fixed orientation at the wall. 

The effect of elasticity is shown in Fig. 4, where the viscosities for 

PAA are used and the wall anchoring angle is again taken to be ~/6. The 

boundary layer thickness decreases with decreasing values of the elastic 

constants (K .. ). The limit of vanishing elastic constants, which corresponds 
11 

to Ericksen's TIL, is singular; the wall condition is forced to be the 

solution to cos 2W(l{J
0

) - -1/A, and no condition imposed by the physics of 
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interaction between the nematic liquid and the wall can be satisfied. This 

observation is undoubtedly important with regard to analyses applying the 

TIL constitutive equation to liquid crystalline polymers, since the wall 

orientation angle for rigid polymers is expected to be zero. 

The effect of varying the Ericksen number (by changing the reference 

pressure) is illustrated in Figs. Sa and b; the anchoring angle is ~/6 in 

the former and zero in the latter. The elasticity boundary layer is clearly 

seen here. The thickness of the boundary layer is a decreasing function of 

E. 

The director orientation angle at two angular positions is shown as a 

function of Ericksen number in Fig. 6 for the two nematic liquids considered 

here. The core solution is achieved rapidly in curves C and D, which are for 

a position close to the center line; the core has not yet been achieved at a 

position within 0.25 radians of the wall for E > 3000. The rather similar 

behavior of the two liquids is a consequence of the non-dimensional 

formulation of the problem. 

Velocity profiles for diverging flow of a fluid with the properties of 

PAA are shown _in Fig. 7. Curve A is for the L-E fluid with a wall angle of 

zero, while for curve B the wal1 angle for this case is -~/6 radians. Curve 

C is for a Newtonian liquid. The velocity profiles are still quite close, 

but the difference between the nematic and Newtonian profiles is somewhat 

greater here than for the converging flow computed in Fig. 2. 

The effect of the anchoring angle on the orientation profile in 

diverging flow is shown in Fig. 8. The boundary layer induced by the 

elasticity and the wall alignment is clearly seen. Because of the stable 

transverse orientation at the centerline, the core solution for diverging 

flow is not close to alignment with the flow; rather, there is a gradual 
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transition involving large rotations from the transverse orientation in the 

hi-axially-expanding centerline region to the near-alignment in the shear-

dominated wall region. 

V. Significance of the Asymmetric (Elastic) Stresses 

It is of some interest to compare the flow behavior of the Leslie-

Ericksen nematic liquid with Ericksen's Transversely Isotropic Liquid, to 

which the former reduces in the limit of vanishing elasticity constants. As 

we have already noted, this limit is singular. This comparison is motivated 

in part by the claim of Vanderheyden and Ryskin [ 12] that, because the 

elastic stresses in a polymer liquid crystal are small relative to the 

viscous stresses, the elastic constants may be set to zero in a flow 

analysis. 

Leslie's [1] constitutive equation (2.4a) for the asymmetric stress 

tensor of a nematic liquid crystal can be resolved into symmetric and 

antisymmetric components, as follows: 

" -
t 

s + t t 
ij i j 

- s 
t a

1
A n n n n + a4 A + ij kp k p i j ij 

1 
+ 

2 (as + as)(\inknj 

a 1 
(a 2 -a3 )(N.n

1
-n.N.) 

1 t 
2 + 2 ij J J 1 

a 

ij 

1 
2 

aF 
n an k,j 

k. i 

(a 2 +a 3 )(n.N.+N.n.) 
1 J 1 J 

+ A n n ) 
kj k i 

(a
5
-a

6
)(A n n -A n n ) 

ki j k kj i k 

(5.1) 

(5.2a) 

(5.2b) 

Since the antisymmetric stresses couple the velocity and director fields 



16 

through the action of viscous torques, a symmetric stress tensor without 

elastic terms will result in an orientation field of vanishing viscous 

torques; in our case this is given by Eqn. (2 .14) with g = g' = 0, as 

follows: 

u' 
[A cos(2W) + 1] z- + [A sin(2W)] u 0 (5.3) 

where A = A2 /A 1 • Equation (5.3) is identical to Leslie's [11] director 

equation for an anisotropic fluid with no elasticity, and hence with a 

symmetric stress tensor. For the same value of the physical constant A the 

core solutions for the two fluids will be the same, but the elastic L- E 

liquid will deviate from this solution to achieve the specified anchoring 

angle. To achieve the same wall orientation, the inelastic TIL would 

require a different value of A, and the orientation profile would therefore 

be drastically different; i.e., the wall anchoring boundary condition cannot 

be satisfied without changing the properties of the fluid, and hence the 

orientation distribution throughout the bulk. It is therefore clear that, to 

the extent that the L-E theory might approximate the behavior of polymer 

liquid crystals, the elastic stresses must be retained in any flow analysis 

if the orientation distribution .is to be computed. Thin orientation boundary 

layers are expected because of the tendency of the rod-like macromolecules 

to align with the surface of a die. This boundary layer would lie between 

the wall and any orientation induced near the wall by the bulk flow. 

VI. Boundary Layer Analysis 

Boundary layer behavior of nematic liquid crystals in shear flows is 

described in the review by Leslie (8] and the book by de Gennes [6). More 

recently, Skarp and Carlsson [25) studied the orientation boundary layer in 
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shear flow in the presence of electric fields. We carry out a similar 

analysis for Jeffrey-Hamel flows without external fields in this section, 

and we obtain an approximate analytical expression for the boundary layer 

thickness as a function of the Ericksen number. 

Equation (5.3) describes the orientation distribution in the core 

region, where there are no elastic torques; the solution is 

tan W 
c 

- 2Au ± )4A
2

u
2

- (l-A
2
)(u')

2 

u' (1-A) 
(6.1) 

where A = A2 /A1 and the subscript "c" .refers to the core. The negative sign 

applies for inflow and the positive sign for outflow. 

We seek a solution valid near the wall in the form of a perturbation 

about the core solution, as follows: 

(6.2) 

€ is a small parameter. The "inner" solution, W. , is required in order to 
l. 

satisfy the wall orientation boundary condition. By assuming the one 

constant approximation ( K11 = K22 

II) the following equation for Wi: 

w,, 
i 

K33 = K) we then obtain (see Appendix 

( 6. 3) 

It is convenient to measure the angle from the wall, and we define ~ = ~o -

~- We assume that the velocity profile is approximately linear in the wall 

region, 

u = {3~ (6.4) 
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where {3 is known in closed form for Newtonian fluids in the creeping flow 

limit (Eq. 4.1) We further assume that We in the neighborhood of the wall is 

fixed at the "natural" wall value given by cos 2Wc = -1/.A (see Appendix II); 

this is a reasonable approximation for converging flow, but it is likely to 

be innacurate for diverging flow (c.f. Fig. 8). These assumptions result in 

the following linear equation for the inner solution: 

w I I - [2E,B(~+qS)] w 0 
i i 

(6.5) 

where 

2 

~ = 
j>.. -1 

2 
(6.6) 

Equation (6.5) is singular in the limit E ~ oo, for which special care must 

be taken. The solution is given in terms of Airy functions, as follows: 

(6.7) 

Here z ~ (2E,B) 113 (~ + qS) and Ai and Bi are Airy functions of the first and 

second kind, respectively. Bi is unbounded, so the condition that W. be 
~ 

bounded for large qS requires that C2 - 0. We thus obtain the following 

solution: 

(6.8) 

The Airy function of the first kind goes asymptotically to zero as the 

argument becomes large. The boundary layer thickness is thus estimated by 
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S(E) = 
El/3 ( 2/3)1/3 

2 
(6.9) 

where we have defined S as that distance for which A. (E 113 (2f3) 113 (~+c5)) is 
1 

sufficiently close to zero, say 0.03. 

In order to avoid the singularity in the limit E ~ oo, the problem must 

be rescaled. We define a new angle, 

(6.10) 

where the exponent n is to be determined. Equation (6.5) then becomes 

i --- (6.11) 

n must equal 1/2 in order for the equation to remain regular as E ~ oo In 

this limit the equation becomes identical to that for simple shear, with a 

boundary layer thickness of [24] 

(6.12) 

The constant 3. 5 appears so that there is consistency with the previous 

boundary layer definition given by Eq. (6. 9). The square root dependance 

can also be obtained from an asymptotic solution to Eq. (6.5) using the WKB 

approximation (see e.g., Nayfeh (26]). 

The approximation that W 
c 

can be approximated by 

throughout the boundary layer is too crude for outflow, 

the wall value 

where W varies 
c 
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uniformly from the the "natural" value at the wall (typically close to zero) 

to ±~/2 at the centerline; see Appendix II. The limiting behavior forE~

<X) is unchanged, except that E must be replaced by IE I in Eq. ( 6 .12). The 

differential equation now contains a turning point, however, and the cube

root behavior is not recovered; the turning point occurs near the transition 

in the boundary-layer behavior, and reflects the different core solution for 

outflow. 

Figure 9 shows a plot of the boundary layer thickness as a function of 

Ericksen number. The continuous curve labeled "numerical solution" was 

obtained by estimating the boundary layer thickness from curves like those 

in Figs. 5 and 8. Agreement with the asymptotic solutions given by Eqs. 

(6.9) and (6.12) is excellent for inflow, and agreement with the solution 

given by Eq. (6.12 is excellent for outflow. The boundary layer thickness is 

determined for inflow by the competition between wall alignment and the 

extensional flow in the core for E below 2000, leading to the -1/3 

dependence. At higher Ericksen numbers the boundary layer is sufficiently 

thin that the flow in the core has little significance, and the competition 

is between the wall anchoring and the shear flow near the wall. In this case 

the boundary layer is determined in the same manner as in a shear flow, and 

the -1/2 power dependence characteristic of shear flows is recovered for 

both inflow and outflow. 

VII. Magnetohydrodynamics 

Liquid crystalline molecules are diamagnetic, and macroscopic 

orientation can be effected through the use of electro-magnetic fields; see 

Moore and Denn (16], for example, for a discussion of magnetically-induced

orientation in liquid crystalline polymers. The use of external fields with 
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flow could have processing significance as a means of controlling 

orientation distributions. In this section we obtain and discuss solutions 

to converging and diverging flows in which there are imposed magnetic 

fields . 

.. 
As shown by Ericksen [27,28], a magnetic field affects the fluid through 

the action of a body force I and a body couple ~ x Q, as follows: 

(7 .1) 

x.~. and XII are the magnetic susceptibilities perpendicular and parallel to 

the director, respectively, and t:,.x = x.~. - XII is the anisotropic magnetic 

susceptibility. Compatability with the similarity solution and the Maxwell 

equations requires that the magnetic field have the following form: 

H (~ ' ~ ' 0 J (7.2) 

The extrinsic director body force G and the external body force F then have 

the following components: 

G 
A 

[A. cos(W) + B sin(W)] (7. 3a) t:,.x 2 
r r 

G = t:,.x B [A cos(W) + B sin(W)] (7.3b) 

"' 
2 

r 

XJ. 
(Az+Bz) - t:;.x (A2 cos2 (W) + B2 sin2 (W) + AB sin(2W)) F 

r 3 3 r r 
(7 .4) 

F 
t:,.x [ - AB cos(2W) + (A2 

- B2
) sin(W) cos(W)] 

-; 3 r 
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The dimensionless form of the balance equations (see Appendix I) leads to an 

additional dimensionless group, known as the Zocher number, Z: 

2 z (7.5) 

The Zocher number gives the relative magnitude of magnetic to elastic 

torques; the relative magnitude of viscous to magnetic torques is given by 

E 
D=-

2 z 
(7. 6) 

Values of the magnetic susceptibilities from Gas~roux et al. [29] are 

included in Table 1. Numerical computations of the orientation profile in 

converging flow with a radial magnetic field are shown in Fig. 10. The 

magnetic field influences the flow in two ways: the field induces director 

alignment in the radial direction, thus acting cooperatively with the flow-

induced alignment; the field also causes a position-dependent body force. 

The latter causes an effective pressure gradient that acts against the flow, 

and hence retards the motion and reduces the Ericksen number for a fixed 

wall reference pressure. A field of sufficient strength can cause the flow 

to reverse direction. 

The effect of an azimuthal field on a converging flow is expected to be 

qualitatively different. The magnetic body force still acts to retard the 

flow, with flow reversal possible for a sufficiently strong field, but the 

field tends to induce a transverse alignment during inflow. There is 

therefore a competition between the field and the flow, and the retarding 

effect of the magnetic body force gradient at a constant wall reference 

pressure enhances the aligning strength of the field. Computed orientation 

distributions for increasing azimuthal field strengths in converging flow 

.. 

A 

.. 



23 

are shown in Figure 11, illustrating the increasing tendency towards 

transverse alignment. The director equations admit multiple solutions, with 

both aligned and transverse orientations possible at the centerline. It 

might be expected that for a sufficiently strong transverse field there 

would be an exchange of stability in a converging flow at a critical field 

strength to the transverse centerline orientation. 

Including the magnetic field in the balance equations results in the 

additional term+ 6xB
2

cos(2W
5

(0))/A 1 r
2 

in the braces on the right-hand side 

of Eq. (3 .4); the condition for stability of the radial orientation then 

includes both flow and field-strength terms, as follows: 

(7.6) 

There is a critical field given by 

c 

-2A
2
u(O) 

=J---
6x 

(7.7a) B 

or, in dimensionless form, 

D 
1 

(7. 7b) 
c 2AU(O) 

The group -2AU(O) is plotted versus 1/D in Figure 12 for the family of 

converging flow solutions with an aligned centerline orientation; this plot 

includes the solutions shown in Figure 11. Flow reversal occurs as D -+ 0 

(c. f. Eq. 7. 5) , or 1/D -+ co The critical condition for transition 

corresponds to the intersection of the curve of -2AU(O) with the 45° line, 



24 

which occurs at D close to .47, and thus considerably before flow reversal; 

use of the Newtonian velocity profile in Eq. (7.7) gives a critical value of 

D - 0.59. c 

These results establish the existence of a new first-order transition in 

flow that is analogous to the Freedericksz transition in quiescent liquid 

crystals [6], except that the latter is second-order. In the Freedericksz 

transition the field overcomes the alignment induced by the wall, and the 

balance is between magnetic and elastic torques; in the flow transition, the 

magnetic field overcomes the aligning torque induced by the extensional 

flow. The transverse orientation will remain stable as the field strength is 

increased, since the flow will become progressively weaker and eventially 

reverse. Orientation distributions just before and after the transition are 

shown in Figure 13, together with the orientation at reversal to outflow. 

The azimuthal magnetic field can be realized by use of a current-

carrying wire at the vertex of a converging flow, and the transition will be 

easily-observable by a change in the transmision intensity of polarized 

light. The grouping of viscosities given by >. 2 (Eq. 2. Sb) can then be 

determined by measuring the critical field strength and flow rate for a 

given wall reference pressure; the centerline velocity can be estimated 

with sufficient accuracy by using the Newtonian fluid centerline velocity. 

There is no transition with outflow. A radial field increases· shear, 

hence aligning the director closer to the radial direction, but the 

centerline compression stabilizes the transverse orientation. The stability 

criterion is always satisfied, leading to a sharp "wall-like" profile near 

the centerline; c.f. Fig. 14. An azimuthal field in the diverging flow will 

stabilize the center line orientation both through the added viscous torques 

and the magnetic torques. 

.. 

•. 
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Appendix I 

The coefficients {R.} in Equations (2.15) are as follows: 
1 

(I.la) 

a
1 

cos(W) cos3 (W) + a
5 

sin(W) cos(W) (I.lb) 

(I.lc) 

(a5 +a6 ) [a +a l 
R

4 
= a 1 sin

3
(W) cos(W) + 2 sin(W) cos(W) + ~ sin(W) cos(W)(I.ld) 

R 
5 

:
1 sin(4W) + [as~as] sin(2W) 

a 
R =a sin2 (W) cos2 (W) + 2 cos2 (W) 

6 1 2 

a 
3 

2 

(I. le) 

as 2 as 2 
+ ~ cos (W) + ~ sin (W) 

(I.lf) 



R 
7 

a 
1 

4 

(as -as) 
sin(4W) -

2 
sin(2W) 

2 2 
a

1 
sin (W) cos (W) 

The coefficients (a.} in Equations (2.19) are as follows: 
~ 

a a cos2W + (a +a ) cos2W 
1 1 5 6 • 

a a cos4W - (a - a ) cos2W 
2 1 5 6 

a3 al cos2 W sin2W - a sin2W 
5 

a 
1 sin2W + (a -a ) sin2W a 2 4 5 6 
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(I.lg) 

2 a6 2 
sin (W) + 2 cos (W) 

(I.lh) 

(I. 2a) 

(I. 2b) 

(I. 2c) 

(I.2d) 
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a [a5 ~a6 ] + [a3 :as] 1 
sin2W + sin

2
W cos

2
W a 

2 5 
(I. 2e) 

a a sin
2

W cos2W + a + (a + a ) sin
2

W 
6 1 4 5 6 

(I. 2f) 

a a (1 - 2cosW) sin2W + (a + a ) sin2W 
7 1 5 6 

(I. 2g) 

.. 
a 

1 
(cos2W - cos4W) cos2W a 

2 
+ a 

8 6 
(I.2h) 

a a sin
3

W cosW + a sinW cosW 
9 1 6 

(I.2i) 

The Parodi relation, Eq. (2.5b), has been used to simplify some equations. 

The nondimensional equations are obtained by scaling the velocity with q, 

·---the elastic terms and the angular dependence of pressure with K11 , and the 

viscosity coefficient terms with A
1

• The following dimensionless groups 

result: 

y _g_ 
~ 

a 

Kll Kll 

u Alq 
u E =-

q Kll 

a 2 

A 
i RE .eg_ -

i A Kll 1 

A 
A = 

2 -
A 

1 

Equations (2.14) and (2.19) then become the following fifth-order set of non-

dimensional nonlinear ordinary differential equations: 

(I. 3a) 
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1 3 W' 2 - W' s - Q__ W', - 2G W'W', + 
2 2 Y' Y' 

(I.3b) 

2. + A
9 

EU' ' - y, = 0 

W'' + ~~ W' + ~~ W'
2 

+ (~ cos2W + ~) E~' + (Asin2W) ~U 0 (I. 3c) 

The boundary conditions are as follows: 

u (±1/Jo) 0 No slip at the wall (I. 4a) 

I (±1/Jo} =I Fixed 
0 

reference pressure at the wall (I. 4b) 

W(±l/Jo) = w Fixed anchoring angle at the wall (I. 4c) 
0 

The director external body force takes on the following form when there is 

an imposed magnetic field, g: 

G = D.x (g•!!) H (I. 5) 

The director balance equations thus become 

r:r'W' u' 
~ (l+W') + gW'' + (A 2 cos2W + A1) 2 + (A 2 sin2W)u 

(I. 6a) 

or, in dimensionless form, 

Y' Y' 2 W'' + W' + W' 
2Y 2Y 

2 
2T.l 1) EU, EU co~ w + 2 y + (A sin2W) y 

(I. 6b) 
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The extrinsic body forces are 

(I.7) 

The dimensionless momentum balance equations (I. 3a) and (I. 3b) will then 

contain the the following additional terms, respectively: 

( [:~ + [~] + [A: -B:] 
A +B A +B 

2 [.AB] cos (W) + --
A2+B2 

sin(2W)] (I.8a) 

and 

~: [[- ~] cos(2W) + [A: -B:] 
A +B A +B 

(I. 8b) 
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Appendix II 

For sufficiently large flow rates the orientation profile consists of a 

core and wall region. We assume that the boundary layer is a perturbation 

about the core solution that scales with a small parameter, e: 

(II.l) 

The first-order expansions of the trigonometric functions are . 

cos 2W cos 2W sin 2W 
c c 

sin 2W sin 2W + 2e W. cos 2W 
c l. c 

With the one-constant approximation for the elastic coefficients, Eq. (2.14) 

then becomes 

(II.2) 

We then collect terms of equal order in e: 

0 (II. 3a) 

(II. 3b) 



.. 

The dimensionless form of Eq. (A2.3) is 

w ,, 
i 

w 
i 

- AEU' sin(2W ) + 2AEU cos2W 
c c 
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= 0 (II.3c) 

It is assumed that the flow is sufficiently strong that elastic torques 

are negligible in the core, in which case we may simplify Eq. (II.3a) by 

taking K--+ 0 to obtain an outer solution: 

KW " = 0: 
c 

0 

Using the following trigonometric identities in Eq. (II.4), 

2 
1 tan a: cos 2a: = ~--~~-

2 

sin 2a: 

1 + tan a: 

2 tan a: 
2 

1 + tan a: 

we obtain the analytical equation for the core orientation,Wc: 

tan W 
c 

- 2Au ± )4A
2
u

2 
(l-A

2
) (u') 2 

u' (1 - A) 

(II.4) 

(II.S) 

u(~) is zero at the wall; we thus obtain the core solution extrapolated to 

the wall, W , as follows: 
c,w 

tan W 
c. w 

For inflow, 

A + 1 ± J A - 1 
(II. 6a) 



cos 2W 
c. w 

1 
>.. sin 2W 

c. w 

1 2 
-- j>.. -1 >.. 
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(II. 6b ,c) 

It suffices to approximate W in Eq. (2.5) by the value at the wall, W , 
c c,w 

in which case we obtain 

w ,, 
i 

= 0 (II.7) 

·---
We further approximate the velocity profile near the wall by the linear 

approximation to the Newtonian profile in Eq. (4.1), U = ~~. where~= -l/(2a 

- tan2a) and a is the half angle between the plates. We therefore obtain 

w,, 
i 

0 (II.8) 

.. 
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Table I. Physical Constants 

Viscosities PAA MBBA 
.. (poise) 

a1 0.043 0.065 

02 -0.069 -0.96 

03 -0.002 -0.011 

04 0.068 0.832 

as 0.047 0.63 

as -0.023 -0.34 

>.1 -0.067 -0.949 

>.2 0.0705 0.97 

Elastic Constants 
(dynes) X 10

7 

K1t 4.9 7.1 

K33 10.5 9.2 

Diamagnetic Susceptibilities 

(cgs emu g- 1) xl0
7 

t:.x l. 26 

X.!. -4.8 



Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 
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Figure Captions 

Schematic of Jeffrey-Hamel flow. W(~) is the angle of the director 

with respect to a ray at angle ~ from the centerline. 

all calculations shown here. 

~ = 0. S in 
0 

Scaled velocity profile for converging flow, q = - 0.0063 
2 

ems. A: 

PAA, with W(~0 ) = ~/6; B: PAA viscosities, but all K .. = 0, W(~ ) = 
l.l. 0 

O.lS8; C: Newtonian. 

Director orientation profiles for converging flow of PAA, p(~0 ,X) 
2 

0.01 d/cm . A: W(~ ) = ~/3; B: W(~ ) = ~/6; C: W(~ ) = 0. 
0 0 0 

Director orientation profiles for converging flow, PAA viscosities 

but varying elastic coefficients. 

PAA values; C: all K .. = 0. 
l.l. 

A: all K. . = twice PAA values; .B: 
l.l. 

Fig. Sa. Director orientation profiles in converging flow of PAA as a 

function of Ericksen number, W(~ ) = n:/6. A:E: 84; B: 279; C: 144S; 
0 

Fig. Sb. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

D: SS80. 

Same as Sa, W(~ ) - 0. A:E: 4241; B: 88S; C: 89. 
0 

Comparison of director orientation distributions in converging flow 

for PAA and MBBA. A: PAA at~·= 0.4S; B: MBBA at~= 0.4S; C: PAA 

at~= 0.25; D: MBBA at~= 0.25. 

Scaled velocity profile for diverging flow of PAA, E: -740. A: 

W(~0 ) = 0; B: W(~0 ) = -~/6; C: Newtonian. 

Director orientation distribution for diverging flow of PAA; E 

-740. A: W(~0 ) = -~/3; B: W(~0 ) = -~/6; C: W(~0 ) = 0. 

Boundary layer thickness as a function of Ericksen number. Full 

line: numerical solutions;---: Eq. (6.12);- •-: Eq. (6.9). 
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Fig. 10. Effect of radial magnetic field on director orientation in 

converging flow of PAA. A: Z2 = 27, E = 870; B: Z2 
= 427, E = 651; 

2 
C: Z : 1220, E = 205. 

Fig. 11. Effect of azimuthal magnetic field 

converging flow of PAA. A: Z2
: 2862, 

3136; C: Z2 
= 0 (no field), E = 4241. 

on director orientation in 
2 

E: 2548; B: Z = 1536, E = 

Fig. 12. Determination of the critical azimuthal field for converging flow of 

PAA by intersection of the 45° line with the curve of -2A(U(o) vs. 

1/D. 

Fig. 13. Director orientation distribution 

the critical azimuthal field. A: 
2 

transition); B: Z = 381, E = -2.5 

25 (just after transition). 

for converging flow of. PAA near 
2 ·---z = 155, E = 94 (just prior to 

2 (flow reversal); C: Z = 315, E = 

Fig. 14. Effect of a radial magnetic field on director orientation for 

diverging flow of PAA. A: Z2 
= 0 (no field), E = -38; B: Z2 

= 147, 
. 2 

E = -84; C: Z = 5437, E = -4412. 
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Figure 1 
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