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SYNOPSIS 

An analytic solution to an approximate form of the Fokker-Plank equation 

of rheological interest has been developed. The derived expression for the 

orientation distribution function of dilute rod-like molecule solutions in 

steady simple shear flow applies to the case in which r ))y/D)) 1, where 
. 

r, y 

and D are the rod aspect ratio, shear rate and rotational diffusivity. 

Goniometrical functions are also calculated in this limit. 

Results compare well with earlier calculations by Schwarz, Hinch & Leal, 

and Stewart and Sorensen. In particular, the previously reported power law 

exponent of -1/3 for the asymptotic functional dependence of the goniometrical 

factors upon a = y/D (the rotational Peclet number) is confirmed by the 

present calculation. 
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INTRODUCTION 

Recent years have witnessed a surge of interest in molecular composites 

consisting of rigid rod-like macromolecules in amorphous polymeric matrices. 

These systems hold much promise as engineering materials that exploit both the 

properties of rigid-rod and flexible coil-like polymers [1]. 

Problems remain, however, in understanding the thermodynamics and 

rheology of such potentially morphologically complex systems. Matrix 

viscoelasticity and microenvironmental topolcgy can significantly affect the 

rheology of these blends. For example, rotational diffusivity·of the rod-like 

molecules is expected to undergo an abrupt transition when the rod length 

becomes comparable to the average distance between entanglements formed by the 

matrix molecules (i.e., the "virtual" tube diameter of the surrounding 

network). For long rods in concentrated polymer solutions, rotation maY. in 

fact be accomplished by reptation of either the flexible coils or the rod 

itself to release the topological constraints. Diffusion times for the rigid 

molecule rotation are then expected to be much greater than those attainable 

in dilute (rod) solutions in Newtonian solvents. Practical processing of 

molecular composites thus often involves rates of deformation that are large 

compared to any intrinsic orientation relaxation process. In the case of 

simple shear flow this would imply: 

a Y /D » 1 (1) 

where a, Y and D are the rotational Peclet number, the prevailing shear rate 

and rod rotational diffusivity. As pointed out by Hinch & Leal [2,3] for the 

case of thin prolate ellipsoids, the conditions y/D >> 1 and r >> 1 are not 

themselves sufficient to uniquely specify a regime of "strong" flow. Indeed, 
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as shown by Jefferey [4], neutrally buoyant ellipsoids rotate, in shear flow, 

with a natural frequency 2~/T, the period T being directly proportional to the 

particle axis ratio r and inversely proportional to the shear rate y. More-

over, in the case of "strong flow", the ellipsoids closely align around a 

common orientation orthogonal to the local fluid vorticity axis and parallel 

to the plane of shear. This defines, in the orientation phase space, a high 

concentration region in which both convection and diffusion are important. 

Hinch and Leal termed this region "the boundary layer" [2,3]. The extent,!:::., 

over which it protrudes in the phase space is uniquely determined by a balance 

between advection and diffusion. !:::. has been shown to scale as (y/D)-l/3 

[3,5,6]. 

A third condition is then necessary in order to specify Brownian motion 

·which, although unimportant outside the "layer", still plays a significant 

role inside it. The angular diffusion time within the highly populated reg ion 

must be smaller than the hydrodynamic period T, i.e., T >> t::.
2 /D or equiv­

alently r 3 » y /D. If this is the case, then the ellipsoids kinematically 

behave as infinitely thin rods and the only driving force capable of "expel-

ling" them out of the layer is 'Brownian motion. 

As r + m Jefferey's equations for the motion of the ellipsoid reduce to: 

. 
12 (2) 

Here, as usual, E is a unit vector parallel to the rod major axis, ~ = yy is 

the local fluid velocity gradient tensor, and ~ is the identity tensor. Note 

that Eq.2 can be derived by purely kinematic arguments. It states that (in 

the absence of external torques) "long" rods are unable to rotate by "cutting" 

the surrounding medium. The only relative motion allowed is "slippage" of the 

••.. ,,\.,o~o, 

·',':~-
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fluid along the rod axis with a velocity: 

y = s cy • ~) R = <~ £12) R s (3) 

L 
the scalar s (O<s<z) specifies the position relative to the rod center. (L 

is the length of the rod). The rod angular velocity must, then, be equal to 

the local fluid rate of rotation: 

y - y 
E = -s-- = (1 - ~J2) • (~ • J2) (4) 

An important consequence of the limiting behavior described by Eq.2 is 

that the purely kinematic character of the equations of motion implies their 

complete independence of the specific nature of the surrounding fluid. In 

other words, provided that r 3 >>y /D))l, Eq .2 remains the same whether or not 

the matrix is Newtonian. Hence (when any possible dependence of D upon matrix 

morphology is excluded) the Fokker-Plank equation describing the instantaneous 

orientational state of an ensemble of (dilute) rigid-rod molecules in a 

Newtonian solvent, should be exactly the same (and hence yield the same solu-

tion) as the one describing an equivalent system of rods in a medium compris-

ing both large coil-like and low molecular weight molecules (the difference 

between the two cases would manifest itself in the values assumed by D). 

Rheological characterization of dilute solutions of axisymmetric 

particles in Newtonian solvents has been a very active area during the past 

seven decades. As a result the pertinent literature is quite abundant and 

sometimes confusing, expecially from the notational point of view. An 

excellent article by Brenner [7) synthesized all major theoretical achieve-

ments in the field, providing simultaneously explicit results for rheological 
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quantities and a unified framework for analysis from the hydrodynamic view-

point. In the following we shall often refer to Brenner's article for 

comparison of our results with those by other investigators. 

In the general context of Brenner's paper our work stands as "the 

intermediate case" [3,7]. Solution of the Fokker-Plank equation relative to 

this limit has been considered by several authors. The objective was to 

predict the three goniometric factors <sin2o sin2
iJ> + cos 2e>, <sinO cosO sin ijl> 

and <cos2e - sin20sin2 ~> which are necessary for the calculation of 

rheological and rheooptical properties [7]. 

The first attempt to solve a simplified diffusion equation was made by 

Burgers [5]. Indeed he was the first investigator to succeed in the formu-

lation of a "boundary layer " problem. His analysis demonstrated the 

existence of the "dense" phase space region and gave its scaling laws. No 

satisfactory solution, however, was obtained for the resulting differential 

equation, which was solved by an approximate procedure akin to orthogonal 

collocation. 

Another approximate procedure to determine the orientation distribution 

function was later adopted by Schwarz [7]. By partial integration of the 

original P.O.E. he obtained an O.O.E. for a "one-angle pre-averaged" distri-

bution function. An analytical solution was obtained. However, as a result 

of the pre-averaging approximation just two of the three goniometric factors 

could be calculated, leaving the third undetermined. 

The numerical scheme of Scheraga et. al. [8,9], for axisymmetric 

'•'' spheroids covered the axis ratio range oo >r> l. The work yielded valuable and 

accurate results for 60 > a > 0. The highest value of a explored was 200; the 

author did not feel confident with any of the results for a )60. Stewart and 

Sorensen [10] examined the case r = oo and oo > a > 0. They successfully 
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obtained an analytic solution in terms of a series expansion of spherical 

harmonics. The a-dependent coefficients were evaluated by the Galerkin method 

of weighted residuals. The number of terms required to assure conve~ence was 

found to grow rapidly with a for a)l • Also a truncated series of N terms 

required the evaluation of (N/2+1) 2 integrals. For example, conve~ence 

within four digits of the various stresses at a=l80 required N=22 and a 

corresponding number of 144 integrals. Because of the large number of 

integrals to be determined the calculations had to be performed numerically. 

For a greater than 180 the series was constantly truncated at 22 terms. The 

authors neither advanced any justification regarding their decision, nor dis­

cussed the possibility of systematic errors introduced by the truncation. We 

will confirm the accuracy of their results in the "high a" region of interest. 

A further attempt to solve numerically for the distribution function was 

made by Hinch & Leal [2,3]. Two different numerical schemes, one by finite 

difference and the other by finite element were employed. The objective was 

that of determining and matching numerically two asymptotic solutions for the 

orientation distribution function: the "inner" solution correspondi~ to the 

"dense layer" itself, and the "outer" solution valid in regions of the phase 

space "far" from the high concentration zone. In spite of considerable 

efforts the authors were only able to obtain estimates for the numerical 

coefficients in the power law expressions of the goniometrical factors [7]. 

Following- Hinch and Leal, we solve the diffusion equation in two distinct 

phase space regions: the high concentration "dense layer" and the external 

low density reg ion. Analytic expressions are derived in both domains and then 

matched to yield a "global" solution. Although analytic solutions are 

obtained, complexity of the averaging integral's kernels does not allow for 

explicit closed-form results for the goniometric factors, which are evaluated 

by numerical means. 
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THEORY 

Model development is subject to the following assumptions: 

( 1) As the rods do not interact with each other we are concerned with the 

case ~r2 << 1, ~ being the rods' hard-core volume fraction, and r their 

aspect ratio. (We consider a monodisperse system). 

(2) The suspension is homogeneous. The rods' centers of mass are evenly 

distributed within the physical space. 

(3) No external torque-inducing fields act on the system. 

(4) Inertia forces are unimportant for both the medium and the suspended 

particles, which are also neutrally buoyant. 

Under these assumptions, the rod orientation is is uniquely described by 

the orientation distribution function X, defined as follows. Let dN/Nt be the 

fraction of rods whose unit vector, 1? , lies in the range [e.e+de) • The 

orientation distribution function is defined as: 

where Nt is the total number of rods. The following restrictions apply to x: 

1 (normalization) (7) 

In Eq.7 the integration is extended to the whole phase (angular) space. With 

respect to a spherical, phase-space coordinate system Eqs. 5-7 become: 

dN Nf =X (6,~) sinS d6 d$ 
t 

(8) 
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x (n-e, n + ~) (9) 

(10) 

Equation 10 stipulates that for an isotropic equilibrium distribution 

x = l/4n. In addition to Eqs. 9 and 10 one further constraint must be obeyed: 

n 
0 at ~ = 2 and ~ 

3 
=~ (11) 

This condition preserves the intrinsic symmetry of the problem as dictated by 

the specific structure of the flow field (shear flow). 

A force balance in the physical space coupled with a conservation 

statement in the phase space lead to the following modified Fokker-Plank 

equation for x: 

- v • <x ~ - o v x) 
'P ' 'P 

(12) 

where 3x/3t and i denote the time rate of change of x and ~ respectively, yp 

is the phase space gradient operator, and D is the rotational diffusion 

coefficient of the rods. Equation 12 states that the local state of 

orientation changes in time as a result of two competing actions, Brownian 

motion and hydrodynamic convection. 

In the limit of infinite aspect ratio the motion of a rod in a generic, 

homogeneous flow field can be described by Eq.2 [4,12], which states that no 

rod-fluid relative motion is possible in any direction orthogonal to the rod 

major axis. In the case of steady simple shear flow ax/3t=O. By choosing as 

the reference frame the coordinate system illustrated in Fig. 1,we can write: 

• 
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K -.. 
0 0 0 
0 0 ·( 
0 0 0 

where Y is the shear rate. Also: 

4> = t cot9 cos:P 

Then Eq • 12 becomes: 

9 

a ( 2 . a1nx) aB X sin6 a cos El s1n<j> - ---as- + 

a ( 1 a1 nx) + --a~ x sin6 a cot6 cos<!> - 2 't' • a aq, 
S1D 

(13) 

(14) 

0 (15) 

Here again a= t/D is the rotational Peclet number [2,3], a measure of the 

relative importance of convection and diffusion. 

Equation 15 subject to 9 - 11, is rather difficult to solve analytically 

over the whole phase space and for any arbitrary value of the parameter a. 

Since we are concerned here with the case r3 >> a >>I in which the distri-

. 
but ion function strongly peaks in reg ions of the phase space where E = 0, we 

make use of the following approxima·tions. We divide the angular space into 

two distinct regions, that outside the "dense" layer, and the layer itself. 

Specifically the "dense" layer is the equatorial reg ion near 6, 1T /2. Here the 

\or rods closely align in the fluid velocity direction, and their rotational speed 

~diminishes. Hence, the diffusive term in Eq. 15 becomes significant and 

must be dealt with explicitly. Outside the "dense" layer, convection is pre-

dominant over diffusion. Solution in this region can be facilitated 
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appreciably by the following procedure. We first define: 

e 
A = ln(tan 2) (16) 

This new variable allows the transformation of Eq. 15 into the following: 

a
2

x + a
2

x = a (s1. n"' tanh
2

(A) ax cos"' tanh(A) ~ + 
aA2 a<P2 "' cosh(A) aA - "' cosh(A) a<P 

si n<P tanh(A) + 3x 
cosh

3
(A) 

Or, in compact notation 

(17) 

(18) 

For large values of a, i.e., the convective term dominating, n 0 . This 

leads to the following solution (outlined in Appendix A): 

F(tan8 cos<P) 

X = jcos8j3 
(19) 

where F is an arbitrary function. Note that [tan6 cos<P = constant] defines 

the trajectories traced by rod ends rotating in simple shear flow. Function 

F, therefore mirrors the relative population distribution of rods over these 

trajectories. The inverse dependence on jcosej 3 arises from the term 

(x~p • k) (Eq. 12) and reflects the "compressible" nature of the 
. 
E ''flow 

field". Function F is then uniquely determined by the orientation distri-

bution inside the "dense" layer, and can be found by matching Eq. 2 with the 

corresponding "inner" solution at the interface of the two regions. 

Solution within the dense layer is facilitated by noting that 

• 
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n n 
6' 2• sinS ' 1 and cos6- 2 - 6 • Equation 15 is thus reduced to 

0 (20) 

n 
where o = 2- 6 • If this quantity is normalized by ~ 6 , the dense layer 

"thickness" in the e direction, we obtain: 

_ a2x _ 2 2 3 
6

2 ~ _ ax 
s i ncp 

an
2 e acp2 an 11 (a~9) + 

ax 
+ ~ 11 easel> 

3 
(a~e) - 3xn sincp 3 

(a~e) 0 (21) 

0 
where 11 = -;;- • Since the convective and diffusive terms must be of comparable 

6 
3 

magnitude within this region, (a~6 ) must be of the order of unity, i.e. , 

6 = a 8 
-1/3 

Note that the dense layer thickness decreases with increases in 

the rotational Peclet number, and the quantitative dependence is identical to 

that found previously by other investigators [2,3,5]. If the second term on 

the left hand side of Eq. 21 is assumed to be negligible compared with the 

other terms, the following equation is obtained: 

0 
) 

(22) 

This equation can be solved by combination of variables. Following con-

ventional similarity-solutions techniques [11], we assume the orientation 

\~ distribution function to take on the form below 

x(n,cl>) =g(cp) f(y(cp).n) (23) 

Upon substitution of Eq. 23 into Eq. 22, subsequent manipulation yields (see 
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Appendix B for details): 

where 

x(n,cl>) 3 
= c y f(n y) 

y 

f(u) 

[ 3 a/2 3/2)1/3;1.-1 cos¢(tan • + 3tan• + 

3 u 
(1 - u e-u 13 J 

-co 

3 
X /3d ) X e X 

(24) 

(25) 

(26) 

C is a constant to be determined by global normalization (Eq.lO). Also note 

that (with reference to Eq. 23): 

g 
3 

cons t. y (27) 

Equations 24 - 26 are valid within the dense layer. In the transition region 

we assume the following dependence for n: 

1/3 
n = a cos8 (28) 

Matching of the inner (Eq.24) and outer (Eq.l9) solutions is achieved by 

noting that (see Appendix B): 

constant 
f (u) + for large lui 

Hence, in this limit the function X becomes: 

x(S,.) = constan~ 
·1 cos81 

(29) 

(30) 
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which is identical to Eq. 19 if function F is taken to be a constant. In its 

final form the distribution function is given by: 

x(S,$) 
3 c y ($) f(ny) (31) 

where y(S) is described by Eq.25, and: 

f(u) given by Eq.26 for 1.377)u)-2 (32) 

f(u) 
a = ----

juj3 
for u)1.377 (33) 

f(u) 
a = 

<lui + p)3 
for u<-2 (34) 

where a = 1.931 and 6 = 0.79 

In Eqs. 33 and 34 the constant a has been determined by imposing 

continuity of f and its first derivative (calculated from Eq.33) at the point 

u = 1.377 where the second derivative of f (as calculated from Eq.19) 

vanishes. With the choice S = 0.79, Eq. 34 matches Eq. 26 within a few 

percent for u<-2. Figures 2 and 3 show functions y and f within the dense 

layer (Eqs.25 and 26). 
w 

While function y is symmetric with respect to ¢ = 2 
coso 

(Fig. 2) distinct asymmetry is revealed in the plot of f versus u = ---- y 
~8 

(Fig. 3). The orientation distribution favors u>O in the dense layer, i.e., 

regions of the upper hemisphere are more populated. As seen in Fig. 3, 

TI 
\~ 6 = 2 (or the equator) is an unstable equilibrium point. As soon as the rods 

move out of this plane by Brownian diffusion towards the lower hemisphere 

(u<O), convective forces imposed by the surrounding fluid rapidly carry the 

rods away from 
TI 

8 = 2 . However, on the u-positive side, any Brownian motion 

tilting the rods from their equilibrium alignment is countered by restoring 

........ j.· 
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convective forces. 

I 

Once the distribution function is specified, the material functions can 

be calculated. The relationships between these quantities and the goni-

ometrical factors are given in great detail in Refs. [3] and [7], and will not 

be repeated here. 

The goniometrical functions are here defined as follows: 

G1 <sin 2e sin2 ~ + cos 28> 

c2 <sin6 cos6 sin~> 

c3 = <cos2e - sin2e sin2 ~> (35) 

Note that given our choice of coordinate system the kernels in Eq.35 differ 

from those published in Ref.[7]. Specifically, denoting the coordinate set 

adopted by Brenner by (x',y',z') and our frame of reference by (x,y,z), we 

have: 

x - z' 

y y' (36) 

z = x' 

or 

sin6 cos~ - cos6' 

sinB sin~ sinS' sin$' 

cos8 = sinG' cos~' (37) 

Given the complexity of the kernels in Eq. 35 the int~rations had to be 

performed numerically. A simple bidimensional Simpson routine was adopted. 

However, in order to fully capture the features of the strongly peaked 
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distribution function, the integration domain was divided in four sections. 

In the (cos6,~) plane the boundaries of these domains were determined by: 

D1 

D2 

D3 

D4 

5 < cosa < -:-r/3 
a 

'If 6 1T 

2 -1!3 < ~ < -- -2 
a 

5 
-1 < cosa < - ~3 

a 

'If 6 < ~ 2- ~3 ~ q,- 2 
a 

-1 < cos6,( 1 

1T 6 
0 ~ ~ .5_ 2- ~3 

a 

1 

5 < cos9 
5 

-173 .5_ 173 
a a 

1T 6 <~ 
2 173 ~ tP -2 

a 
(38) 

Since the results were practically unaffected by the inclusion of regions Dl 

and D2, the integrations were limited to D3 and D4 in order to minimize compu-

tation time. On an IBM PC-XT this resulted in a reduction of computing time 

from three hours to about one hour for each set of (Gl,G2,G3) at every a. 

RESULTS AND DISCUSSION 

Figures 4,5,6 show the results of the present calculation. For compari-

son purposes the figures include curves previously obtained by Scheraga and 



16 

Stewart and Sorensen. Good ~reement exists for Gl and G3 with the asymptotic 

power-law solutions obtained by Stewart and Sorensen, the maximum deviation 

being less than 5%. The second gonoimetrical factor, G2, (Fig.5) deviates 

appreciably from the corresponding "exact" solution by Stewart and Sorensen 

for relatively "small" values of the Peclet number, converging asymptotically 

a2 
as a + ~. This discrepancy is probably due to the neglect of the term --f in 

a<P 
Eq. 21. Another possible source of error could be the linearization of the 

trigonometric functions implemented in Eq.15 to obtain Eq.22. Indeed the 

dense layer thickness in the 6 direction, ~9 • scales as a - 113• This, for a= 

1000 would give an overall dense layer thickness of- 0.2, which is about 10% 

of TT/2. 

Once the goniometric functions are computed, conventional rheological 

properties such as viscosity and normal stress coefficients can be easily 

determined if the medium is purely viscous. 

Since the validity of the present analysis is unaffected by the specific 

nature of the solvent (or matrix) under consideration, the results presented 

here will be employed in a future paper to model the effect of matrix visco-

elasticity on the behavior of molecular composites. For purely viscous 

matrices the hydrodynamic frictional drag coefficient, ; , is time and history 

invariant. For rods dissolved in polymeric solutions or even melts, the flex-

ible coils may interact with a given rod by anchoring themselves at selected 

points. Fluid slippage may in fact proceed by distending the coils while 

displacing the contact points simultaneously. This process is best described 

by a viscoelastic constitutive equation, such as the Maxwell equation: 

A ~t (dF(O)) + dF(o) -v ~do (5) 

where A is the relaxation time characteristic of local coil deformation, dF 

<i 
I ' ~· 
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the incremental hydrodynamic force acting on a differential rod segment do, 

and V the relative velocity at rod fluid interface defined by Eq. 3. Note 

that only the magnitude of the force is computed in this manner. The direc-

tion of the force can, as a first approximation, be assumed to coincide with 

the rod orientation, a point worth further examination. Equation 39 properly 

reduces to the viscous case when A = 0. Complications remain, as the rod 

orientation evolves with time while the local force develops. The solution to 

this problem will constitute a major portion of an upcoming publication. 
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Appendix A 

In this section we obtain an approximate solution of Eq. l5 (see text) in 

convection dominated reg ions. We beg in by implementing the following change 

of variable: 

A ln(tan(S/2)) (A1) 

Then for: 

O<S<lT or (A2) 

cosO = - tanh (A) and sinS 1 
cosh(A) 
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Thus allowing Eq.8 to be written as: 

a
2
x + a

2
x = a(sincj> tanfi(A) ~ + 

aA2 acp2 cosh(A) aA 

tanh(A) ax Jx tanh(A) sin;jl ) 
- coscj> cosh(A) ~ + 3 

( cosh(A)) 
(A3) 

For a >> 1, in reg ions of stroog convection, the term on the right-hand side 

of Eq. AJ dominates. We have then: 

lK + ax Jx tanh(A) aA cotcj> ~ + 2 = 0 
( cosh(A)) 

(A4) 

Solution of Eq. A4 is appreciably simplified if we define: 

w - ln(sinh(A)) 

>..- ln(cos4>) 

1jJ - lnx (AS) 

With this change of variables Eq. A4 becomes: 

a•¥ a'!' J 
aw +a>:+ 2w 0 

1 + e 
(A6) 

This equation is easily solved by the method of characteristics [11]. The 

general solution is: 

'¥ - ~ 
2 

2w 
l + e 

ln( Zw ) + L (w- A.) 
e 

where L is an arbitrary function of (w- >..). In the (9,cj>) space Eq. A7 

becomes: 

(A7) 

. 
(,.Y 



F(tan9 cosljl) 
X = 

jcossj
3 
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(A8) 

where function F is uniquely determined by the orientation distribution inside 

the dense layer (see text and Appendix B). 

Appendix B 

Below is a sketch of the solution procedure for the following equation: 

(Bl) 

Due to the symmetry of x, we restrict ourselves to the integration domain 

We seek a solution of the form: 

X(n,•) = ~(tj>) f (u) 

u n y(4J) (B2) 

where functions g, y, and fare to be determined. Let the superscripts <'> 

and <"> denote respectively the first and second derivative of the functions 

g, y or f. Substitution of Eq. B2 into Eq. Bl after some rearrangement gives: 

f" + f' u2 ( y sintj> Z y' cos<jl) + f u (3 g sintj> -l' cos¢) 0 (B3) 
y g y 

Since g and yare only functions of <jl, we impose: 

(y' cos<jl - y sin<jl) - K1 y4 (B4) 



20 

(g 'cos<P -3 g sin<P) 

Where K1 and K2 are constants. 

Then, 

f .. + K f' u 2 + K f 1 2 u 0 

Dividirg Eq. B4 by (K 1 y), Eq. B7 by (g K2 ), and equating the resulting 

expressions, we obtain: 

d Kl 
d<j> (ln(y) - K

2 
ln(g)) 

K 
= tan<P (1- ~)· 

K2 

which can be integrated to give: 

g 

(B5) 

(B6) 

(B7) 

(B8) 

where constant K3 can be incorporated in the overall normalization constant. 

Integration of Eq.B4, can be facilitated by the following symmetry 

condition: 

at <P 'IT /2 0 (B9) 

Differentiation of Eq. B2 gives: 

g' f + 1'1 g f' y' = 0 at .p = 1T /2 (BlO) 

Since f and f' are independent functions, we require: 
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g'= y'= 0 at <P = 1T /2 (811) 

The specific structure of Eq. B1 allows us, without any loss of generality, to 

impose the following condition: 

y 1 at <P = 1T /2 (B12) 

which upon substitution into Eq. B4 yields: 

(813) 

Eq. B4 can thus be rewritten as: 

y' cos<P - y sin<P (B14) 

In spite of its strong nonlinearity, Eq. B14 is easily solved by implementing 

a change-of-variable. Let 

y = z(<P)/cos~ (Bl5) 

which can be substituted into Eq. Bl4 to give: 

z' 

Solution of Eq. 816 by integration gives: 

z(<P)= (tarl<P + 3 tan<P + K4 )-l/3 

and 

(Bl6) 

(B17) 
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y( 4>) (818) 

By requiring g to be finite at ~ = n/2 we obtain from Eq. B8 

K2 3 (Bl9) 

and 

(B20) 

Knowledge of the numerical values of K1 and K2 allows Eq.B6 to be rewritten 

as: 

f" + u2 f' + 3 u f 0 (B21) 

The only solution of Eq.B21 which is bounded as lui approaches infinity is: 

f(u) 
3 u 3 

- u /3r t /3 
1 - u e J t e dt (B22) 

Thus, in its final form the function x can be written as: 

X c y($) 3 f(n y($)) (B23) 

Here C is a global constant to be determined by normalization, and y(~) and f 

are given by Eqs. Bl8 and B22 respectively. 

Two remarks will be made here. The first concerns the asymptotic 

behavior of function f. As u, in absolute value, approaches infinity, and f" 
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becomes negligibly small (i.e., in the convection dominated region) we obtain 

from Eq. B21: 

u f' - - 3 f for lui+.., (B24) 

which upon integration gives: 

f -
constant 

lul3 
(B25) 

Then, from Eqs. B23 and B25: 

const. 
x - In 13 for large lui (B26) 

which correctly reproduces the functional form of X outside the dense layer if 

we assume n to be given by: 

n a 113 cos6 (B27) 

The second remark concerns the determination of constant K4 which appears in 

Eq. Bl7. There remains no other feasible boundary condition to determine the 

numerical value of K4• The neglect of the second partial derivative of X in 

the ~ direction in Eq. Bl is the cause. We observe, however, that K4 must be 

proportional to a, since around ~ = ~/2 (cos$: (n/2-~) and sin~: 1) Eq.Bl 

can be "scaled" by the following change of variable: 

(B28) 

where a is an undetermined numerical constant. If 



K4 

we obtain from Eqs. Bl8 and B23: 

X - cons t. f (1'1 

(l + 1.;;3) 
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(B29) 

(B30) 

where f is as before given by Eq. B22. Recall that the dense layer thickness 

in the 6 direction is defined by the equation 

1 or 
1/3 

a b- 6 = 1 (B31) 

Then similarly in the ~ direction 

1 or 
1/3 

a b.. 
G> 

1 (B32) 

Hence, 

(B33) 

Therefore a represents the ratio of the "thicknesses" 6 6 and b.cp, and its 

numerical value does not depend upon a. This suggests that an "independent" 

estimate of ~ 6 /6~ would lead immediately to a. Such information can be 

retrieved from an analysis by Burgers [Sj. There, in an attempt to gain 

information on the position of the maximum of x , the author solved the scaled 

diffusion equation in the neigborhood of the maximum. The functional form 

assumed for X was Gaussian, with three adjustable parameters, which Burgers 

estimated by a collocation procedure. Without going into the details of the 

\.J 
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solution, we present here the final result obtained for x, which is: 

2 
X - const. exp [ -y(n - y) 2 + .L J 

2. 
(B34) 

Here n = a 113 (~/2-9), ~·= a 1/ 3 (~/2-~), and y is a constant whose numerical 
. I 
\o_l 

<J 

value for slender rods is very close to unity. Equation B34 around 

n = 1, ~· = 0 can be approximated by: 

X~ const. (1-(n-1) 2) (1- ~· 2 /2) 

By estimating the values of nand ~·which give x 

or 

r 

Thus, 

and 

ll n = 1 and !:J. ~ '= I 2 

1/3 A 

a ... 9 

1/36 
a ~ 

Ct. = 1/1 2 

-3 

1/12 

K = a 2 2- 0.354 a 
4 

0, we obtain: 

(B35) 

(B36) 

(B37) 

(B38) 

(B39) 
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FIGURE CAPTIONS 

Coordinate system used to define the rod orientation. y denotes the 

surrounding fluid velocity field. E is a unit vector parallel to the 

rod major axis. 

The function y(<j>) plotted for three different values of the 

rotational Peclet number, a. As shown in the text (Eq.25) 

y(O) = /2 /a 113 • It can be seen that as a increases the rods are 
1T 3 

more likely to be found around ,~.. - or ,~.. = - 1T. 'I' - 2 't' 2 

cos8 
The function f(u) vs. u = --~-- y(<j>) (Eq.26). The competition 

8 
between Brownian diffusion and hydrodynamic convection makes the 

region u)O (cos8)0) more populated than that in which u(O (cos6<0). 

The dense layer region lies within -1~u~1. Outside the dense layer 

the function follows the behavior prescribed by Eqs. 33 and 34. 

The goniometric functions G1 , G2 and G3 vs. a ('Eq.35). The solid 

curves represent the results of the present calculation. The dashed 

ones correspond to the numerical results of Scheraga (for a<200) and 

Stewart and Sorensen (taken from Ref. [9,10]). 
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