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ABSTRACT 

We review, extend, and modify the classical linear stability 

theory of planar solidification fronts due to Langer (Rev. Mod. 

Phys. 52 (1980), 1) Using a new integral equation for the front posi

tion, we compute an exact linear stability equation, and solve it 

exactly for an important special case. Finally, we extend our 

analysis to a general planar front by a short-time approximation. 

Our conclusions differ in several respects from previous analyses. 

Notably, a catastrophic linear instability occurs. 



Linear Stability of Planar Solidification Fronts* 

1. Introduction 

John Strain 

Department of Mathematics 
and 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

Some time ago, Langer [1,2] introduced the symmetric model of solidification 

of a pure substance from an undercooled melt. He presented a now-classical 

approximate analysis of linearized stability of a model planar front. In the course 

of a recent numerical solution of the model, Sullivan et al. [3] have slightly gen-

eralized Langer's analysis. Both studies conclude that zero-capillarity planar 

fronts are unstable, while nonzero capillarity damps the short-wave instabilities. 

These predictions are roughly confirmed by the numerical calculations of Sullivan 

et al., but not by the other numerical analyses described in Chorin [4] and Smith 

[5]. The latter calculations exhibited persistent oscillations, even within the 

linearly stable regime. 

This report presents an exact linear stability analysis of a planar front which 

reveals a possible reason for the discrepancy. Our analysis shows that the growth 

factors of the classical theory are qualitatively correct for short time spans. 

*This work was supported in part by a National Science Foundation Graduate Fellowship and in part by the 

Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under 

Contract DE-AC03-76SF00098. 
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However, for slightly longer times, we predict a catastrophic linear instability of 

all modes. Such an instability, perhaps overdamped by nonlinear restoring forces, 

could well account for the observed oscillations. 

The paper begins with a review of the symmetric model and the classical 

stability theory, in a form suitable for comparison with our later results. Then 

we transform the model into a new integral equation and derive the linear stabil-

ity equation which governs the evolution of a perturbation to the initial data. 

Specialization to a planar front with constant speed and unit undercooling yields 

a fractional differential equation which is solved exactly. After interpreting the 

solution, we describe a generalization to other planar fronts, and discuss our con-

elusions. 

2. Review of Classical Theory 

First, we recall the symmetric model [1,2]. Consider a pure substance filling 

lRn , with n = 2 or 3, which has identical thermal properties in its solid and 

liquid phases. The solid phase is a time-dependent region 0( t ), its boundary -

the phase interface -- will be denoted by r( t ), and the temperature field is a con

tinuous function u (x ,t) of x E lRn and t > 0. The temperature field satisfies 

the heat equation (1) in each phase, and the interface is connected to the tem

perature field by a heat balance (3) and by the Gibbs-Thomson relation (2) (see 

also Curtin's review paper [6) for a discussion). 

Thus we work with the following model equations: 

au 
off r( t) (1) -=Au 

at 

u = -c K. on r( t) (2) 

n ·[au]= -v on r( t) (3) 

II 
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with initial data u 0 and f(O) given. Here c is the capillarity, K: is the curvature 

of f( t) (taken positive if the center of the osculating circle lies in the solid), the 

outward unit normal to 0( t ) is denoted by n , and v is the normal velocity of 

f( t ), taken positive if liquid is freezing. Brnekets denote the jump in a quantity 

across r( t ) : 

[g ](xo) = lim g (x) lim g (x) (4) 
X -+Xo X -+Xo 

X ~ O(t) X E O(t) 

fJ is the gradient and L). is the Laplacian. Continuity of u implies that the initial 

data u 0 and r(o) can be specified independently only up to a compatibility condi-

tion 

u 0 = -c K: on r(o). (5) 

This restriction plays an important role in a careful analysis of the problem. 

Next, we review the classical linear stability theory of Langer [1,2], following 

Sullivan et al. [3J. Consider the planar interface in IR2 parametrized by 

r(t) : (x = vt ,y = s) 

with temperature field 

{ 

e-v(x-vt)_l 
u (x ,y ,t) = 0 

sEIR 

x > vt 
x < vt 

(6) 

(7) 

independent of y • The interface moves into the liquid phase with positive velo

city v , and the temperature field propagates without change of structure. 

Perturb this solution by adding temperature fields Eus and EU£ in the solid 

and liquid phases respectively, and let EX 1(t ,s) be the resulting perturbation of 

the interface. Thus u5 ,uL, and x 1 satisfy 

fJu5 
7ft= L).us 

fJuL 
7ft= ~UL 
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"'Us -- e -v Ez ~-1+"'uL -- c EX Iss ( ) " " x = vt +Ex 1 t ,s 
(l+E2X 1~ )3/2 

where subscripts denote derivatives. <~ 

Linearize these equations by extending uL and us up to the unperturbed 

boundary as solutions of the heat equation, and using Taylor expansion to con

struct an effective boundary condition there. Drop terms of order E2 to get 

x < vt (8) 

x > vt (9) 

and the effective boundary conditions 

x = vt (10) 

auL GUs 2 
----- = -xlt-v x 1 ox ax x = vt (11) 

Note that the conditions (10) do not preclude continuity of the temperature 

field across the perturbed interface. The apparent discontinuity arises because 

extending a solution of the heat equation to a larger domain can be an unstable 

process, as the exact solution (7) shows: it grows exponentially past x = vt. 

These are linear equations with constant coefficients on a rectangular 

domain, so we can find exponential solutions of the form 

uL = u 6 e iky e ut e -q' (z -vt) (12) 

x 1 = x oe iky e ut 

Furthermore, an arbitrary perturbation of the initial temperature field and 
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interface can be decomposed into such solutions by means of a Laplace transform 

in x and a Fourier transform in y resp. s . Thus one could expect to analyze sta-

bility by computing the growth factor a for all positive q and q1 and real k . 

Unfortunately, the disper5ion relations 

(13) 

(14) 

(15) 

.. (16) 

which must be satisfied by solutions of the form (12), fix q and q1 in terms of k. 

To see this, eliminate the amplitudes from (15) and (16) to get three equations 

(17) 

(18) 

(19) 

in the four unknowns a,q ,q1 
, and k 2• These can be solved for a,q and q1 in 

terms of k . But to represent an arbitrary perturbation of the initial temperature 

field and interface requires three independent parameters, q , q1 and k . Thus 

we have too few degrees of freedom to carry out a complete stability analysis. 

Since the solution is stable if no modes grow, but unstable if any modes grow, we 

can reliably predict instability by this analysis, but not stability. 

Despite this difficulty, we proceed with the classical calculation. First con

sider the case of capillarity c = 0 . Then (13) becomes vacuous since u 0 = 0 by 

(15), and a minute or two of algebra gives 

{
±vI k I 

a= vlkl 
I k I < v 

I k I > v. 
(20) 

The choice of sign is forced by the positivity of q and q1 
• Thus the classical 
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theory predicts instability of all modes, for zero capillarity. 

Now suppose c > 0 . Eliminate q and q 1 to get an implicit relation 

(21) 

for the growth factor (j' assuming (j+k 2 > 0. Square (21) and solve for (j' with 

careful attention to signs. We find 

where the ± sign is taken as follows: 

Asymptotically, 

. I± 
± = ~ 

2ck 2 < v , 21 k I < v 

2ck 2 < v , 21 k I > v 

2ck 2 > v , 21 k I > v. 

{
±vI k I 

(j ~ 2 
-k 

as k-+0 

ask -+oo. 

(22) 

(23) 

(24) 

Thus the classical theory predicts the stabilization of short waves by capil-

larity. Of course, as remarked above, this prediction only applies to those pertur-

bations of the form (12) with q , q1 
, and k related by (17-19). Nevertheless, its 

qualitative features will appear in the exact theory of section 5, at least in the 

short-time range. 

3. The integral equation formulation 

We convert the moving boundary problem, consisting of partial differential 

equations, boundary and initial conditions, into an integral equation which 

involves only the initial data and the geometry of the interface. This will permit 

a rigorous linearization of the model, and remove the necessity of constructing an 

effective boundary condition which we faced in section 2. Linearizing the integral 
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equation will provide a natural linearization of the compatibility condition (5) 

connecting the initial interface and temperature field. This will supplant the 

effective boundary conditions (10) and (11). 

Let u be a temperature field satisfying the model equations (1-3), with ini-

" tial data u 0• Fix a time T > 0, and let K be the Gauss kernel (see [8], Chap. 1 

.. 

or [9]) 

I 
e -llx ll 2/4t 

(47rt )n /2 
K (x ,t) = .. 0 

t > 0 

t < 0. 

For a fixed X in n( T ) and {J > 0, let 

I (y ,t) = K(x-y ,T-t +fJ) 

Let 

1 t=T X E O(T) 
nt - -1 t = 0 x E n(o) 

-v 
0 < t < T X E r(t) 

V1+v 2 

denote the time component of the outward unit normal to the product set 

T 
Or = fi O(t ). 

0 

Add the divergence theorem ([9], p. 79) 

to the Green identity ([9], p. 80) 

r of a I u tlf -! flu =I I u-J _3!_, 
OT 0 f(t) on on 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 
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use the backward heat equation satisfied by I in 0 T 1 and take the limit 8-o. 

The result is 

T a aj 
u ( x , T ) = I I u -I I (! u )nt -I !:1 u +u-:-----

8 · O(o) o r(t) un · n 
(31) 

for x in 0( T ). Similarly, 

r a a1 
u (x, T) = I I u +I I (! u )nt- I -f+ua 

IR" -n(o) o r(t) n n 
(32) 

for x outside 0( T ). 

The last two terms in (31) and (32) are single and double layer heat poten

tials [10] 

T 

S (x ,T) =I I p,(y ,t )K (x-y ,T-t )dydt 
0 f(t) 

r a 
D (x ,T) =I I p,(y ,t )-a -K (x-y ,T-t )dydt. 

o f(t) ny 

(33) 

(34) 

"th d . . au d t" I T . t I WI ensttleS J1. = an an J1. = U respec IVe y. 0 construct an Ill egra equa-

tion for the interface, we need to evaluate (31) and (32) on f( T ). Since the 

integrands are singular if X E r( T ), this requires jump formulae for s and D ; 
' . 

analogous to the well-known jump formulae for the Newtonian potential [11]. 

The relevant formulae are derived in the Appendix. They read 

[S](x 0,T) = 0 

[D ](X 0' T ) = JJ( X 0' T ), 

(35) 

(36) 

for x 0 E r(T ). The jump is defined in equation (4). Thus evaluation of (31) and 

(32) on f(T) yields 

T 

.I_u (x 'T) = I I u-I I (! u )nt- I ~+u a I 
2 0{0) 0 f(t) an an 

(37) 
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(38) 

for x on f(T ). Add these formulae and apply the boundary conditions (2) and 

(3); the result is an integral equation 

T 

-c ~(x ,T) = I K (x-y ,T )u 0(y )dy +I I K (x-y ,T-t )v (y ,t )dydt. (39) 
m.~ o r(t) 

for the interface f(T). 

Observe that a smooth solution f( t) is determined at t = 0 by the initial .. 
temperature field u 0 , via a compatibility condition 

-c ~(x ,0) = u 0(x) on r(o), (40) 

just as in section 2. 

The integral equation (39) has a simple physical interpretation; the tempera

ture at a point x on the interface is the sum of the temperature field induced by 

the initial distribution, plus the single layer heat potential produced by the 

release of latent heat of phase change by the moving boundary. 

Langer [1,2] has presented a similar formulation of the symmetric model as 

an integral equation. His equation can be derived by our method, if we first begin 

at an initial time t = t 0, instead of t = 0 as we did. Then (39) becomes 

T 

-c ~(x ,T) =I IK (x-y ,T-t 0 )u (y ,t 0)dy + J I K (x-y ,T-t )v (y ,t )dydt. 
tor(t) 

Assume that u ( x , t 0 ) approaches a constant as t 0-+-oo, and take the limit 

t 0-+-oo. Langer's equation ([2], equation 5.13 with LT-l = v = 0) results. 

However, this derivation points up an imperfection in his formulation. 

Namely, the same equation results for any temperature field u -+-1, say, as 

t o-+-oo. Thus Langer's equation must be satisfied by any such solution, but it 



- 10-

cannot determine the solution uniquely. (More precisely, the solution of Langer's 

equation can be unique only if every solution is completely determined by its 

undercooling alone.) Since our formulation retains the initial temperature field as 

a datum., it should determine its solution uniquely. 

4. The Linear Stability Equation 

Consider a solution r 0( t ) of the integral equation in two space dimensions, 

with initial data u 0 and r 0 satisfying the compatibility condition 

-c "-o(x ,0) == u 0(x) on r 0(0). (41) 

Any (continuous) perturbed solution must also satisfy this condition. This res

tricts the allowable perturbations of the initial field and interface to those which 

satisfy (41), at least to first order in the perturbation parameter E. However, we 

need not derive a first-order approximation to this condition explicitly. The 

beauty of the integral equation approach is that the linearized integral equation 

will contain a natural linearization of (41), just as (39) contains (41). The 

integral equation (39) is an uncountable family of equations, one for each time T, 

and (41) is just the T = 0 member of the family. Similarly, the linearized equa

tion will contain a linearized version of (41), obtainable by evaluation at T = 0. 

Consider a perturbed initial temperature field u o+Eu }7 let r e( t ) be the per

turbed interface, and take a family of parametrizations 

The curvature and velocity X element of length have expansions 

"-e = "-o+E"-1+0 (E2) 

v edy e = v 0dy 0+Ev 1 dy 1+0 (E 2), 

where 

( 42) 

( 43) 
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a ~ a ~ 
~~: 1 =(a (x ,y )-a +b (x ,y )-

2 
)x 1-(a (y ,x )-a +b (y ,x )-

2 
)y 1 (44) 

s as s as 

with 

( ) - ( 2+ .2)•5/2[( .2 2 2) +3 l a X ,y - Xs . Ys Ys - Xs Yss . Xs Ys Xss (45) 

b ( ) - ( 2+ 2)-3/2 X ,y - - Xs Ys Yss ' (46) 

and 

V 1 dy 1 = (xt Y Is +Ys X It -xs Y It -Yt X Is )ds. ( 47) 

To derive these expressions, differentiate the standard expressions (see [13]) for ·· 

curvature and velocity X element of length with respect to € and evaluate at 

€ = 0. The calculations are straightforward but tedious, and are therefore omit-

ted. Substitute the expansions (42) and (43) into the integral equation (3g), use 

the assumption that the zero-order terms satisfy (3g), and drop terms of second 

or higher orders in €. After integration by parts, the result is the linear stability 

equation 

t t 

+I I(x 1-x { )·aK (x -x' ,t -t' )v 6 ds' dt' +I I K (x -x' ,t -t' )v { ds' dt' 
0 0 

where a is the gradient, X =X (t ,s ), X1 =X (t 1 ,s1 
), and SO forth. 

If x 1 is a smooth solution to this equation, then evaluation at t = 0 gives 

the linearized compatibility condition 

on f 0(0). (49) 

(Note that au 0 is discontinuous at X E r 0' so its convolution with the Gauss ker

nel converges to the average of its values on the two sides of the discontinuity; 

see [8].) For the special perturbation 
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X < 0 

X > 0 
(50) 

to the solution (7) discussed in section 2, the condition {49) follows from the 

effective boundary conditions (15), but does not imply them. 

5. Stability of the special planar interface 

Recall the special planar interface discussed in section 2, with 

r(t) : (x = vt ,y = 8) 

u 0(x) = { 

Since a line has zero curvature and 

T 

e -vz -1 

0 
X > 0 

X < 0. 

(51) 

(52) 

J J K ( vT -x ,s -y, T )u 0(x )dxdy + J J K ( vT -vt ,s -o-;T -t )vd o-dt - (53) 
o r(t) 

=0, 

this is an exact solution of the integral equation for any capillarity c , as of 

course it should be. For a perturbation with 

(54) 

u 0(x ,y) = u 0(x )+w 1(x ,y ), (55) 

the linearized curvature and velocity simplify to 

x:1 = -x Iss (56) 

(57) 



- 13-

Thus the linearized stability equation is 

00 e -( vt -y )2 I 4 T 
ex 188 (T ,s) = x 1(T ,s) I 0firT uJ (y )dy 

-oo 4trT 
(58) 

+I I K ( vT -y ,s-a; T )u 1(y ,a)dyd a 

2 Too 

+.3!.__ I I (x 1(T ,s )-x 1(t ,a))K (vT-vt ,s -a;T-t )d adt 
2 0-oo . 

Too 

+I I K ( vT -vt ,s -a;T -t )x It (t ,a)d adt. 
0-oo 

Because of the simple s -dependence of the kernel K, we can Fourier analyze an 

arbitrary perturbation into solutions with 

x 1 ( t ,s ) = g ( t ) e ik8 
• 

Then g satisfies the reduced equation 

(59) 

(60) 

t -(>.+k2)8 
(2ck 2-tl )g (t )+I e (g' (s )+2>-g (s ))ds = e-(>.+k2)t F (t) (61) 

0 v'tr(t-s) 

where A= v 2j4 and 

00 e-(vt-y)2/4t 
F (t) = -2e >.t I l4if[ f (y )dy. 

_
00 

4trt 
(62) 

The new unknown 

G ( t ) = e (>.+k 2)t g ( t ) (63) 

then satisfies a fractional differential equation 

where D 112 and D - 112 are the Riemann-Liouville fractional derivative and 
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integral defined by (see [14] for background on fractional calculus) 

(65) 

t 
= Dj G (s )ds 

0 v'7r(t-s) 

t 
= G (0) +I DG (s )ds 

v'1rt 0 ..; rr( t -s ) 
(66) 

and D denotes differentiation. 

The singular term ~ on the right-hand side of (64) suggests that we 
rrt 

should carefully consider the smoothness to be expected of F and G . Consider 

for example the initial temperature field perturbation from the theory of section 

2: 

{

u J e -q' z 

f (x) = qz u 0 e 

X > 0 

X < 0 

with q ,q' > 0. A change of variables of the form 

in each half of the range of integration puts F in the more transparent form 

where 

F ( t) = -u J e (q' -v 12)
2
t <I>(( q1 -v /2)Vt) 

-u oe ( q +v /2)2t <I>(( q +v /2)Vt) 

00 

<P(x) = ~I e -z
2
dx. 

VTr :z 

Differentiation shows that F has the short-time asymptotic behavior 

F ( t ).-..... F 0+2F 1 Jt{rr as t -+0, 

(67) 

(68) 

(69) 

(70) 

(71) 
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with constants 

F o = -I (o+)- I (o-) (72) 

(73) 

Unless I is C 1 at x = 0, there is a singularity in the first derivative of F at 

t = 0. By a Laplace transform (or direct calculation), this behavior of F is 

easily seen to be characteristic of piecewise smooth I 's decaying at oo and hav

ing possible jump discontinuities at x = 0. Thus we assume that F belongs to 

the class C 112[0,oo )n C 1(0,oo ), and ask in what class the solution G of 

should be sought. 

It is tempting to assume that G behaves like F. But if 

G ( t )~G 0+2G 1 JT""F (75) 

as t -o, the equation becomes to lowest order in t 

(76) 

This determines the unknown constant G 0 only in terms of the equally unknown 

constant G 1• More generally, assuming F and G are power series in Vt and 

equating terms in (7 4) gives an infinite set of equations for the coefficients G n 

which does not determine G 0 at all. This suggests, as does the physically unrea

sonable infinite initial velocity implied by (75), that we should assume G is C 1 

up to t = 0. Of course, we must check the consistency of this assumption after

wards. Then apply the operator 

L = D 112-(2ck 2-v )+(>.-k 2)D -1/ 2 (77) 

and some careful interchange of integrals (cf. [15], p. 76) to the equation (74) for 
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G . A second order constant coefficient ordinary differential equation 

results, for the new unknown D-1a (t ). Here D-1 denotes indefinite integration; 

Let E1 and E2 be the roots of 

and put 

t 

n-1G (t) = fG (s )ds. 
0 

(79) 

(80) 

(81) 

to save writing. Apply variation of parameters [16) to equation (78); the result is 

G (t) = G (O)S (t )+S * [L ( d +F (t ))) 
rrt 

where * is the convolution product 

I * g ( t ) = J I ( t -s )g ( s )ds. 
0 

(82) 

(83) 

This expression simplifies somewhat if we evaluate the fractional differential 

equation (74) at t = 0. Assume DG (0) is finite. Then (65) and (66) imply 

D I/2 G ( t ),__, G (0) +O ( v't) 
vrrt 

n-112a (t ),__,a (v't) 

as t ---+-0. Consequently (74) reads 

(2ck 2-v )G (0) = F (0). 

(84) 

(85) 

(86) 

at t = 0. This and the formula (66) with G replaced by F result in a fortunate 
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cancellation of singular terms in the expression for G . We find 

G ( t) = G (O)(D +>--k 2)D -Is ( t) 

+S * [D -112(D +>--k 2)F ( t )-(2ck 2-v )F ( t )]. 

(87) implies that 

DG (o) = G (o)[e1+e2+(>--k 2)-(2ck 2-v )2]+F 1 

= F 1-(>.-k 2)G (0) 

is finite, so the assumption that G is C 1 is consistent. 

(87) 

(88) 

Now we can determine linear stability of the interface. Its stability will 

depend on the sign of the growth factor C7, which we define here by 

_ Dg (0) 
(j- g (0) . (89) 

This is a reasonable definition of C7 for times so short that e (jt is well approxi-

mated by the first two terms in its Taylor series. The definition (63) implies that 

Dg (0) = -(>-+k 2)G (O)+DG (0). 

Subsititute (86) and (88) in (90). Then (89) becomes 

With the values (72) and (73), we find 

(j = 

By a Laplace transform, it suffices (for smooth f ) to discuss f of the form 

f (x) = I u 6 e -q' z 

u oe qz 

X > 0 

X < 0 

(90) 

(91) 

(92) 

(93) 



- 18-

considered in section 2. Then a is given by 

q' uJ +qu 0+; (uo-u6 ) 
a = ( v -2ck 2)----..,..------

uJ +u 0 
(94) 

We can take this as the growth factor, or we can put additional restrictions 

on the allowable perturbations I . The virtue of this whole calculation is that it 

can handle any or no additional compa:tibility conditions on I . This is impor

tant, because it is not clear what additional restrictions, if any, should be 

imposed on I . However, we consider two possibilities, the first for the sake of 

comparison with the classical theory, the second for mathematical appeal. 

First, it is interesting to see what we get if we impose the effective boundary 

conditions (10) and (11) of the theory of sedion 2, evaluated at t = 0. These 

read 

(95a) 

(95b) 

q' u J +quo= Dg (O)+g (O)v 2
. (95c) 

Here g (0) and Dg (0) are given by 

(96a) 

2 

Dg (0) = q' uJ +qu 0+; (u 0-uJ )- v
2 

g (0), (96b) 

from (90), (86), (88), and the definition (93), with some tedious algebra. Substi-

tute these values in the effective boundary conditions. After some more tedious 

algebra, only one requirement on I results; it is the obvious one 

(97) 

Note that this precludes continuity of the initial temperature field, for v =/= 0. 

Then the growth factor is given by 
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(98) 

just as in equation (19) of the classical theory. Thus we recover the growth fac-

tors of the classical theory if we restrict ourselves to consideration of its initial 

perturbations. Since our calculation proceeds from a completely different formu-

lation of the model, this rather surprising agreement is an excellent check on the 

correctness of our calculation. Note also that we recover the classical result in 

greater generality, without the restrictions (17) and (18) which q and q' had to 

satisfy in section 2. Hence we have a true extension of the Classical theory. 

On the other hand, we may enforce continuity of the initial data. This 

requires -- as it did not in section 2 - continuity of f . Set u 0 = u 6 . Then 

(94) becomes 

<7 = .!._v ( q1 +q -v )-ck 2( q1 +q ). 
2 

(99) 

This result is qualitatively similar to the conclusion of section 2, but nonetheless 

differs in detail. We see that large-k modes are stable, while modes with small k 

and sufficiently large temperature gradients in either solid or liquid phases are 

unstable. This is more in accord with intuition than the previous result, which is 

independent of temperature gradients in the solid phase. 

Thus our analysis confirms, qualitatively and for short times, the classical 

predictions. However, this picture of linear stability theory is valid only for very 

short times, because of the definition (89) of <7. This definition would assign the 

growth factor 0 to the function g ( t) = cosh(<7t ), even though g grows quite 

rapidly. This is reasonable only for times so short that the third term in a power 

series expansion of g is negligible; 

(<7t )2 << 1. (100) 

For slightly longer times, direct examination of g paints a completely different 
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picture. From .(63) and (87), we have 

g (t) = e --{)..+k2)t G (t) 

( et+>--k 2)e ({~->--k2)t -( E2+>--k 2)e (~r>--k2)t 
= 9 (o) . . . E1-E2 (101) 

where F and D -II2(D +>--k 2)F are bounded. Clearly for slightly longer times, 

the relevant growth factors are 

a= e->--k 2 (102) 

= 2ck 2(ck 2-v) ±I k I l2ck 2-v I V1+c 2k 2-vc. 

The second equality comes from solving (80). These growth rates are given by 

the same formula (22) as in section 2, but now both signs are allowed. This agree

ment is quite surprising, because our calculation proceeds along lines completely 

different from the classical theory. Note also that this result is independent of 

the conditions imposed on f and of temperature gradients. 

Thus we expect that for (a(k )t )2 ,....... 1, the associated modes k will grow 

catastrophically. Since (102) implies 

as k -oo, (103) 

there will always be unstable modes no matter how short the time span. (How

ever, we should observe that the domain of applicability of linearized stability 

theory itself decreases as a increases.) Large-k modes are stabilized by capillarity 

only for times so short that e ut ,.....__ l+at. This contrasts sharply with the classi

cal theory. 
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6. The general planar interface 

A general planar interface is given by 

f o( t ) : ( X = X ( t ) , y = 8 ) {104) 

where x is the solution of 

00 e -(x (t }-.v )2f4t t e -(x (t )-x (r))2/4(t -r) 
0 - I u 0(y )dy +I x r(r)d i. (105) 

- -oo .f41rt 0 J 4 rr( t -i) 

The initial temperature field u 0 must depend only on the coordinate y normal to 

the interface. 

A perturbation Eu 1(x ,y) of the initial temperature field produces an inter

face perturbation EX ( t ,s ) satisfying the exact linear stability equation 

00 e-(x(t)-.v?/4t 
CX88 ( t ,s ) = x ( t ,s ) J V4ift u J (y )dy 

_
00 

4rrt 
(106) 

+ J J K (x (t )-y ,s -a;t )u 1(y ,a)dyd CT 

too 

+ J J (x (t ,s )-x (r,a)) x (t()-x )(r) K (x (t )-x (r),s -a;t -r)x r(r)d ad r 
0-oo 2 t -i 

too 

+ J J K (x (t )-x (r),s -a;t -r)x r(r,a)d ad r. 
0-oo 

Again, it suffices to consider temperature field perturbations 

U l (X ,y ) = f (X )e iky (107) 

with resulting interfacial perturbations 

x ( t ,s ) = g ( t )e ik8 
. (108) 

The reduced equation for g is 
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(109) 

. 2 oo e -( x ( t )-y )2/4t 
+e -k t I J41TT I (y )dy 

_
00 

41T't · 

t x(t)-x(r) e-(x(t)-x(r))2/4(t-r) 
+I[e-k2(t-r)g(r)-g(t)] x1 (r) dr 

0 2( t -r) v' 47r( t -r) 

t e -( x ( t )-x ( r) )2/4( t -r) 21 ) 

+I e-k ~t-rg' (r)dr. 
0 v'47r(t-r) 

This equation describes the exact evolution of g, and seems intractable in this 

generality. However, linear theory can only be expected to be valid for short 

times. Thus it is reasonable to simplify the variable coefficients by short-time 

Taylor expansions. Hence we make the approximation 

_x~(...,..t )-'--x--l.( r....t..) ,__ .!_ v 
2(t-r) 2 

(110) 

where 

x' (r)'"" x' (0) == v (111) 

and replace all variable coefficients multiplying g by their values at t = 0. 

Then (109) simplifies to 

with ).. = v 2 j4,. 

and F defined by 

U 0 = -I.[u 6 (x (o)+)+u 6 (x (ot)], 
2 

00 e-{x(t)-y)2/4t 
F (t) = I v'41TT I (y )dy. 

_
00 

47rt 

(113) 

(114) 
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This reduces the general planar interface to the special case treated in section 2. 

Thus the conclusions of that section can be expected to hold for short times. 

As an application, consider the classical Neumann solution defined by .[17] 

X (t) = 2p y't +t 0-2p Fo (115) 

X > 0 

X < 0. 
(116) 

Here p is a parameter fixed by the undercooling at oo. The exact temperature 

field has the similarity form 

{ 

(z -z (t ))/J4(t +to) 

-2p J e -{>.
2+2P >.)d .A 

0 
u (x ,t) = 0 

X > X (t) 

X < X (t ). (117) 

Note the square root singularity at t = 0 if we put t 0 = 0. For this example, 

we have 

v = x1 (0) = _P_ 
Fa 

so the growth factor cr is given by 

2 
cr = (q' +q )( p -ck2)-L. 

2Fo 2t 0 

(118) 

(119) 

(120) 

The interest in this example is that the singular solution with t 0 = 0 is stable (at 

t = 0) to perturbations of all wavenumbers. Of course, it becomes unstable as 

soon as t becomes positive. 
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7. Conclusions 

The classical linear stability theory is incomplete in two ways. First, it does 

not consider a complete set of normal modes for the initial perturbation. This is 

because it treats the initial data as consisting only of the interface, when actually 

the initial temperature field is also an important datum. Second, our analysis 

suggests that the classical theory can be valid only for times so short and c 2 k 4 so 

small that e ut ,.......__ 1 +O't . For longer times, linear theory predicts a catastrophic 

instability. 
. 

Our analysis attempts to remedy these deficiencies, by treating general per-

turbations of the initial data for arbitrary time spans. The key is our integral 

equation formulation, which clearly displays the following unusual feature of the 

model. In most initial-value problems, the initial data is given in a space, say X, 

and the solution is then a trajectory in X. Here, however, the initial data con-

sists primarily· of the temperature field, while the solution is the family of inter

faces f( t ). The initial temperature plays more the role of a forcing term than of 

initial data. This feature is a· source of some conceptual difficulty in the classical 

theory. 

Linearization 1s straightforward and rigorous in this formulation, with no 

effective boundary conditions required. Because the integral equation contains 

the compatibility conditions, appropriate linearized compatibility conditions fol-

low automatically from the linearized stability equation. We use these as initial 

conditions for the interfacial perturbation, so we can handle a complete set of 

perturbations of the full initial data. The integral equation approach is suitable 

for studying the effect of additional compatibility conditions as well, because it 

can deliver g for any I . It is unclear whether any additional restrictions on I 

need be imposed, or what they should be. 
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The linear stability equation is exactly solvable for the important special 

case of an.interface with constant speed and unit undercooling. This special case 

is important not only as an example, but because it approximates the general 

.interface. Thus our conclusions extend immediately to the general planar inter-

face. 

Our analysis reveals two modifications of the classical theory. First, even for 

short times, continuity of the perturbed initial temperature field requires that the 

classical growth factor 

be replaced by 

1 
a= -v (q +q' -v )-ck 2(q 1 +q) 

2 

(121) 

(122) 

in the exact linear theory. A sufficiently careful numerical solution of the model 

could presumably determine which growth factor actually applies in general, and 

help decide the question of the correct additional conditions (if any) to be 

imposed on I . 

Second, if the domain of applicability of linearized stability theory itself is 

long enough, we expect a catastrophic instability to appear. (Note that since a 

given by (102) becomes infinite with k, there can be no time so short that 

e ut ,...._, 1+at for every wavenumber k. Thus only a short-wave cutoff could 

prevent this instability from surfacing in a numerical analysis of the model.) 

Numerical analyses of the model do not unambiguously exhibit this instability. 

But Chorin's results [4] display a morphological oscillation which does not decay, 

even though the classical theory predicts it should. Perhaps the interaction of 

our instability with a nonlinear restoring force might explain the observed oscilla-

tions. 
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Appendix: Jump formulae for the heat potentials S and D 

First we guess the correct formulae, by reducing heat potentials to classical 

Newtonian potentials in the limit T -+-oo. This is physically reasonable, since 

Laplace's equation is the steady-state form or the heat equation. Let r( t ) :::: f 

and J.L(Y ,t) == J.L(Y) be constant in time. Interchange the order of integration in 

(33) and (34) and put 

s- llx-y 11 2 

4t 

in the time integral; then S and D become 

D (x, T) = J J.L(Y )cos( n ,x -y) llx -y ~~~-n J e -s s n 12- 1dsdy 
r 2 1rn liz -y 11 2/4 T 

where cos( a ,b)= a ·b Jlla II lib 11. Take the limit T -+-oo. Except for the single 

layer potential in dimension n = 2, we find 

S(x,oo)= f(n/2-1) J J.L(y)dy 
41rn/2 rllx-ylln-2 

D (x ,oo) = f( n /2) f J.L(Y )cos( n ,x -y )dy, 
21rn/2 r llx-ylln-l 

the familiar Newtonian single and double layer potentials. For n = 2, a prelim

inary integration by parts shows that 

S(x ,T)--.... log(4 T) jJ.L(Y )dy--1 jJ.L(Y )logllx-y lldy. 
47r r 27r r 

Thus we recover the single layer logarithmic potential only modulo an infinite 

constant. 
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At any rate, the well-known jump relations (see [11]) of Newtonian potential 

theory now suggest that 

[S](x 0,T) = 0 

[D ](x 0,T) = J.L(x 0,T) 

for X 0 E r( T ). A formal proof might proceed along the following lines. 

First consider the single layer 

T 

S(x,T)=J J J.L(y,t)K(x-y,T-t)dydt. 
o r(t) 

Write ( after Pogorzelski [10]) 

e -liz -y 11 2/4( T-t) 

K (X - Y 'T- t ) = -( 4-7r-( T---t )-)n-:/~2 

_ 2-28 1 1 ( llx -y 11
2 

) n /
2
-8 e -liz -y 112/4( T -t) 

- 7rn/2 (T-t )8 llx-y lln-28 4(T-t) 

and apply the inequality 

q m e -q < m m e -m 

valid for positive m and nonnegative q. The result is an estimate 

1 1 
K (X - Y 'T- t ) < C fJ ( T- t )fJ II X - Y II n -28 ' 

(*) 

for C 8 a constant depending on 1/2 < 0 < 1. This dominates K by an integr

able function, so the dominated convergence theorem [18] implies that S is con

tinuous; thus [S] = 0. 

Now consider the double layer D. First, we show that [D ](x 0, T) = 0 if J.L 

vanishes in a neighborhood of x 0 E r( T ). It suffices then to calculate [D] for a 

density J.L which is nonzero only near x 0• For such a density, the double integral 

(34) can be approximated by integrating over the tangent plane to f( T) instead. 
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Then the jump yields to explicit calculation. 

First suppose that 

p,(y ,t) = 0 for IIY-xoll+l T-t I < 2E. 

An argument exactly like the one preceding (*) establishes the inequality 

a 1 1 
I any K(x-y,T-t)l <Co (T-t)ellx-ylln+l-28 

for 1/2 < () < 1, with a constant C 8• It follows that on the set where J-L is 

nonzero, 

0 { constant 
I any K(x-y ,T-t )I < constant 

(T-t)e 

Hence such a density induces a continuous D . 

for II y -x oil < E 

for IIY-xoll >E. 

Next consider a general density p,. Let ¢> be a smooth function on 

IRn X [O,oo) which is identically 1 for llx -x 011+ I T -t I < € and identically 0 for 

llx -x 011+ I T- t I > 2€, and put J.l = ¢>JJ+(1-¢> )JJ. This exhibits J.l as the sum 

of a density (1-¢> )JJ of the type treated in the previous paragraph, and a density 

¢>1-L which vanishes everywhere except near x 0• Since (1-¢> )J-L contributes nothing 

to [D ](x 0 , T ), we can assume J.l = ¢>JJ. Then for € sufficiently small, r( t) is 

nearly flat and nearly constant in time in the range where J.l is nonzero. Thus we 

can replace r( t ) in the integral by the tangent hyperplane to r( T) at X 0~ with 

an error which vanishes with E. It remains only to calculate [D] when r( t) == r 

is a hyperplane. By a rigid motion, we can assume that r is the hyperplane 

{ x 1 = 0 } in IR.n. Write x = (x 1,y ), y E IR.n - 1, and make the change of 

variables t +-T-t to get 
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where 

e -IIY -sll2/4t 
g (y ,t) = J J.L(S ,T-t) (n-1)/2 ds 
•• JRft-1 (4trt) 

-J.L(y,T) as t-o. 

By a change of variables and the dominated convergence theorem, 

sgn(x 1) 
00 

2 
_

17 
d a 

D (x 1,y; T) = v;. J g (y ,x 1 /4a)e r: 
2 z(/4T VC1 

Thus D has a jump across f(T) given by 
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