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Abstract 

Collisions of two nuclei for bombarding energies between 20 and 100 MeV/A are investigated 

by combining the Landau-Vlasov equation with a statistical fragmentation approach. The 

stage of a possible clusterization appears to be strongly dependent on the energy, such that 

the fragmentation occurs at a nearly invariant temperature (T 6-7 MeV). Including conser-

vation of total angular momentum we examine the competition between evaporation, fission 

and multifragmentation as a function of bombarding energies and impact parameters. 

1 Introduction 

Various theoretical approaches have recently been developed to predict the out-

come of nuclear collisions at intermediate energies (20-100 MeV/A). Until now, most 

of the models only consider a given excited nucleus, ignoring the effects of the en-

trance channel. For instance, an equilibrium assumed by statistical models [1-11] 

will depend on the system involved, the beam energy and the impact parameter 

[12]. On one hand, such effects are clearly seen by the one-body Landau-Vlasov (LV) 

description [13-16] . However, this LV equation cannot correctly represent the decay 

1 Permanent address: Niels Bohr institute, Blegdamsvej 17, DK-2100, Copenhagen, Denmark 
2 Present address: CERN European Organization For Nuclear Research, CH-1211 Geneva 23, 

Switzerland 
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of nuclei, because of the lack of many-body correlations. On the other hand, the sta-

tistical approaches take into account, in principle, all the possible fluctuations within 

the available phase space. These last models form two classes differentiated by the 

way of decay. The ones from the first class [1-3] only allow sequential emission of 

fragments, but treat the saddle point carefully, whereas the others [4-11] consider 

also a simultaneous break up of the system (multifragmentation). 

The sequential emission models are in good agreement with experimental data 

at low energies, but, at high energies, they might fail due to the competition with 

complex decay channels. The multifragmentation models suffer from the unknown 

"multidimensional saddle point" or freeze-out criteria. The LV calculation will show 

later that the dynamical evolution of a nuclear collision at high energies leads to den-

sities and temperatures where the liquid-gas phase transition becomes important. 

Thus the final clusterization pattern must be appropriately described by a multi-

fragmentation model which takes into account the proper degrees of freedom for the 

inhomogeneous liquid-gas mixture. 

In the present paper, the LV equation solved with a coherent state basis [13] 

will provide us with a well defined freeze-out volume. Then using the liquid-drop 

parametrization of the phase space given by [5], we show how a general rotation of 

the system can be included. Thus, we will be able to take account of non-central 

collisions where a single equilibrated source prevails. This will allow us to compare 

with experiments down to relatively low energies. 

2 The Landau-Vlasov approach to the freeze-out 
density 

The early stages of an intermediate energy nuclear collision can be reasonably 

well described by the LV equation [13,16] 

af 	 dVôf 
ôt+mU ___=Ico11• 	 (1) 

r drDp 
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This equation governs the evolution of the one-body phase space density f = f (r, p, i) 

self-consistently in its own mean.field potential 

7 

V(r) = _dlp(r) +d2 (P(r))6 
 +V 0 i({p(r)}) 	 (2) 

P0 	PU 

where p ( r, t) = f f (r, p, t) dp is the spatial density and d1  = 368.3 MeV, d2  = 315.2 

MeV. Thus V is determined as a sum of a Skyrme-type interaction (with saturation 

density po = 0.15 fm 3 , compressibility K = 200 MeV and critical temperature 

T = 16 MeV) and the Coulomb interaction. Equation (1) furthermore includes 

the Uehling-Uehlenbeck collision integral Icu  which takes into account two body 

correlations. The equation is solved by decomposing the density f onto a finite basis 

of gatissians which initially is randomly distributed in the phase space determined 

by the Thomas-Fermi approximation [13]. The width of these gaussians are defined 

such that the surface diffuseness and binding energy of the nuclei fit the experimental 

ones. 

At these intermediate energies, central collisions lead to a highly excited corn-

pound system. The evolution of such a system has been intensively studied [17-20]. 

It turns out that the limit of stability depends on the mode of excitation. Thus 

a 40 Ca nucleus needs 15 MeV/A of thermal energy to disintegrate whereas it only 

needs 8 MeV/A of compressional energy [18]. The conclusion of this LV study has 

shown that the limit of stability of nuclear matter is rather high. To understand the 

reason for this stability we have to emphasize two points. First the evaporation of 

particles, which is favored by the collision term, removes energy from the remaining 

system. This slows down the collective expansion of the system. For an equilibrated 

nucleus this evaporation turns out to be bigger than predicted by statistical models 

which assume evaporation rates proportional to an inverse cross section. Secondly, 

by construction the LV equation only considers the average evolution of the system. 

Therefore it does not, in principle, initiate any fluctuations during the evolution of 

the system. Nevertheless, due to the finite number of gaussians and to the numerical 
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resolution of the LV equation, fluctuations are present. Those should be minimized, 

so that the main pattern of the evolution of a system remains independent of further 

increase in the accuracy of the calculation [18]. 

In this paper, instead of considering an excited compound system, where the form 

of excitation is arbitrary, we prefer to follow a system from the beginning of the col-

lision. Figure 1 shows such a collision between two 40Ca nuclei at 60 MeV/A. The 

collision initiates a compression to a density p 14po,  as shown in figure 2b, followed 

by a general expansion phase. During the expansion particles are continuously emit-

ted into the continuum as shown in figure 2c where the size of the remaining system 

is displayed. From 80 fm/c some fluctuations start to grow on a macroscopic scale 

and the system finally clusterizes. At lower laboratory energies (Ela b < 50 MeV/A) 

the pattern of evolution is different. The numerical fluctuations never grow on a 

macroscopic scale, and therefore do not play any role, so the system finally recom-

presses to a compound system as shown in figure 2b for Elab = 40 MeV/A. However, 

the fluctuations present in the LV study do not fully represent reality. 

If the system ever gets to an equilibrium the fluctuations would be such that the 

system maximizes its entropy. During the expansion phase it is not in equilibrium. 

Energy is continuously transferred from translational to potential energy. As shown 

by figure 2a, the potential energy per nucleon evolves through a maximum. This 

characterizes either the end of an expansion or the beginning of a clusterization. In 

the first case, the system should have sufficient time to explore the available phase 

space, but here the LV equation is unable to provide the necessary fluctuations to do 

that. In the second case the situation is opposite. The fluctuations are amplified by 

the dynamical instability of the matter. This does not mean that the phase space is 

isotropically explored. The solution in such a case could be an average of a sequence 

of calculations with different initial fluctuations [21,22]. But it turns out that the 

final clusterization pattern is very dependent of the initial fluctuations [18] which 

are not presently clearly defined. In both cases we therefore treat the final evolution 

of the system statistically at the stage of maximum potential energy per nucleon. 

Figure 3 displays the nuclear profile for different energies at this stage and table 1 
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gives the corresponding central density, mass number and excitation energy of the 

remaining system. We thereby define the freeze-out conditions that statistical models 

need as input [7,9,11]. 

We would like to emphasize that the freeze-out density found by the LV approach 

depends very much on the bombarding energy per nucleon and the relative sizes of 

the two colliding nuclei. At freeze-out the homogeneous matter typically has a ther-

mal energy corresponding to a temperature T 3 - 5 MeV. For higher temperatures, 

possible disruptions of the matter are suppressed by the thermal motion of its con-

stituents. With the freeze-out densities of table 1, a temperature T 3 - 5 MeV 

defines the matter to be within the spinodal region of the phase diagram when Ela b 

is above 20 MeV/A (for the potential given by eq.(2) = T=O is negative for 

0.001 < p/po < 0.626). Thus the freeze-out conditions can be understood from a 

long-wavelength decomposition of the matter, taking into account that clusterization 

occurs at constant energy (where density fluctuations can only develop at tempera-

tures T ".' > 9 MeV [23,24]), and that fluctuations need to be of a finite size A 5 fm 

in order to grow [25,26]. This last condition also implies that a fluctuation needs a 

finite time r A/Vf erm j 20 fm/c in order to manifest itself on a macroscopic scale, 

thereby initiating the clusterization process. 

Investigating the amount of energy which is fully thermalized we also show, in ta-

ble 1, the size of the average radial motion at freeze-out. The size of the radial kinetic 

energy makes it reasonable to assume equipartition of all available energy when the 

bombarding energy is below 70 - 80 MeV/A. It also indicates the transition between 

recompression and continuous expansion, of the system described by the LV equa-

tion, located around 50 MeV/A. The following chapter will describe the statistical 

weight of various final fluctuation patterns of the system, taking into account that 

the total energy, momentum and angular momentum have to be conserved. 
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3 Phase space description of a rotating liquid-gas 
mixture 

In the first part the LV approach has provided us with a freeze-out stage at 

which we, now, assume thermodynamic equilibrium. We can then use the statistical 

multifragmentation model of Bondorf et al. [5,7]. Here we improve the model so 

that the Coulomb repulsion and the hard-sphere blocking are calculated explicitly by 

placing the fragments randomly within the freeze-out volume. This also allows this 

volume to be non-spherical. Furthermore, and most important, we take into account 

a possible rotation of the system. 

A specific fragmentation mode of the system is defined by a partition vector 

{ NA,Z} = {N 1 ,0 , N1 , 1 , N2 ,0 ,...} where N, 1  denotes the number of fragments with 

mass n and charge 1. Given a total angular momentum Lh and a total energy E, the 

statistical weight of a partition is defined as 

___ 147  ({NA,z} , E, L) = 	
1 

IINAz! f h3 	d3r1d3p de2 p (ei) 8 	p 2 ) 8 (> m2 r) 

	

>2S1,S2 ... SM V (Lh - 	(r i  x p + s 2 h)) 

8( 	2 

1 	s2h2 

 2m 	2j1 + 	 ( 3) 

where V = V 	r.}) is the total potential energy of the partition and f denotes 

the volume available for the fragments (the volume at which the center-of-mass of 

each fragment could be positioned). The index i runs over all the fragments, p (€ 2) is 

the energy level density of the fragment i having an internal energy e. The variables 

s, and j, are respectively the angular momentum and the moment of inertia of the 

fragment i that we treat as a classical sphere. UNA z! takes into account the double 

counting of the phase space in case of identical fragments. 

Using the transformation p2 —p  p, - mw x r; s —p 5 - mjwji, with w = L/J, 

J = >I (j2 + mrj, the integral will be expressed in a convenient rotating frame. 

With a canonical limit corresponding to the one used in reference [7], the integral 

then reads 
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h3  W ({N A , z }, E, L) 	IINAZ! f (fJ1 d3r1) 53 (> m1r1)  f fJ 	e2miT T 53 (E, 
pj) 

E-V s2 

 ( x p + 	 2'Te 	

2)/T 

(4) 

where T = T 	r}) is the temperature determined such that the total energy 

in the rotating frame is conserved and F1  = —T in [f de1p  (es) e_/T] the internal free 

energy of fragment i. For simplification, the rotation of the fragments will only be 

considered in the reaction plane. Thus in the following, we only consider conservation 

of angular momentum along the z axis. With the saddle point approximation 

s?h2 	
(>rxp)2 

S ( (( ri  x p)  + si h) e) - L..2,1T 	
> 	S Si eTe 	2jT 	(5) 

81,•• 8M 	I S1 ... SM 	I 

the statistical weight can be evaluated 

W({N A ,Z},E,L) R f 
(U)o3(.mir:) e (E_v_)/T 

FE, 
[çmjT 3/2(rT)1/2F(T)/T] 

h2 ) 

(2ir.mT
3/2  

) 	

(2.(mirl+ii)T 1/2• 
	 (6) 

hi 	 h2 	
) 

In this equation the free energy of the fragment (A,Z) is 

3 Z 2 e2  
FA,Z (T) = fb1k (T) A + fsurf (T, T) A 213  + fasyrn (A, Z) + ( 7) 

5r0 A 1 /3  

where fblj.  (T), fsarf  (T, T) and fasyrn  (A, Z) are determined by the parameters of the 

liquid-drop model used in ref [5,27] (with T = 16 MeV). For fragments with mass 

number A < 4 we set FA,Z equal to the ground state energy. Given the free energy 

F1  = F1 (T), the average energy of fragment i at temperature T, can be calculated by 

E1 (T) = F1  + TS1 , where Si  = - is the internal entropy. 
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The integral (6) is calculated by a Monte-Carlo method. Thus, in order to cal-

culate the average value of a physical observable Q, we generate randomly a sample 

of partitions as described in reference [27]. For each partition k, the fragments are 

	

placed randomly within the freeze-out volume Q. The hard-sphere repulsion is taken 	 - 

into account by rejecting partitions where some fragments overlap (V = oo). If the 

partition is accepted, it is assigned the statistical weight 

E (2lremi T) 312  (2eT)h/2 eS*(T)] 
1 

	

Wk= 	
h2 

2 3/2 	 (8) 
(21re.miT)3h'2 I 

	 ___)1/2  
IINA,z! 	

() ) 	 h2 	 h2  
___ 	(2ireJT 

where T = T 	ri }) is determined by 

L 2h2 e2 ZiZi 3  
2J 	

(M1)T1(M1)TE(T) 	(9) 
i>j 

M = > A,Z NA,Z is the multiplicity of the partition {NA,z}. The 6—function in the 

coordinate space is approximately taken into account by the division with the second 

moment of the mass distribution in eq. 8 and by calculating the total moment of 

inertia J = = (m (ri-L - 
2 
 + i) relative to the center-of-mass of the 

randomly placed fragments. 

The average of an observable Q is calculated over all accepted partitions in the 

sample by 

(Q)- >kWkQk 

- 

The size of the sample is chosen such that the average value does not change when 

increasing the number of partitions by a factor two. This typically requires iO to 

106  partitions, according to the size of the system and to the physical observables we 

want to study. 

(10) 
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Figures 4a,b show the influence of the new ingredients of the model on the 

average temperatures and multiplicities at freeze-out. For no angular momentum 

one observes that the explicit treatment of the hard-sphere blocking causes a slight 

increase of the temperature. The inclusion of the internal rotational degree of free-

dom of the fragments only plays a minor role. The introduction of a finite total 

angular momentum L enhances the average size of the fragments so much that the 

temperature at freeze-out stays relatively unchanged, except at low energy where a 

large fraction of the energy is involved in the rotational motion. The inclusion of a fi-

nite angular momentum also favors the fission channel as described by Figure 5. The 

fission probability depends very much on the total excitation energy of the system as 

well as on the size of the freeze-out volume. Therefore it is very important that these 

two last quantities are well defined when one wants to compare with experiments. 

4 Fragmentation pattern in nuclear collisions 

Having the freeze-out density given by the LV approach in chapter 2, we have to 

define the corresponding freeze-out volume available to the fragments in the statistical 

model of multifragmentation described in chapter 3. For the volume V = A/p where 

A is the mass of the system at freeze-out, the question remains whether one should 

place the fragments totally within this volume [11] or one should allow the center-of-

mass of the fragments at the periphery of this same volume [9]. This problem is of less 

importance at high energies (above 50 MeV/A for Ca + Ca), where the fragments 

are small and the volume big, but at low energies it plays an important role. Thus, 

for the system 40 Ca(30 MeV/A) + 40Ca at freeze-out, the average multiplicity (resp. 

the probability that the biggest fragment contains more than 2  of the total number 

of nucleons) is 3.0 (resp. 0.85) for the first choice, and 5.0 (resp. 0.01) for the second 

case. As we have a rather broad density profile, it does not seem reasonable to choose 

the fragments totally inside the volume V. Moreover, at low energies the center of 

big fragments should not be at the periphery of V. In the following, we choose the 

intermediate solution, where each fragment center is allowed to be placed till half 



K. Snep pen, L. Vinei/Dynamics and Clusterization in N'uclear Collisions 	10 

its radius from the border of the previous volume V. We will see later that this 

alternative gives results in agreement with experimental data. 

In order to understand the influence of the incident energy on the fragmentation 

process, we are first going to study the central collisions (b = 0 fm). Figures 6a,b 

display the multiplicity and the temperature versus the beam energy for the system 

Ca + Ca. The temperature stays fairly constant with the involved energy, which 

is not the case of the figure 4 where the freeze-out volume is kept constant. As 

shown previously in table 1, the freeze-out volume increases dramatically with the 

beam energy. This enhances the multiplicity, but with more fragments, less thermal 

energy is available per degree of freedom. The same behaviour is observed with the 

freeze-out criteria of Bondorf et al. [6] which assumes an explicit dependence of the 

freeze-out volume on the multiplicity. 

For non-central collisions, LV gives a spheroidal freeze-out volume and a higher 

total excitation energy because of a lower pre-equilibrium emission. Figure 7 shows 

two different and typical behaviours according to the impact parameter. For b = 1 fm 

the system 40 Ca(40 MeV/A) + 40Ca behaves as a thermal equilibrated source at the 

freeze-out stage, whereas for b = 3 fm the distribution of the velocities can only be 

explained by the presence of two sources. The energies and impact parameters where 

we have one or several equilibrated sources are summarized in figure 8. The energy 

region below 15 MeV/A limits the validity of our approach. The intermediate area 

states the uncertainty between the two phenomena. 

The one-source case forms a highly excited compound system, with more or less 

angular momentum, whose decay can be investigated by the presently described 

multifragmentation model. For 40Ca + 40Ca, table 2a and 2b present the explicit 

dependence of the excited source on the impact parameter for two laboratory ener-

gies Elab = 20 MeV/A and 30 MeV/A. The freeze-out density remains more or less 

constant whereas the excitation energy increases significantly for the highest impact 

parameter, indicating a transition towards a deep inelastic reaction. Due to these 

freeze-out conditions the multiplicity (Fig. 9a) and the temperature (Fig. 9b) are 

not much influenced by the impact parameter while the decay mode (Fig. 9c, 9d) 
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manifests a very sensitive behaviour. These two last figures also reveal an onset of 

multifragmentation located around 25 MeV/A of bombarding energy for the system 

40 Ca + 40 Ca. 

In absence of relevant experimental data at high energies, we have compared the 

outcome of our approach with some experiments at lower energies. The experimental 

data are provided by [28] where charge yield distributions resulting from the decay 

of one excited source are extracted. The comparison of these distributions with our 

approach in Figures lOa,b shows a reasonable agreement for 40Ar(20 MeV/A) + 27A1, 

where the excitation energy of the excited source is approximately 4 MeV/A. The 

comparison for the system 40Ar(20 MeV/A) + 12 C demonstrates the limit of our 

approach at low excitation energies (2.5-3.0 MeV/A), where the detailed structure 

of the saddle point is deficient. 

5 Conclusion 

In the present paper, the Landau-Vlasov equation has shown, that near-central 

nuclear collisions lead to a stage of freeze-out at which clusterization could occur. 

Since many-body correlations are neglected in this LV formalism, the phase space 

of the liquid-gas mixture at freeze-out is described statistically by the multifragmen-

tation model of [5,7] improved in order to take into account a possible rotation of 

the system. The freeze-out volume appears to increase strongly with the bombarding 

energy, entailing the temperature at freeze-out to stay around 6-7 MeV for the system 

Ca + Ca where 15 MeV/A <Elab < 80 MeV/A. 

In general, one observes a gradual change of decay ranging from sequential 

evaporation at low energies (Elab  < 20 MeV/A), through fission at intermediate 

energies to pure fragmentation at high energies (Elab > 35 MeV/A). The fission-like 

channel is enhanced by a rotation of the source, and hence becomes important with 

increased impact parameter of the collision. Averaging over the impact parameters 

at which one can expect one source, we finally have compared our calculations with 

experimental data at energies where evaporation and fission take place. 
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Table captions 

Table 1 Freeze-out conditions for a range of bombarding energies for central colli-

sions of two 40Ca nuclei. 

Table 2a Freeze-out conditions for a range of impact parameters of 

40Ca(20 MeV/A) + 40Ca. c/a is a spheroidal parameter which gives 

the deformation of the homogeneous source whose approximated form is 
02 Q2 Q2 

= 1. 

Table 2b Same as Table 2a for 40Ca(30 MeV/A) + 40Ca. 



K. Snep pen, L. Vine/Dynamics and Clusierization in Nuclear Collisions 	16 

Figure captions 

Fig. 1 Time evolution of the central collision 40Ca(60 MeV/A) + 40 Ca, cal-

culated with the LV equation. The plots show the integrated density 

p(x,z) = fp(x,y,z)dy. 

Fig. 2a Time evolution of the potential energy per nucleon for two central 

collisions of two Ca nuclei. Note the maximum point indicating the state 

of maximum homogeneous expansion. 

Fig. 2b Same as figure 2a for the central density. 

Fig. 2c Same as figure 2a for the size of the remaining system, where the 

density p(x, z) is above 	of the central ones. 10 

Fig. 3 Stages of maximum homogeneous expansion (or freeze-out) for central 

collisions of two Ca nuclei at various laboratory energies Elab. 

Fig. 4a Average multiplicity as function of the excitation energy for the sys-

tem (A = 80, Z = 40) at a fixed freeze-out volume Q = 2Atotai/p in four 

cases. The "Old" case refer to the result of the model of Bondorf et al. 

[5,7] which takes into account the hard-sphere blocking only approximately 

and neglects any angular momentum effect. The "L = Oh","L = 80h" and 

= 120h" cases correspond to our approach for different values of the 

total angular momentum L. 

Fig. 4b Same as figure 4a for the average temperature at freeze-out. 

Fig. 5 Influence of the angular momentum on the fission like decay for different 

excitation energies e  and different volumes Q available for the fragments 

at freeze-out. The fission probability is, here, defined as the probability 

that a partition at freeze-out has a second biggest fragment with a mass 

superior to i  of the total mass. 

Fig. 6a Average multiplicity as function of the laboratory energy Elab for cen- 

tral collisions of two Ca nuclei, before and after a classical secondary 
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evaporation of light particles (A < 4) [1]. Only fragments with masses 

A > 4 are considered for the case after secondary evaporation. The error 

bars show the width of the multiplicity distribution. 

Fig. Gb Same as figure 6a for the average temperature at freeze-out. 

Fig. 7 Same as figure 1, for the system 40Ca(40 MeV/A) + 40Ca at two impact 

parameters b = 1 fm, 3 fm. 

Fig. 8 Impact parameters and laboratory energies where two colliding 40Ca 

nuclei form one excited source. 

Fig. 9a Average multiplicity at freeze-out as function of impact parameter 

for two different bombarding energies Elab of the colliding 40Ca + 40 Ca 

system. 

Fig. 9b Same as figure 9a for the average temperature at freeze-out. 

Fig. 9c Influence of the impact parameter on the fission-like, the evaporation-

like and the multifragmentation-like decay for two colliding Ca at a labora 

tory energy Eia& = 20 MeV/A. See figure 5 for the definition of the "fission 

like", "evaporation-like" means that the biggest fragment at freeze-out has 

a mass superior to 2  of the total mass and the "multifragmentation" is de-

fined as the residual events. The "multiplicity> 2" case is independently 

shown to illustrate the importance of simultaneous break up into several 

fragments. 

Fig. 9d Same as figure 9c for a bombarding energy Elab = 30 MeV/A. 

Fig. lOa Charge yield comparison between our approach (including a 

secondary evaporation [1] after the freeze-out) averaged over the impact 

parameters b = 0, 1,.., 5 fm, and the experiments of the reference [28] for 

the system 40Ar(20 MeV/A) + 12 C. 

Fig. lob Same as figure lOa for the system 40Ar(20 MeV/A) + 27Al where 

the calculation is averaged over the impact parameters b = 0, 1,.., 4 fm. 



4 40C
a + 

0 
Ca for b=Ofm 

E 	(MeV/A) 
lab 

P/Pa  A E 	(MeV/A) E r  (MeV/A) 

15 .66 	± .03 73 ± 	1 3.2 	± .2 .1 

20 .66 	± .03 72 ± 	1 4.0 	± .3 .2 

30 .49 	± .03 70 ± 2 6.2 	± .4 .3 

40 .38 	± .02 69 ± 2 7.7 	± .4 .3 

50 .27 	± .02 62 ± 2 8.5 	± .5 1.0 

60 .20 	± .02 62 ± 3 10.4 	± .6 1.3 

70 .15 	± .02 59 ± 4 11.5 	± 	.7 2.0 

80 .12 	± .01 57 .± 	5 12.2 	± 1.0 2.5 

100 .07 	± .01 51 ± 5 15.2 	± 1.5 4.4 

120 .05 	± .01 48 ± 5 17.1 	±2.0 6.0 

Table 1 

40Ca + 40Ca at 20 MeV/A 

b (Im) p/p0  A E 	(MeV/A) C I a L 	i) 

0 .66 72 4.0 0.8 0 

1 .66 73 3.9 1.1 18 

2 .64 73 3.9 1.3 33 

3 .66 73 3.8 1.4 49 

4 .66 75 4.2 1.5 67 

5 .72 75 4.4 1.7 88 

Table 2a 

40 	 40 
Ca + 	Ca at 30 MeV/A 

b (fm) p/p0  A E* (MeV/A) c I a L (41) 

0 .49 70 6.2 0.8 0 

1 .52 71 5.8 1.2 21 

2 .50 73 6.0 1.4 43 

3 .55 74 6.3 1.6 64 

4 .55 75 6.5 1.7 84 

Table 2b 
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