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Many-body problems can very seldom be solved exactly, and their study normally requires ap
proximate methods1. These appro.ximations are of various kinds and accuracy, but usually they in
volve either a perturbation treatment. or a variational approach. The method employed also depends 
on whether the problem under study is a real or realistic system (e.g. the ferromagnetism of the sur
face of the ordered FeCo alloyl; the photoemission spectrum of nickel metal3; the thermal energy . 
gap4 of semiconducting Si) or a prototype, ideal model (e.g. the free-electron gas1.5·6; the one
dimensional Hubbard model7•8; the square-lattice Hubbard model9; the single-center Anderson im
purity model10•11). 

Perturbative treatments are based on previously determined one-particle states (which for real
istic systems are only obtained. stored. and handled numerically), and diagrammatic inclusion of 
particle:. interaction effects, based either on the Raleigh-SchrOdinger or the Brillouin-Wigner pertur
bation scheme. The calculation of anyone of these diagrams involves in general a multidimensional 
integral in reciprocal space which, for periodic systems, extends in each variable over the reciprocal
space unit cell, the Brillouin Zone (BZ). These integrals are indeed very laborious and numerically 
intensive; by and large they are performed in a coarse way by sampling reciprocal space in very few 
points, in fact in no more points than time and computer memory would reasonably allow. Tech
niques for sampling the BZ have been developed12; they try to avoid the pitfall of choosing too regu
lar a grid, which tends to select special points in the system. However, regardless of the technique, 
sampling in a set of N points in reciprocal space is always essentially equivalent to solving the prob
lem in real space in a "minicrystal" of N sites with periodic boundary conditions13. 

· The method proposed by the author and used with his collaborators in the solution of a variety 
of problems1

4-23 consists of taking explicit advantage of this finite sampling H finite cluster duality. 
By a systematic, symmetric and wise choice of N points in reciprocal space, the problem can be re
duced to that of a symmetric periodic cluster with N sites. If, in addition, N is small enough -- as is 
the case in the normal handling of perturbation expansions-- the problem can then be solved exactly, 
without recourse to perturbation methods. With the aid of group theory, only modest com~uter facil
ities are required. A similar approach has been taken by Callaway--and his collaborators24-! 6

. 

AN EXAMPLE: THEfcc LATTICE 

Figure 1 shows a 32-atom portion of a face-centered cubic lattice, which is supposed to extend 
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Fig. 1 'Thirty-two-atom portion of the face-centered cubic lattice. 

for an indefinite number of cells in all three directions and to satisfy periodic boundary conditions. 
Figure 2 shows the corresponding BZ. with some of its symmetry points indicated. If the crystal has 
N atoms, there are N allowed translations in the crystal. Since, in addition, the cubic group contains 
48 point operations there are, all together, 48N symmetry space operations in the N -atom cluster 
system. It is now possible to select small clusters, preserving at all times the cubic symmetry of the 
crystal. The simplest cluster to choose is, of course, the single atom - the Wigner-Seitz cell. The 
wavefunctions of that system have all the complete periodicity of the lattice, i.e. in the language of 
group theory they transform according to the r representations of the space group .. Since r is the cen
tral point of the BZ (Fig. 2), a cluster of one atom is equivalent to sampling the BZ only at r. There 
are all together 48 group operations; they form the cubic point group 0 h , and yield the set of the ten 
irreducible r representations 13.27. 

A four-atom tetrahedral cluster is highlighted in Fig. 1. That small crystal has four internal 
translations and 192 symmetry operations. It should be emphasized that there .are only four atoms in 
the crystal, in the sense that only four arbitrary phase factors for the wave functions can be chosen. 
The crystal structure, because of the periodic boundary conditions, is however still fully fcc, and 
each point preserves its complete fcc environment, e.g. each atom has twelve nearest neighbors, six 
second-nearest neighbors, etc. If the atoms within the tetrahedral cluster are labelled 0, 1, 2, and 3, 
the atom 0 has four nearest neighbors of type l, four of type 2, and four of type 3; all six second
nearest neighbors atoms are of type 0. Wave functions such that all atoms of the same type have the 
same phase can only correspond to the four k -vectors labelled r and X. and shown in Fig. 2. A 
tetrahedral fcc cluster with periodic boundary conditions is equivalent to the finite sampling of the 
BZ at only the four points rand X. The group now consists of 192 operations and twenty irreducible 
representations; ten at r, ten at X. . 

Fig. 2 The Brillouin Zone of the face-centered cubic lattice. 
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A larger cluster of eight atoms can be similarly constructed. It corresponds to doubling the 
original fcc unit cell, or - even though not immediately obvious -- to choosing two adjacent tetrahe
dra iii Fig. 1. If the atoms are labelled 0, ... 3 in the first tetrahedron, and similarly 4, ... 7 in the contigu
ous one, the twelve nearest neighbors of each ai:om 0 are two each of the types 1, 2, 3, 5, 6, and 7; all 
six second-nearest neighbors are of type 4. There are now 384 group operations. The corresponding 
eight-point sampling· of the BZ includes the point r, the three points X, and the four points L (the 
centers ofthe hexagonal faces of the zone, not marked in Fig. 2). These twelve k-vectors yield 26 ir
reducible representations: ten at r, ten at X , six at L. 

THE HUBBARD MODEL IN THE fcc LATTICE 

Since its introduction in 1963, the Hubbard model7 has become the prototype of a system of 
fermions with short-range interactions. It has been used ta study a great variety of many-body effects 
in metals, of which ferromagnetism, antiferromagnetism, metal-insulator transitions, spin-density 
wave~ char£e-density waves, and superconductivity are the most common exam
ples7 ,16,22- ,28-33. 

The model has been applied to a variety of lattices - one, two, and three dimension
al8·22.28·29.34. Exact solutions are available for one dimension8, and exact theorems have been 
proved for some cases35. Since the numerical solution of extended cases is in general very laborious 
and computationally expensive9.34 ,xxact results easily obtainable with relatively small clusters with 
periodic boundary conditions14-16·""-23 are an appealing alternative to study the model. 

In a finite N -cluster with theN sites labeled i = 0, 1, 2, N-1. there is ones orbital per site, ei
ther spin up or down, denoted with subscript a. The creation [destruction] operator is written as ci ~ 
[Cial· The Hubbard Hamiltonian is: 

H=-
iJ;a 

t ci!r:ja + L U ci\ciici\ciJ.· 
i 

nearest neighbors . 

The terms in H are: (1) a band "hopping" interaction between states on adjacent sites, with transfer 
integral t; (2) an on-site (intra-atomic) interaction U which can be either repulsive or attractive. The 
model, once the lattice is defined, is determined by (A) defining the cluster with N sites; (B) defining 
the dimensionless parameter [Uit]; (C) defining the sign of U; and (D) determining the number of 
particles n in the cluster, where 0 S n S 2N, and [n!N ], the number of particles per siteiNmay vary 
between 0 and 2. The total number of available many-body states for each N -cluster is 2 , regard
less of particle occupation. The number of many-body states for given N and n is [(2N)! In! (2N
n )!]. Further major reductions in the secular equations to be solved can be achieved by means of 
group-theoretical methods, making use of the space-group and full spin-rotation symmetries. 

Tetrahedral Ouster 

The Hubbard model in the tetrahedral cluster16 can be solved analytically, regardless of the 
number of particles n. The largest secular equation to diagonalize is of order 3. The results are 
interesting, and sometimes surprising: 

(i) for n=2, t>O, the ground state of the system is a1 ways of symmetry 1 r 1; 
(ii) for n=3, t>O, the ground state of the system is always of symmetry 2X 1; 

(iii) for n=4; t>O, U>O the ground state of the system is of symmetry 1 r 12, but a low-lying 
excited state of symmetry 3X 2 is always present; for U <0 the ground state of the system is of sym
metry 1r 1, and a low-lying excited state of symmetry 1X 1 is always present; 

(iv) for n=5, t>O, U>O the ground state of the system is of symmetry 4r 2, and a low-lying 
excited state of symmetry 2X 2 is always present; for U <0 the ground state of the system is of sym
metry 2r 12, and a very low-lying (almost throughout degenerate) excited state of symmetry 2X 1 is 
always present; 

(v) for n=6, t>O, U>O the f,!?und state of the system is accidentally degenerate throughout, con
sisting of a state of s~etry r 12, and another of symmetry 3X 2; for U <0 the ground state is non
degenerate, of symmetry 1r 1• and a low-lying excited state of symmetry 1X 1 is always present; 

(vi) for attractive interactions U<O, the ground states are always of minimum spin multiplicity; 

'·'•""" -·· 
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(vii) for t>O there are magnetic ground states for n =5 and 6, a feature that seems to be a conse
quence of the "piling up" of the one-electron states at the top of the band; 

(viii) as U changes sign there are ground-state symmetry crossovers for n = 4, 5, and 6; 
(ix) accidental degeneracies, a feature present in most Hubbard models, are once again present 

here; 
(x) the piling-up of one-electron states at the top of the band -- and the lack of particle-hole sym

metry in the model -- is a consequence of the triangular rings of the fcc structure, with its conse
quent "frustration" properties for states with alternating phases; this frustration is responsible for the 
richness of structure and the variety of states observed, as well as for the lack of validity of the Lieb 
and Mattis theorem35; · 

(xi) if the tetrahedral cluster for t>O, U>O is considered an "atom" and Hund's rules are applied 
to it, it can be observed that they are satisfied for n = 0, 1. 2, 3, 5, 7, and 8, violated for n = 4, and 
invalid (because of the accidental degeneracy) for n = 6. 

Eight-Site Cluster with Seven Electrons 

Because of the recent proposal by Anderson26.33 that high-temperature superconductivity in 
complex Cu oxides could be interpreted in terms of an almost full, frustrated, Hubbard-type system 
with very large interactions (atomic or infinite-U limit), it is interesting to explore the (profoundl:J 
frustrated) fcc Hubbard model with occupation [n/N] close to one. This has been accomplished 
by using the eight-atom cluster, with an occupancy of n = 7, and in the limit U -+ + oo • In that limit 
there are 1024 seven-particle many-body states. These states contain either one or zero particle per 
site, form 69 symmetry-required energy levels, and are distributed among the various symmetries as 
shown in Table I. 

TABLE I. Distribution of the 1024 States and 69 Energy Levels 

for theN = 8, n = 7, U -7 + oo, fcc Hubbard Model among the Various Symmetries27• 

rl rz r12 r1s' r25· xl x2 x3 x4 Xs Ll L2 L3 

dim. 1 1 2 3 3 3 3 3 3 6 4 4 8 

S=7/2 1 0 0 0 0 1 0 0 0 0 1 0 0 

S=5/2 1 0 1 0 1 2 1 1 0 1 2 0 2 

S=3/2 1 0 2 1 2 3 2 2 1 3 3 1 5 

S=1/2 2 1 1 1 2 3 2 2 1 3 4 2 4 

The results of these calculations are very illuminating. For t<O. when states "pile up" at the 
bottom of the band and the only available hole is near the well behaved, analytic top of the band, the 
ground state of the system is ferromagnetic, with symmetry 8r 1 and total cluster energy -121 t I. 
The inclusion of higher order terms, of order [It 12 I U], which make a relatively weak antifer
romagnetic superexchange contribution, does not modify this result. 

The t>O case, on the other hand, is extremely complex. The "piling up" of states at the top of 
the band causes an extraordinary degeneraciofthe many-body ground-state manifold, with 9 (out of 
69) symmetry levels and 96 (out of 1024) states bein~ all accidentallY. degenerate at the minimum 
cluster energy of -6t. Those nine symmetry levels are X 2• 4r 12, 4X 1, ~X 2, 4£ 2• 2r 2, 2X 1• 2X 2, and 
2£ 3 -- i.e. spin sextets, quartets and doublets, as well as a variety of space symmetries. The inclu
sion or an antiferromagnetic interaction removes partly this degeneracy, but leaves 3 symmetry lev
els [2r 2• 2X 1• and 2X 2] and 14 states still degenerate in the ground-state manifold. The complexity 
of this manifold may allow extra splitting in the presence of other interactions (such as an electron
electron attractive interaction mediated by phonons), and thus serve as the basis for the competition 
between magnetic, metal-insulator and superconducting effects, which seem to be at the heart of 
high-temperature superconductivity. 
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THE PHOTOEMISSION SPECI'RUM OF NIETALLIC NICKEL 

Nickel me~ has a very narrow on~-electron d -ban~ width (4.~ eV according to re~able b~d
structure calculanons36.37) and a considerably strong mtra.;atom1c electron-electron mteracnon, 
estimated to be38 between 2.5 and 4.5 eV. It is therefore a very strongly correlated transition metal. 
Its photoemission spectrum39"-4

7 exhibits many interesting features and has been the subject of 
numerous theoretical contributions3•17.48-53. In particular three features require special attention, 
beacuse they cannot be explained based solely on one-electron. band structure effects: 

(1) there are satellites in core-level photoemission spectra, approximately 6 e V below the main 
lines39-41; 

(2) resonant phtoemission was observed at 67 e V P.hoton energies (the 3p -+ 3d transition) for a 
satellite approximately 6 e V below the Fermi level42...:.j.4; 

(3) valence-band photoemission shows an apparent d -band width reduced by 25% and an 
exchange splitting reduced by 50% from the values obtained from band-structure calculations45

-4
7
. 

The problem is ideal for treatment by the small-cluster approach. It has thus been studied17
, in 

the four-atom tetrahedral approximation of the fcc lattice (the crystal structure of Ni metal), includ
ing ten electron orbitals per site, the one-electron energy parameters of Wang and Callaway6, and 
full intra-atomic electron-electron interactions between the various d -orbital electrons. Atomic sym
metry allows for three independent intra-atomic interaction parameters, normally 'labelled U, J, and 
A.!., which have been kept in the ratio 56:8:1, and scaled to provide the proper satellite spectral posi
tion. A value ?f U = 4.3 eV yields the best results. 

The cluster consisting of 4 sites contains 40 d -orbitals; 38 electrons (2 holes) were included in 
the ground state, yielding an average occupancy of 9.5 d -electrons per atom, very close to the 
observed value 54 of 9 .46. For two holes the tetrahedral cluster with the Hamiltonian described above 
yields an accidentally degenerate ground state of symmetries 3X 2• 1r 2, and 1r 12• If nearest neighbor 
exchange is included, the ferromagnetic 3X 2 state has the lowest energy. This state, obtained analyti:
cally, contains only holes in the X 5, minority-spin one-electron orbitals. Because of the Pauli exclu
sion principle it has zero probability of having two holes in one site: the holes are (through 
exchange) perfectly correlated with one another, and consequently, counting from the full d -shell, 
there is no contribution to the ground-state energy from the one-site, hole-hole interaction. 

> Q) 

E 
0 -

6 

~ 4 
rn 
c:: 
0 ._ 
u 
Q) 
a; 2 -

Eo 

~ .. 

}I --v ~ 
~v 

0 
-10 -8 -6 -4 -2 

Energy (eV) 
2 

Fig. 3 The total density of calculated emitted one-electron states in 
metallic nickel. The location of the lowest single-electron state at X 
in the d -band according to Ref. 36 is denoted by E 0. 
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Fig. 4 Density of emitted states in metallic nickel, projected on the 
wave vector and symmetry of the emitted electron. Solid lines 
correspond to minority-spin states: dashed lines are for majority
spin states. 

The photoemission process introduces a third hole into the system. The three-hole martifold of 
the tetrahedral cluster contains 9880 many-body states. The use of group theory simplifies the matrix 
considerably: the largest secular problem to solve, once group factorization has been accomplish, is 
of order 238. If final-state effects (such as variations in the density of the emitted-electron states, or 
resonance effects involving core electrons) are neglected, the observed, non-resonant density of pho
toemission states - the photoemission spectrum - is obtained by projecting the 3X rground-state 
with an extra hole into the three-hole energy-eigenvalue spectrum. By selecting the desired one
electron-orbital k -vector, space and spin symmetries of the extra hole (the photoemitted electron), 
angular resolution (only for k -vectors at r and X), spin polarization and spatial distribution spectra 
can be detennined. 

Figure 3 shows angle-, symmetry- and spin-integrated results. The discrete spectrum of 9880 
lines has been broadened with a naiTOw Gaussian of 0.15 eV half-width. It compares well with 
experiment not only in the existence of a satellite, but in its relative intensity with respect to the main 
band of the spectrum. Projected densities of emitted states with symmetries X s and X 3 for the pho
toelectron are shown in Fig. 4. States of X 5 symmetry, near the Fenni level, are characterized by sin
gle, naiTOw peaks. States of X 3 symmetry. near the bottom of the band, have strong satellite com
ponents and exhibit a well known multiplet structure. 

The results yield the following conclusions: 
(i) three-hole eigenstates corresponding to the "main band" have a greatly reduced probability of 

finding two holes in the same atom (20% at the Fenni level, 5% at the bottom of the band), as 
opposed to 50% in a random state created from the 3X 2 ground state; 

(ii) three-hole eigenstates in the satellite part of the spectrum have a very high probability of 
finding two holes in one atom: 

(iii) the many-body calculation yields a considerably reduced banwidth of 3.4 eV, in excellent 
agreement with the experimental value45

-4
7 of 3.3 eV, and considerably reduced from the band

structure36 value of 4.3 eV; 
(iv) band-structure calculations yield a Fenni-level X 5 line which consists only of majority-spin 

electrons - the corresponding minority-spin states are above the Fenni level, i.e. empty; the results 
of Fig. 4 clearly point out that the X 5 Fenni-levelline is a combination of both spins, that the minor
ity X s states are appreciably occupied in the true many-body states, and that the exchange splitting of 
that X 5 level is very small; 
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(v) agreement with experimentally detennined values of the spectral lines is very good 
throughout. with the exception - similar to previous work48 

- of the energy of the assigned X 2 sym
metry. 

CONCLUSION 

In addition to the calculations reported here, the. small-cluster approach has been successfully 
used to solve a variery of other problems: a periodic Anderson model to study thennodynamic and 
spectral properties of fluctuating-valence and heavy-fennion solids18

•
19

; the ferromagnetic and pho
toemission properties of metallic iron20 and the iron-cobalt ordered alloy-'5; the influence of many
electron effects on the ordering and segregation properties of binary and tema,a. alloys21; the 
itinerant and localization properties of hydrogen and deuterium on metallic swfa~ ; the possibil
ity of phase transitions as a function of the parameters in the extended (additional intersite, nearest 
neighbor interaction) one-dimensional Hubbard modei34.56• 

The method has the obvious advantage that it does not involve perturbation expansions, so the 
validity of its findings does not depend on "hoping" that the series employed converges for the pro
perties under study. It is good for detennining either unifonn or short-range properties of periodic 
systems. In particular it is excellent for those short-range properties that are essentially atomic but 
are profoundly modified by the solid-state environment The study of longer-range properties can be 
accomplished with larger clusters, but the complexity of the problem grows exponentially with the 
number of orbitals considered. Even with group-theoretical manipulations, moderate-size clusters 
can get out reach or control very easily. It is of course not a suitable approach to study long
wavelength phenomena, or interactions with long-range tails. 

ACKNOWLEDGMENTS 

The author is deeply indebted to his many collaborators in the various aspects of this work. In 
particular he would like to thank L. Milans del Bosch, J. C. Parlebas, C. Proetto, A. Reich, E. C. 
Sowa, R. H. Victora, and K. B. Whaley for their many and insightful contributions. This reserach 
was supported, in part, at the Lawrence Berkeley Laboratory, by the Director, Office of Energy 
Research, Materials Science Division, U.S. Department of Energy, under contract No.DE-AC03-
SF00098. The superb hospitality of NORD IT A and the H. C. 0rsted Institute during the author's 
stay in Copenhagen is acknowledged with thanks. 

REFERENCES 

1 See, for instance, D. Pines, The Many-Body Problem (W.A.Benjamin, New York, 1961), 
and the excellent collection of reprints included therein. 

2 R. H. Victora, L. M Falicov and S. Ishida, Phys. Rev. B 30, 3896 (1984). 
3 A. Liebsch, Phys. Rev. Lett. 43, 1431 (1979), and Phys. Rev. B 23, 5203 (1981). 
4 M.S. Hybertsen and S. G. Louie, Phys. Rev. B 35,5585,5602 (1987). 
5 M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957). 
6 J. Hubbard, Proc. R. Soc. London, SerA. 243, 336 (1957). 
7 J. Hubbard, Proc. R. Soc. London, SerA. 276, 238 (1963); 277, 237 (1964); 281, 401 (1964); 

285,542 (1965); 296. 82 (1966); 296, 100 (1967). - -
8 E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1145 (1968). 
9 J. E. Hirsch, Phys. Rev. Lett 54, 1317 (1985). 
10 0. Gunnarson and K. SchOnhammer, Phys. Rev. Lett. 50, 604 (1983); Phys. Rev. B 28,4315 

(1983); 31,4815 (1985) 
11 P. Coleman, Phys. Rev. B 29, 3035 (1984). 
12 S. L. Cunningham, Phys. Rev. B. 10,4988 (1974). 
13 L. M. Falicov, Group Theory and Its Physical Applications (University of Chicago Press, 

Chicago, 1966) p.l44 :ff. 
14 L. M. Falicov and R. A. Harris, J. Chern. Phys. 51, 3153 (1969). 
15 T. Lin and L. M. Falicov, Phys. Rev. B 22, 857 (1980). 
16 L. M. Falicov and R. H. Victora, Phys. Rev. B 30, 1695 (1984). 
17 R. H. Victora and L. M. Falicov, Phys. Rev. Lett 55, 1140 (1985). 



- 8-

18 J. C. Parlebas, R. H. Victora and L. M. Falicov, J. Physique, 47, 1029 (1986) 
19 A. Reich and L. M. Falicov, Phys. Rev. B 34, 6752 (1986). 
20 E. C. Sowa and L. M. Falicov, Phys. Rev. B 35, 3765 (1987). 
21 A. Reich and L. M. Falicov, Phys. Rev. B 36, to be published (1987). 
22 K. B. Whaley and L. M. Falicov, submitted to J. Chern. Phys. 
23 A. Reich and L. M. Falicov, unpublished. 
24 J. Callaway, D. P. Chen andY. Zhang, Z. Phys. D ~. 91 (1986). 
25 J. Callaway, D.P. Chen andY. Zhang, Phys. Rev. B. 35, 3705 (1987). 
26 J. Callaway, Phys. Rev. B 35, 8723 (1987). · -
27 L. P. Bouckaert, R. Smoluchowsky and E. Wigner, Phys. Rev. 50, 58 (1936). 
28 D. R. Penn, Phys. Rev. 142, 350 (1966). 
29 D. Denley and L. M. Falicov, Phys. Rev. B 17, 1289 (1978). 
30 D. Adler in Solid State Physics , edited by H. Ehrenreich, F.Seitz, and D. Turnbull. (Academic 

Press, New York, 1968), Vol. 21, p. 1. 
31 In Proceedings of the International Conference on Metal-Nonmetal Transitions, San Francisco, 

1968 [Rev. Mod. Phys. 40, 673 (1968)]. 
32 N. F. Mott and Z. Zinamon, Rep. Prog. Phys. 33, 881 (1970). 
33 P. W. Anderson, Science 235, 1196 (1987). 
34 J. E. Hirsch, Phys. Rev. Lett 53, 2327 (1984). 
35 E. H. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962). 
36 C. S. Wang and J. Callaway, Phys. Rev. B 15, 298 (1977). 
37 V. L. Moruzzi, J. F. Janak, and A. R Williams Calculated Electronic Properties of Metals 

(Pergamon, New York, 1978). 
38 G. Treglia, F. Ducastelle and D. Spanjaard, Phys. Rev. B 21, 3729 (1980). 
39 Y. Baer, P. F. Heden, J. Hedman, M. Klasson, C. Nordling and K. Siegbahn, Phys. Scr. 1. 55 

(1970). 
40 S. Hufner and G. K. Wertheim, Phys. Lett. 51 A, 299 (1975). 
41 L.A. Feldkamp and L.C. Davis, Phys. Rev. B 22, 3644 (1980). 
42 C. Guillot, Y. Ballu, J. Paigne, J. Lecante, K. P. Jain, P. Thiry, R. Pincheaux, Y. Petroff and 

L. M. Falicov, Phys. Rev. Lett. 39, 1632 (1977). 
43 R. Clauberg, W. Gudat, E. KiskeC.E. Kuhlmann and G. N. Rothberg, Phys. Rev. Lett. 47, 1314 

(1981). 
44 L.A. Feldkamp and L. C. Davis, Phys. Rev. Lett 43, 151 (1979). 
45 D. E. Eastman, F. J. Himpsel and J. A. Knapp, Phys. Rev. Lett. 40, 1514 (1978). 
46 F. J. Himpsel, J. A. Knapp and D. E. Eastman, Phys. Rev. B 19, 2919 (1979). 
47 W. Eberhardt and E. W. Plummer, Phys. Rev. B 21,3245 (1980). 
48 L. C. Davis and L.A. Feldkamp, Solid State Commun. 34, 141 (1980). 
49 D. R. Penn, Phys. Rev. Lett 42, 921 (1979). -
50 N. Manensson and B. Johansson, Phys. Rev. Lett. 45, 482 (1980). 
51 L. Keinman and K. Mednick, Phys. Rev. B. 24, 6880 (1981). 
52 R. Clauberg, Phys. Rev. B 28,2561 (1983). 
53 T. Aisaka, T. Kato, and E. Haga, Phys. Rev. B 28, 1113 (1983). 
54 H. Danan, R. Heer and A. P. J. Meyer, J. Appl. Phys. 39, 669 (1968). 
55 E. C. Sow a and L. M. Falicov, unpublished. 
56 L. Milans del Bosch and L. M. Falicov, unpublished. 



-~·-- .... ,. 

LAWRENCE BERKELEY LAB ORA TORY 
TECHNICAL INFORMATION DEPARTMENT 

UNIVERSITY OF CALIFORNIA 
BERKELEY, CALIFORNIA 94720 

-·~ 


