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Abstract
The‘gémma\<2+) and oétupole (0-, 2-) states of-deformed even nuclei>iﬁ
the rare earth region are céléuiated in:the Fermi liquid theory.  The relation
of RPA and_schématic model calculations to the more general formﬁiatién’is dis-
chsseda .Off-diagOnal matrix elements are found to pegk at tﬁe nuclear surface.
_ Thenvibfﬁtidnbmodes studié& are found tg_be.only weakly depéndent'oﬁ the spin
and isospin depéndent-terms iﬁ the‘interaction.7 Aniexample is preseﬁted to show

the,nécessity»for including a long-ranged term in the rénormalized interaction. =~

+Work performed under the auspices of the U. S. Atomic Energy Commission



-1- _ . "LBL-238

l. Introduction

.The microscopic structufe of the non—rotatienal cellective states in
deformed eveh-mass nuclei has been the sﬁbject of.many theoretical investigatiens.
These studies.fall into two rather general categories. In the first attempts
are made‘to solve the phenomenological'Bohrl) hamiltohianafor quadfupole motion.
The inertial and potential.parameters are either chosen empiricallyg) or are
Calculated from microscopic models3). The second group includes the completely
microscopic.approaches. |

The ‘coexistence of single particle and collective motion in nuclei has
been understood by performiﬁg microscopic calculations using modern two nucleon
interactionsh).-_A parallel theoretical approach is a phenomenological theeryvof
finite Fermi systemsS) where the parametefs,are chosen on the basis of a microscopic

f .
analysis of the many body problem. Most microscopic calculations have been per-

formed for nuclei near closed shells where the single particle level density is

small and the numerical problems assoeiated with the theoryvare tractable. In
the rare earth and actinide regions of deformation, the single particle level

density is very large, so that to obtain a manageable numerical problem theories

" have been simplified to a point where some variant of the schematic model could

be used ). Bes7)- and Solovieva) have used a pairing plus a quadrupole or an octu-

pole force, while Faesslerg), although using a surface delta interaction, made

the neceSSary appfoximations to insure'the separability of matrix elements. He
was thusvable to apply the schematic model. More recently Pyatovlo) has attempted
to'explain]certaiﬁ‘featureslof'higher 2+ and Q+ states'byvadding a spin-quadrupole
interaction. ,Sehematic model calculations give an incite into the micfoscepic

structure of the garma quadrupole and octupole‘vibrations'and reproduce'the



s

- S . : LBL-238 %

qualitaﬁive-featurésfobséfved.expe;imentally.'.Nevéftheiéss it is difficult to

généraliié“these theories'or to undérétand how théif fésﬁits would be 6btained

using more rigorOusﬁmﬁny—ﬁody:theory. - o __. - : \
._In thiélpapéf ﬁe wish to utilize a microscopié descripfidn of gamma ahd

oétupole'vibréfibnal states which does notvdepend'on the schematic model. As a

first approximation we solve the Bethe-Salpater eqpatiohvusing the deformed. |

'quasipartiéle approximation. In particular we ignore for the present non-adisbatic

t
i
¢
i
i
{
i

fotational_effects ana the effects of phonon-particle cbupling. .These wili be ! i

discuésed in subéequent éﬁﬁlicdtiohs. | | ) |
In.séc.'2 the ﬁheofetical éonéiderétions.are_deVelo?éd and in sec. 3 a

 description of the éalcﬁlatiqn is presented. Technical details too lengthy to

ll)r

be presented in a Jjournal article are contained in an appendix to ref.
. N N : ’ . . - 1

Section U contains the results and a discussion. A summary and conclusions are |
|

presented in sec. 5.
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2. Ihgorx'

The résponsé of a nucleus to-a weak‘externél field is given to first
order in‘the cbgpling éonstant by the linear responsé function;g). It is often
convenient to defihe_ﬁew qﬁanfitiés whiph édntain the same informatién’as the
linearvre5poﬁsé"fun6tion but which‘describe the effeétiﬁe field pfodﬁced in thé

1

nucleus under thé influencefdf.the exterhal field. In a superfluid nucleﬁs_thére
are four éﬁch fields, V, Vh,'dl? and d2. V and Vh cause particle-particle and
hole-hole tranéitions réépéctively, while dlvand d2 cbnﬁéct the particle component
of thevinitial staté to-the hole component of the final state and vice vefsa.' |
Migdal and Larkinl3) have derived the Bethe-Salpater equations for these fields.

In deriving ﬁhem, it is assﬁmed that the Bbgolon apprdximationT for single particle
: v

propagators is valid and that the irreducible amplitudes describing particleA

-particle, (pp), and_pérticle-hole, (ph), scattering are not retarded.

. , ' N
The Migdal-Larkin equations can be put in a compact form by definingl )
1,1, .2

o & 1 ,. . _hy, % S
new effective fields V' = E-(V +V),d =3%(a *d7). Denoting matrix elements

2
with respect to single paﬁticle states of the set ¢A by subscripts these equations

become

£ o\* Z’ ) &
Vip = eV, + F1553 N3y 23y
S i
o+ o AN S 5 |
| 3L - ,

1'By Bogolon approximation we undérstand a BCS transformation between Landau
quasiparticles and -holes (hereafter simply referred to as quasiparticles and

quasiholes).
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Z” are the changes in the Bogolon density matrix due to the field and are given by

+ 1 + £ 0 ¥ F L x  F F

Byp = T {-Bjp My Vip + wng, Vip + By 815 dpp -0 &y, a0 . (2.2)

12 2 12
'In thé'aBove expressions;'i'dehotés»the state Which.iS'time conjugaté to ¢X;+
- and ﬁié”= #1v2'i-viﬁé’ Qiz = ulﬁ2‘¢ vlv2, Elé = El + Eé' The frequency of the
external fiéid:is denoted by W whilevug’speéifies noﬁ-dccﬁpafion éﬁd”v2 the
océupafidn of the'quasiparticle.pairs in sihgle particle stétes.éﬁd>E dénétes
the éﬁergy of the Bbgolon: VTﬁesé‘éré‘réiated-ﬁo the pﬁiring‘ﬁdtential_A and td .
the single‘particle énergy € by the usuél-ECS formalésm; Vo and d° are eiternal[
fieldsjwhich_do not change and change the number of quasiparticlés in the nucleus.

£

by two, éq and”eq' are the local charges,fbr'theée fields}'and-F‘ahd F” are

renormalized. irreducible aﬁplitudes'describihg {ph) énd (pp) scattering of the
quasiparficles., Thére are'simple poles in these exfernal fields cofresponding
to excited.states_in the_system’and sovone.can obtain‘énergiés and transition

- probabilities by solving thé"homogeheousvset of equations corfesponding to (2.1)5).

By substituting (2.1) into (2.2) and setting the inhomogeneous terms to zero, we

‘obtain the equations for the change of the Bogolon dEnsity matrices at frequencies -

corresponding to excited states in the nucleus.

o Fo - . S 1 t s
wePypley) = Byplyolug) + E: [ 3y F1izs * E128auF 1o 20 () - (2:3)

If the foilowihg normalization is used

12>0 ~ ¢ o E o - ,

1/2-QA

'TFof deformed but axially symmetric nuclei, ¢i = (-1) ¢—X whererA is the

projection of. the angular momentum on the symmetry axis.
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the probabilify for an electric transition is given by

: MLt ) M o ey - (25
12>0 : o :

The symboi 12 > 0 means that only one of the two admitted combinations (1,2)
and (2,I) should be included.
v 15)

Following Kemerdzhiev we note that for external fields whose frequenc1es_
are small cpmpafed to the sﬁmmgtlon intervals in (2 l), 1t is convenient to separate
in tﬁé sums those terms which'depend.littie on the freqUency and on the: degree

of filling of the subshells. Let those tefﬁs be put into ZO. The térmé depending
on the_freéuéncy and filling of the subshell are ﬁlaced in the sum Zi.. Then (2.1)

may be written

' t  _+

T1533 Nau 23y

L+ _ ' ot i " + + _ | .

dip = (eeffd 1o - Zl 103y 831 Zay 2 S (2-.'6')
: 3 : :

‘provided that the effective charges and renormslized amplitudes are defined by

the equations

oyt : +
2 = (eqvo)l2 - j{:

0 Fiis3 ()" Ky (eppV7)3)

o 'o ‘_ £  £. 2 (o vo *
(egpsd )1 = (e@7)1, - E;o Flosy (83,07 Kg (e ped)y
3 )
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1234 = Fiogy
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o a2
Kip = E,/(E
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- Equations analogous to (2.3) and (2.5) may be derived from (2.6)

i ' »h - +
“KZ12(9K) = Elzzle(“K) * zz:

' +  _+
Mo >k '.§:1.”12 2y oy

. 12>0

provided the normalization given in (2.4) is used.
identical to those derived in the random phase approx1mat10n (RPA)

~ the 1nterpretat10n of the amplltudes T ; r > and Z

_ £
= EZ:I(P t Qpogy Zgle)

n

-6
o 18256} ¥s6 Tsias-
g 2 . "
, Tiese(Ese) 56 Tseau
%) (2.7)
£ & tox " L

L [n1on3uT1553 + 81283171 23123, (0g) ;

3h ' . : 1
(2.3
o, . REPPREN

TOPR I (2.5')

’ These equations are formally

16

). However,

is dlfferent.

of'finite'Fermi systems ) the quasipartiele approximation is used for the single

particle propagatofs so that even to lowest, order in the interaction among the

qua51part1cles, the scatterlng amplitudes are renormalized by a factor, a2, where

a is the re51due of the domlnant pole term -and is assumed to be 1ndependent of

:the single particle states.

Furthermore, F,and.Fg;

contain the sum of all the

perturbation diagrams irreducible in the (ph) and (pp) channels respectively.

In the theory
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7* describe theYChange’inIthe BOgoidn densify matrix."Ohiy in the BCS‘apprbximation
using Hartree-Fqck fdr‘the single pérticlevpfopagators aﬁd keeping the first order
terms in F and Fg do‘equations (2.3) correspond to those of ref. 16). It should
be noted thét in generai F is not gnfiSymmeﬁric, waever, if one assuies a bare
interaction or mére generally a sum’ of ladder disgrams for F, thén it is anti-
symmetric. | |

The équations of the schematic modelg) can be obtained from (2.3') by
ignoring the (pp) amplitude I'" and parameterizing the (ph) amplitude I'' as the
éollecfive mulfiplé of the direct matrix element of a spin—ihdependgnt surface
delta.iﬁteractionv(SDI). It is further assumed that there exists an effective
¢harge. This corresponds to assuming that in (2.5') |
v°) v,

legpeV )10 = eepe¥in : .

The dérivation of these results is usually accomplished using the RPA.
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3. Description of the Calculation
In the Fermi liquid-theory, account is taken of the_fact_that nuclear
mdtions are highly correlated. However, for excitation energies which are small

compared toﬁthe Fermi energies, it is assumed there exigfs a branch of single ‘

N

"particie excitations. These are called quésipafticles and havé ehérgiés which
are apﬁfoximéteiy those .of a one;body Hémiltdnién p2/2m* + U(é;f) whére“the.effeétivé o
mass m and fhe'potehtial U(e,f) are'determiﬁed frém experiment. For deformed
nuclei perhaps;the best pafaﬁeferization for‘U(s;E) is that of Vogelerl7). However, i
iﬁ the gélculatiéns'reported here, ﬁhe Nilssdnl8) single particle basis set pfescribed

by Soloviev ) and modified by Faesslerg) has been used. There are 32 proton

orbitals and 36 neutron orbitals in this set. The single particle energies of

these orbitals were chosen to fit the experimental energy level déta of odd mass

nuclei’®) and are listed in units of hw in Table 1 of ref. %). This set, used
‘both for the gamma and octd§ole States,'facilitates comparisoné with earlier

calcﬁlétibns. The wave functions are obtgined'by'diagdnalizing a deformed harmonic

oscillator hamiltonian with B = 0.3. The strengths of the spin-orbit (L.s) and

centrifugal (22) terms varied for different principal quantum numbers and are

9.

i

also given in ref.

In constructing the configuration space from the Bogolon basis. set,

only those configurations have been kept whose energy E,, is less than 1 hw.

12

It is éf interest to study how this affects the renormalization of the interaction

in the (pp),and (Ph)'chanpels, and a more extensive calculation in several nuclei N

has been carried out to determine this effect. The results will be discussed

in the next section.
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For the nucleon—nucleon interaction in a RPA calculation and for the
irreducible block in a Fermi liquid calculation, the volume delta potential

" with the following parameterizatien is employedf

¢ H

R AR

e .l.‘L__.Q_ 3/2 4 oot L .. o
r = [3 5 ] v (f + £ T (g +g T

0 e sz - e

{% '59] is a constant equal to 386.04 MeV—fm3, where € and p_ are the Fermi
0. ' ' '

energy and density of nuclear matter. This constant is chosen so that the strength

parameters‘will be dimensionless and of the order unity.b.The dimensional dependence

of the radial matrix elements has been explicitly factored out in the constant

v o= mw/h where hw = —%%g . Thus the A depeudence of the matrix elemente is pro-

-1/2 A 11)'

portional to A" °. It is shown in the appendix of ref. that for the (ph)

antisymmetric RPA matrix elements, g and g' may be set equal to zero. Also in
that appendix, various relations between the. (ph) and (pp)
‘ ‘ matrlx elements are derived and a dlscuss1on of the numerlcal procedure for

-evaluating:delta forcevintegrations is presented.
hd From (3 1), the schematic model (SDI) interaction can be obtained by

3/2 _ 26 to 28
] vE = (2

is taken'to be unity,-and only one multlpole is evaluated in the angular inte-

" setting [

gration of ;L-G(cosw

oo 1o - 1). Finally, f = -1, while the other force parameters

‘are set equal to zero.

)'MeV. Further, the radial part of the matrix element
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The_péiring parameters ui:and vi‘bf cach level should be determined

.ffbm the BCS gé§ equation using P"; vaWever theufinité 5asis,trﬁhca£ion'of:the
pairing ﬁfoblem"involﬁesrﬁ differeﬁt féﬁbrmaliiation.tﬂan the.truncation of ﬁhe
cqnfiguration space so fhat the BCS préﬁiem requifes the introducfién of a.dif—
fereﬁtfparametér é in the definition of T“."in5£ead thé éfateéindependént:A's
'_ ahd A's eﬁpioyed by.éolovieva) have béen adqpﬁéd; Not only'are the empifically
fit u's ahd v's'of¥£his“schéﬁe néarly the same éé those aétermiﬁed’by ﬁsing-the
gap.eéuaﬁionvand:a new phenomendlogicalvinteraction, but théy éléo permit com—
pafison with‘earlier schematic model calcﬁlétions.

| In phe course of this work, a verfvrapid méthod_h@s been diséovered for
diégohalizing the non-hermitign.RPA’problem to obtainﬁthe lowest eiéenvalues
and'eigénveCtors. Making the.definitioné_A.= (P—Q)(P+Q)(P—Q), B = (P—Q); and -
A= w?, eq. (2.3) may be ﬁut ih the form AZ_ = X BZwahere matfices A ande
arelsymﬁetrié. Solutions to this.equatidn'may be'obtéined using the vibrational

20,21)'

method of steepest descents . For matrices of large dimension (N), this

method has/thé advantage that one obtains one eigenveétdr in N2 operations rather

than all the eigenvectors in N3‘operations.
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4. Numericel Results and Discussioh

b1, o+ STATES |

The énergies and fwo quasiparticle amplitudés‘of the gamha vibrations in the
rare earth:régibnvhave_beén-calculated.both in the RPA and the theory of finite Fermi
systems. We discuss first the RPA calcﬁlations and show how they compare to the sche~
matié model and the spécificiﬁy of coﬁéonents in thé effective nuélear-iﬁteraétioﬁ.

.Figure'l displays the'ehergies of 2+ states éalculated using varidus
approximations ﬁade iﬁ dériving the schematic mbdel. Thevparametersvof the
force are givén in Table 1. There are four'approximations to the RPA in the
schematic quél; These are that the radial matrix element peaks in the surface
regioﬁ,rthat the spin indépendent quadrupole—quadrupolevcomponent of the inter-
action prédominates, énd that the éarticle—hoie exchange and'particle-particle
matrix eleméhté may be neglected. |

We have fested the last twé.assumptions directly using tﬁe VDI. The
exchange matrix elements are unifofmly repuisive and‘oﬁly renormalize the strength
of ‘the effeéctive interaction. Examination of the wave fuhction shows that this
approxiﬁation has little effect on.the'microscopic character of the gamma vibrétion..
It is surpfising to find that‘interaction in the (pp).éhannel not
only has no substantial effect on the gamma vibratiénal states but only renormalizes
the (ph) force by a few percent. An eérlier»estimate of Faesslerg) based on a

“degenerate model, gave reduction of 33%. In more realistic calculations, thé

(pp) ana (ph) contributioné are to a large extent ﬁncoupied; the (ph).éhannei
being predomihant. .A large.incfease-in I'" can be offset by a much smaller deqréése
in Ff.‘ In sphericél Sn and Zr isotopes;’Vogelez)‘finds ﬁhat the interaction in

the (pp) channel is necessary to obtain even qualitatiVe égreement with the
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experimentel trends_fof the 2+ states. A éossible feeson fof this difference
is that the.spherical nuclei oonsidefed’were“singie—closed—sheli.:”Since there
is no proton-neutron 1nteract10n in the (ph) channel thls channel no longer
predomlnates over the (pp) chennel ‘as in’ the deformed case.

-The comparlsonjof the schematic modeljand the,dlrect VDi in Fig.:l sup-

'pofts‘enother of the model‘apprOXimetions.viz{vthe contribntion of the interaction

inside the nneleus where the radial fnnotions‘are‘inconefent is of considerably
less consequence in determining collectiveipropefties than in the surface fegion'
where the fadial>functions.are'eil poSitiﬁe in sién."The olose.oofrespondence
_of the same graphs also supports the s1dely held notion’ that only the quadrupole
'component of the force is respons1ble for coherent 2+ states. Thls 1s always
true for spherical‘nuclei because only the quadrupole-quadrnpole.component
survives the Recan trensfofm of a (ph) matrix elenent}v In'defonmed nuolei;
otner nultipoles are alsovnon-sero. However, on tne'eﬁereée5 the qnadrnnole—.
quadrupoie:oombonentvappears to be predominate wnen tne_state calculated is |
characteriZed.by a fluctuation in the quadrupole field; Since this is the
. cese'for the gamma vibration, the sepafable potential-works.‘ The matrix ele-
ments of the VDI and the separable interaction are qulte often dlfferent in
magnitude and occasionally in sign. An important example of ‘this will be dis~
cussed later in this section. _However, for states whlch are collectlve, these
seemingl&.random differences'appear to average out. The‘most comﬁelling.argument
for the»ﬁSevof the seParable'éotEntiai'has beentits contenienoe. vThe calcu;”v
latlons here show that for coherent states the ‘approximations 1nvolved have been

| justlfled.

TThe situation for 0F states is more complicated since radial integrals such as

(11]22) will be_coherently positive inside the nucleus as well.

i
i
1
|
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Figure 2 shows the results for caiculations.of the 2+ states using the
Fermi'liquid'theory’parametefization giveh in Table 2. We have used a (ph)

23).

mixturé similar to fhose'quoﬁed’in ref. The experimental curve.is also
shown. .The.agreement with the experlmental trend is in general reproduced quite
n1celyf Even acceptlng the validity of the assumptlons in the theory of finite
Fermi systems7 quantitative agreement could be expected only if the single
particle energiesrfér each‘nﬁcleus and blocking weré more exactly treated.

" There is éne major disagfeemeht with experiménf in the theoréfical

172,l7h5176Yb and lTh’176Hf have a

spectra. It is observed that the isotopes
higher‘ehergy than both experiment and schematic model caléulations.b Thg reason
" for this is;fbund'by eiamining the (ph) mafrix elemenfs.' The VDI; unlike the
guadrupolé-qdédrupolé typebforces, uncouples the.S/é(Bié)-l/Q(SQI) twé'Quasi—
parti&le state from the other two quasiparticle configurétions; This has the
affect of pushing up the cohérént sum of othér two-quasiparticle éonfigurations
relétive to the lowest state which is almost pure. The same feature wés exhibited
by'a SDI wﬁich inclﬁded all multipole components. For most other nu;lei disagree-
ments between theiVDI and separable matrix_élements.just average dqt because the
vibration is the coherent sum of manyvconfiguration amplitudes. Only when one
confiéﬁfation is completely uncoupled and lies lower than any other is fhe dif-
ference between the interactions obserfable. With incoherent states, and o'
. states in particu%ar?'the results of. a calculation will be more sens%tive to
the chdice of an interaction.. |

ThisvdiSCrepancy suégests that ﬁhe ifreducible block cannot be éccurately
approximated by a short range interaction. We pian to discuss this further in

a future publiéation, but note here that effects of configuration space renormal-

. . " .
ization on the analytic form of r' and ' have not been taken into account.
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Also, phonon exchange contributes to the irreducible (ph) emplitude (see ref. )
for details of the Feynmean graph), and its effect is both long—fanged and ‘energy
dependehf26). ‘This was not noticed before because the states were sobcollective

that a truly microscopic effect was simply renormalized and averaged out.

e N
|

It is also interesting that the Fermi liquid parameterizétion yieiﬁs
resﬁlts almosﬁ identical to the RPA calcuiation which did not take isospiﬁ or
spin exchéngé-forcés into account. ‘This.supporté the idea that gémmg vibrations
are analOgOus to acoustic waves ) and are uncoupled from spin wévés or ﬁotioh:
of heutroﬁs relétive to protons. 'Thus_thé‘parameterization of t', g, and gf
cannot be tested by the ekpefimental properties of gamma vibrations.

We have alsoléalculated the second'2+ states using the RPA and fermi
liquid paraﬁetérizations. The resulf is that the spin—dependent Migdal para-
meterizétion did ndt Brihg down theée states from theirvpoéitions as calculated
using the éﬁineindependent force. We further attempted to induce this spig—
dependénCe;by changiﬂg the péfameters. Again.no effect ffom spiﬁ'dependenée
on the sééond lowest state was found. The lowest state remained unaltered,as
well.v These results indicate that the 2+ spin-quadrupole mode postulatéd on
the basis'of'schematic ﬁodel (GQ2 . 0Q2) calculationslo) is inconsistent with

5327)

the spin dependence of the (ph) interaction obtained from magnetic moment data

or from spliftings in particle-hole nuclei?3’28);

Figure 3 shows the B(EQ) reduced transition probabilities’calCulated

-for the Fermi liquid theory parameters in Table 2. - The resuit is giVen only
for this one set of parameters because, as expected, the various force mixtures

generally yield the same results. The disagreement between the theoretical

transition probabilities_and'fhose of experiment is due to the dependence of the
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o ’ ’ S : . . >
strength on the collectivity of the state, i.e., whenever wth < wexp’

B(E2)th N B(Ezjexp; Considerébly.better agreemgnthouid be obtained by fitfing
the excitation energy to eXperiment before'evaiuating the B(E2), as in ref. 859).
Conéerning configufétion épacé truncation diécussed in sec. 2, @he

renormalizatiqﬁ of the'inteféctiéﬁ for 2+ étates is not very large because most
of the COliectiVity results from low—lying AN = 0 configurafions which are
counted whether we truncate at 1 hw or 2 hw. This is.observed to be the case.
Truncation of configurations at 1 hw yields RPA'matricés of dimensionaliﬁy 85;95
whereas in Qur single particle basis there are 232 possible configurations.with
no truncation. The &alue of £ (using direct matrix elements only) which fit a
limited numbef»of cases‘for the expanded‘dimengionality was -1.125 compared to
~1.226 in thevtruncated baéis} The B(E2)'s did incréase slightly (< 20%). This
small change of the strength'parémeter in a conéiderably'expanded configuration
space indicates thaﬁ the singlé valﬁe of each parametef used to fit the rare

earth data is épproximately the best value for this region.

4.2. THE OCTUPOLE STATES
S -
Calculafions have been carried out for the octupole states. In contrast
to the quadrupole case, the effects of truncation are expected to be quite

significant for the negative parity states. Within the single particle basis

set employed, .there are at least two sources of.truncation error.+ The first

TWe wish to thank P. Vogel for discussing ﬁith us the truncation problems for

the octupole states.
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is due to t;uncétion too soon on the high'energy side,'that is, néf
.enough éfatés‘ébove the Fermi surface are considered-fof the heavier rare earths.
To‘construcf-a two—quasiparticleioctupolé staﬁe, Nilssén leVéls must Be considered
with AN = 1. It is prbbabl& nécessar&bto include ali Nilsson levels within
ét least Qh&.on,eithe} side of the Fermi surface; Since noﬁ'eﬁough.Nilssﬁn
levels were ﬁsea above the Fermi level,'it is to be exfected.that the strength
parametefé should be increased as A inéreaseS. Another truncation error results
from configﬁfation‘spéce limitations. Fdf'octupole states of higher K:values,
it ié'incréasingly imﬁortanf to couple downw;rd sloping éingle”parficlé states
with'prihcifal gquantum number N to upward.sioping N+ 1 states. Owingvto the
venergy:syétematics of thé single particle.le#eis in the deforﬁed'potenfiai ﬁéll,
the average 2->(§h) state of fhis type hes more excitationﬂgnergy than
the aVéragé O—'coﬁfigﬁrétion. Truncation at 1hw which was arbitrafy, excludes
a greatef pefcentagé bf.thé:AN = i;v2- éonfigﬁrations than O-. it‘ié.véry_natural
that the sﬁféﬁéth paraﬁéters sﬁould have toyincréése in order to fit the eXperi-
mentél data. |
Qur purposebin the'remainder of this section will be to_evaluaté the role
of the_delta\force in brinéing about coﬁerent nuclear motion and secondarily, to
note thé'effects of the tfuncatibns discussed above. It should be pointed out
that schematic model studies have been carried out in a manner which avoids these
Jproblems and which include the-effects ovaoriolis ;ouplingeg); .The agréement‘
with experiment is, therefore, much better than will be Qﬁtained here.
A Figﬁre'h comparés O; enérgy levels calcuiatédvusing the Fermi liquid
paraméterization of Tablé 2 withithe-bandhead deducéd from experiﬁentalvdata iﬂ

the rare earth region: Calculations were also performed in the RPA antisymmétric
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(ph) approach wifh the parameters given in Table 1. - The results were

almost idénﬁical-to those of Fig. L. These results follow the same trend sas
those of the'earlier-schematiq mbdels“which used the séme single pafficle basis.
This indicatés, asvfor the quadrupole sfates,'that the octupole~octupole com-
ponent of the (ph) interaction evaluated at the huéiearvsuiface is predominant
in deféfmiﬁihg colléctiVe behavior; For the O- predictions in nuclei above

A= l?O,ItHé'"Vibration" is éssentiéll&ja'two—quasiparticle state éccording to
our calculations. The steep ascent of the theoreticai curve and the relatéd '
disagréement wifhvthe sbarse experimental data result from truncation of the
singlé'partiCié sfates above the Fermi surface, as discussed eariier.

Fiéﬁre 5 shows the theoretical and experimentél excitation energies for
the 2~ states. Again,'the theorétical curve is calculated using a Fermi liquid
type parameterization (Table 2),_while spin independent RPA type matrix eleﬁents
give almost idéntiéal results. The-fheory yields energies in good agreement
with experiment. However, it shoﬁld be noted that in‘drdef to obtain this fit
the (ph)rstrength hgs.been increased substantially over what waé used before.
This renormalization is due to the more severe truncation of the configuration
sbace for higher K valﬁes. As for the 2+7and 0- states, the exchange (ph) matrix
elements, the (pp) and spin-dependent (ph) matrix elements do not alter the

theoretical trend.
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6. Summary

Iﬁ fhis‘report wé have solved thevBetheéSalpafér equation for éupeffluid
,sYstemé ﬁsing_the duasiparticle'approkimation_and assuming the irredﬁciblé
.émplifﬁdes fo£ (ép) and (ph)Ascattefing‘afe §-like in both space and time. -In
solving theséyeéuations the density dépendence Qf the irreducible amplitudes
has been ignoréd and.it was found there will only bé contributions to,the two
body matrix elements from regioﬁs ﬁear the nuclear surface. The amplitude for (ph):i
scattering is in general not ahtisymmetic. Hdwever, in first order in the nucleon-
nucleon interaction or in the ladder.apprékimation this'amplitude is antisymmetric.
We have féﬁnd the properties‘of our collécfive statéé to be completely insensitive
té'this éublefy in the parapeterization; ‘Further the 2+, Q—, and 2~ states were
found fb be spin and'isospin indépendent suggesting that they are acoustic waves
with'neutrqns and protons moving in phase. | | |

The agreement of ouf calculations with both exﬁerimentvand with the results
_of theischematic model is_ih general quite good. ‘The_réason for thié agreemeﬁt
is the colleétivity of the states. Since many gonfigﬁrations contfiﬁutevto the
"states,idiffefences iﬁ individual matrix eiements are éveragedvout. However,
there ére cases where individual matrix elements are important in determining
the prdperties of even the lowest states with a given spin and parity.' In these
cases the differenﬁ theoreticél calculations give disparaté-rgsults.

‘The qdédrupéle states are quite insensitive to truncation in the single

pafticle Basis providédvall‘configurations with disgonal énergiés léss than lhw

are included in the spectrum. This result occurs since; with this truncation,

most of the Quadrupolefstrength'of two quasiparticle states near the Fermi surface.

is included. However this is not true for the octupole states with the result

that schematic model calculations are much less satisfactory for these states.

€
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Extensions of these calculations will include the consideration of
phonon-contributions to the dominant pole terms of the single particle propagator

v 4h and the inclusion of phonon'exchangé scattering in the irreducible amplitudes.
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APPENDIX I. -Relations Between Matrix Elements of the Volume Delta Interaction

In the conventional superfluid RPA calculation, (pp) and (ph)

matrix elements are calculated using the VDI and are antisymmetric. . 3

‘For single particle states.d and B with vy andl& coupled to K # 0, six matrix

elements need to be calculated for the Wigner‘term of the VDI. In order to
distinguish a Nilsson state,“aﬁd a spherical basis state, we abandon the ¢12]3h)

nétationfdf_the.main fexﬁ. Using.the nbtatiénl ‘

<&BIY6 ) =‘f d?xld3xéwa(l)¢8(2) 6(51'32)»¢y(1)¢a(2)’ fhese six elements.dre-(aﬁlY§ Y, -
‘>(aB|6y }, (a~8|-By ?, (a-8|y-B ), (a-y|-BS ), and (a-y|6-B ). Only the first

“two need to be calculated. 1In order to demonstrate this we start by noting that

the last three matrix elements_are'relatedvto the first thrée as foilows:’

(a-8|y-B ) = SBSS CoBlys )
{a-yl_sa ) = -SYSG (a-8|-By?
“y|6-B) = (aB|sy ) . .1
(a Y|5’B S8y aB| 8y o (I.1)
| 1/2-0 |
Here Sd is the phase. (-1) . Though these relations are not new (see, e.g.,

ref. 9), the derivation follows.

| {ne _ = ‘ o B Y A8 .
a,b,c,d | | .
.where the cOeffigients are for the uncoupled Nilsson basis. ‘_ ' - A #,
{oB[ys) == (ablea) - R (1.2)
(ablea) =Y £ FEo. . 6. | | (1.3) °
: k™. "Lz LI S v

ok




where
x|
0o o Fos J[ﬁa(l) U, (2)
E®) :
2k + 1
Vk(-rl,rz) = =

H
i

clearly, Fk(ade) = Fk(cbad) = Fk(adcb) = Fk(cdab); f

If we adopt the notation

K = my Rb-mblek ¥ 1
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2
vy rlrg)Uc(l)Ud(2) r;r dr. dr

1“2

5 .jrv(|fl-£2|) Pk(cos wl2)d(cos 912)

T ykepy . ri(2)]8, m_ L, m )

k
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(1.4)

is explicitly separable.

~ o : 2 k4 .
L =20+ 1 and ¢ & = Clebsch-Gordan coefficient, we may write
o Clm,oqm ' '
c a
.1ﬁf 2 ) Q m +m
£ (abcd) = 22 & (q)°c
(%)

2 2 k Qb ld k 2& Qc k lb Qd k

o o o o o6 o -m_ m m_ -m -mom m, -m
D
| _-\/za fg %o by : l)(§28+96_l)+ (m, -m)
B ST o2 -

(k)
- la L ‘k Qd Rb k 2 Qc_k Qd Qb k
0 o0 0o o o -m, m, m, -;m _+md -momg -m
= 3,8, f. (a -d ¢ =-Db)
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Since {ablca ) = SgSs (a -4 ¢ =b) term-by-term we have <asly6 ) =8 SG‘fa—ély-B ).

B
‘The other equalities are obtalned‘from this one. ‘

" The third of our six matrix elements may be shown to be equal to the

difference of the first two. This property holds true only for delta'intEractionSs

and ‘'depends on the expansion of the integra; over one_co-ordiﬁate of" the product

of four singlé;particle functions.
<oo_a;_3y> = -85, [ (alys) - CoBloy ] . o (1.8)

" The volume-delta-function (VDI) may be written

8(ry - xy) = T ré 8(ry - ry) 8(cos &) “v¢°S_62) 8(¢, - 9,)
CoBlyS) == 65 5 65 5 <UaYaUEYbI§(§1 - 1)U Y UYL (T.T)

where Ua is a harmonic oscillator wave function and‘Ya is a spherical harmonic.

Clearly € ablca ) = f'Ya Y YY SUUUU dt. From (I.7) and the Slater integral

b "e’d abecd

definition (I.3), we have

' 2 I L o 30 |
, J(&rz- Uy Up Up Ug =3 T F = b F ™)
Note that F (abcd) is 1ndependent of the order of the indices for a delta
'functlon. The 1ntegral over spherlcal harmonlcs (note it is only aAQne—body

integral) is

N

(:ﬁj .
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By (I.8). It may be shown that

fer only by g factor of (-1
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C o ]
z: A I IV A )
K _O o] O_ ma m.b ma + l'l'Lb
2 o x| |a g x |
¢ a ¢ d ) (2k + 1)
.—O o 0] m md m + md

Mo "My 0 + 1

. m, - . .
= (21) - y TR o a) L (1.8)

fk(a-d—b e} = (-1 "'TGF" .

Now to obtain the desired relation (I,6):

o a b s : - :

by (I.2) and (I.3), but

(aBlys ) - (aBl6y) == (6. o &

T 14 % T
(6 « & -5 S o« ) = (=1) b ¢ 8 and I +m =
Lole Zbz_d K Llq szc Lo =% Lo - Ig » " T

by the axial symmetry of the Nilsson problem so that the two matrix elements dif-

' ' 1+ Qb -0 ‘

) 2 %=_g8 .
S B7Y
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!
1

Fof_Kn=‘O, o # B, vy #§, we need six more integféls. They are
(oB|-6-v ),,(asf-y—é %, Coy|-B-8 >,‘<dy|¥6-8_), (a8]-B=y ), (as|-y-B ). Of these,
it is only necessary to calculate {oB|=8-y > . {ay|-B-6) equais one of the first six 5

integrals, namely {a-8|-By ) by the same ergumenf as for (I.1). And

et

(oB|-y-8 ) = (aB|-8-y y - Coy|-B-8 ) by thebargument of (I.6). The_laét

SBSGv
three can be expressed in terms of the first three as before.

The isospin dependent matrix elements may be evaluated as the product
of a Wigner matrix element and an integral over isospih co-ordinates. In

particular, [ dt, dt, T (1) T (2) P_ T, (1) T67(2) = dTa(z), Ts(Z)’§TBKZ),
TV(Z)_,'where.P is the isospin exchange operator. It is not necessary to calcu-
v

late spin dependent matrix elements because of the Pauli exclusion pr1nc1ple,

POPTP = -l, and the fact that the matrlx element of the delta force times P .

the space exchange operator, .is 1dent1cally one. That'ls,

o 'l/z‘(l T 92)" Tx T

d
it

;1/2 (L +t, - 1) . : .i : o - (1.9)

~1 ~2

In a Fermi liquid RPA calculation, the perticle—hole'matrik elements

are not antisymmetrized. For the Wigner term, this has the effect that we do

not need (a-6|Y-B >and (a-y|8-B > . It also means that P PP ' # -1. O

exchange i

Hence, for K # 0, two spln dependent integrations are requlred (a—GIP ]—BY )

and (a-ylPol-Bd ). The first of»these is evaluated as follows

o Cau Y o o2 o2 2 ; 2
(a-§|PO|-BY ) = <a7§|30 P le-sy )(Pr =P _=1)
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= (“fﬁi?r PX[yfs » (PP _P =P

eXchange) _ : b

L}

‘(q,6|PT|y-B ) (Px = 1 for S8-force)

(a—&ly—B ) (fa = TB for an even-even nucléus) T : (1.10)

This is one.of the spin-independent matrix elements evaluated earlier. Finally,

we have that '

1

Tonsepy = -8l Tt leve’ Ty 1) g gl
=(f-t -g +g +2(' -g')os_(2), (2)] Co-6]|-By)
e Y
+[2(g-8g") + kg 6. (2z),  (2)] (a-8|y-B> . (1.11)
. : o Y ‘
F;—Y—B'é’ré Y-B—G.(K = 0), and F& 5-B-Y;(K-= 0) are evaluated in the

-same manner and involve no new integrations.
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APPENDIX IT. The Numerical Evaluation of Matrix Elements

S

 >In'calcu1ating matrix elements of the volume delta interaction, it is
convenient'td‘use the‘expressiqn '

| (aBlys) == 6 s . | ¢t WU U

‘ GB'Y L o= ZaEc 'szd Yo Yp Ye¥q UanUcUd T‘v ?

where thefrédial integral is hﬂF°;‘F° thé ususal Sléter‘intégrél.énd the.intégfal
over spherical harmonics is_given.by_expression (1.8).

Aparﬁ frbm phase factors due to complei cbnjugation of the spherical
hafmqﬁics;ﬁfhe integrals arevindependenﬁ of ordering of‘the basis functions. 1In
.fact for N (PfinCipél quantum gumbér) §§7,:there'éfe just-no96 radial integrals
possiﬁle and £he number éf different‘integrals over spherical harmonics is 26126.
Matrix eleménts_were thus éalculated by ﬁsiﬁg prestéredfintegfal tables. TFor i
~ the 2+ statéé,,fof example, approximately 54000 twg;ﬁqdy ihtegrals using Nilsson
wave functidhs,were Ealculated>in T minutés‘on-a CDC T600 using only small core.

The preparaﬁibn~of the integral tables themselves takes very little time.
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Table'i; Strength BarameterS'df Phénomenological RPA Calculations.
The particle—partiéle, g, and particle-holé, f, strengths.

K I E N _ "Déscriptibn L £ E . fv
2+ Y (direct.bh matrix elements) = -: 0. . '-1.226'
o+ ~_ (include ph exchange) S T -
g; o  (include P interaction) | . -0.9 -1.67h
2+ v‘ B - (direct ph, ho truncation) | 0. fl.125
0- | (pp +\bh'+ exchange) o | —1.125 fl.76¢
o 2- R (pp + ph + exchange) ' | | _'- ) -1.125 . ~2.885
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Tablé 2. Strength Parameters of Finite Fermi Caléﬁiatibns.-
The particléepafticle,-g, and particle-hole, f, ' g, g'; conétants as in eq.
(3.1) for T and rt. The particle-hole numbers have been divided by a com-
mon number to show-their relation to paraﬁeterizations-of other authors,':The
second set of nu@bersvfor the 2+ stétes_Was_uSed'only tortest further possible

spin dependence in the States,

2+ 0.9 0.9 0.2 o5 0.5 1.3
2+ %o.9 =009 0.6 0.5 . 1.0 1.46
Co- . =09 --o.9‘, o2 0.5 0.5 1.46
o- ) '50.9 | ‘.09 o2 o5 o5 2.39

}a

L
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Figure Captions

Fig. 1. The 2+r(gamma) vibration energies in the rare earth region (152 < A=<.190)-
The‘reéuits'of thé schematic modél?) ére compared to ?arioﬁs components of a
-spin indépehdént (ph) énd (pp) interaction..

Fig; 2. The 2+ (gamma).vibration.energies"calculated ﬁéing the Fermi liqﬁid type
.parameterization df:the irreducible interactions. Exﬁerimental results are
‘shown for ébmparison. |

Fig. 3.' Tﬁé B(E2, 0+ - 2+) transi£ion probébilities calculated for the faré
earth nuclei. An effectife charge.of'O.h has 5een used and the 2+ state is
the saﬁé aé in'fig; 2.

fig; 4. The 0; (octupol§)'vibration energies.

Fig. 5. The 2- (octupole) vibration energies.
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LEGAL_NQTICE

This report was prepared as an account of work sponsored by the

" United States Government. Neither the United States nor the United

States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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