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Abstract 
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The gamma, (2+) and octupole (0-, 2-) states of deformed even nuclei in 

the rare earth region are calculated in the Fermi liquid theory. The relation 

of RPA and schematic model calculations to the more general formulation is dis-

cussed. Off-diagonal matrix elements are found to peak at the nuclear surface. 

The vibration modes studied are found to be only weakly dependent on the spin 

and isospin dependent terms in the interaction. An example is presented to show 

the necessity for including a long~rangedterm in the renormalized interaction. 

t 
Work performed under the auspices of the U. S. Atomic Energy Commission 
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1. Introduction 

The microscopic structure of the non-rotational collective states in 

deformed even-mass nuclei has been the subject of many theoretical investigations. 

These studies fall into two rather general categories. In the first attempts 

are made to solve the phenomenological Bohr
l

) hamiltonian for quadrupole motion. 

The inertial and potential parameters are either chosen empirically2) or are 

calculated from microscopic models 3 ). The second group includes the completely 

microscopic approaches. 

The coexistence of single particle and collective motion in nuclei has 

been understood by performing microscopic calculations using modern two nucleon 

interactions
4). A parallel theoretical approach is a phenomenological theory of 

finite Fermi systems5) where the parameters are chosen on the basis of a microscopic 

analysis of the many body problem. Most microscopic calculations have been per-

formed for nuclei near closed shells where the single particle level density is 

. . I 

small and the numerical problems associated with the ~heory are tractable. In 

the rare earth and actinide regions of deformation, the single particle level 

density is very large, so that to obtain a manageable numerical problem theories 

have been simplified to a point where some variant of the schematic model could 

be used
6). Bes1) and Soloviev8) have used a pairing plus a quadrupole or an octu­

pole force, while Faessler9), although using a surface delta interaction, made 

the necessary approximations to insure the separability of matrix elements. He 

was thus able to apply the schematic model. 
10 

More recently Pyatov ) has attempted 

to explain certain features of higher 2+ and 0+ states by adding a spin-quadrupole 

interaction. Schematic model calculations give an incite into the microscopic 

structure of the gamma quadrupole and octupole vibrations and reproduce the 
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qual! tati ve features observed experimentally. Nevertheless it is difficul tto 

generalize these theories or to understand how their results would be obtained 

.us ing more rigorous . many-body theory. 

In this paper we wish to utilize a microscopic description of gamma and 

octupole vibrational states which does not,depend on the schematic model. As a 

first approximation we solve the Bethe-Salpater equation using the deformed 

quasiparticle approximation. In particular we ignore for the present non-kdiabatic 

rotational effects and the effects of phonon-particle coupling. These will be 

discussed in subsequent publications. 

In sec. 2 the theoretical considerations are developed and in sec. 3 a 

description of the calculation is presented. Technical details too lengthy to 

be presented in a journal article are contained in an appendix to ref. 11). 

Section 4 contains the results and a discussion. A summary and conclusions are 

presented in sec. 5. 

. i 

! 
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2. Theory 

The response of a nucleus to a weak external field is given to first 

• order in the coupling constant by the linear response function
12

). It is often 

• 

'v~ 

convenient to define new quantities which contain the same information as the 

linear response function but which describe the effective field produced in the 
i 

nucleus under the influence-of the external field. In a superfluid nucleus there 

h 1 2 h 
are four such fields, V, V , d , and d. V and V cause particle-particle and 

12 
hole-hole transitions respectively, while d and d connect the particle component 

of the initial state to the hole component of the final state and vice versa. 

Migdal and Larkin13) have derived the Bethe-Salpater equations for these fields. 

In deriving them, it is assumed that the Bogolon approximationt for single particle 

propagators is valid and that' the irreducible amplitudes describing particle-

particle, (pp), and particle-hole, (ph), scattering are not retarded. 

The Migdal-Larkin equations can be put in a compact form by defining14) 

. . ± 1 ( h) ± 1 (1 2) new effect~ve f~elds V = 2 V ± V ,d = 2 d ± d • Denoting matrix elements 

with respect to single particle states of the set ¢A by subscripts these equations 

become 

+ o + L + + 
V12 = (eqV )12 + F1423 n34 Z34 

34 

+ , 0 + L ~ + + 
( 2.1) d12 = (eqd )12 F1234 ~34 z34 

34 

t By Bogolon approximation we understand a BCS transformation between Landau 

quasiparticles and -holes (hereafter simply referred to as quasiparticles and 

quasiholes) . 
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+ 
Z- are the changes in the Bogolon density matrix due to the field and are given by 

(2.2) 

In the'above expressions, I denotes the state which is time conjugate to ¢A;t 
+ ~ 

and n12 = u l v2 ± vl u2 , ~12 = ul u2 + vl v2 , E12 = El + E2 · The frequency of the 

2 "2 
external field is denoted by w while u specifies non-occupation and v the 

occupation of the quasiparticle pairs in single particle states and E denotes 

the energy of the Bogolon. These are related to the pairing potential 6. and to 

the single particle energy E: by the usual BCS formalism. VO and dO are e~ternal . 

fields which do not change and change the number of quasi particles in the nucleus 

by two, e and e 
f q q 

are the local charges for these fields, andF and F~ are 

renormalized irreducible amplitudes describing (ph) and (pp) scattering of the 

quasiparticles. There are simple poles in these external fields corresponding 

to excited state13 in the system" and so one can obtain energies and transition 

5 probabilities by solving the homogeneous set of equations corresponding to (2.1) ). 

By substituting (2.1) into (2.2) and setting the inhomogeneous terms to zero, we 

obtain the equations for the change of the Bogolon denSity matrices at frequencies 

corresponding to excited states in the nucleus. 

L (2.3) 

34 

If the following normalization is used 

L (2.4) 
12>0 

t " 1/2-SGA For deformed but axially symmetric nuclei, ¢~ = (-1) ¢_~ where SGA is the 

projection'ofthe angular momentum on the symmetry axis. 

• 
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the probability for an electric transition is given by 

MO -+ K = L 
12>0 

LBL-238 

The symbol 12 > a means that only one of the two admitted combinations (1,2) 

and (2,1) should be included. 

Following Kamerdzhiev15 ) we note that for external fields whose frequencies 
, 

are small compared to the summation intervals in (2.1), it is convenient to separate 

in the sums those terms which depend little on the frequency and on the degree 

of filling of the subshells. Let those terms be put into La. The terms depending 

on the frequency and filling Of the subshell are placed in the sum Ll . Then (2.1) 

may be written 

(2.6) 

provided that the effective charges and renormalized amplitudes are defined by 

the equations 

o + o + La F1423 
+ 2 o + 

(eeffV )12 = (eqV )12 (n34) K34 (eeffv )34 
34 

I 0 ± I 0 ± La Fr234 
± 2 I 0 ± 

(eeffd )12 = (eqd )12 (~34) K34 (eeffd )34 
34 



-6-

, 

~O 
+ 2 , 

r1423 = F1423 - F1625(n56) K56 r5463 , 

" E;, [ Fi256(E;,56)2 'K56 
" 

r 1234 = F1234 - r5634 
56

0 

Equations analogous to (2.3) and (2.5) may be derived from (2.6) 

MO -+ K = [1 n~2 Z~2(wk)(eeffVO)12 
12>0 

LBL-238 

(2.7) 

(2.3' ) 

(2.5' ) 

prOvided the normalization given in (2.4) is·used. ' These equations are formally 

identical to those derived in the random phase approximation (RPA)16). However, 
,,, + 

the interpretation of the amplitudes r , r , and Z- is different. In the theory 

of finite Fermi systems5 ) the quasiparticle approximation is used for the single 

" 

particle propagators so that even to lowest, order in the interaction among the 

2 quasiparticles, the scattering amplitudes are renormalized by a factor, a , where \,1 

a is the residue of the dominant pole term and is assumed to be independent of 

the single particle states. Furthermore, F artdFE;,contain the sum of all the 

perturbation diagrams irreducible in the (ph) and (pp) channels respectively. 



• 

-7- LBL-238 

+ 
Z- describe the change in the Bogolon density matrix. Only in the BCS approximation 

using Hartree-Fock for the single particle propagators and keeping the first order 

terms in F and F~ do equations (2.3) correspond to those of ref. 16). It should 

be noted that in general F is not anti symmetric . However, if one assumes a bare 

interaction or more generally a sum of ladder diagrams for F, then it is anti-

symmetric. 

The equations of the schematic mode19 ) can be obtained from (2.3') by 

ignoring the (pp) amplitude r" and parameterizing the (ph) amplitude r' as the 

collective multiple of the direct matrix element of a spin-independent surface 

delta interaction (SDI). It is further assumed 'that there exists an effective 

charge. This corresponds to assuming that in (2.5') 

The derivation of these results is usually accomplished using the RPA. 
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3. Description of the Calculation 

In the Fermi liquid theory, account is taken of the fact that nuclear 

motions are highly correlated. However, for excitation energies which are small 

compared to the Fermi energies, it is assumed there exists a branch of single 

particle excitations. These are called quasiparticles and have energies which 

, 2 *, " 
are approximately those ,of a one-body Hamiltdnian p 12m + u(~,:) where the effective 

* " " , 
mass m and the potential U(£,:) are determi~ed from experiment. For deformed 

nuclei perhaps, the best parameterization for U( £,:) is that of Vogeler17 ). However, 
,. , ' 18 

in the calculations reported here, the Nilsson ) single particle basis set prescribed 

8 ' 9 
by Soloviev) and modified by Faessler ) has been used. ~ere are 32 proton 

orbitals and 36 neutron orbitals in this set. The single particle energies of 

these orbitals were chosen to fit the experimental energy level data of odd mass 

nuclei 19) and are listed in units of hw in Table 1 of ref. 9). This set, used 

both for the gamma and octupole states, facilitates comparisons with earlier 

calculations. The wave functions are obt~ined by diagonalizing a deformed harmonic 

oscillator hamiltonian with S = 0.3. The strengths of the spin-orbit (.L s) and 

centrifugal C~2) terms varied for different principal quantum numbers and are 

also given in ref. 9). 

In constructing the configuration space from the Bogolon basis set, 

only those configurations have been kept whose energy E12 is less than I hw. 

It is of interest to study how this affects the renormalization of the interaction 

in the (pp) and Cpp.) channels, ~np. a more extensive (:!¥c~lation in several nuclei 

has been carried out to determine this effect. The results will be discussed 

in the next section. 

• 
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For the nucleon-nucleon interaction in a RPA calculation and for the 

irreducible block in a Fermi liClUid calculation, the volume delta potential 

with the following parameterization is employed: 

r ' [ 4 EO] 3/2· ,. , ) 
= . "3 po\) (f + f ~l' ~2 + (g + g ~l' ~2 

[
4 Eol is a constant eClual to 386.04 MeV-fm3 , where Eo· and Po are the Fermi 
3 poJ 

energy and density of' nuclear matter. This constant is chosen so that the strength 

parameters will be dimensionless and of the order unity. The dimensional dependence 

of the radial matrix elements has been explicitly factored out in the constant 

\) = mw/h where hw = i/3' Thus the A dependence of the matrix elements is pro-

-1/2 A 11 
portional to A . • It is shown in the appendix of ref. ) that for the (ph) 

antisymmetricRPA matrix elements, g and g' may be set eClual to zero. Also in 

that appendix, various relations between the (ph) and (pp) 

matrix elements are derived and a discussion of the numerical procedure for 

eValuating delta force integrations is presented. 

setting 

From (3.1); the schematic model (SnI) interaction can be obtained by 

[
4E

o] \)3/2 = 47T( 26 t; 28) MeV. Further, the radial part of the matrix element 
3po 

is taken to be unity, and only one. multipole is evaluated in the angular inte-

1 gration of 2n o(cosw12 - 1). Finally, f = -1, while the other force parameters 

are set eClual to zero. 
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The pairing parameters u. and v. of each level should be determined 
~ ~ 

. ." 
from the BCS gap equation using r. However the finite basis,truncation of the 

pairing pt-oblem involves a different renormalization than the truncation of the 

configuration space so that the BCS probleni requires the introduction of a dif-

" ferentparameter i; in the definition of r. Instead the state-independent !:"'s 
'. 8 

and A's employed by Soloviev ) have been adopted. 
. . 

Not only are the empirically 

fit u's and v's of'this scheme nearly the same as those determined by using the 

gap equation and a new phenomenolog'ical interaction, but they also permit com-

parison with .earlier schematic model calculations. 

In the course of this work, a very rapid method has been discovered for 

diagonalizing the non-hermitian RPA problem to obtain the lowest eigenvalues 

and eigenvectors. Making the definitions A= (p-Q) (P+Q) (p-Q) , B = (p-Q) ,and 

2 A = W , eq. (2.3) may be put in the form AZ- = A BZ- where matrices A and B 

are symmetric. Solutions to this equation may be'obtained using the vibrational 

. 20 21 
method of steepest descents ' ). For matrices of large dimension (N), this 

method has· the advantage that one obtains one eigenvector in N2 operations rather 

than all. the eigenvectors in N3 0perations. 

• 

, 
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4. Numerical Results and Discussion 

4.1. 2+ STATES 

, The energies and two quasiparticle amplitudes of the gamma vibrations in the 

• 

., 

rare earth region have been calculated both in the RPA and the theory of finite Fermi 

systems. We discuss first the RPA calculations and show how they compare to the sche­

matic model and the specificity of components in the effective nuclear interaction. 

Figure 1 displays the energies of 2+ states calculated using various 

approximations made in deriving the schematic model. The parameters of the 

force are given in Table 1. There are four approximations to the RPA in the 

schematic model. These are that the radial matrix element peaks in the surface 

region, that the spin independent quadrupole-quadrupole component of the inter­

action predominates, and that the particle-hole exchange and particle-particle 

matrix elements may be neglected. 

We have tested the last two assumptions directly using the VDI. The 

exchange matrix elements are uniformly repulsive and only renormalize the strength 

of the effective interaction. Examination of the wave function shows that this 

approximation has little effect on the microscopic character of the gamma vibration .. 

It is surprising to find that interaction in the (pp) channel not 

only has no substantial effect on the gamma vibrational states but only renormalizes 

the (ph) force by a few percent. An earlier estimate of Faessler9) based on a 

·"'degenerate model, gave reduction of 33%. In more realistic calculations, the 

(pp) and (ph) contributions are to a large extent uncoupled, the (ph) channel 

being predominant. A large increase in r" can be offset by a much smaller decrease 

in r'. In spherical Sn and Zr isotopes, Voge122 ) finds that the interaction in 

the (pp) channel is necessary to obtain even qualitative agreement with the 
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, 
experimental trends for the 2+ states. A possible reason for this difference 

is that the spherical nuclei considered were single-closed-shell. Since there 

is no proton-neutron interaction in the (ph) channel, this channel nO'longer 
. ' 

predominates over the (pp) channel, as in_the deformed case. 

The comparison 'of the schematic model and the. direct VDI in Fig. 1 sup-
, . . 

ports another of the model approx:imations viz . the contribution of the interaction 

inside the nucleus where the radial functions are' incoherent is of considerably : 

less consequence in determining collective properties than in the surface re.gion 

where the radial functions are all positive in sign. The close correspondence 

of the same graphs also supports the sidely held notion that only the quadrupole 

component of the force is responsible for coherent 2+ states. This is always 

true for spherical nuclei because only the ~uadrupole-quadrupole component 

survives the Racah transform of a (ph) matrix element. In 'deformed nuclei, 

other multipoles are also non-zero. However, on the average, the quadrupole-

quadrupole component appears to be predominate when the state calculated is 

characterized by a fluctuation in the quadrupole field. Since this is the 

case for the gamma vibration, the separable potential works. The matrix ele-

ments of the VDI and the separable interaction are quite often different in 

magnitude and occasionally in sign. An important example o,f this will be dis-

cussed later in this section. However, for states which are collective; these 

seemingly random differences appear to average out. The most compelling argunient • 

for t~e u~e of the separable potential has been its convenience. The calcu-

lations here show th~t for coherent states tne approx~ations involved have peen 

justified. 

t The situation for 0+ states is more complicated since radial integrals such as 

(11122) will be coherently positive inside the nucleus as well. 
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Figure ;2 shows. the results for calculations of the 2+ states using the 

Fermi liquid theory parameterization given in Table 2. We have used a (ph) 

mixture similar to those . quoted in ref. 23). The experimental curve is also 

shown. The agreement with the experimental trend is in general reproduced quite 

nicely. Even accepting the validity of the assumptions in the theory of finite 

Fermi systems, quantitative agreement could be expected only if the single 

particle energies for each nucleus and blocking were more exactly treated. 

There is one major disagreement with experiment in the theoretical 

spectra. . . 172 174176 174 176 It lS observed that the lsotopes ' , Yb and ' Hf have a 

higher energy than both experiment and schematic model calculations. The reason 

for this is found by examining the (ph) matrix elements.· The VDI, unlike the 

quadrupole-quadrupole type forces, uncouples the 5/2(512)-1/2(521) two quasi-

particle state from the other two quasiparticle configurations. This has the 

affect of pushing up the coherent sum of other two-quasiparticle configuration:3 

relative to the lowest state which is almost pure. The same feature was exhibited 

by a SDI which included all multipole components. For most other nuclei disagree-

ments between the VDI and separable matrix elements just average out because the 

vibration is the coherent SlUll of many configuration amplitudes. Only when one 

configuration is completely uncoupled and lies lower than any other is the dif­

ference between the interactions observable. With incoherent states, and 0+ 

states in particular, the results of a calculation will be more sensitive to 
~ . 

the choice of an interaction. 

This discrepancy suggests that the irreducible block cannot be accurately 

approximated by a short range interaction. We plan to discuss this further in 

a future publication, but note here that effects of configuration space renormal­

ization on the analytic form of r I· and r" have not been taken into account. 
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Also, phonon exchange contributes to the irreducible (ph) amplitude (see ref. 24,25) 

. for details of the Feyrnnan graph), and its effect is both long-ranged and energy' 

26 
dependent ).This was not noticed before because the states were so collective 

that a truly microscopic effect was simply renormalized and averaged out. 

It is also interesting that the Fermi liquid parameterization yiel,ds 
I 

results almost identical to the RPA calculation which did not take isospin or 

spin exchange forces into account. This supports the idea that gamm!3. vibrations 

4 
are analogous to acoustic waves ) and are Uncoupled from spin waves or motion 

of neutrons relative to protons. Thus the parameterization of f' , g, and g' 

cannot be tested by the experimental properties of gamma vibrations. 

We have also calculated the second 2+ states using the RPA and Fermi 

liquid parameterizations. The result is that the spin-dependent Migdal para-

meterization did not bring down these states from their· positions as calculated 

using the spin~independent force. We further attempted to induce this spin-

dependence by changing the parameters. Again no effect from spin dependence 

on the second lowest state was found. The lowest state remained unaltered as 

well. These results indicate that the 2+ spin-quadrupole mode postulated on 

the basis of schematic model (aQ2 . aQ2) calculationslO ) is inconsistent with 

the spin dependence of the (ph) interaction obtained from magnetic moment data5 ,27 ) 

f l 'tt' , t' 1 h 1 1 ,23,28). or rom sp ~ ~ngs ~n par ~c e- 0 e nuc e~. .. 

Figure 3 shows the B(E2) reduced transition probabilities calculated 

for the Fermi liquid theory parameters in Table 2 .. The result is given only 

for this one set of parameters because, as expected, the various force mixtures 

generally yield the same results. The disagreement between the theoretical 

transition probabilities and those of experiment is due to the dependence of the 

• 
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strength on the collectivity of the state, i.e., whenever Wth 
< 

> 
< W exp' 

LBL-238 

B(E2)th > B(E2) exp Considerably better agreement could be obtained by fitting 

( ) 8~9) .. the excitation energy to experiment before evaluating the B E2 , as in ref. " 

Concerning configuration space truncation discussed in sec. 2, the 

renormalization of the interaction for 2+ states is not very large because most 

of the collectivity results from low-lying LlN = 0 configurations which are 

counted whether we truncate at 1 hw or 2 hw. This is observed to be the case. 

Truncation of configurations at 1 hw yields RPA matrices of dimensionality 85-95 

whereas in our single particle basis there are 232 possible configurations,wjth 

no truncation. The value of f (~sing direct matrix elements only) which fit a 

limited number of cases for the expanded dimen~ionality was -1.125 compared to 

-1. 226 in the truncated basis. The B(E2) 's did increase slightly « 20%). This 

small change of the strength parameter in a considerably expanded configuration 

space indicates that the single value of each parameter used to fit the rare 

earth data is approximately the best value for this region. 

4.2. THE OCTUPOLE STATES 
() 

Calculations have been carried out for the octupole states. In contrast 

to the quadrupole case, the effects of truncation are expected to be quite 

significant for the negative parity states. Within the single particle basis 
.' t 

set employed,ther,e are at least two sources of truncation error. The first 

twe wish to thank P. Vogel for discussing with us the truncation problems for 

the octupole states. 
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is due to truncation too soon on the high energy side, that is, not 

enough states above the Fermi surface are considered for the heavier rare earths. 

To construct a two-quasiparticle octupole state, Nilsson levels must be considered 

wi th lili = 1. It is probably necessary to include all Nilsson levels within 

at least 2hw on .either side of the Fermi surface. Since not enough Nilss6n 

levels were used above the Fermi level , it is to be expected that the strength 

parameters should be increased as A increases. Another truncation error results 

from configuration space limitations. For octupole states of higher K values, 

. I 

it is-increasingly important to couple downward sloping single particle states 

with principal quantum number N to upward sloping N + 1 states. Owing to the 

energy systematics of the single particle levels in the deformed potential well, 

the average 2- (ph) state of this type has more excitation energy than 

the average 0..., configuration. Truncation at lhw which was arbitrary, exciudes 

a greater percentage of the~N = 1,2- configurations than 0-. It is very natural 

that the strength parameters should have to increase in order to fit the experi-

mental data. 

Our purpose in the remainder of this section will be to evaluate the role 

of the deltaJorce in bringing about coherent nuclear motion and secondarily, to 

note the effects of the truncations discussed above. It should be pointed out 

that schematic model studies have been carried out in a manner which avoids these 

_problems and which include the effects of Coriolis coupling29). The agreement 

with exper.iment is, therefore, much better than will be obtained here. 

Figure 4 compares 0- energy levels calculated using the Fermi liquid 

parameterization of Table 2 with the bandhead deduced from experimental data in 

the rare earth region. Calculations were also performed in the RPA antisymmetric 
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(ph) approach with the parameters given in Table 1. . The results were 

almost identical to those of Fig. 4. These results follow the same trend as 

those of the earlier schematic models which used the same single particle basis. 

This indicates, as for the quadrupole states, that the octupole-octupole com­

ponent of the (ph) interaction evaluated at the nuclear surface is predominant 

in determining collective behavior. For the 0- predictions in nuclei above 

A = 170, the "vibration" is essentially a two-quasiparticle state according to 

our calculations. The steep ascent of the theoretical curve and the related 

disagreement with the sparse experimental data result from truncation of the 

single particle states above the Fermi surface, as discussed earlier. 

Figure 5 shows the theoretical and experimental excitation energies for 

the 2- states. Again, the theoretical curve is calculated using a Fermi liquid 

type parameterization (Table 2), while spin independent RPA type matrix elements 

give almost identical results. The theory yields energies in good agreement 

with experiment. However, it should be noted that in order to obtain this fit 

the (ph) strength has been increased substantially over what was used before. 

This renormalization is due to the more severe truncation of the configuration 

space for higher K values. As for the 2+ and 0- states, the exchange (ph) matrix 

elements, the (pp) and spin-dependent (ph) matrix elements do not alter the 

theoretical trend . 
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6. Summary 

In this. report we have solved the _Bethe..,.Salpater equation for superfluid 

systems using the quasiparticle' approximation and assuming the irreducible 

amplitudes for (pp) and (ph) scattering are a-like in both space and-time. In 

solving these equations the density dependence of the irreducible amplitudes 

has been ignored and it was found there will only be contributions to the two 

body matrix elements from regions near the nuclear surface. The amplitude for (ph) i 

s:catt'ering is in general not antisymmetic. However, in first order in the -nucleon-

nucleon interaction or in the ladder approximation this amplitude is antisymmetric. 

We have found the properties of our collective stat~s to be completely insensitive 

to this sublety in the par~eterization. + -Further the 2 , 0 , and 2- states were 

found to be spin and isospin independent suggesting that they are acoustic waves 

with neutrons and protons moving in phase. 

The agreement of our calculations with both experiment and with the results 

of the schematic model is in general quite good . The reason for this agreement 

is the coll~ctivity of the states. Since many configurations contribute to the 

states,differences in individual matrix elements are averaged out. However, 

there are cases where individual matrix elements are important in determining 

the properties of even the lowest states with a given spin and parity. In these 

cases the different theoretical calculations give disparate results. 

The quadrupole states are quite insensitive to truncation in the single 

particle basis provided all configurations with diagonal energies less than lhw 

are included in the spectrum. This result occurs since, with this truncation, 

most of the quadrupole strength of two quasiparticle states near the Fermi surface-

is included. However this is not true for the octupole states '\{ith the result 

that schematic model calculations are much less satisfactory for these states. 

r-} • 
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Extensions of these calculations wlll include the consideration of 

phonon-contributions to the dominant pole terms of the single particle propagator 

and the inclusion of phonon exchange scattering in the irreducible amplitudes. 
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APPENDIX I. Relations Between Matrix Elements of the Volume Delta Interaction 

In the conventional superfluidRPA calculation, (pp) and (ph) 

matrix elements are calculated using- the VDI and are antisynunetric. 

'For single particle states a and S with y and 6 coupled to K " 0, six matrix 

elements need to be calculated for the Wigner term of the VDI. In order to 

distinguish a Nilsson state, and a spherical basis state, we abandon the (12;/34 ) 

notation of the main text. Using the notation 

3 3· . 
(as/y6) = f d xld x2I/Ja(1)I/JS(2) 6(~1-~2)l/Jy(1)1/J6(2), these six elements are (as/y6 ) 

(aB/6y), (a-6/-BY), (a~6/y-S), (a-y/-B6_), and (a-y/6-B). Only the first 

two need to be calculated. In order to demonstrate this we start by noting that 

the last three 'matrix elements are related to the first three as follows: 

( a-6 / y-f3 ) = SSS6 (as/Yo) 

(a-Y/"'S6 ) = -SySo (a-o /-SY ) 

(a-y/6-B ) = S SSy (as/oy ) (1.1) 

1/2-0 
H S · th h (-1) a. ere a 1S e p ase Though these relations are not new (see, e.g., 

ref. 9), the derivation follows. 

Define = L 
a,b,c,d 

where the coefficients are for the uncoupled Nilsson basis. 

j. 

( as/ yo) =::::: (ab / cd ) (1. 2) 

( ab/ cd ) =L (1.3) . 

k 

j 

1._' 

• 
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where 

(1. 4) 

clearly, Fk(abcd) = Fk(cbad) = ~(adcb) = Fk(cdab), fk is explicitly separable. 

If we adopt the notation 

A [ Q, c k Q,. a] Q, = 2Q, + 1 and 
m q m 

- c a 

= Clebsch-Gordan coefficient, we may write 

m + md 
(-1) c 

w + r2~ 
(_1)8 u 

± 1) + (me - ~) 
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Since < ab I cd} = SSSo < a -d c -b} term-by-term we have < aSho} = SSSo' < 0.-0 /Y-S } . 

The other equalities fl:re obtained from this one. 

The third of our,six matrix elements may be shown to be equal to the 

difference of the first two. This property holds true only for delta interactions 

and depends on the exp!3-Ilsion of the integral over one co-ordinate of the product 

of four single-particle functions. 

(1. 6) 

Thevolume-delta-function (VDI) may be written 

< as Iyo } 

where U is a harmonic oscillator wave function andY is a spherical harmonic. 
a a 

Clearly < ablcd}' = f Ya*Yb *YCYd f UaUbUcUd dT. From (1.7) and the Slater integral 

definition (I.3), we have 

4rr Fk = 4rr FO 30) 
2k + 1 . 

Note that Fk(abcd)' is independent of the order of the ip.dices for a delta 

function. The integral over spherical harmonics (note it is onlya.one-body 

integral) is 
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" 

L [ta tb k] 
k 0 0 0 

* 

( _l)IDd - ~ 2k + 1 47T fk(a-c-b d) . (1. 8) 

Now to obtain the desired relation (1.6): 

by (1.2) and (1. 3), but 

( as I yo) - (as I oy ) 

L fk(a-d-b c) Fk 

\/ k 

By (1.8). It may be shown that 

by the axial symmetry of the Nilsson problem so that the two m.atrix elements dif-
1 + ~ -D 

fer only by ~ factor of (-1) . c = -8 S8
y 

.. 



-24- LBL-238 

For K = 0, a :f /3, y :f 0, we need six more integrals. They' are 

<aBI-o-y), <aSI-y-o ),~, <aYI-B-o) ,<ayl-o-B), (aol-B-Y), <aol-y':'S). Of these, 

it is only necessary to calculate < aB I-o-y > . ( ay 1-13-0) equals one of the first 

integrals, namely < a~ol-BY ) by the same argument as for (1.1). And 

(asl-y-o) = <aBI-o-y) - 81380 (ayl-B-o )by the argument of (1.6). The last 

three can be expressed in terms of the first three as before. 

The isospin dependent matrix elements may be evaluated as the produc:t 

of a Wigner matrix element and an integral over isospin co-ordinates. In 

particular, f dTl dT2 T (1) TB (2) P T (1) T~ (2) = 0,," (Z), (Z) 0 (Z), 
. a ' T 'y 'u La To - T/3' 

T (Z), where PT is the isospin exchange operator. It is not necessary to calcu­
y 

late spin dependent matrix elements because o~ the Pauli exclusion principle, 

PClTP X = -1, and the fact that the matrix element of the delta. force times P x' 

the space exchange operator, ,is identically one. That is, 

= ~1/2 (1 + ~l . ~2) 

-P P 
T x = -P 

T 

Ina Fermi liquid RPA calculation, the particle-hole matrix elements 

are not antisymmetrized. For the Wigner term, this has the effect that we do 

not need (a-o h-/3 ) and (a-y I 0-/3 ) . It also means that P P P , = P :f -1. x a Texchange 

Hehce, for K :f 0, two spin dependent integrations are required, < a-o J P a 1-/3y ) 

arid (a-yip 1-130) 
a 

The first of these is evaluated as follows 

< a-o Ip 1-/3y ) a 
2 P= 1) 
x 

six 
~, 

-'-> 
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= P ) exchange 

= (a-a!P !y-i3) (p = 1 for a"":force) 
T x 

= <a-a!y-i3) (To. = Ti3 for an even-even nucleus) (I.IO) 

This is one of the spin-independent matrix elements evaluated earlier. Finally, 

we have that 

= [f - f' - g + g' + 2 (f' - g') a (Z), (Z)] < a-a !-i3y ) 
T T a y 

+ [2 (g - g') + 4g ' a (z), (z)] <a-oh-i3) 
To. Ty . 

(loll) 

" , r a-y...,B 0' r a y_B_a(K = 0), and r aa-i3-y '(K = 0) are evaluated in the 

same manner and involve no new integrations. 

\J 
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APPENDIX II. The Numerical Evaluation of Matrix Elements 

In calculating matrix elements of the volume delta interaction, it is 

convenient to use the expression 

< as I yo ) 

where the radial integral is 47TFo, FO the usual Slater integral and the integral 

over spherical harmonics is given by expression (1. 8). 

Apart from phase factors due to complex conjugation of the spherical 

harmonics, . the integrals are independent of ordering Of the basis functions. In 

,fact for N (principal quantum number) ~ 7, there are just 4096 radial integrals 

possible and the number of different integrals over spherical harmonics is 26126. 

Matrix elements were thus calculated by using prestoredintegral tables. For 

the 2+ states,. for example, approximately 54000 two-body integrals using Nilsson 

wave functions were calculated in 7 minutes oil a CDC 7600 using only small core. 

The preparation of the integral tables themselves takes very little time. 

" , 

) 

, \._,' 
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Table 1. strength ~arameters of Phenomenological RPA Calculations. 

The particle-particle, t;" and particle-hole, f, strengths. 

~ K IT Description t;, f 

r_1 
"'4L.;" 2+ (direct ph matrix elements) o. -1.226 

2+ (include ph exchange) o. -1.722 

2+ (include pp interaction) -0.9 -1.674 

2+ (direct ph,. ho truncation) o. -1.125 

0- (pp + ph + exchange) -1.125 -1.76¢ 

2- (pp + ph +'exchange) -1.125 -2.885 

\.../ 
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Table 2. Strength Parameters of Finite Fermi Calculations. 

The particle-:particle, .~, and particle-hole, f, f', g, g', constants as in eq. 

( 3.1) for r ", and r I • The pa~tlcle-hole numbers have been divided by a c om-

mon number to show their relation to parameterizatiofis of other authors. The' 

second set of numbers for the 2+ states was used only to test further possible 

spin dependence in the states. 

, 
Kn E,; 

f 
r 

f £ fL r' 
r '.r r 

2+ -0.9 -0.9 0.2 0.5 0.5 1. 38 

2+ -0·9 -0.9 0.6 0.5 1.0 1.46 

0- -0..9 -0.9 0.2 0.5 0.5 1.46 

2- -0.9 -0.9 0..2 0.5 0.5 2.39 

) 
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Figure Captions 

Fig. 1. The 2+ (gamma) vibration energies in the rare earth region (152 ~ A ~ 190). 

The resUlts of the schematic mode19) are compared to various components of a 

. spin independent (ph) and (pp) int'eraction • .. 
Fig. 2. The 2+ (gamma) vibration.energies calculated using the Fermi liquid type 

parameterization of the irreducible interactions. Experimental resUlts are 

shown for comparison. 

Fig. 3. The B(E2, 0+ - 2+) transition probabilities calculated for the rare 

earth nuclei. An effective charge of 0.4 has been used and the 2+ state is 

phe same as in fig. 2. 

Fig. 4. The 0- (octupole) vibration energies. 

Fig. 5. The 2- (octupole) vibration energies. 
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