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Abstract 

At current densities large in magnitude and also large compared 

' 
to the exchange current density, a conducting disk in an insulating 

plane has a very nonuniform current distribution across the surface. 

The current distribution near the center is governed predominantly by 

ohmic effects, but near the edge, electrode kinetics become important. 

This paper describes the treatment of the current and potential dis-

tributions on the electrode, especially near the edge of the electrode 

where the nonuniformity is most extreme. The electrode kinetics are 

taken to be in the Tafel region. The results are valid for any and 

all large values of current density and provide a definitive 
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description of the way in which the current and potential distribu­

tions approach the purely ohmically controlled (primary) distributions 

as the current is increased. The current density at the edge of the 

disk is found to increase with the square of the average current den­

sity. 

These results for the edge region of a disk at high currents and 

those of an earlier paper for high exchange currents can be applied to 

electrodes of more general geometry. 

Introduction 

Current and potential distribution calculations have been used 

for many years in electroplating, electromachining, battery develop­

ment, and corrosion. Such calculations allow one to predict the shape 

of metal deposition or removal during the progress of the process. 

The work represents an application of classical techniques of 

mathematical physics and as such has attracted the attention of the 

mathematician and physicist as well as the electrochemist and 

engineer. In recent years, the interest in such calculations has also 

been stimulated by the development of numerical techniques for use on 

high-speed digital computers, and a much wider variety of problems has 

been studied. The discussion here will present results of one of 

these computer-aided calculations. 

Many of the early analytic calculations were made for a simpli­

fied limiting case, i.e., for only ohmic conditions between the elec­

trodes with no limitation from either diffusion or heterogeneous 
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electrode kinetics. A uniform current distribution on the electrodes 

was calculated for concentric spheres, concentric cylinders (neglect-

ing end effects), a hemisphere on an insulating plane with the coun-

terelectrode at infinity, and electrodes which completely filled the 

cross section of a cylindrical or rectangular tube. These important 

geometries have been used extensively in electrochemical research. 

Otherwise, the results showed extreme nonuniformity in the current 

distribution, with the current density approaching infinity at elec-

trode edges and coplanar intersections with insulators. The more gen-

eral case has been the nonuniform distribution. 

The extreme nonuniformity shown for ohmic conditions will be 

moderated by electrode kinetics, which eliminates any infinite current 

densities and is the subject of the present paper. One can see the 

effect of electrode kinetics by referring to the relationship for 

Tafel kinetics, here for anodic current 

i [aF l [aF l ~ - exp ~(V~ ) - exp ~ f'J 
~O RT 0 RT s 

(1) 

where in is the current density, i
0 

the exchange current density, and 

a a is the transfer coefficient. V is the electrode pot~ntial, ~O is 

the potential in the solution adjacent to the surface, and f'J is the 
s 

surface overpotential. If the current density were to approach infin-

ity, the surface overpotential would approach infinity as well. This 

will not be realized experimentally, since the potential must remain 

bounded. Thus the current density at the edge of an electrode would 

remain finite. The moderating effect of electrode kinetics on the 
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edge region of a disk in an insulating plane is the specific system to 

be discussed here. 

Newman
1 

calculated the primary current distribution for a circu-

lar disk in a large, insulating plane and found it to be 

i 
n 

i 
avg 

0.5 

(1- i;r~]~ 
(2) 

It may be seen that as r approaches r
0

, the outer radius of the disk, 

the current density approaches infinity, although the total current to 

the disk remains finite. 
2 

Newman also calculated the current and 

potential distributions for a rotating disk in a plane under condi-

tions where both kinetics and diffusion were specifically accounted 

for. It was shown
2 

that the 'relative effects of kinetics and ohmic 

drop can be represented by the following dimensionless parameters: 

(a + ac)Fr0 J,. a . 
RTK. 

1
0 

(for linear kinetics) 

aaFr0 

1 1 
0 - RTK. iavg (for Tafel kinetics) 

The current and potential distributions were shown to depend on either 

J or S, depending upon kinetics, or both J and o, and a fa as well, 
a c 

when neither the linear nor Tafel approximation could be used for the 

electrode kinetics. When J and 6 were small, electrode kinetics were 

found to be dominant as compared to ohmic effects, and the current 

distribution on the electrode became uniform even though the primary 

distribution was nonuniform (equation 2). For large J or S , the 

current distribution approached the primary distribution. The distri-
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bution was calculated2 for a number of values of J and o, as well as 

for situations where diffusion was important. Nanis and Kesselman
3 

also made calculations for uniform and primary distributions for the 

rotating disk. Neither of these papers included a treatment of just 

how the current distribution approached the ohmically-determined, pri­

mary distribution for large J or o. A subsequent finite-difference 

technique was described4 for calculating the current and potential 

distribution of a disk in a plane (where the surrounding plane could 

be either an insulator or an electrode), but again without describing 

the distributions for large J oro. 

Figure 1 reveals the difficulty in treating the edge region by 

finite-difference methods. The current distribution for a large value 

of o (o 90) has been calculated approximately by the finite-

difference method and compared to the primary distribution, where the 

surrounding plane is an insulator. The rapid change of current den­

sity near the outer edge of the disk necessitates a large number of 

mesh points in this region, which is a small part of the entire 

region, and the problem would become more severe at larger o. In the 

region near the center of the disk, the current distribution (for o = 

90) approached the ohmic (primary) distribution. This suggested that 

approximations valid at the center of the disk were different from 

those valid at the edge; or expressed a different way, the effect of 

kinetic limitations was important only near the outer edge of the disk 

where the current was largest, and the current and potential distribu­

tions near the center were almost completely determined by ohmic 
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FIGURE 1. PRIMARY CURRENT DISTRIBUTION ON A DISK 

COMPARED TO THE DISTRIBUTION CALCULATED FOR A 

LARGE VALUE OF THE POLARIZATION PARAMETER 

FOR TAFEL KINETICS 
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effects. 

In the analogous problem for linear kinetics at large J, 

Ni~ancioglu and 
5 

Newman recognized the need for a singular-

perturbation treatment. They found that the current (or potential) 

distribution became identical with the primary distribution near the 

center of the disk and that the current density at the edge depended 

on J as 

i 
edge - 0.62 J] 

i avg 
(3) 

It can be seen that the current density at the edge approached infin-

ity as J approached infinity. 

The present paper will describe the results of the treatment of 

the current distribution for large values of o. A singular-

perturbation technique was used to set up the problem, which was 

solved by a numerical, finite-difference method. The problem is some­

S 
what more complicated than that for large J, as shown below, and the 

results of the two will be compared although they treat different 

kinetic boundary conditions. Comparison will also be made with early 

6 
results of Wagner, who briefly discussed edge effects for situations 

close to the ohmic limit. We expect that the present treatment may be 

used along with that for large J for practical application in electro-

chemical machining. 
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Mathematical Treatment 

Rotational elliptic coordinates have been used for the disk-plane 

1 2 4 5 
geometry ' ' ' and will be adopted here. These coordinates, e.~. 

discussed extensively in reference 7, are related to cylindrical coor-

dinates by 

(4) 

(5) 

The disk-plane system is shown in the new coordinate system in figure 

2. Also shown is the corner region where kinetics is important on the 

disk at high . S values. Laplace's equation in rotational elliptic 

coordinates is 

a~ 
2~a~ = 0 . (6) 

A solution to equation 6 was sought subject to the boundary con-

ditions: 

a. on the disk <e - 0), the current density is related to the 

potential derivative by 

i 
n 

K. a~, 
ro~ ae e-o (7) 

For Tafel kinetics i is also related to the local electrode overpo­
n 

tential V - ~O by equation 1. 

b. on the surrounding plane(~= 0), an insulator surface, 

i "" 0 "" n (8) 
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c. the potential approaches the primary distribution both as ~ 

becomes large and as 'I approaches 1 (the disk axis). This boundary 

condition will be expressed more quantitatively below. 

Conventionally, the potential ~ is taken to be zero far from the 

disk (~ ~ oo). Because the emphasis here is on the edge region, it is 

convenient to define a dimensionless potential ¢ as 

1f 

4 r i 0 avg 
(9) 

where 

~ - I/4ttr0 
(10) 

is the value of ~ at the disk surface for the primary distribution and 

I is the total current to the disk(= 1rr
0
2i ). 

avg 

In order to emphasize the corner region, the stretched variables 

given below were adopted: 

(11) 

, .. 0'1 . (12) 

In the region of interest, 'I and e will be of order unity, and the 

behavior of ¢ will be such that the stretched potential variable 

¢ - o¢ - ln(o) (13) 

will be appropriate for the edge region as well. 

With the change of variables, Laplace's equation becomes 
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(14) 

Since "' and € and the derivatives are of order unity in the edge 

region and o is taken to be large, only the terms multiplied by o2 

need be retained. With this approximation, Laplace's equation reduces 

to 

-2 a., 
The boundary conditions become: 

a. at e - 0 

i 
n 

oi avg 

1 tPo 
- Ee 
2 

where E is a parameter of the system defined by the equation 

E = 2 i io exp [:~ (V - ~)l . 
avg 

(15) 

(16) 

(17) 

Since E involves both i and V, which cannot be specified indepen­avg 

dently, it will need to be determined. Its value will be discussed 

below and in Appendix A. 

b. at "' - 0 

c. 

gj_ 1 
. --+ -

ae 2 

gj_ - 0 . 
a., 

as 
-2 -2 
., + e - 00 • 

(18) 

(19) 

The last condition comes from matching with the primary distribution, 
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a refinement of the original boundary condition c. The primary dis­

tribution for the potential is
1 

and at the electrode 

i 
n 

i avg 

1 
2'7 

(20) 

(21) 

The behavior of equation 20 at small ~ leads to the matching condition 

in equation 19. 

The problem of the current and potential distributions has been 

split into two problems, or a problem in two regions. In the first 

region, far from the corner region, the current and potential are 

given by the primary distributions, which may be obtained by neglect-

ing the effect of electrode kinetic boundary conditions. In the 

region near the corner ('7- ~- 0), kinetics are important, but cer-

tain terms of Laplace's equation may be neglected. This has the clas-

sic form of a singular-perturbation problem, which is solved subject 

to the requirement that the solutions for the two regions must "match" 

at the overlap of the regions. 

For this to be a well-posed, singular-perturbation problem, the 

differential equation and boundary conditions must be independent of 

the perturbation parameter, l/c5. This requirement is met except for 

equation 16, which involves the parameter E. From equation 17, it can 

be seen that E•is a function of c5, in general. However, as shown in 

Appendix A, ln E approaches unity for large values of c5 (see equation 

Al9). This approximation was adopted for the calculations, and it 

... 
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will be discussed again later. The present problem for large 6 is 

different from that for large J primarily because of the boundary con­

dition 16. The variable transformations are different as well, but 

the transformed equation 15 and the other boundary conditions are 

similar. 

The solution to the problem was obtained by the method of finite 

differences with successive overrelaxation. Reference 4 gives details 

of expressing the differential equation in finite-difference form, as 

well as some description of the method of successive overrelaxation. 

The highly nonlinear boundary condition, equation 16, was treated for 

successive iterations by the method described in reference 4. 

It was found that boundary condition c did not adequately specify 

the behavior of ¢ at large values of , and e for numerical calcula­

tions. The asymptotic form of ¢ was consequently obtained from the 

specific problem statement at large 'I and e, as developed in Appendix 

B. The result in equation B8 has a constant, A
1

, whose value had to 

be determined. Equation B8 was differentiated with respect to ,, and 

A1 was eliminated between this equation and equation B8 to give a 

relationship between the potential and its derivative at large values 

of 'I. The resulting equation for the derivative of ¢ was used (in 

finite-difference form) on the boundary at large values of 'I. A simi­

lar technique was used to develop an equation for the partial deriva-

tive with respect to e for the boundary at large e. The procedure 

proved to be satisfactory, and the calculation of ""j, was readily per­

formed. 
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It was further found to be expedient to use the linear coordi-

nates out to e = ~ 1, but logarithmic coordinates for larger values 

(i.e., lne, ln~ for e. ~ ~ 1). The two coordinate systems coincide at 

~ - 1 and at e 1. This procedure provided a large number of points 

in the region for small ~ and e where ~ changed the most, and a fewer 

number of mesh points in the region where the change was much smaller. 

This scheme worked very well, even with successive overrelaxation in 

the iteration process. Such mixed coordinates were also used by New­

man ec a1. 8 for a pit geometry. 

Results and Discussion 

The results presented below are general, i.e., dimensionless, and 

are independent of system parameters. This means that the results may 

be used for any and all large values of 6. They may be used in con­

S 
junction with the results of Nil?ancioglu and Newman for a complete 

description of the current and potential distributions on electrodes 

at high current densities, in the absence of diffusion effects. The 

accuracy of the results was checked by changing the mesh size and con-

vergence parameter and changing the position of the outer boundaries. 

The calculated values of ~ are estimated to be accurate to within 0.1 

to 0.3 percent. 

The distribution of i ji along the electrode surface is shown 
n avg 

in figure 3 and compared to the primary distribution. Also plotted 

are results of ordinary finite-difference calculations, but for large 

5 (6 - 90), according to reference 4. (These data are plotted in fig-
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ure 1 as well.) As expected, the current density is finite at the 

edge of the electrode in contrast to the primary distribution, and the 

two distributions converge far from the edge. The two differ by only 

0.1 percent at ~ 50 <e = 0). The value of ~Oat the edge (i.e., e = 

0, ~ - 0) was found to be -1.9350, and thus 

2 
SE 

i edge 
i avg 

~0 
e 

d 
~ 0.1444 . 

e ge 
(22) 

Equation 22 provides a general relationship which may be used to cal-

culate the current density at the disk edge for any (large) value of 

s. 

Tafel kinetics have been used for the present investigation and 

yield a relationship of the form 

i edge 
i - 0.1963 s . 
avg 

(23) 

This may be compared with equation 3 for linear kinetics, but it 

should be noted that the dependence on the polarization parameters is 

different for the two cases. It has been popular in the literature to 

linearize Tafel kinetics for cases where the potential across the 

electrode surface does not vary too much about some average value. 

Such an approximate relationship for linearized Tafel kinetics would 

yield 

i edge 
i avg 

a: /5 (24) 

By comparison to equation 23, linearization is not a good approxima-

tion for this case. This is because the current density varies by 
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quite significant amounts from the average value. At the center of 

the disk 

i 
n 

i avg 
--+ 

1 
2 ' 

but at the edge, the ratio is given by equation 23. Therefore, the 

variation in current density between center and edge increases 

linearly with increasing o. 

The distribution of potential across the surface is also of 

interest. The potential we are discussing here is the potential in 

solution just outside the electrical double layer (a distance of about 

10 to 100 A from the surface). The potential in the metal has been 

designated as V, and is uniform everywhere on the metal surface. From 

the results above it may be shown that for large o, 

~~:D-~o 

r i 0 avg 

ln(0.39o) 
0 

(25) 

where D. denotes the difference between values at the center and the 

edge of the disk. 9 
This quantity has the value 0.363 at low values of 

o, where a uniform current distribution prevails, but for large values 

of o it approaches zero, appropriate for the primary distribution. 

Equation 25 describes specifically how the potential distribution 

approaches the primary distribution, which may be used as a good 

approximation over much of the electrode. An estimate of how much of 

the electrode is affected is provided by Figure 3 and the variable ry. 

The affected region is dependent on o, through ry, and the figure pro-

vides the general solution for any large value of o. The edge region 



2 
is thus defined by r

0
- r- O(r

0
/o ). 
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Figure 4 expresses some of these potential relations from a dif-

ferent point of view. The stretching of potential inherent in_~ (see 

equation 13) means that variations of ~ describe variations of 

a: Fib/RT, a nondimensionalization that seems appropriate for the 
a 

kinetic expression in equation 1. Figure 4 shows potentials for the 

electrode and for the solution at both the center and the edge of the 

disk, as calculated by the method of reference 2. These are compared 

with asymptotes for large o as deduced in the present work. 

The slope of a:aF(V~)/RT versus ln(o) is unity at both small and 

large o, but the intercept shifts because E changes from 1 at low o to 

e at high o (see appendix A). The potential Cb
0 

~ at the center 

shifts from zero at low o toRT/a: Fat large o. To infer this latter 
a 

value requires one to ascertain the value of E as well as the fact 

that i /i approaches 0.5 at the center. At the edge, a:aF(ib0-CbP0 )/RT n avg 

is zero at low o and approaches the asymptote 1.935- ln(o) at high o. 

The calculations according to the method in reference 2 are unable to 

give correct results for o values above about 90, but the approach to 

the asymptotes is apparent. 

While ~et.ib0;r0i approaches zero for large o, avg 

increases. Figure 4, by the vertical distances between the curve for 

V and those for Cb
0

, can give an impression of how the overpotential ~s 

changes with o at the center and the edge of the disk. At the center, 

i increases as 0.5i , n avg 

by an increase in v~. 

and the increase in overpotential is achieved 

At the edge, i increases in proportion to edge 
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~igure 4. Comparison of potentials of electrode and solution at 

edge and center of disk as functions of 5 with asymptotes valid at 

high values of 5. 



20 

the square of i , and this requires both an increase in v~P0 and a avg 

decrease in ~0~. 

It should be anticipated that the present results can be used to 

describe the edge effects for high current densities and Tafel kinet-

ics for other geometries as well. In particular, equation 23 can be 

used to express the dependence of the current distribution on the 

parameter S, although a slightly different constant may be used for 

other geometries. Each geometry will have a different characteristic 

length for calculations of S as well. 

6 
Wagner obtained an expression which approximated the edge 

current density at planar electrodes for linear kinetics of the form 

i 
edge 

i avg 

i avg 33/4 -
-- jJ- 0.513 jJ 
'lr/2 

(26) 

where the original symbols have been converted to those used in the 

* present paper. This equation should be compared to equation 3. 'The 

two have the same square-root dependence on the parameter J and differ 

only in the constant. This provides some justification for extrapo-

lating the singular-perturbation results to electrode geometries other 

than the disk. Each geometry would have its own characteristic length 

used to calculate J. An expression analogous to equation 3 would be 

generated for each geometry and would also be expected to depend on 

J], but with a different value of the multiplying constant. Finally, 

it should be noted that the relationship (equation 26) derived by 

* J in equation 26 has the characteristic length L of the planar 
electrode instead of r

0
, which is the characteristic length for a disk 

electrode. 

.. 
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6 Wagner seems to be approximate, and its derivation is not clear in 

the original paper. 

Extension to Other Geometries 

The results from this work at high current densities and those of 

Ni-?ancioglu and Newman5 for high exchange current densities ought to 

be made quantitatively applicable to other geometries. The salient 

feature is that these results deal with the edge region, where the 

potential distribution away from the edge closely follows a primary 

(or ohmically-limited) distribution. In the edge region, the edge 

itself appears to be straight, and the electrode and the insulator lie 

in a plane (i.e., form an angle of 180°). 

If we had solutions in an edge region for high 5 or J for other 

geometries, we could probably extend the results. Such geometries 

could include a region where the electrode and the insulator form an 

angle different from 180° or for the corner of a square electrode 

lying in a plane with an insulator. However, for the moment we must 

restrict ourselves to the geometry as stated. 

-The salient feature of the geometry can be restated in terms of 

the normal component of the primary current distribution ip on an 
n 

electrode: 

(27) 

where x is the distance along the electrode from its edge and P is a 

constant characterizing the primary distribution for the particular 



22 

geometry and applied potential. In particular, we seek to phrase the 

situation near the edge so as to be independent of the overall elec-

trode size, its placement relative to the other electrode(s), and the 

applied potential. The variation of the potential near the electrode 

should be expressible in terms of P, the conductivity ~. and the dis-

tance z perpendicular to the electrode as well as x and the kinetic 

parameters (for either Tafel or linear kinetics). As a specific chal-

lenge, we can try to apply the disk results discussed above to two-

dimensional situations of a planar electrode of length L embedded in a 

plane or to two electrodes of length L embedded in the walls of a flow 

channel and placed opposite to each other at a distance of h. 6 
Wagner 

9 
gave us the primary current distribution for the former case; Newman 

for the latter. 

To establish the connection, we can first expand equation 2 in 

the edge region and show that 

p i Jr0!8 avg 
(28) 

for the disk geometry. Along the electrode, then, '1 is related to x 

by 

, 4a F 
_a_ P/ic 
R:r~ 

(29) 

and this can be interpreted as a more general abscissa scale for fig-

ure 3. The ordinate scale should be interpreted according to 

2i 
n 

Si 
avg 

and consequently the maximum current, at the electrode edge, is 

(30) 
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i = 1. 57 
edge 

(31) 

For the channel geometry, there is an additional geometric param-

eter: 

e - 1rL/2h , (32) 

and the primary distribution9 near the edge allows us to deduce that 

p _ i /eL/tanhe 
2 • 

avg 2K( tanh e) 
(33) 

where K(m) is the complete elliptic integral of the first kind, tabu-

lated in reference 10. For the limiting case of e --+ 0, the coun-

terelectrode is far away, and 

p --+ i (34) 
avg 1r 

For a thin-gap cell, e --+ oo, and 

p --+ i /h/21r 
avg 

(35) 

These last two equations can be verified independently from equations 

6 33 and 66 of Wagner. For Tafel kinetics at high average current den-

sities, equations 33 and 31 can be combined with the relationship 

between i and i . for this system to yield 
avg mln 

i edge 
i . m1n 

0.396 
2 K(tanh e) 

(36) 

Figure 6 of Parrish and Newman11 confirms that i d /i . is sub­e ge mln 

stantially a linear function of c5 even down to c5 = 0. If we add unity 

to the right side of equation 36 and take account of the absence of 

the factor a in Parrish and Newman's definition of o, we can 
a 
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calculate straight lines which nearly coincide with those on their 

figure 6 for h/L - 0.5, 1, and~. 

For linear kinetics at high exchange current densities and the 

disk geometry, Ni~ancioglu and Newrnan5 gave us equation 3. From equa-

tion 28, we obtain the generalization 

[

F. ]~ 
i d - 1.75 P Ja +a RT~O 

e ge a c ~ 

(37) 

The abscissa on figure 3 of Nhancioglu and Newman should be inter-

preted, in general, as 

[ 2FRTi~0x] ~ ;j - Ja +a a c 

while the ordinate should be interpreted as 

4>o 

(38) 

(39) 

For the channel geometry, at high exchange current densities, 

equations 33 and 37 can be combined with the relationship between i 
avg 

and i . for this system to yield 
m~n 

(40) 

Here J is formed with the electrode length L instead of r 0 . With a 

maximum value of 1.24 for q,
0

, and for the case where h >> L, 

i d /i - 0.558 J] e ge avg (41) 

The coefficient obtained by Wagner in equation 26 is 8 percent lower, 

which is surprisingly good agreement. in view of the approximation in 

... 
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his analysis. He also treated thin-gap cells and presented i d /i 
e ge avg 

graphically versus J. Equation 40 can also be used to extend the 

results in figure 4 of Parrish and Newman to higher values of J. 

Summary 

A singular-perturbation analysis has been used to develop a 

treatment for the current density at the edge of a disk electrode for 

high average current density, high compared to RT~/aaFr0 and high com­

pared to the exchange current density. A finite-difference, numerical 

technique was used to obtain a solution. This solution is quite gen-

eral and is valid for any and all large values of o. The results pro-

vide a definitive descriptl,on of the way ·in which the current and 

potential distributions approach the primary distributions as 8 

increases . 
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E 

F 

h 

i 
avg 

i 
edge 

i 
n 

I 

J 

L 

p 

r 

R 

List of Symbols 

constants for the series in equation B2 

dimensionless parameter (see equation 17) 

Faraday's constant, 96487.C/equiv 

distance separating walls of channel cell, em 

2 exchange current density, A/em 

current density averaged over the electrode surface, 
2 A/em 

2 value of i at the edge of an electrode, A/em 
n 

2 current density normal to the electrode surface, A/em 

total current to the disk electrode, A 

dimensionless polarization parameter for linear elec­
trode kinetics 

electrode length for channel cell, em 

parameter characterizing the primary current distribu­
tion near the edge of an electrode, A/cm1 · 5 

radial position measured from the center of the disk, em 

electrode radius, em 

universal gas constant, 8.3143 Jjmol·K 



T 

X 

v 

z 

"'s 

p 
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absolute temperature, K 

distance along electrode from its edge, em 

potential of the disk electrode, V 

distance normal to the electrode surface, em 

Greek letters 

transfer coefficients for anodic or cathodic processes 

dimensionless polarization parameter for Tafel electrode 
kinetics 

length ratio for channel geometry 

surface overpotential, V 

-1 -1 specific conductivity, ohm ·em 

rotational elliptic coordinates 

dimensionless potential 

stretched potential and coordinates 

electric potential, V 

value of ~ at electrode surface, V 

Superscripts 

refers to primary distribution 
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Appendix A. Dependence of the Parameter E on S 

We begin with the identity, peculiar to a disk geometry, 

and define 

1 
I f/Jo d" = o 
0 

29 

(Al) 

(A2) 

The latter part of equation A2 is appropriate for the inner region 

near the corner. 

-In the outer region, we denote the quantity I as I, and write 

1 
I(,) - I(l) - I 4J0 d" (A3) 

" Here the potential function should be expanded in the perturbation 

series 

~ - f/J - f/Jp + ! ~0 + F(S) ~1 + 
0 

f/Jp is given by equation 20, and we note that 

f/Jp- 0 
0 

and 
1 
2 

(A4) 

(AS) 

The functions ~O and ~l and F(S) are unknown at this point and are to 

be determined from the original differential equation and either the 

boundary conditions or the matching condition. For the purposes of 

this paper, it will only be necessary to determine ~O and the order of 
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magnitude of F(o). We tentatively expect F(o) to be of order (1/5 2). 

Boundary condition 16 provides the equation for the potential 

written for the outer region . ., 

1 
54>o 1 !M.j 

2 E e - ~ ae e=O 
(A6) 

Substitution of equations A4 and AS gives 

0 1 
lEe <~o + oF(o)~o> - J:.. + J:.. a~o + ffil_ £i (A7) 
2 2'1'] s'I'J ae '7 ae · 

The derivatives on the right side are to be evaluated at e = 0. This 

equation can be rearranged to yield 

0 1 
(ln'I']E + ~0 + oF(o)~0 ) 2 a~o £i 

e .. 1 + S a e + 2F ( S ) a e (AS) 

If we are to match orders in o, we must have 

0 
~O - -ln('I']E) , (A9) 

so that equation A9 becomes 

oF(o)~~ 2 a~o ~~1 
e - 1 + - + 2F(o)~ s ae ae 

(AlO) 

Expanding the exponential, we see that 

(All) 

by equating like powers of o. 

0 Introducing the relationships for ~O and F(o) into equation A3, v· 

we get 
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1[ ] 1 
1 

1 = S lnE - 1 + ~ - ~ln(~E) - ~ f ~O d~ 
s ~ 

(Al2) 

In terms of ~ and in the limit as ~ ~ 0, this becomes 

(Al3) 

In the inner region we denote I as I ( ~) . The potential in the 

inner region should be expanded as 

-1 
G(o) is expected to be 0(1/S), and the function q, is unknown. The 

· form for ~00 • • • A d. B asymptot~c o/ ~s g~ven ~n ppen ~x as 

ln(E~) 

2A1 + -­
-2 
~ 

for ~ >> 1 

Introduction of these functions into equation A2 gives 

1 ~ -0 - - Qill ~ -1 
+- f[q, + ln(E~)Jd~ + 2 f q,0 d~ + · · · 

s2 
0 ° s 0 

The matching condition is expressed by 

lim I ( ~) .. lim I ( ~) 

(AlS) 

(Al6) 

(Al7) 

The two expressions in equations Al3 and Al6 are supposed to match to 

all orders in both S and ~- We can see that the first term in equa-

tion Al6 is identical to the second term in equation Al3. Further-

more, the position or '7 dependence must match automatically, and the 



32 

matching really determines the constant E to a certain order in o. 

The asymptotic form in equation Al5 guarantees that the upper limit on 

the first integral. in equation Al6 can be extended to infinity. We 

thus obtain for E: 

(Al8) 

Rather than evaluate the terms in brackets, we write 

lnE - 1 + o(l/o) + (Al9) 

Figure 5 shows how 2/E depends on o. This ratio can be regarded 

as the ratio of the current to that which would be expected if the 

applied potential in excess of the primary potential ~ could be used 

in the kinetic expression. The calculation method, similar to that 

used in reference 2 for problems of the secondary current distribu-

tion, confirms that 2/E approaches 2/e- 0.73576 as o becomes large, 

although there is a small distortion at large o. 

Appendix B. Behavior of ~ at Large Values of ~ and e 

The boundary condition 19 was found to be inadequate to produce 

reliable restilts from the finite-difference calculations. In particu-

lar. applying this condition at the maximum values of ~ and e. for 

different positions of these boundaries, caused changes in the calcu-

lated values of ~ throughout the domain. Of special concern were the 

changes in the values of i /i and ~O on the electrode surface. 
n avg 
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Figure 5. Approach of E toe at large 5. 
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The behavior of 4J at large '1 'e was treated by using the coordi-

nates 

* r 

Laplace's equation for 4J in the inner region as given in equation 17 

is then 

.l ....L [ * 8"i] 1 8
2
"i * * r * + *2 *2 - 0 ' 

r 8r 8r r 8(} 
(Bl) 

with the general solution, satisfying conditions 18 and 19, 

co 
* 1 * * ~ * -k * . 4J - A0 - ln(Er ) + 2 r cos(} + L Ak(r ) cos(kO ) 

k=l 
(B2) 

* The coefficient of lnr has also been set according to the require-

ments of boundary condition 16. This last condition, on the electrode 

at e - 0, becomes 

or 

1 *2 4Jo 
2 r Ee .21.. 

* 8(} * (} -1r/2 
1 * 2 r + 

.. ·]-t 

I 
k=-1, 
3,5 

kAk (-l)(k-1)/2 
*k 

r 

* The exponential may be expanded for large r to yield 

(B3) 

(B4) 

(BS) 

(B6) 
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A == -6A - }; A2 
4 3 2 2 

(B7) 

This allows the expression for ¢ to be written in terms of the origi-

nal variables ~.e as 

+ (B8) 

e2+~2 <e2+~2)2 

Equation B8 is valid for large ~.e. The expression provided a satis-

factory boundary condition for the numerical calculations. The con-

stant A1 was determined from the calculated ¢ array and found to be 

constant for large ~.e. with the value A1 - -3.1 If equation B8 was 

used as a boundary condition for large ~ and e. rather than the form 

described in the text where A1 was eliminated, a variation of 10 per­

cent in A1 caused a negligible change in the calculated values of ¢, 

i.e., the calculations were not very sensitive to A
1

. 
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