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STEADY-STATE RADIONUCLIDE TRANSFER FROM A CYLINDER 

INTERSECTED BY A FISSURE' 

1. Introduction 

In a geologic repository of nuclear waste in crystalline rock, it may be necessary 

to emplace a waste package across a fissure or fracture. Because these fissures may 

be preferential pathways for radionuclide migration, it is important to investigate the 

effect of fractures in a porous rock on the rate of mass transfer of radionuclides from 

a waste cylinder,. Previous investigators assumed that: 

The nuclide diffuses in the fissure. 

The nuclide concentration in the fissure is uniform in the transverse direction, 

i.e., parallel to the waste cylinder axis. 

In the porous rock, the nuclide diffuses only in the transverse direction, i.e., 

parallel to the waste cylinder axis. 

Such a formulation does not include mass transfer at the waste/rock interface. Our 

intent is to investigate the problem more fully. 

Section 2 is a review of previous work. 

In Section 3, we give the governing equation for, mass transport of radionuclides 

from a waste cylinder intersected by a planar fissure. We assume that mass transport 

is due to molecular diffusion in the water content of fissure and porous rock only. 

Here, we explicitly consider the nuclide diffusion in the longitudinal and transverse 

'Adapted from Chapter 5 of S. J. Zavoshy's Ph.D. dissertation, Chairperson P. L. Cham- 
bre'. 
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directions in the fissure as vèll as in the porous rock. This formulation permits us to 

investigate the validity of simplifying assumptions made by other investigators. 

In Section 4, We give the analytical solution for the steady-state case. Numeri-

cal results indicate that for a waste radius of 15 cm and fissure width of 1 cm the 

concentration at the fissure/rock interface is 99.9 percent of the concentration at the 

fissure's center line. We also evaluate mass flux, surface mass flux, and mass flux 

integrated over the surface of the waste cylinder. We demonstrate the above quanti-

ties for several radionuclides of interest. Data show that surface mass flux increases 

as the radioactive decay constant and/or the retardation coefficient increases. Furth-

ermore, for a waste glass cylinder with a height of 240 cm three times more mass is 

lost from the waste cylinder to the porous rock than from the waste cylinder to the 

fissure. 

Section 5 states the conclusion of this analysis with the following observations: 

The results of exact formulation in Section 4 indicate that the concentration 

of the diffusing nuclide in the fissure is almost uniform in the transverse direc-

tion, i.e., parallel to the cylinder axis; hence, one can use a simplified model 

by assuming a uniform concentration in the fissure in the transverse direction. 

Radial diffusion in the porous rock is important and should be included in 

any mass transport analysis for a waste cylinder intersected by a fissure. Our 

data show that for a fissure width of 1 cm and waste cylinder height of 240 

cm, almost 3 times more mass is lost from the waste cylinder to the porous 

rock than is lost to the fissure. 
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2. Review of Past Work 

Figure 1 shows a schematic representation of the problem. The waste cylinder 

is idealized as an infinitely long cylinder and the fracture is assumed to be perpendic-

ular to the cylinder axis. Previous investigators [1], [2], section 5 in Ref. [3], [4], [5], 

considered a slab which is intersected by a fissure and made the following 

simplifications: 

The concentration of the nuclide in the fissure is uniform in the transverse (z) 

direction. 

Nuclides diffuse in the longitudinal (radial) direction in the fissure. 

Nuclides do not diffuse in the longitudinal (radial) direction in the water-

saturated porous rock. 

Nuclides diffuse in the transverse (z) direction in the water-saturated porous 

rock. 

Reference [6] did not assume (1) and (2) above. From assumption (3) it follows that 

the mass transfer rate across the waste/porous rock interface is zero. This formula-

tion leads to a representation of porous rock/waste interface as a diffusion barrier; 

thus decreasing the net rate of the waste dissolution. 

The effect of parallel fractures on the mass transport rate was analyzed [7]. It 

was concluded that porous rock acts less as a sink for parallel fractures than for a 

single fracture. Because the rock between the fissures is of a finite thickness and 

hence has a finite capacity as a nuclide sink. 
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Figure 1 Schematic repreaentation of a waste cylinder inter5ecte'd by a fissure. 
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3. Governing Equations 

The purpose of this research is to investigate the effect of a fracture in porous 

rock on the rate of mass transfer of radionuclides from a waste cylinder. Figure 1 

shows a schematic of the problem. The waste cylinder is idealized as an infinitely 

long cylinder and the fracture is assumed to be perpendicular to the cylinder axis. 

Mass transfer is assumed to be due to molecular diffusion only. Subscript 1 indicates 

a fissure and subscript 2 indicates a water-saturated porous rock. 

The governing equation for a radionuclide without precursor is given by: 

ON(r,z,t) 	D 	8N(rzt) 
K. 	

at 	r 8
) 

—r 	8r 
(r 	 + (1) 

a2 N(r,z,t) 
+ D1 	2 	

-XK,.JV.(r,z,t) 
8z 

fori=lt>O,r>a,O<z<b;fori=2t>O,r>a,b<z<oo 

where K is the retardation coefficient in region I (K 1=1), N (r ,z ,t) is the concen-

tration of radionuclide in ground water in region I, g/cm3  ; Di  is the molecular 

diffusion coefficient of the radionuclide in the region I, cm 2/sec; X is the decay con-

stant, 1/sec; a is the cylinder radius, cm; b is the fissure half-width,- cm; r is the 

radial position, cm; z is the axial position, cm; and t is time, sec. 

To solve the equation we require initial and boundary conditions. The initial 

condition is given by 

N1 (r,z,O)=O ,i=1 a <r <oo, O<z <b ; 1=2 a<r<co,b<z<oo 	(2) 

Equation (2) indicates that initially the concentration of the radionuclide in the 

water in the fissure as well as the porous rock is zero. Note that we have used sym- 

metry with respect to the plane z =0 to write the initial condition for the range 
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0<z <co. The boundary conditions are 

N(a,z,t)=N' ,1=1,0<z<b,t>0; 	i=2,b<z<oo,t>0  

N1 (oo,z ,t) = 0 	,1=1 , 0<z <b, t >0; 	1=2, b <z <00 , t>0  

äN i(r,0,t) 

.9z 	
=0 ,r>a,t>0 	 (5) 

t9N 2(r oo,t) 

	

=0 ,r>a,t>0 	 (6) 
8z 

N j (r,b ,t) = N2(rb ,t) , r >a, t>0 	 (7)- 

0N 1 (r b t) 	8N 2(r ,b ,t) 

	

0z 	 Oz 
,r>a,t>0 	 (8) 

Here N * is the saturation concentration of the nuclide in ground water, g/cm 3 , 

and E is the porosity of the' porous rock. Equation (3) indicates that the concenof the 

nuclide in the water adjacent to the waste surface is equal to N . Equation (4) indi-

cates that the concentration of the nuclide in the water far away from the cylinder is 

equal 'to the initial concentration. Equation (5) indicates the symmetry of the prob-

lem with respect to the plane z =0. Equation (6) indicates that far away from the 

fissure the áoncentration becomes independent of z, i.e., the concentration is due to 

diffusion from the waste/rock interface oniy. Equations (7) and (8) indicate con-

tinuity of the concentration and mass flux across the fissure/rock interface. The left 

•hand side of Eq.(8) does not have a porosity factor explicitly since the porosity of the 

fissure is unity. 

4. Steady-State Analysis 

t9N.

' 

 (r z t) 	 . 

	

At steady-state 
	

= 0. As a short-hand notation we write N i (r ,z) 

and N 2(r ,z) to indicate a steady-state solution. The governing equation (1) is writ- 
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ten as: 

Di  a 	0N,(r,z) 	t92 IV(r,z) 
- —(r 	 ) + D1 	

2 	
- XK 1  N, (r ,z) =0 	 (9) 

r 8r 	t9r 	 8z  

fori=1 r>a,0<z<b; fori=2 r>a,b<z<oc 

The side conditions are given by: 

Nj(a,z)=N* , fori=1 0<z<b;fori=2 b<z<oo 	 (10) 

N1 (oo,z)=0 ,fori=1 0<z<b;fori=2 b<z<oo 	 (11) 

aN 1 (r,o) 

ôz 	
=0 ,r>a 	 (12) 

ôN 2(r,00) 

0z 	
=0 ,r>a 	 (13) 

N 1(r,b)=N2(r,b) ,r>a 	 (14) 

9N 1(r,b) 	3N 2(r,b) 
–D 1 	=- 	 ,r>a 	 (15) 

The solution is obtained with the aid of the Weber transform. The Weber 

transform of I (r) is defined as 7 (p); the functional form is given by Eq.(S.1) in Ref. 

[8]: 

00 

7(p)_ f f (r) W(r,p) rdr 
	 (16) 

where W(r ,p) is defined as: 

W(r ,p ) = J0(rp )Yo(ap ) - J0(ap )Yo(rp ) 	 (17) 

J0  and Y0  are the Bessel functions of the first and second kind of order zero, respec- 

tively. For Eq.(16) to exist it is required that r 2 1 (r) to be integrable in the range 

0<a <r <00, and p is positive. The inverse Weber transform is given by Eq.(S.3) in 

Ref. [8]: 



J0(rp )Y0(ap ) - J0(ap )Yo(rp) 	
(18) 

00 

I (r)= 	 pdp 
[J0(ap)] 2 + [Y o(ap)]2   

Here we give some of the properties of Bessel functions (section 0.1, Eqs. 0.1.1, 

9.1.1 , 9.2.1, 9.2.2, 9.1.7, 9.1.8, 9.1.7, 9.1.9 9.1.28, 9.1.28, 9.1.60, 9.1.16 of Ref. [9] 

note that in Ref. [9] the argument is z which is a complex number and not the axial 

position z . Here, the argument is given in terms of the radial coordinate r 

1 a 	t9Jo(r) 
—--( r 	)=—Jo(r) 	 (19) 

är 
 

1 a 	aY0(r) 
--( r 

t9r 	är 	= 
- Yo(r) 	 (20) 

limJo(r)./'Ti 	1 

	

+0(L)] 	 (21) [cos(r— —) 
r -~ 

rlooY0H 	
/Y [sin(r -+) + 0 (-f-)] 	 (22) 

1irnJo(r) 	1 + 0(r2) 	
(23) 

lirn[ Y o(r) - --ln(r)] 	0 (r2) 	 (24) 

IimJ1 (r) 	0 	 (25) 

lim[Y1(r)+ 	] 	0(r) 	 (26) 

dJo(x) =—J
1(r) 	 (27) dr 

dYo(r) =
— Y i(r) 	 (28) dr 

J(r) <1 ,n =0,1 	 (29) 

Jj (r )Yo(r) - Jo(r)Yj (r) = 	 (30) 

Using the above properties one can show that, ([101, Appendix C section 1.2, 

Eqs.(C.1)-(C.6)): 
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1 0 (r 0W(rP))_p2W(r,p) 	 (31) --- 
rOr 	Or 

W(a,p)=O 	 (32) 

a 	- 0W(a,p) 	2 	 (33) 
Or 

urn [p1  (p )W(r ,p )] 0 	if f (oo)=0 	 (34) 
p -00  

Taking the Weber transform of Eq.(9) with respect to the radial coordinate r, 

integrating by parts with respect to r, changing the order of integration, and 

differentiation with respect to z formally (assuming a finite z), and using the above 

properties, we obtain ([101, Appendix C section 1.3, Eqs,(C.7)-(0.20)): 

Di 
d2(z 1P-

( z ,p) - 	N * =0 	 (35) 

for 1=1, O<z <b; for 1=2, b <z <00 

where 

= p2D1  + XK 1  ,i=1,2 	 (36) 

Pi is real since p, D1 , X, and K are positive. The boundary conditions (12)-(15) are 

transformed to: 

dN 1 (p ,0) = 	
(37) 

dN 2(p 

dz 

dN i (p ,b) 	
e D2 

dN 2(p ,b) 
=— 

dz 	 dz 

The solution to Eqs.(35)-(40) is given by: 

 

 

(4O) 
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Piz 	 1_Liz 
k 1 (p ,z) = A1(p) sinh(_rD ) + B 1 (p) cosh( 	) 	 (41) 

2 N*Di 
-- 	 0<z<b 

11 12  

N 	
112Z 

2(p,z)==A 2(p)exp(— 	 ,, )+ B 2(p)exp(,....) 	 (42) 

2 N*D2 
b<z<oo 

From Eq.(37) it follows that A 1 (p )0. From Eq.(38) it follows that B2(p )0 since 112 

is positive.. From the remaining two boundary conditions we have that ([10], Appen-

dix C section 1.4, Eqs.(C.21)-(C.27)): 

2ND 1  2ND 2  

B j (p)= 	 (43) 
____ 	Pi 	 111b 

cosh( 	) + —(—)2sinh( _) 

1i D1 
1 	11 1 b 	2 NeD1 	2 NeD 

A2(p) 	
e 	

)_()Si11h( 	
Pi 	- 

(44) ____ 	 111b 111b 
+ 	--(-) 2 sinh( f_) cosh( 

Before we proceed to take the inverse transform we consider the following auxi-

liary problem. The auxiliary problem will help us in obtaining partial inversion of 

inverse Weber transform of Eqs.(41) and (42). ([101, Appendix C section 1.5, 

Eqs.(C.30)-(C.33)): 

D,8 ÔN, 
--(r-----) —XK 1  N1  =0 	 (45) 
r ar 	8r 

with the side conditions that: 

N,(a )=1 	, N1 (oo)=0 	 (46) 

K0(fl1 L) 
The solution to this problem is 	

a , where K0  is the modified Bessel function of 
1o(/3) 
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the first kind of the order zero [section 7.2, ref. 31, and fli  is defined as: 

XK, a 2  
=1=1,2 	 (46A) 

Di 

Some properties of K 0  are given (Eqs.(9.6.27) and (9.7.2) of Ref.[9]): 

d K0( r) 

dr 	
= —Kj(r) 	 (46B) 

lim[Ko(r 	 [1 - .._] 	 (46C) 

Now if we use the Weber transform on Eq.(45) we obtain that: 

(47) 
ir Dp 2  ± X7i 

Now taking the inverse transform and knowing the exact solution yields the follow-

ing identity: 

K0(91 -i-) = 2 
f 
 00  

J0(rp )Y o(ap) - J0(ap )Y o(rp) 	pdp 	
r >a 	(48) K0(/3,) — ir 

0 	1 J0(ap ) ] 2 + [ Yo(ap) I 2 	

2  + 
X K 1  

Di  

Taking the inverse Weber transform yields N i ( r ,z) and N 2(r ,z). The final 

result with the aid of identity (48) is: ([10], Appendix C section 1.6, Eqs.(C.34)-

(C.36)): 

00 

_____ 	
1 	- 1 

)' ). 	 (49) N i(r,z) = N' [ 
K0(01 ) 	7r

0 	2 + 
D2 

X K 
2 P2+ 

cosh( 	pdp 
J0(tp )Y0(ap ) - J0(ap )Y0(rp ) 

,  

z 1 b 	p1 	
1 [J0(ap) 12 + [ Y0(ap) ]2 	

cosh( 	) + 	()2sinh( 	) 
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r>a ,O<z<b 

K0(82- 	
2 f

00 

	

 1 	- 	1 	
(50) N2(r,z)=N*[—a_

+
K(fi)—j( 	

p2+x 

D1 	___ 

	

J0(rp )Yo(ap ) - J 0(ap )Ya(rp) 	
sinh( 

J0(ap ) ] 2 + [ Yo(ap )]2 	 1 b 	D 1  -- 	p 1 b 
cosh( 	) + —(--) sinh( 

p2(z—b) 	1 exp—[ 	_. }pdpj ,r>a ,b<z<oo 

Before we proceed to verify that Eqs.(49) and (50) are the solutions to our prob-

lem we make some general observations. As b —O, waste is exposed to porous rock 

only. In this case the z domain of Eq.(49) vanishes and Eq.(50) with the aid of 

I(o(/92 !i) 
Eq.(48) is reduced to N* K( 

	
, which hasbeen derived previously in section 7.2 of 

[3]. On the other hand, if b oo the waste is exposed to a water medium oniy. In 

this case Eq.(50) vanishes and for any finite z Eq.(49) is simplified to N 

The terms in Eqs.(49) and (50) have the following significance: the first term 

indicates the concentration of a diffusing radionuclide if it was exposed to medium I 

only. The second term indicates the effect of a second medium on the concentration, 

i.e., perturbation of the concentration due to the other medium. 
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As a short-hand notation we introduce the following terms: 

A(P 
1 	•1 

Op<oo 
XK2 

- 	
X 	 (51) 

J0(rp )Yo(ap ) - J0(ap )Yo(rp ) 
)
O<a<r, O<p<oo 	(52) H(r ,p) 	{ J(ap) 12  + [Yo(ap) ]2 

cosh( 
'liz 

) 
G i (z ,p) 	 ,O<z <b, O<p <oc (53) 

____ 	 1b ____ 	Ph D 1 	p____ 
) + —(--)2sinh( 	-;) cosh( 

11 1 b 	p2(z–b) 
-)

2 sinh( 	) exp -  
C .0 2 D2 

p 1 b 
,b<z<oo,O<p<oo (54) 

) 
cosh( 	

+ 412 D2 

00 

I (r ,z) = f H(r ,p )G1  (z ,p )(p )pdp 	,i =1,2 	 (55) 

for 1=1, r >a , O<z <b ; for 1=2, r >a , b <z <oo 

With these notations we can write: 

f Ki9 L) 
N1  (r ,z) = N 

* 	a + (_1) 1  -- I' (r ,z ) 	,i =1,2 	 (56) 1 ir 

for i=1, r >a , O<z <b ; for 1=2, r >a , b <z <00 

Verification of Eqs.(49) and (50) is given in [10] Appendix C section 1.7. 
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4.1. Mass Flux Derivation 

We are also interested in the mass flux of species in the radial and axial direc-

tions. These quantities are given by: 

äN i(r,z) 

	

0r 	
,r>a.,O<z<b 	 (57) 

ÔN 1 (r,z) 
r>a,O<z<b 	 (58) 

8N 2(r,z) 

	

j (r ,z) = — fD 2 	 ,r >a, b <z <00 	 (59) 
t9r 

t9N 2(r ,z) 

	

j (r ,z) = —D 2 	 ,r >a , b<z <co 	 (60) 
äz 

Of particular interest is the mass flux on the cylinder surface, i.e., mass loss rate per 

unit surface area of infinite cylinder, which from Eqs.(49) and (50) and with the aid 

of Eqs.(55) and (56) is written as ([10], Appendix C section 1.8, Eqs.(C.66)-(C.69)): 

ÔN 1 (a ,z) 
,O<z<b 	 (61) 

00 

	

D 1N * [ K 1 (91 ) 	4 	
) 	

pd 
)G 	

p 	J 

	

a 	K0(i31 ) 	ir 	 [J0(ap )]2  + [Yo(ap )]2  

8N 2(a,z) 

	

j (a ,z) = — fD2 	
8 	

, b <z <00 	 (62) 
r 

00 

	

fD 2N ['32  K92) 	 ______________ 

	

________ ______ 	 p dp 
= 	K0(fi2) 

± 	f(P )C 2(z p 
[ J0(ap )]2  + [Yo(ap )}2 I a 

Another quantity of interest is the rate of mass loss from a finite portion of the 

infinite cylinder which is equal to the height of the waste cylinder. The mass loss rate 

to the fissure and porous rock is given by: 
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b 

	

71 = 47raf jr (a ,z )dz 	 (63) 

0 

b +L 

	

m 2 = 47raf j(a,z)dz 	 (64) 

where we have assumed the waste cylinder height to be 2(b +L). The result of sub-

stituting Eqs.(61) and (62) in Eqs.(63) and (64), respectively, and performing the 

integration is ([10], Appendix C section 1.9, Eqs.(C.70)-(C.75)): 

00 

= 47rD 1N * [b #1
K 1($) - -

p--- f A( P 	 (65) 
K0(31 ) 	7r2  

0 

sinh( 
p 1 b 

pdp 

	

p 1 b 	Pi D 1  ' 	j 1 b 	[J0(ap )]2 + [Y0(ap )12] 

cosh( 	+  __(—)2sinh( 
/bi 

00 

rn 2  = 4D2N' [L 3
2 K1(2) + 	f() 	. 	 ( 66) 

K0(92) 	0 

Pi D1 
1 	p 1 b 	 1u2L 

—(_) 2 sinh( [1 - exp - ( 	
pdp 	

] 

	

____ 	 ____ 	
[J0(ap )}2  + [Yo(ap )]2 

+ ±L(LL)2sinh( 
'T7 

cosh( 	
f/22 D 2  

We assume that the mass loss rate from the cylindrical surface of a finite waste 

cylinder with the height 2(b +L) is equal to: 

	

tmi + 7722 	 (67) 
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4.2. Numerical Demonstration 

4.2.1. Method of Evaluation 

Numerical results were obtained with the aid of a computer program. Since 

H(r ,p) for a <r <00, O<p <00 is an oscillatory function and has infinitely many zero 

roots, we write the concentration from Eq.(56) as: 

______ 	
2 00 

N(r ,z) = N*{ 	31+ (-1)' . - 	(r,z) 

I 

 ,i=1,2 	 (68) 
K0() 

for 1=1, r >a , O<z <b ; for i=2,.r >a , b <z <00 

where 

c 
LI' (r ,z) = f H(r ,p )G1  (z ,p )z(p )pdp 	,i =1,2 ,n=O,1,2,... 	(69) 

where ,, is the nth zero of H(r ,p), and c=O. The value of the integral between two 

successive zeroes is evaluated by the subroutine DO1AJF from the NAG library [11]. 

DO1AJF is a general-purpose integrator which calculates an approximation to the 

integral of a function F(x) over a finite interval (A,B): 

B 

JF(x)dx 

The routine can be used when the integrand has a singularity, especially when it is of 

an algebraic or a logarithmic type. The integration is stopped when the contribution 

from the nth interval is less than 10 of the concentration. 

The values of ç  are determined first by estimating its magnitude by the follow-

ing asymptotic result [Eq.9.5.28 in Ref.91: 
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fir a 	
,n =1,2,.,., r > a 

a 

and then using the C05AGF subroutine from the NAG library to get the exact result 

within a desired accuracy. C05AGF locates a simple zero of a continuous function 

from a given starting value, using first a binary search to locate an interval contain-

ing a zero of the function, then a combination of the methods of linear interpolation, 

extrapolation and bisection to locate the zero precisely within the desired accuracy 

which is an input to the subroutine. The subroutine also requires an interval as an 

input. The interval is used to bound the position of the zero root. The interval 

between successive zeros is almost known from Eq.(70). Therefore, the interval is so 

chosen to ensure that the same zero root is not encountered twice. The program 

(UCBNE-79) was executed on a VAX-8650 at Lawrence Berkeley Laboratory. 

4.2.2. Numerical Results 

For a waste cylinder a =15 cm, we use D 1=D2=10 5  cm2/sec, where we have 

neglected the effect of tortuosity on D 2 . Table 1 shows the values of 0 with K 1=1 

and 132 for some radionuclides of interest. Values of #I  and 132  are evaluated with the 

aid of Eq.(46A). 

Figure 2 shows the variation of concentration at the fissure center line obtained 

from Eq.(49) with -- for different -- values. The -- =0 curve indicates that the 

fissure width is infinite and the cylinder is exposed to ground water only. The 

=oc curve indicates that the cylinder is exposed to porous rock only, i.e., the 

fissure width is zero. One observes that the concentration is bounded by the above 
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Figure 	2 V&riation of norm&!izd concentration with r/a for different a/b ratio. 
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Table5.1 	Values of 0 and 02 for some radionuclides of interest. 

Nuclide Half-life,yr K2 a 

Tc99  2.12x105  5 1.51x10 3.38x10 3  

U234  2.47x105  50 4.47x10 4  3.16x10 3  

237  2.14x106  100 4.78x10 4  4.78x10 3  

Pu242  3.79x105  500 1.14x10 3  2.55x10 2  

Am24' 4.58x102  500 3.29x10 2  7.36x10 

Se79  6.50x104  50 2.74x10 3  1.94x10 2  

Sn 126  1.0x105  1000 2.22x10 3  7.01x10 2  

Th230  8.0x104  5000 2.49x10 3  1.76x104  

Ra226  1.6x103  500 5.55x10 3  1.24x10 1  

5.73x103  10 9.27x10 3  2.93x10 2  

a. 	Typical values of retardation coefficient in basalt 

two extreme cases. The thinner a fissure is, the lower the concentration in the fissure. 

For b =0.1 cm and --=150, the concentration in the fissure is within few percent of 

the concentration of --=oo. Hence, for a waste cylinder and fissure width (-->>i) 

one can approximate the concentration at the fissure center line by the concentration 

of a radionuclide exposed to porous rock only, i.e., =co. 

Figure 3 shows the variation of concentration of a long-lived radionuclide at the 

fissure. center line with the normalized radial position .1  for different K 2  values. 



20 

Here, we have chosen a fissure width of 2 cm, hence --=15 and the concentration in 

the fissure is not within few percent of --=oo ( solid rock). As K 2  increases the con- 

centration in the fissure decreases. Because as K 2  increases, the rock sorbs more 

nuclide and behaves as a stronger sink, hence extracting more nuclides from the 

fissure, which results in a decrease in the concentration. 

Figure 4 shows the variation of the normalized concentration at the fissure's 

center line with the normalized radial position for different 0 values. As 0 1  

increases, more nuclides decay, resulting in a lower concentration. For a short-lived 

radibnuclide the concentration drop is almost exponential with -- as can be seen 

from Figure 4 for 0 1 =2.9x10 2  For a long-lived radionuclide the concentration van 

ation is very gradual. 

Figure 5 shows the variation of the concentration at 2 radii away with 	for 

=15. Also, the concentration far away from the fissure, i.e., as z-o which is the 

asymptotic value is shown. One notes a flat concentration profile in the fissure. The 

concentration decreases as z increases beyond b and eventually will approach the 

asymptotic value. At --=26 the concentration is within 5 percent of the asymptotic 

value. Therefore, for the parameters chosen here, the region of rock which is 

influenced by the fissure is about 26 cm. One can conclude that concentration profile. 

in a rock with a single fracture is a good approximation for the concentration in a 

porous rock with multiple parallel fracture provided the distance between fractures is 

greater than 50 cm (for the parameters chosen here). If we had assumed that the 
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radionuclides do not diffuse in the radial direction in the porous rock then it would 

have followed that the concentration tends to zero as z —.00. Because the radionu-

clide would have decayed away by the time it would have diffused to .z =00. 

We have evaluated concentrations of different radionuclides in the fissure as a 

function of radial position. The numerical result indicates that the concentration in 

the fissure is almost uniform in the axial direction comparable to Figure 4. The fol-

lowing results were obtained: 

The wider the fissure width becomes, the greater the concentration variation 

- 	 in the axial direction. 

The larger the value of K 2 , the greater the concentration variation in the 

axial direction. 

• 	(3) 	The shorter the half life, the greater the concentration variation in the axiaL 

direction. 

However, even for the most extreme case of K 2=104, b =O cm and the 

• shortest-lived radionuclide from Table 1, numerical tesults show that the concentra-

tion at the fissure/rock interface is ~O9.  perçent of the concentration at the 

fissure's center line. 

Before we proceed to give the numerical value of fluxes, we investigate the effect 

of porosity on mass flux. Consider the case where K 2=1 (a non-sorbing nuclide), and 

D 1 =D2. Equation (51) yields p )O. From Eqs.(61) and (62) it follows that: 

N'D 1 	1 (fl1 ) 
j, (a ,z) = 	

K 	
O<z < 	 (71) 

a 
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N*D2 K1(02) 
j (a ,z ) = 

a 	/92K() 	b <. < 	 (72) 

Since /91=2  it follows that the surface mass flux decreases by a factor of f across the 

interface. 

Figure 6 shows the variation of surface mass flux with 	for different 	ratios. 

One observes that a thinner fissure has a higher mass flux, because the concentration - 

is lower (see Figure 2) and the gradient is greater. Mass flux is almost uniform in the 

fissure and increases as the interface is approached, drops by a factor of f across the 

interface, and thereafter increases and approaches the asymptotic value (z—oc). The 

asymptotic value is given by j (a ,z) of Eq.(72). For --=15 after approximately 20 

cm the asymptotic value is reached. One observes that due to porosity factor the 

mass flux into the fissure is greater than the mass flux into the porous rock. 

Figure 7 shows the ratio of 
j2,b) 

 for carbon-14 as a function of normalized 
22 (r ,b ) 

radial position r . Numerical results show that more mass is transported in the 

radial direction on the porous side of the fissure than is diffused across the interface 

from fissure into the porous rock. At a distance of 2 radii away almost 200 times 

more mass is transported in the radial direction than the axial direction. The ratio 

increases as the waste surface is approached. On the waste surface the ratio is 

infinite due to uniformity of concentration with z , i.e., j 2(r ,b )==O. Numerical results 

indicate that the radial diffusion in the porous rock is important and should not be 

excluded from fracture modeling as has been done by previous investigators. 
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Figure 8 shows the mass loss rate of carbon-14 from a typical waste cylinder 

with a height of 240 cm, as a function of K 2  values. A typical high-level waste glass 

cylinder has a height of 240 cm (Section 7.5 of Ref. [3]). The numeric value of 
4 

parameters are shown on the figure; the saturation concentration is chosen to be 

equal to saturation concentration of vitreous silica and is for demonstration purpose 

only. The end effects are neglected. As K 2  increases more nuclides are adsorbed by 

the porous rock, which results in a decrease in the concentration of the radionuclide 

in the porous rock (see Figure 3). As a result the concentration gradient in the radial 

and axial direction becomes steeper and the mass flux increases. It follows that more 

radionuclides diffuse from the fissure into the porous rock due to the steeper axial 

concentration gradient, which in turn results in a depletion of radionuclides in the 

fissure and an increase in the radial concentration gradient in the fissure. Data indi-

cate that rh2 increases more rapidly with an increase in K 2  than does ih 1 . From 

Table 1, K 2==10, and from Figure 8 it follows that 3 times more mass is lost from the 

cylinder to the porous rock than from the cylinder to the fissure. Data indicate that 

neglect of radial diffusion in the porous rock underestimates the dissolution rate of 

waste considerably. 

Here, we estimate the mass loss rate by making the following simplifications 

which are based on the numerical results (Figure 6). 

Mass flux in the fissure is independent of z position and is equal to 

N*D1 K1(91) 

a 

Mass flux in the porous rock is independent of z position and is equal to the 

asymptotic value, i.e., 
€N D2 

82 
 K1(fl2) 

a 	K0($2) 
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It follows that: 

t(a,z)= 2b N*Di$i1 	 (73) 

43 

ha,z)=27rfND 2 Lf3 2 ., Q\  . ( 74) 

Using asymptotic values of K o(x) and K 1(x) for small x [Eqs.(9.6.8) and (9.6.9.) in 

Ref. 9], we obtain: 

• 	2lrbN*D i  
m 1 =— 

1n(/3) 

2rT.T\T* L. 

rn2=- 	
ln(/32) 	 . 	

. 	 ( 76) 

For carbon-14 using the values of 3 1 , and /92  given from Table. 1 we c1culate 

rh I =2.7x10 9  g/sec and n 2= 8.6x10 9  g/sec. The exact values from Figure 8 are 

	

-9 • 	-9 m 1  ==3.4x10 g/sec and m 2= 8.lxlO g/sec. 

5. Conclusions 

The steady-state concentration of a diffusing nuclide from a waste cylinder has 

been obtained from the exact analytical solution. Here we investigate two 

phenomena which have been neglected by the previous investigators [1-5, 7]: 

Effect of axial diffusion in the fissure. 

Effect of radial diffusion in the porous rock. 

Our numerical results indicate that, for a waste-cylinder radius of 15 cm and 

fissure width of 2 cm, one can neglect diffusion in the axial direction in the fissure, 

i.e., assume a uniform concentration in the axial direction. The steady-state concen-

tration at the fissure/rock interface is >99.9 percent of the concentration at the 

fissure's center line. Hence, one can use the simplification introduced by [1]-[5] and 

(75) 
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[71, i.e., concentration of the nuclide in the fissure in the transverse direction (z 

direction) is uniform. 

On the other hand, radial diffusion in the porous rock is very important and 

should not be neglected as has been done in previous investigations. At steady-state 

about 3 times more mass is lost from the waste cylinder to the rock than is lost to 

the fissure. Furthermore, results indicate that close to the waste cylinder approxi-

mately 100 times more mass is transported in the radial direction in the porous rock 

adjacent to the fissure than is diffused across the fissure/rock interface. Therefore, 

neglect of radial diffusion in the porous rock will cause underestimation of the disso-

lution rate. 

IV 

U 
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