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EXECUTIVE SUMMARY

This report presents analytic solutions, numerical implementation and numerical illustra-
tions for the transport of radioactive decay chains of arbitary length in porous media of

limited and unlimited extent.

The transport of long radioactive decay chains is especially important in the safety assess-
ment of geologic repositories of spent nuclear fuel in which there are several long chains
of the actinides. Failure to account for nuclides generated during transport may result in
the underestimation of releases prescribed by regulations. Hitherto no analytic solution
nor computer codes have been able to handle long chains. The solutions presented here

are exact and general.

It is important to derive solutions for the problem of chain transport in porous media of
limited extent for practical reasons. For example, the backfill layer in a nuclear waste
package or the damaged rock zone in a repository is a porous medium of finite extent. A
different solution is necessary because there may be different fluid flow conditions inside

the backfill and outside the backfill in the rock.

The analytic solutions for the problem of chains transport in finite and semi-infinite media
are complicated. Sophisticated numerical methods were required in order to implement

the solutions as computer programs. These steps are detailed in the report.

The main part of this report are illustrations of the solutions with problems in nuclear waste
disposal. We show the transport of two chains, 23¢U—23°Th—??°Ra and ?**Cm—?*' Am—23"Np
—233J—22°Th, from concentration-limited boundary condition and Bateman-type boundary
condition, in a porous region of limited extent such as a backfill and in a semi-infinite field.

These illustrations are examples of the capabilities and usefulness of these solutions.
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TRANSPORT OF RADIOACTIVE DECAY CHAINS
IN FINITE AND SEMI-INFINITE POROUS MEDIA

1. Introduction

In the prediction of radionuclide migration to determine compliance with regula-
tory standards[l], it may be necessary to consider radioactive decay chains explicitly.
Actinide isotopes in spent fuel are mostly members of radioactive decay chains.
Failure to account for the generation of daughter nuclides during the migration of the
chains may lead to under-estimating cumulative releases or release rates|2| prescribed
by regulatory agencies. Available analytic solutions and computer codes such as
UCBNE10.2 and UCBNE25(3] have limitations. The UCBNE10.2 code can only com-
pute up to three members with dispersion, and although UCBNE25 gives a non-
recursive general solution for a chain of arbitrary length, it can only solve the prob-
lem without dispersion. Recently Chambré has generalized the above two solutions[4]
and made it possible to obtain non-recursive solutions for chain transport in porous

media of both finite and infinite spatial extent.

Transport in a finite domain is of interest for several reasons. In a practical
sense such a solution is needed in nuclear waste disposal to evaluate ground-water
flow in the region near waste packages, such as within the backfill or damaged rock
zoné. It is also of general interest. Moét systems of equations for ground-water con-
taminant transport invoke a concentration or flux boundary condition at some loca-
tion, most often at infinity. In this work we used a mixed boundary condition, allow-

ing the specification of concentration and flux at a specified location rather than at



infinity. We are not aware of other solutions of this type.

The following analyses deal with the migration of radioactive chains of arbitrary
length in geologic media. The governing equations are sufficiently general to model
species transport by advection and dispersion in a water-saturated porous medium.
They can also be applied to diffusional transport of radioactive chains where advec-
tion is negligible.

The objectives of this study are: To obtain analytic solutions in closed form of
the transport of radioactive decay chains of arbitary length in porous media of finite
and semi-infinite extent; to implement the solutions in computer codes which are
practical to use; and use the computer codes for numerical illustrations to show the

usefulness of the analytic solutions in the U. S. nuclear waste repository program.

The formulation of the equation system and its solution form are given in Sec-
tions 2 and 3 for finite and semi-infinite media, respectively. The solutions give
nuclide concentrations in exact closed form (non-recursive) in finite and semi-infinite

media. Numerical illustrations of the solutions follow in the respective sections.



2. Mass Transport through a Finite Medium

2.1. Theoretical Analysis

In a one-dimensional finite domain D; with flow along the z direction and con-

sider the canonical system for 0<2<L and ¢>0
dN, 0N, 82N,
1 3t +v 9z +>‘1K1N1 = Dl 822
ON, 0N, 82N,

2 6t +’UW+)\2K2N2 = DQ"—az_zz-*-)\lI{lNl

(2.1)

O | N NHGN, DaQN'. KGN,
eat+”az+;;f— .'6224-.';.'

which is to be solved for N;=N{(z,t), the concentration of the ** member, in av one-
dimensional domain i)f for times ¢t >0. In fact, this system of equations is general that
we will also apply it to the case of (semi) infinite domain. D, is the dispersion
coefficient of the individual species to be specified later, K; the species retardation
coefficient, )\; the decay constant and » the ground water pore velocity. The functions

N{z,t), +=1,2, - - - are sﬁbject to the initial conditions

Ni(z,0) =0, €Dy (2.2)

and the type-IIl boundary conditions

IN;
—Dqe 3 +veN; = veNPP(t) for 2=0, t >0 - (2.3)
z

where ¢,(t) = 0 for t <0, and € is the porosity of the medium

‘—D;G

ON;
az‘ +veN; = h[N,-—N,l(:)] for z=L, t >0 (2.4)

where NJ(t) is the average concentration of the nuclide outside the span.



Here h is the mass transfer coefficient describing the méss transport at z=L, into a
medium z>L, in which the s* species concentration is a prescribed function N)(¢).
The boundary position z=L can, for example, be interpreted to represent the bio-
sphere boundary or the backfill-rock interface. As h varies from O to oo, the flux
through the boundary at z=L varies from zero to some maximum value causing the
species concentration to decrease there. The left hand side of both (2.3) and (24)
represent the total fluxes of species i through the boundaries z=0 and z=L, respec-
tively, while the right hand side represents the rate of supply of the same species in
terms of the prescribed integrable function NP¢,(t) and N)(t) at 2=0 and 2=L, respec-
tively. These functions describe the time release of the chain. members from a waste
form surface located at z=0 and from the biosphere or backfill-rock interface located
at z=L. In case of no advection the terms involving v are dropped from (2.1) and

replaced by other parameters in (2.3) and (2.4) as will be discussed later.

The general form of the equation system (2.1) is

K ON: | v O N—azN‘ N, i=1,2 (2.1a)
D; ot +D.' 92 FVN= 222 +V;1 Ny, =12, la
where
K\ Kioho
vy=0, v;= st b (2.1b)

" Via=

D; D;
The aim is to obtain the general (non-recursive) analytical solution for Nyz,t). On
account of the linearity of (2.1), the solution for the individual chain member N; can

be represented as a sum of functions, which satisfy (2.1), and selected boundary condi-

tions (2.3) and (2.4). We specify



Ny(z,¢) = N{(z,1)
Ny(z,t) = N{D(z,t)+ N(2,t)

Ny(z,t) = N{(z,8)+ NP (2,8)+ NP (z,1)

and for an arbitrary ¢* member

Nie,t) = NO(a, 14 LNz, ) (25)
=1 .

Thus, in order to obtain the concentration of the ¢* member, every function N)(z,t)

must be known. We begin with the construction of N{!)(z,). It is chosen to be a solu-

tion of (2.1a) (with vy= 0) which satisfies both the initial condition (2.2) and the boun-

dary condition (2.3). This determines N,(z,t). To determine Ny(z,t) we require two

solutions of (2.1a). N{V(z,t) is chosen so that it obeys the initial condition (2.2) and

the homogeneous boundary condition (2.3) with N9=0. This function yields the con-

tribution to Ny(z,t) which is due to the radioactive decay of its precursor N,(z,t).

Nf{2(z,t) on the other hand is chosen to satisfy the inhomogeneous boundary condition

(2.3), as well as of course (2.2). Since the precursor contribution to Ny(z,t) is already..

accounted for, the inhomogeneous term v;N; is not included in (2.1a) When one solves

for Nf2)(z,t). One proceeds comparably in the construction of Ny(z,t). N§(z,t)and

N:g?)(z,t) are precursor contributions stemming from chain members N,(z,t) and
Nqy(z,t), respectively. Their solutions of (2.1a) satisfy homogeneous boundary condi-
tions, with N9=0, while N{)(z,t) yields the contribution to Ny(z,t) due to the inhomo-
geneous boundary condition (2.3), with N9>0. However, for the determination of

N§)(z,t) the inhomogeneous term v,N, is dropped from (2.1a).



According to this decomposition of the problem, the functions N}7)(z,t) must

satisfy the following equation system for z€D;, t>0

BNy N IV '
vy=0, £=1,2,...,1, j<L. (2.6)
The functions are subject to
N{)(z,0)=0 (2.7)
0 ZEON L g0, = o, NBves 1), st (2.8)
—Dgé%MHMNW(L,t) - h[N;ﬂ(L,t) - a,,.NL(t)], i<t t0 (2.9)

where 6;; is the Kronecker delta which vanishes for £+ and is unity for ¢=j5. Furth-
ermoré

NP (2,6)=0, for €< (2.10)
which assures that for £<j the inhomogeneous (source) term v,_;N,_, vanishes. At
this point one can verify that the solution to (2.6) through (2.8) when substituted into
(2.5) will satisfy the original equation system (2.1) to (2.4) due to the linearity of this

system.

We now take the Laplace transform of (2.6) with respect to the time variable

and define

Mo [ N a0t b= 6 {0)

The transform of (2.6), on utilizing the initial condition (2.8), yields



W

I{l ’
D[ s+

N~ _y, N2 C(2a1)

42 Dy dz

for 1',\7?.)=1T/'£‘7')(z,s). It is convenient to remove the first-order derivative term by set-

ting
o _0_1 .
N (z,0)=¢ %" i (2,9) (2.12)
Then
) [ K, v ol ) e DD 513
—|=£ el ) = — i -1 :
= B, s+ ) nf venie | (2.13)
With
. Kt Py o_ v 2 v 1 1
(= D, s+4qi | qlf["ﬁ'( 5D, | 7‘=_2(D¢—DH) (2.13a)

(2.13) reduces to the compact form

d*n}?)(z,s)

= = pent)(z,0) = —vin(2.)e T, <
F4 ' L

This differential-difference equation system with variable coefficients is the governing
equation of our problems. Also, (2.10) transforms to

nbil(2,0)=0, €<j | (2.14)
The general solution to these equations is a matter of some complexity. Here we con-

sider two special cases of (2.13) which describe a number of physically important

models.

Equal Dispersion Coefficients

We assume the dispersion coefficients of the radioactive species in the medium

are equal, i.e., D,=D for all £. Then ~, vanishes, removing the complicating



exponential term from (2.13), resulting

d%n}?)(z,s)

I _ mnf")(z,s) = —Vl_lnfi)l(z,s), i<t (2.15)

The boundary conditions transform to

De an§(0,s)

_ —+hinf(0,8)=0,;N}vedds), i<t (2.16)
dnf(L, . i
De "Sa(z ?) +honf(L,s)=8¢he 2P N(s), j<t (2.17)

with h1=£29-, h2=h——€é£. The corresponding equation system (2.1) together with (2.2)
to (2.4) describes the migration problem in the presence of advection and dispersion.

For a type-III boundary condition of the form (2.8) and (2.9), the general (non-
recursive) analytical solution for radioactive chains of arbitrary length has so far not
been available to us. As mentioned earlier, the most extensive model to date has been
the recursive three-member chain in a semi-infinite domain D, on which the com-
puter code UCBNE10.2 is based. The other non-recursive solution/computer code,
UCBNEZ25, applies only for the case D=0 in a semi-infinite domain. In this section we
shall solve the problem in Dy, while in the next section a solution in D, will be

derived.

Negligible Ground-water Velocity

Consider again the governing equation (2.13) but now without advection, i.e.,
v=0. By (2.13a) 7, vanishes, thus removing the variable coefficient term from the
differential-difference equation system. For this case, the species diffusion coefficient

D, need not be identical in order to obtain an analytical solution. The advection-free



formulation is applicable to the rock fracture problem where one wishes to account
for the diffusion of radioactive species into rock frém water-filled fissures. Another
possible application can be found in the énalysis of the diffusive migration of radionu-
clide chains with small half-lives in a water-saturated backfill region which surrounds
a waste form. Densely-packed backfill materials, léuch as bentonite, have very low
permeability to water flow so that; thé priﬁcipai mechanism of transport through the
layer may occur by diffusion. In case of the rock fracture problem the domain can be

either D; or D, while in the backfill problem it is D;.

At the present time there appear to be insufficient data to apply the formulation
to the diffusion of species with anisotropic diffusion coefficients. For this reason we
conduct the analysis, assuming the radionuclides satisfy equation (2.15). The solution

given below can however be readily generalized to include unequal D if desired.

Since the boundary conditions remain the same mathematical form as in (2.16)
and (2.17) it is seen that the advection-free problem is merely a special case of the
equal-dispersion problem obtainéd by setting v=0 in the governing equation (2.13) and
replacing the dispersion coefficient with the diffusion coefficient. The two quantities
h, and h, defined in (2.16) and (2.17) as well as their right hand side functions also
peed to be specially assigned acqordingly. In the following we shal[ concentrate on the
solution of the equal-dispersion/diﬁusioﬁ case, and the solution procedures used there

can also be applied to the problem in D,

The Solution of the Problem in D;

The solution of the system of equations (2.15) in Dy is constructed with help-of a

finite Fourier transform with respect to the varibable 2. We define



10

DB p5)= [ KBk 2,8)d (219)
The Fourier kernel K(8,,,2) satisfies the Sturm-Liouville system

d2K(ﬁﬂl ) Z)

o TPk (Bm2)=0 (2.19)
—De—dK—((’?fﬂﬁnth(ﬂm,o):o (2.20a)
Deﬂg;"—’L)-+h2K(ﬂm,L)=0 (2.20b)

The B,,s are the positive eigenvalues of this system. The kernel has the form*

K(B =V 2 LncoBnt) o) 21
Qg .
2 o2\
(ﬂm+al)( +,3,2”+CY22 )+av1
h h C
where a1=—’%€, a2=-526—. The eigenvalues form a discrete, countable spectrum which is

given by the solutions of the transcendental equation

_ Bulo+a)

- 3
Ba—oag

tan(B,,L) m=1,2, - - -

If one applies the kernel to every term of (2.15) and integrates with respect to z over

the interval (0,L) there results in view of (2.18), since 4=0,

2n§(z,s : ; '
j:—‘—-——d E ( - )K(ﬂm,z)dz - Ntnsj)(ﬂm,s) = —Vt—lngi)l(ﬂmrs) (222)

dz?

The integral term J yields, with integration by parts,

nh(z,s
K(B,,,2)dz= [K(ﬂm,z)d—i—(—i -

d2nf?)(z,s)
e :

dz?

*P. L. Chambré, class notes taught in U. C. Berkeley.



z=L

_nsi)(z,s)——dK((f:’Z)‘

l

I .

{ ——,3,2”11,21)(,3,”,8)
l

z=0

By (2.20) and (2.21)

OO _ ko) LB _ akis,1)
dz dz )

so that

dn§)(L,s)
dz

J=K(B,,,L) +agnf)(L,s)|—

dnf")(O?s)

dz - alnf-")(o,s)] B ’%'np)(ﬂmrs)

- K(:Bm,o)[

On applying equations (2.16) and (2.17) together with (2.21) results in

—’

I=K(Bm L)t py=e 20 NHo)+K(Bn,0)81;NE 7 -6d(5) = B5nb?(Brms9)

When this is substituted into (2.22), one obtains the difference equation

[Vl—lnfi)l (ﬂm’s)'l“sljgl(ﬂmrs)] ct
y IS

np)(ﬂm»s)_ ,32 +u
m £

where

K8, L) -% K(B,,,0
o)=L 720y KD g

11

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

and h is the mass transfer coefficient defined in (2.4). Equation (2.14) transforms to

nsi’-)l (ﬂn)rs)=0; eSj

(2.14a)

Equation (2.27) is solved in a recursive manner by setting j=1 and letting £ run from

¢=1 to ¢=¢. ‘This process is repeated for j=2,3, ..., i in order to obtain the solution

for the ¢ members of the chain.



Starting with j=1, and letting £ run through the values 1,2, . . .

from (2.14a) n§)(8,,,5)=0, so that (2.27) yields

n{n(ﬂ,,.,s)=——"’[;(f ::)
m 1

n&l)(ﬁm’s)zuln{n(ﬂm,s)_ 2101(B,s5)

FRT (Br+11)(Bh+1s)

vV Vi191(Bum,8)
(B2+m)(BE+ns) - - - (BZ+u;)

ns(l)(ﬂmys)_

12

,1, one takes

Next one takes j=2 and lets £ run through the values 1,2, ... ,7¢. From (2.14a) one

has n{?(8,,,5)=0. Hence (2.27) yields

g‘;’(ﬂm;s)
LR

)
2) _ o) (Bom,8) - Vago(Bmy8)
Eme) Butus  (Ba+uo)(Bh+us)

néz)(ﬁmxs)=

@) o ves " Vicgo(Bm:8)
W Bwt) (B2+uo)(BE+us) - - - (BZ+m)

Continuing in this manner one shows that in general,

_ At(j)gj(ﬁm;s)

nl(j)(ﬁmrs)_—; i> ]

t

T1(8+n,)

n=j

where

while for j=14 one has

(2.29)

(2.30)
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(IB"US)
r2n+ﬂi

ni(i)(ﬂm;5)= g (231)

Equations (2.29)-(2.31) represent the solution of the difference equations (2.27) and
(2.28).
We turn next to the Laplace inversion process with respect to the ¢ variable. By

K, "
(2.13a), with D,=D, one has ,8?,,+u,,=?(s+6n), where

D
6,=
n Kn

(Ba+42). (2.32)

Hence (2.29) becomes

n.(j)(ﬂm,s)=7(12-0,“')—grj—(-ﬁ——mﬂ,
 [Tie+s) (2:33)
n=j
with
Al =
(et = T\
CGil="3 K, g » (2.34)
n=j D
. . ‘. .
Now the inversion of [](s+6,)" is
. n=j
i -5,
L—1 o= : ‘
‘ i ] 2.36)
H('s+5n) J]Y((sr_én) ( ’
" rn

If one applies the convolution theorem to ¢;(8,,,t) and ¢ with the * denoting the

convolution integral defined by

a(t) * b(t)Efa(T)b(i—T)dT ,

0

equations (2.29) and (2.30) yield,
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—5,t

. N i g Bt
(g =D o St
1 n=J" ]’]’(6r_5n) (237)
ot i
1B )= 5 Bost) % ¢ (2.38) -

This is followed by the Fourier inversion with respect to the z variable. The inverse

transform of (2.18) is given by (with £ now replaced by ¢ in n§?)

n,(")(z,t)= E‘K(:Bm;z)ns“)(ﬂmrt): t>5 (239)
m=] ‘

nz,t)= ST K (B 2InfBt), i=3 (2.40)
m =]

The nf{)(B,,t) in the summation are taken from equations (2.37) and (2.38). The

inversion can be shown to be valid if n{?)(z,t) is continuous and satisfies Dirichlet con-

ditions on 0<z<L with ¢t >0. From (2.32) one separates the 2 dependence as follows
6n_6r=rrnﬂ12n+'7m (241)

where

T,.=D (2.42)

K, K,

1 1 v
— =|(N,—\ —\°r
], Trn [( n r)+( oD ) rn

There results with (2.37), (2.39), and (2.41), on substitution into (2.39) and (2.40), the
inverse function

5.t

1 o0 t n
n(J)(z ¢ 71{)_ '( 2 2 ﬂm; g;(ﬂmz )* e , z'>]'
' n=sm=l .IY( nrﬂm+7nr) ¥
r=J
r#n

w0z, )= D K(B )0 Burt) * ¢

T m=1

On re-introducing the exponential multiplier of (2.12) into the last two equations one
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obtains all component parts of the solution for the chain member i. TheiK substitu-

tion into (2.5) yields the general, non-recursive solution in Dy,

vz 00
M(Z,t)=620'},% ZK(ﬁm;z)gi(:Bm:t) * 6_8“'*‘
{ [m=1

T i@ ) —5,¢
+ ZI.IO‘“)E Z‘K('Bm:z)g;l(ﬂm:t) ¥ €
S S (W

r=j
r#En

L i=1,2, ..., 230, t >0

(2.43)

It is readily verified that the dimensional terms in these equations have the following

units (cgs):

K(B2)=[V1]em], 9B mt)=lom/(cm) ], s=[sec], 8,=[sec ],
Cl=[sec =], T,,=[em?/sec], BZ=[cm™?, v,,=[sec™Y], D=[em?/sec]
It follows from this that Nz,t)=[gm/em?), as required. The form of the solution (2.43)
does not explicitly exhibit the steady state form of the solution Nfz,00). This limiting
form is contained in the convolution time integrals and it results on letting t—oo.
Alternately if one sets s=0 in (2.33) (for > ;) and proceeds with the Fourier inversion
with respect to z, following the indicated steps, one is led to Njz,00). The resulting

series can in some instances be summed in terms of elementary functions.

2.2. Numerical Evaluations

We illustrate the theory with an application of the solution in the finite span
D;: 0<z<L. It is assumed that the chains originate at the repository boundary 2=0,
i.e., there is no other source in the span. The boundary condition at z=0 will be of

type I, which is a special case of the one specified in (2.3). The other boundary
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condition at z=L will be retained in its generality. Both type I and type III boundary
conditions will be applied to z=L while two kinds of initial conditions for

N;j(0,t), i=1,2, - - - will be used.

o~

2.2.1. Case 1: Constant Concentration at Boundaries

In the first example we use the backfill in a nuclear waste package as the porous
medium of finite extent. At z=0 is the waste form-backfill interface and at 2=L is the
outer edge of the backfill, or the backfill-rock interface. We use the following boun-

dary conditions:

N{(0,t)=N?, t>0,:=1,2, - - (2.44)

N{(L,t)=0, t>0, i=1,2,- - - (2.45)
(2.44) means that the waste package holds intact long enough that all members in the
specified decay chain have reached either their solubility limits or the secular equili-
brium before they start leaching out. (2.45) implies that a sink (e.g., a strong water
flow) exists outside the backfill. Later, this type I boundary condition at z=L will be
replaced by the general form of (2.4). As mentioned before, these boundary conditions
are the special forms of (2.3) and (2.4) for which the original problem was solved. By
specializing the parameters in the previous section, the solution to the present prob-

lem is obtained by a limiting precedure.

First the kernel function K(B,,,2) is constructed from the equation system (2.19)

-

and (2.20) with homogeneous boundary conditions of type I. The comparison shows
that in the present case D—0 in (2.20a) and (2.20b), so that a;—00, ag—oc0. With this

(2.21) yields in the limit the kernel function
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| K(ﬂ,,,,z):\/%-sin(ﬂmz) (2.46)

The eigenvalues 3,, are determined from

sinfg,,L=0
with the positive solutions
Bu="rr, m=12, - - (2.47)

Now the theory developed above, and specifically the set of equations (2.23) to (2.27),
assumes that the boundary conditions for K{(8,,,z) at z=0 and z=L are of type III, i.e.,
of the forms of (2.20a) and (2.20b). Since in the present case the boundary conditions
are of type I and thus do not involve the derivative term one must formally make the

following limiting replacements in (2.28):

K(wl) 1 0K(BmL) K(Bn0) 1 9K(Bnm0)

1
De  hy 8z ' De h, 8z :

(2.48)

where in this case hy=¢v , hy=h — ev. Further, a comparison of (2.45) with (2.4) shows
that NJ)(t)=0 so that N}(s)=0. This leaves only the second term in (2.28) which

reduces in time domain with the above to

o Pt g /25 (2.49)

With K(8,,,2) and g{B,.,t) determined the solution of the problem is given by (2.43)

which reduces to

(s 1o 20 2D | o o Pmsinfnz
Nzty=e 2 31V 25

m=1 1

(1—e ™)+
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BmSinS 2

—1 [l (e}
+ XCONS 3 30— (1—e™N 250,60, i=1,2, - - -
7=l n=35 m=1 [](I«mﬂ'zn+7m)5n

r=j
r#n

(2.50)
Next we will show that Equation (2.50) is a special (limiting) case of the more
general solution of type IIl boundary condition at z=L. Here we use the general form

of (2.4), with N}=0, instead of (2.45) at z=L, i.e.,

ON(L,1)

F4

—De +veNy(L,t) = RN,(L,t), t >0 (2.51)

which means the material is transported into a medium with zero average concentra-
tion outside the domain D;. This is true if the finite domain is surrounded by an
infinite medium, e.g., a backfill layer surrounded by rock. Since in this case D=0 only

in (2.20a), we have

h—2E
=00, « =£= 2
0 72 pe De

and the kernel becomes

K(Bm2)="\/ Lfe sin(82), (2.52)

m

where

O

2 2
mt03

m=

(2.53)

The eigenvalues 8,, are now determined from
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tanﬁmL=—-ﬂ—’§- (2.54)

b2
which is to be solved numerically. With the help of (2.48) now evaluated at z=0, one.

has

94Bm,t)= \/ L—fe—ﬁmNP o (2.55)

m

The final result from (2.50) and (2.55) is

2

— xR
Ni(z,t)=e P 2N 3

2 ]ﬂmﬁnﬂmz
L+l | &

—5.
(1—e ")+

m=1

2 | BusinBnz

L4t i
") [0 8841000,
ren

(1—e™™)} 20, £>0, i=1,2, - - -

.=l 17 )
+ LA 5 3

7=l n=j m=1

(2.56)
When h, the mass transfer coefficient, becomes very large, i.e., h—o0, which is
simulated by a very strong water flow outside the domain Dg and results in a large
mass transfer rate into the outside region, one finds from the definition of a,, that

ay—o0. From (2.53) one has ¢,,—0 and hence from (2.52) and (2.55)

I{(ﬂ",,z)=V%_sin(ﬂmz); gf(ﬁm)t)=v%_ﬂmN?

which are identical to (2.46) and (2.49), respectively, and the transcendental equation
(2.54) returns to sinf,,L=0 wit;h the positive solutions specified in (2.47). Therefore,

the final solution (2.56) reduces to (2.50). This demonstrates that the boundary con-
dition (2.45) and hence the solution (2.50) is a limiting case of the more general form

(2.51) and (2.56) by letting h—oo.
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Two computer codes were developed for the above two cases. UCBNES50 is used
for equation (2.50) for infinite A and UCBNES51 is used for equation (2.56) for finite 4.

The following results are calculated using these programs. .

Numerical Examples 2

The decay chains considered in this report are 245Cm—o24lAm—'237Np—>233U—>229Th
and #*U—20Th—?2%Ra. The first one is chosen to show that our solution and algo-
rithm are capable of computing the transport of a chain of more than three members,
while the second one is an important chain as far as nuclear waste disposal and the
human environment are concerned. The domain we consider in this and the next sec-
tion 1s the backfill layer in a nuclear waste package. Because nuclear waste reposi-
tories are likely to be located in regions of low ground water flow, we will assume a
zero pore water velocity (v=0) in the calculations though the solution and the com-

puter code are not limited by this assumption.

The mass transfer coefficient, &, needs more consideration. Because we are not
aware of any experimental data available for this parameter, two previous analyses
are used to estimate a value [2]. Both analyses give the same result (~10" m/yr)
which will be used as the basis for comparisons. For parametric studies another value

of h used in the calculations is 10* m/yr, which simulates a very strong water flow

outside the backfill. "

The values for other parameters are for a potential wet-rock repository in ¢
basalt[5]. The values are: backfill thickness L=30 cm, diffusion coefficient D=10"°

cm?/sec =3.15x10~2 m?/yr, and porosity of the backfill e=0.3. Other parameters used
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in these calculations are listed in the following tables and in the figures.

Figure 1 shows the concentration of the 24U—23Th—2?%*Ra chain, normalized to
NP, as a function of distance at 10 years. 2*U travels faster than the other two
nuclides due to the smaller retardation coefficient. At 10 years none of the nuclides
have feached the outer boundary of the backfill, even for the fastest moving 2*U. At
this time the boundary condition (2.51) has no effect at all. In fact, this figure is valid
for all values of h at this time. This suggests that the semi-infinite medium solution
to be discussed later can be used to evaluate nuclide concentrations during the early

time period.

In (2.50) and (2.56), the solutions include multiple summations and one of which
is an infinite series. Since we cannot in reality compute an iﬁﬁpite series, some error
bound must be imposed to stop the calculations. Here we use 10~® as our criterion.
Thus when the sum of twenty (20) consecutive terms is less than 1078 times the total

sum, the computation of the infinite series is stopped. Since the number of terms

Parameters for Calculations

Nuclides B4y 20TH 2R,
K; 120 1500 300
Typ (yrs) | 2.47x10°  8x10* 1600
N? 1 1 10
Nuclides | 25Cm  ?*!Am 23"Np 233y 229Th
5 K; 150 1020 60 120 1500

Typ (yrs) | 8500 430 2.14x10°  1.59x10° 7430
N? 1 0.1 1 1 1
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Fig. 1. Normalized concentration profiles for 2*U—23Th—225Ra in backfill as functions of distance

at 10 years; concentration-limited boundary condition.
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required is dependent upon the parameters used, it is difficult to predict the exact
value of this number. However, one can see from the form of the solution that the
sine series would converge very slowly at small ¢, since it behaves as sin(nz)/n for large
n, as in (2.32) and (2.47). This means a large number of terms is needed to make such
calculations. To avoid this difficulty use the semi-infinite medium solution for early
time calculations. The semi-infinite solution will be derived in the next section and is
much more convenient to use. It contains no infinite series and is more economic in

computations. We will discuss this further in Section 3.

Figure 2 shows the concentration field at 1000 years. At this time 2**U has
reached steady state and the ‘backﬁll is no longer retarding its migration. Since the
decay of 24U is slow (T, ;=2.47X10° years) its concentration is practically constant
over the whole béckﬁll. On the other hand, although ??®Ra is also in its equilibrium
state (to be shown in Figure 4) the decay effect is readily observable from the concen-
tration drop through the backfill (~ 209). 2*°Th, however, is not in its equilibrium
state due to the high retardation coefficient (K=1500). The concentration profile of
230Th is still rising at this time and will reach its steady state at about 10 years, as
will be seen in next two figures. Another important fact is that for A=10~* m/yr the
- outer edge of the backfill acts as an insulated surface since the concentration gradient

at z=L is nearly zero, as shown in Fig. 2.

Figure 3 shows the normalized concentration as a function of time at the outer
edge of backfill. Figure 4 shows the flux, normalized to NP, of each member at both
ends of backfill as a function of time. The solid curves represent the mass fluxes at

inner surface while the dashed curves the mass fluxes at outer surface. Both figures
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Fig. 2. Normalized concentration profiles for 224U—?3Th—??°Ra in backfill as functions of distance

at 103 years; concentration-limited boundary condition.
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show that 24U and ?2®Ra reach their steady state at about one thousand years while
230Th reaches the steady state at about ten thousand years. Although Fig. 2 shows
that 22°Ra has decayed about 20% in the backfill (the concentration at z=L is 80% of
that at z=0) it does not guarantee that the mass flux out of the backfill also decreased.
In fact, Fig. 4 shows that the radium flux at z=L is one order of magnitude greater

than uranium and thorium, in spite of the shorter half life of ?>’Ra.

Figure 5 shows the eflect of a much higher mass transfer coefficient at 2=L, with
’h' changed to 10* m/yr. At 1000 years, not only **U and ?*Ra have reached their
steady states but 23°Th is also almost at its equilibrium state, as can be seen in the
next two figures. The concentration at outer boundary (2=L) drops to such a low
level that it can be regarded as zero for all practical purposes. This conclusion has

been cross-checked by computations using UCBNE50 based on the solution (2.50).

i Therefore, we will not show seperately the results from UCBNES0, since the results

for h=10* m/yr can be well applied to the case of infinite A (i.e. UCBNES0). Figures 6
and 7 show the concentration at the outer boundary and mass flux at both interfaces
as functions of time, respectively, for A=10* m/yr. In Fig. 6 we have also included the
corresponding concentration profile for k=10"* m/yr (the dashed curves) as a com-
parison. The concentration difference for different b is a_bout six orders of magnitude,
and the radium concentration is closer to that of uranium in the large & case than in
the small A case. This implies that the large h condition will accelerate the speed of
reaching the steady state and the decay effect has very little significance. In fact, Fig.
7 shéws that the mass fluxes at z=L are very close to those at z=0 at large times

(>1000 years) that one can treat all three members as stable nuclides. Comparing
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Fig. 7 with Fig. 4 one sees that the mass fluxes increase about two orders of magni-
tude iﬁ the large h case. Though not shown here, we have also made calculations for
h=1 m/yr and the resultan mass fluxes are identical to those for A=10* m/yr case. In
other words, a mass transfer coefficient of 1 m/yr is lérge enough to simulate the

strong water flow outside the backfill.

To show the capacity of the solution to compute a chain of more than three
members, we also present the results for the 2%Cm—+?*'Am—23"Np—283U—22Th chain.
Figure 8 shows the concentration profile as a function of distance at 10 years. As in
Fig. 1, at this time the nuclides have not reached the outer surface and the boundary
condition at z=L plays no role in the nuclide migrations. Therefore, the semi-infinite
medium solution can also be applied to this time period. The profile of each member
is solely determined by the individual retardation coefficient, and decay has not

affected the results.

Figures 9 and 10 show the‘concentration profiles as a function of distance at
1000 years. In Fig. 9 the & value used is 10~ m/yr; while in Fig. 10 it is 10* m/yr.
Since *!Am has a short half life (430 years) at 1000 years more than 75% of the
released amount has decayed to Z7Np. On the other hand, ?'Np has a very long half
life (2.14X10°® years) and it accumulates in the backfill. For the small & value in Fig.
9, with the boundary at z=L acting as an insulated interface, the increase of %"Np is
very significant. For a large value of & in Fig. 10, h accelerates the speed of reaching
steady state, and the decay éﬁ’ect is not as pronounced as in tile small b case, as dis-
cussed previously. Hence when the mass transfer coefficient is sufficiently large all the

members of this chain except 24!Am can be treated as stable nuclides.
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Fig. 9. Normalized concentration profiles for 245Cm—+241Am—>237Np —233Y—229Th in backfill as

functions of distance at 103 years; concentration-limited boundary condition.
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The analytic solutions and the computer codes are not limited by the zero pore
water velocity assumption. We made additional calculations for the non-zero velocity
case and found that for v=0.01 m/yr, the difference be'tween the zero velocity results
and the non-zero results are less than 5%, while for ¥=0.001 m/yr, the difference is

less than 19, for all times throughout the backﬁll.

Next we investigate a different boundary condition at the inner surface.

2.2.2. Case 2: Bateman-Type Boundary Condition

In this case, a congruent dissolution, band release mode is assumed. The boun-

dafy concentration at z=0 obeys the Bateman equation
1 Y
N{0,t)= }]B;je ™", (2.57)
= v

while the boundary condition at z=L remains the same form as in (2.51). The Bate-
man constant B;; in (2.57) is
I 1 & i .
Bi= ) Ny, [T er]/ﬂ(kz—x i)
m=l

i r=m {=m
L£f

where NZ, is the initial concentration of the m* nuclide and the product term in the
denominator is defined as unity when m=j=:. Examining equation (2.28) one sees

that the only change should be made is to replace N? with (2.57). The results are

A/_2 : -,
gi(ﬂm:t)= L+t ﬂm EB“'C S
m =1

and

Y arasll 5,0t
—b,t 2 o atl—e
gi(ﬂm;t) * ¢ = L+£m ﬂm ZBlge 6,‘—)\1

Jj=1
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D D K,
If we let A, j=b,=) j=7 = (Bntai)—> =7~ (Fatady), where gj=gi=7 A=
(=24 K2y ), then (2.56) changes to
2D’ T p v ' J
2 D i 2t 2 2 ]ﬂmsinﬂmz At
N{(z,t)=e2P == }'Bye * L—e R
SR 2 A ) vl v
=1 ; i o .
+ 300 0B 5 5 Lfe ] i Busitfn? (1 p=5ut)
S AR ) (R LT
o
2>0,t>0, i=1,2, - - - (2.58)

Equation (2.58) has been programmed into a computer code named UCBNE52, and is

used to make our numerical calculations in the following examples.

Numerical Examples

For parameters values used in these calculations see the previous section. For a
Bateman-type boundary condition, we need to know the initial boundary concentra-
tion of each member. To reveal the importance of decay in this case, we make the
following assumptions. In both *U—2*Th—2%Ra and
25Cm—2t Am—B"Np—23U—22Th chains, all the daughters have initially no inventory
in the waste canister, i.e., N;(0,0)=0 for i>2. The mother members (***U and 2*Cm)
have a initial concentration of unity, i.e., N;(0,0)=1. Although we adopt these values
as our input data, we want to emphasize that neither the solution (2.58) nor the com-
puter code UCBNES52 is limited by this choice. One can select any reasonable values

for the initial boundary concentrations in the chain.
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Figures 11 through 15 are for the #*U—2Th—%?°Ra chain. In these figures the &
values are 10~ m/yr. The vertical scale now is logarithmic to show the very small
amounts of the daughter nuclides. Figure 11 shows the concentration profile, normal-
ized to N,(0,0), as a function of distance at 10 years for the 2*U—20Th—%2°Ra chain.
Because initially there is no thorium, all 2°Th come from the decay of #**U. This
figure shows very little ?*Th in the field, since all of it comes from the decay of *U
and 24U has a very long half life. The concentration of ?Ra cannot be shown in this
figure because its value is well below the lower limit of the graph (107%). The solution
(2.58) has one more summation term than Eq. (256) This implies a longer computa-
tion time is required to use this solution than the semi-infinite solutions implemented
in UCBNES50 and UCBNES51. Hence the semi-infinite medium solution should be used
whenever possible to economize the computing time. At this early time period one
observes that the semi-infinite medium solution is a very good replacemeht for the
exact solution (2.58) as mentioned in last section. It means the boundary condition at
outer end (2.51) has not entered into the solution, and Fig. 11 can also be applied to
other values of k. The semi-infinite medium solution for this kind of boundary condi-

~ tion will also be presented in Section 3.

.- Figure 12 shows the concent;ratiovn profile at 1000 years. At this time #**U has
reached its steady state while 2°Th and ?*Ra are still rising. One interesting thing is
that the 2"’_"Ra shows a maximum.inside the backfill. This is because 2*°Th has a higher
rétardation coefficient than 22°Ra inside the backfill, while in the waste form there is
no retardation effect at all. Therefore, the production rate of ?’Ra inside the backfill

is greater than the rate in the waste form, for they both originate from the decay of
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230Th, and 2°Th is nearly constant throughout the backfill due to the flat profile of

234U

Figure 13 shows the concentration profile at t=10° years. Since ?**U has a half
life of 2.47x10° years, one can see the decay effect starting to take place. The pfoﬁle
of 24U is still flat but at a lower value than at 1000 years. 2*°Th and ?*Ra on the
other hand are still rising until one half of **U has all decayed. Then the concentra-

tions of all three members decrease.

Figures 14 and 15 show the concentration and flux profiles, both normalized to
N,(0,0), respectively, as functions of time at both interfaces of the backfill. In Fig. 14
the solid curves indicate the concentrations at waste surface (2=0) while the dashed
ones the concentrations at z=L. The dotted curve is the 2**U concentration at z=L for
h=10* m/yr as a comparison. The 2°Th and #?’Ra concentrations for a large value of
h are less than the lower limit of the plot (10~%) and are not shown here. Due to the
interior maximum of ?2Ra discussed above, the concentration at z=L is greater than
that at z=0 after a few hundred years, which is the time to establish the flatness of
the 224U profile. After several million years, all three members will have decayed out
due to the Bateman-type boundary conditions. As in the case of constant boundary
concentrations, the large h represents a strong flow outside the backfill, and the con-
centration at z=L falls to a very small value (about six orders of magnitude smaller

than for the small & case).

In Fig. 15 the solid curves represent the mass fluxes at =0 and the dashed ones
the fluxes at z=L. We also plotted the mass fluxes of ?°Ra for high & at both ends by

the dotted curves for comparison. For low & we only show U and #*°Th fluxes since
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226Ra flux is too low to be shown. One can see that after 1000 years 2**U has already
reached a state that the mass flux at z=0 becomes almost equal to that at z=L, which
means the backfill can no longer retard the migration of uranium. This state is called
the saturated state. On the other hand, ***Th does not show the same phenomeno and
the backfill still provides some degree of retardation effect for 2*Th. This is also true
for 22Ra though not shown here. The decay effect is strongly exhibited on thorium
flux at z=0, since it has even a higher value than its mother, 24U, after one thousand

years.

The strong water flow can enhance the mass fluxes at the outer surface of
backfill, as can be seen from the dotted curves. Later we will show that for a large
value of &, 22Ra has the lowest mass fluxes in the chain at both interfaces. But these
lowest mass fluxes are still higher than the mass fluxes of 234U evaluated at the small
value of kb after 10° years. Note that the mass flux of 2*®Ra at z=L is higher than that
at z=0 for both values of & due to its faster production inside the backfill than in the

waste form.

Figures 16 and 17 show the concentration proﬁlés as a function of distance for
h=10* m/yr at 1000 and 10° years, respectively. Strong water flow will decrease the
concentrations at the outer interface, which in turn increases the mass fluxes there,
the interior maximum of Ra is no longer seen. Instead, one finds that the concen-

tration profiles approach the secular equilibrium after 10° years, as seen in Fig. 17.

Figure 18 shows the mass fluxes, normalized to N,(0,0), at both ends of backfill
as functions of time for hk=10* m/yr. Again one observes that the large value of A will

accelerate the speed of reaching the saturated state and the decay effect inside backfill
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has less significance than for the small h case. Compared with Fig. 15 one observes
that the time to reach the saturated state for 224U has been reduced from 1000 years
to 100 years. Even ?°0Th now shows some degree of saturation after 30000 years,
which is not observed in the small & case. We also see that for a large value of &,
230Th fluxes are always less than those of 2**U, in contrast to the situation shown in
Fig. 15. As mentioned before, 22°Ra fluxes are the lowest among all three members,
but the flux at z=L is higher than that at z=0 after a few years due to its faster pro-

duction rate in the backfill.

To show the capacity of handling longer chain, we also made some calculations
on the 2°Cm-—+2{Am—23"Np—23%3U—22Th chain. Figure 19 shows the normalized con-
centration profiles as functions of distance at 10 years. It is seen that at this time
period one can use the semi-infinite medium solution to calculate the concentration
profile as in 2*4U chain. Hence this figure can be applied to arbitrary h values. One
important thing to note is that 2?Np also shows an intérior maximum as ??°Ra in
24J—20Th—22Ra chain. It is due to the higher retardation coefficient of 2*!Am (1020)
than that of 2"Np (60). Furthermore, a faster production rate of 2’Np appears inside
the backfill than in the waste %orm. The last two members in the chain, 2%3U and

229Th, have concentrations too low to be shown at this early time.

Figures 20 and 21 show the concentration profiles at 10° years for k=10"* and 10*
m/yr, respectively. In Fig. 20 one notes that all members have reached their
saturated states a£ this time except 2!Am due to its short half life (430 years). Since
#5Cm has a half life of only 8530 years, one sees that both 2#*Cm and 2*!Am concentra-

tions drop to very low values at this time and keep decreasing. On the other hand,
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287Np has the longest half life in the chain (2.14x10° years), it thus remains at a rela-
tively high concentration value and its daughters, 2*U and ??°Th, are still increasing at

this time.

In Fig. 21 one can see that the large value of k accelerates the speed of satura-
tion and the decay effect of each member is not as important. Even 2*!Am shows some
degree of saturation and it is in the secular equilibrium condition with its mother,
245Cm. 283U and 22°Th have not yet reached the secular equilibrium, but the tendency
is apparent. The equilibrium condition will be established after few hundreds of
thousand years. Though not shown here, all previous discussions on the effect of &
can be applied to current situation. For example, for a large value of 4, all members
have lower concentrations and higher mass ﬂuxl’es at z=L than for the small value of

h.
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3. Mass Transport through a Semi-infinite Medium

3.1. Theoretical Analysis

All the equations obtained in last section can be applied to present case with
only minor changes. That is, we can obtain a set of equations (3.1)-(3.43) identical to

(2.1)-(2.43) with some modifications, which will be discussed as follows.

The boundary condition at z—+o0 (since we are working on a semi-infinite

medium) is changed to

a™N;
2"

=0(e™*), for z—o0, k>0, r=0,1, - - - (3.4)

Or in terms of N§/) and n{?) one has

3N (2,t) _

P O(e™*), for z—00, k>0, r=0,1, - - - (3.9)
zf

8™nfi(z,s)

Py =0(e™), for z—00, k>0, r=0,1, - - - - (3.17)
2

Now we introduce an infinite Fourier transform with respect to the z variable

nﬂj)(p,s)=f:OK(p,z)n£5)(g,s)dz (3.18)

The Fourier kernel K(p,z) satisfies

. _

%‘2&1)'+p21((p,z)=0, 0<z< 0 (3.19)
r4

-Deii%gﬂ+h11<(p,o)=o ' (2.20)

and instead of (2.20b), K(p,z) satisfies a boundedness condition as z—oo. The solution
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to this problem is given by*

Y T 621

p replaces the eigenvalues 3,, in (12.19), and it constitutes a continuous spectrum of

range 0<p <oco. One now transforms (3.15) with help of (3.18). This leads to a set of
steps comparable to (2.22)-(2.27), except that L is replaced by co. On account of the
boundedness of K(p,z) and its derivatives and in view of (3.17) the contribution to Jat

z=o00 vanishes leaving us with

[w_lnii’l(p,s)+5uaz(p,6)]

nf)(p,s)= - . i<t (3.27)
P+
where
odp )= Npues f2) (3.28)
and

nfl(p,5)=0, ¢<j
The steps of the solution of the difference equation (3.27) are identical to those in Sec-
tion 2 leading, on inverting with respect to ¢, to equations (3.29)-(3.38), with 8,

replaced by p. However, the Fourier inversion with respect to z transforms to

n.“)(z,t)=fK(P,2)n."')(p,t)dp, i> ] (3.39)
2z, 0= K(p,2)nl(p,)dp, i=i (3.40)

Hence all steps between equations (2.41) to (2.43) remain unchanged and one obtains

*P L. Chambré, class notes taught in U. C. Berkeley.



55

the corresponding equations (3.41)-(3.43), except 8,, replaced by p and the summation

S, by j:o( ) dp.. The result is the general, non-recursive solution in D
=1

5. D - —5t
N.~(z,t)=e2DE{fh(p,z)a;(p,t) *e “dp+

. . -5t
i—1 A K ,2)g 5 t})xe *
+ 20’(1)2 '0 (p ; )g.‘l(p7 ) dp . OSZ<OO; t>0’ Z‘=1,2, ..

. TIT o +7)

r=j
r#n

(3.43)

with g,(p,t) prescribed by (3.28). One can verify by dimensional arguments of the

right hand side of (3.43) that Ny(z,t)=[gm/cm3].

3.2. Numerical Evaluations

In this section, the general solution (3.43) obtained above will be applied to two
special cases so that one can have some insight into this analys‘is. In either case, a
type-I boundary condition will be used at the waste surface and a suitable form of the
resulting solution will be derived to make ﬁhe computational work easier and more

practical.

3.2.1. Case 1: Constant Concentration at Boundaries

In this case we assume that the waste package holds intact long enough that all
members in the specified decay chain have reached either their solubility limits or the
secular equilibrium before they start leaching out. The boundary condition at z=0 is

then Ni{0,t)=N? and
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K(Prz)=\/%_sin(pz), gi(P,t)'—"\/%_p]\/',p.

Hence the convolution integral becomes

—b,t
gi(p,t) x ¢ = L\/_ = pNPe " dr = '\/;pj\rp(__;;_)

and the solution is reduced to

2w D 2 sin(pz —5it Sroline 3
Nfz,t) = ¢? —_{N" (1—e™")dp + JCIING JIx
Kion| ‘90§ =1 i
. -8
xfo psin(pz) __ (1—e") dp}, z>0, t>0, i=1,2, -
0o i 8, ' ’ ’ i
II(Tp®+70r) (349
ron

Although (3.44) is the correct formula, it is not practical for computing. For
instance, the first exponential term on the right hand side may be arbitrarily large
and exceed the computer limit (e.g., 10%® in a VAX-8600 machine) as the distance z
increases. On the other hand, as z increases, the frequency of sin(pz) increases too.
This causes the integrand to increase its oscillations, so that the resulting integration
is not accurate enough due to the accuracy limit of the computer (e.g., 14 digits in

double precision in a VAX machine). To give a numerical illustration, take v=1

250 which cannot be

m/yr, z=500 m,D=1 m2/yr, then the exponential term becomes e
handled by the computer and the calculation would be aborted. To overcome these
difficulties, one has to convert (3.44) to some other suitable form. One approach is to
use the error functions to replace the integrals and combine the results with the first

exponential term. The conversion procedure is given in Appendix A. The coded

results are in the computer program UCBNE40, and used in the following examples.
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Numerical Examples

As in the finite medium calculations, we investigate two chains,
4] 20Th—+22°Ra and #*°Cm—>"'Am—>"Np—2%3U—?°Th. All parameters remain the
same as in the previous sections except the following changes. The semi-infinite rock
porosity is e=3x107%, the pore water velocity is v=1 m /yr, and the dispersion
coefficient is D=>50 m2/yr. However, the solution and the code are not limited by

these choices and can handle any combination of parameters.

Figures 22-24 show the concentration profiles, normalized to N?, as functions of
distance for the 24U—2%®Th-—22Ra chain at 10, 1000, and 10° years, respectively. At
10 years, the effect of decay is not apparent. 2*4U travels at the fastest rate because of
its smallest retardation coefficient, and covers the largest distance (about 10 meters).

2807Th and 22°Ra follow the same behavior as 234U,

At 1000 years, one begins to see the decay effect of **U in the field and the con-
centration profile for 2°Th shows a bend at 30 meters, at which point the derivative
of the mass flux with respect to distance becomes negative, i.e., the mass flux of 2°Th
decreases. This is due to the fact that é,t this distance, a significant amount of 23U
has decayed to 2*°Th, which causes the concentration gradient to become smaller for
thorium. Additional calculations onv thorium alone show that if there is no 2%*U, 2°Th
itself cannot travel farther than 30 meters at 1000 years due to its retardation. Hence
after 30 meters all thorium comes from uranium in the field. From Fig. 23 one can
also see that the decéy of 29Th occurs mostly within 20 meters. Since during this
range 22Ra has a very high concentration one cannot see the increase in its concentra-

tion from thorium decay. The traveling speed is still governed by the retardation
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coefficient as can be seen in Fig. 23.

a

~ Neither 22°Th nor ?2Ra can travel very far even at 10° years, as shown in Fig. 24,
since thorium has a high retardation coefficient while radium has a short half life.

Seperate calculations on thorium and radium show that a_ﬁ; 0Th and **Ra will decay

~

out within one kilometer, had there been no uranium present. Thé“tur;ling,.points in
both thorium and radium profiles are due to uranium decay. Beyond these pointé the
thorium and radium all come from the decay of the mother nuclide, 24U. - Another
important obseryation is that at t=10° years 22°Ra falls behiﬁd 20Th in the field. This
is due to the relatively short half life of 2?°Ra, i.e., the decay effect of 2?°Ra is strongef
than the retarding effect of 2°Th in the field, though both effects limit their migration
distance. One can also see that after these turning points thorium and radium tend
to reach their equilibrium condition as time goes on. This will be discussed in the

next figure.

Figure 25 shows the normalized concentrations as functions of time at a distance
of one kilometer. Here we use a leach time of 10° years in the calculations. It should
be pointed out that the actual radium concentrations are one order of magnitude
larger than what is shown here, since the normalization factor for radium (the boun-
dary concentration) is 10 while the normalization factors for the other two members
are unity. From the discussion of the last figure we know that were not for the
uranium present, neither thorium nor radium would ha,vé migrated as far as one
kilometer, hence all thorium and radium concentrations m this figure are derived
from the decay éf 234y, Also, bné observes that é3°Th and ??°Ra are at secular equili-

brium at this point. Since 2**U has the lowest retardation coefficient, the leading and
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trailing edges all appear earlier than 2Th and ??Ra. This is also true for radium, but

it appears at very low concentration range and cannot be shown here.

Figure 26 shows the normalized concentrations for the
2450 m — 21 A 2T Np— 28U+ 22Th chain as functions of distance at 10° years. One
can see that the traveling speeds are basically following the same rule, i.e., the higher
the retardation coefficient the slower the migration speed, except ?*!Am due to its very
short half life. The decay from ?*!Am also results in the increase of 2*"Np concentra-
tion in the field for the latter has the longest half life in the chain. From this figure
one infers that both 2!Am and ?**Th would not travel farther than few hundred
meters if the parent nuclides were not present in the field. Hence because of the turn-
ing points present in *!Am and ?**Th profiles, they are produced from the decay of the

mother member after these turning points.

Figure 27 shows the normalized concentration profiles as functions of time at
1000 meters with the leach time equal to 10° years. Since 2!Am and 22°Th themselves
do not travel this far one can expect that they will be at secular equilibrium condi-
tions with their parent nuclides. This is confirmed in this figure. The leading and
trailing edges of each member is determined by its retardation coefficient, hence 2*"Np
appears first, then 2°U, and then ?**Cm. This rule cannot be applied to ?'Am and

22T since they are produced from their mother members at this time.
3.2.2. Case 2: Bateman-Type Boundary Condition

As in the finite domain case, a congruent dissolution, band release mode is

assumed. The boundary concentrations at z=0 obey the Bateman equation
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N{0,t)= }]B;;e 1",
s=1

and
S Ve a,
Hence
i —{(8,—X )t
A e (z-r) -5, "4 2 itl—e *"

(p,t = V: g = '\/j e it zme T
gi(p,t) * e f pg:;l'B - pjé'Bue Y
Let

D D
Anj_ n K (P +Qn) = Kn (P2+<13j)
where
K, N ¢

2.: 2— o= —— 2 —l‘" )\ '—'X' ‘32,
== = ) ) (3.527)

then (3.44) changes to
i—1 L d _
Nizt)=e }?‘%{EBM"WJOOM e dp 4 501 37 B e
5=1 k=1

J 1 _ —Apt
XZJ::O - P51n(P2) (1 Z ) dph 2>0, t>0, =12, - - ’
"= [T +70r) "’“ (3.44")
o

Again some conversions must be made to make the computations workable and
practical analogous to those made in the last section. The detailed proceduré is
shown in Appendix B. The analytic solutions for this case have also been successfully

implemented in the computer code UCBNE41 which is used in the following exam i~
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Numerical Examples

All parameters remain the same as in the previous sections except the boundary
conditions at z=0 is replaced by the Bateman equation (2.57). The initial boundary
concentrations are the same as in the corresponding finite medium problem, i.e., unity
for mother members and zero for all daughters. As shown in Appendix B, the solu-
tion and the program are not limited by this choice, and can be applied to any values

of initial concentrations.

Figures 28-30 show the concentration profiles, normalized to N,(0,0), as functions
of distance for 24U—20Th—22Ra chain at 10, 1000, and 10° years, respectively. In
Fig. 28 we see only a small amount of 2*°Th present near the waste surface originating
from the decay of ‘U, while the 2?Ra concentration is too low to be shown. By com-

paring this figure with Fig. 22 one sees that the uranium profile is practically identical

in these two figures. In fact, even at 1000 and 10° years one still sees this same result
because of its long half life. Hence we conclude that for 24U the solution for

Bateman-type boundary condition will result in the same concentration profile as

from the solution for constant boundary concentration case up to 10° years.

At 1000 years a significant amount of 2°Th and some 2?°Ra begin to appear as
shown in Fig. 29. The decay of U in the waste form is the driving force for 2*°Th
migration in the field. Due to the high retardation effect of 2*°Th it cannot travel
beyond a few tens of meters if there is no 24U in the field. Hence the turning in the
thorium profile indicates the decay of uranium in the field, i.e., after 20 meters the

230Th concentration totally comes from 234U,
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distance at 10 years; Bateman-type boundary condition.

Distance, m



69

2
— O
~—
d -
@& ©°
3 o ™ B
>.c? [ N
S~ > N B
2> 1
E % 8 éé o ~
8 ™ o ™ -
L
Q P -
(‘j‘) r—i
N
N
h.
- «<—
-
= 4))
O
- C
O
—f—
- %
-
— O
- ——
o
vy v P T AR J MR LA i O
o T N " T D T
O O O O O - -
 aaad - et ~ ~ ~ ~

Uo1{DIJUBDUOY)) PBZIIDWION

Fig. 29. Normalized concentration profiles for 34U—239Th—226Ra in porous rock as functions of

distance at 102 years; Bateman-type boundary condition.
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Figure 30 shows that at 10° years 22U begins to decay though by a small
amount, and 2*°Th and ??Ra have risen to a significant amount. Like the éorrespond-
ing results for finite medium in Fig. 13, ?>*Ra shows an interior maximum due to the
faster production rate in the field than in the waste form (cf. Fig. 13). This figure also
indicates that after 200 meters, the decay of 2*°Th and ?Ra become important and
the profiles are produced from the decay of 24U after this distance. In fact, one can

see that both 2°Th and ?*Ra would not migrate beyond 1000 meters by themselves.

Figure 31 shows the normalized concentration profiles as a function of time at

1000 meters with a leach time of 10° years. From the last figure we know that at this
distance all 2°Th and ?*Ra are produced from the decay of 24U in the field. Hence
29Th and ??°Ra are already at secular equilibrium. We see that Fig. 31 is actually the

same as Fig. 25, because 24U can be regarded as a stable species at this distance.

Figure 32 shows the normalized concentration profiles as a function of distance

for the 25Cm—241Am—+2"Np—233U—22Th chain at 10° years. As in Fig. 26 one finds
that 2¥"Np travéls fastest due to its low retardation coefficient and its longest hé,lf life.
At 10° years almost all 2#Cm and 2!Am have decayed away, but the normalized con-
centration of 2*Np rises to nearly unity for it has not yet started decaying. Again in
this figure we see that the migration distance is inversely dependent upon its retarda-
tion coefficient except for 2! Am and ?**Th. They cannot travel very fa,x" due to short
half life or large retardation coefficient. In fact, this figure shpws ba,sically the same

features as exhibited in Fig. 26, except at the waste surface.

Figure 33 shows the normalized concentration profiles as a function of time at

1000 meters with a leach time of 10° years. Only four members are shown in this
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Fig. 31. Normalized concentration profiles for 224U—?**Th—?2°Ra in porous rock as functions of

time at 103 m; Bateman-type boundary condition.
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graph because 2#'Am concentration is too low to be plotted. We find that #3U and
229Th are at secular equilibrium after 2x10° years since at this distance all thorium
comes from the decay of uranium. This is also true for 2*Cm and ?**Am. The general
features of this figure are similar to those in Fig. 27 and all discussions provided there

can also be applied here.

One very important point about these calculations is that this code UCBNE41
can be used to replace the popular three-member-chain calculation programs
UCBNE10.2 and UCBNE10.3 because it can compute the concentration profile of any
member without any numerical difficulties and can also be applied to a chain of arbi-

trary length. Though not shown in the above figures, it can actually produce the
results of the dispersion-free code UCBNEZ25 by setting the dispersion coefficient to ai
very small value (e.g., 10* m?/yr). One cannot set D equal to zero in UCBNE41 for a
singularity will éccur as seen from the solution form developed in Appendix A. But

’ fér very small values of D the results indeed have the same graphical trends as those
from UCBNEZ25, with only the small rounding appearing at the leading and trailing

edges. These are usually produced by the dispersion-free calculations.
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4. Conclusions

In this report, the general non-recursive solutions for the transport of radioactive
decay chains are obtained. The first half of the report deals with transport in a finite
span such as a backfill layer, while the second half analyzes mass transport in a semi-
infinite domain. Two decay chains, 24U—2*Th—??Ra and

2450 m— 24 Am—2"Np—233U—2%Th, are used in the numerical examples.

A mass transfer coefficient ~=10"* m/y obtained in two previous studies is used
in the finite span calculations. The outer boundary of the backfill acts like an
impermeable surface at this value of k, since the flux at this position is nearly zero.
Another value of &, 10* m/yr, is also used to simulate a strohg water flow outside the
backfill. The mass transfer rate for this value of & is at least two orders of magnitude
greater than that for /=107 m/yr. Since normally the underground water velocity is
low (£ 1 m/yr, which is equivalent to A<10~* m/yr), the mass flux out of the backfill
is quite small.

At early times (<10 years), the finite medium calculations can be replaced by
the semi-infinite medium solution, since the nuclides have not yet reached the
backfill/rock interface. We would recommend that future users of these codes do this
to reduce computing time and cost, though the finite medium codes UCBNES50,

UCBNES51, and UCBNESQ-can make the calculations without numerical difficulties.

The zero velocity assumption in backfill used in previous chapters are justified
by the finite medium calculations. For pore water velocity v=0.01 m/yr, the relative
error introduced by the zero velocity assumption is less than 5%; while for v=0.001

m/yr it is less than 1%. Since the pore water velocity normally encountered in
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repositories is of the order of 107® to 10~ m/yr, it is believed that the use of the no-

flow assumption in backfill calculations is sensible.

In both finite and semi-infinite media calculations, ?Ra always shows an interior
maximum within the field. This phenomenon is due to the combined effects of tran-
sport, decay, and retardation of radium and its precursors, and can be seen only in
the chain calculations. Hence to get more details in the radionuclide migration

analysis, this kind of chain calculations becomes necessary.

Ip several figures, the concentration of a daughter nuclide built up so much in
the field that it exceeds the concentration at the source. This would mean a back
diffusion of the nuclide towards the source, due to an improperly specified boundary
condition. Such a phenomenon occurs mostly in backfill with the lower value of the
mass transfer coefficient. Calculations not reported here show that stronger flows

outside the backfill would tend to weaken this phenomenon.

In semi-infinite medium calculations, the nuclides with high retardation
coefficients, such as 2°Th, ?*’Ra, ?!Am, and ?**Th, would not travel farther than 1000
meters in the field without transport of their precursors. This means that essentially
all these nuclides come from their mothers at this distance. In the numerical exam-
ples, the mother members, such as 2*U and 23U, which need a few hundred thousand
years to travel this far, are already in secular equilibrium with the daughters. Hence
only the concentrations of the mother nuclides are required to get the entire concen-

tration profiles after 1000 meters.

Before this analysis became available, sometimes a ‘“‘compression’”” method was

used to transform a long chain to a 3-member chain by neglecting the short-lived
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members in order to use the existing code UCBNE10.2. Now a tool is provided to
examine whether this approach is valid or necessary. If not, one has to turn to the

solutions obtained here to make more precise calculations.

Possible extensions of the current study would be to include different
disperison /diffusion coefficients for each member of the chain. Another might be to
utilize non-constant mass transfer coefficients k. The analysis could also be extended

to cover different h; for each member.
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Appendix A: Numerical Implementation of Equation (3.44)

In this appendix we discuss the conversions needed to implement the analytic

solutions obtained in the main text. The solution for N;(z,t} is given by

2 . .
= D 2 o0 : 5. -1 . '
Ni(et) = 62”}(—.?{1“% 2Sz) (1o Yy 4 T3 GNP Y

j=1 . n=y

-, -5,

XfO ) r Sln(l).Z) (1_6 ) dP , 220, >0, i=1;21 e
TL(Cw 2™ %) " (3.44)
r=7j '

rsn

To. implement this solution two transformations™ are needed
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(3.46)

Now from the definition of é; (3.32) and with the help of (3.45) and (3.46) one gets

f°° p sin{pz ) (l—e'é‘t \dp

0 b
) Dy, 2
_ K eyt RO
D 0 p2+q2
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(3.47)

Hence the first term on the right hand side of (3.44) is converted to

_*Gradshteyn, L. S., and Ryzhik, L M., “Table of Integrals, Series, and Products,” Egs. (3.723.3) and (3.954.1),
pp. 406, 497, Academic Press, 1980.
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For the second term on the r.h.s. we do the following:
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where

KK

~(¢q.%-d 2 - -
Gm-(t) =ce (qn d,")Dt/Kn = ¢ Kn Kv ryén

(3.54)

Therefore, the second term on the r.h.s. of (3.44) becomes

i-1 . i, 2d, ) G, (2t
2 S aONPSF, EE,.,{e(” " (-G (0422 o
K {2 a=j r=j 2
(%_dm )z (%"'dm )z V-4
X erf VDt]K, )+e erfc( ———x—+4d,, /Dt /K, )

V4
. S—
o o /DK, ™ 2 /Dt /K,

(3.55)
Let S;(z,t) and P,~‘(z ,t ) represent the first and the second terms on the right hand
side of (3.44), respectively, N;(z,t) becomes
N;(z,t)=S:(z,t)+P;(z,t), 2>0, t>0, i=12, -~ (3.56)
with S;(z,t) given in (3.48) and P;(z,t) given in (3.55).

If we use A;) defined in (3.30) to replace C;U) in (3.44), P; can be rewritten as



(5p—dar )2 G, (t
(2 t)—EA(’)N ZF EE,,,{ 2D (1-G,, (t )+ 2( )><
i=1 n=j5 r=j
(.i_-d'“ )z : (“v_+dnv )z
e 2P erfc(?ﬁ-—dw Dt /K, )+e 2P er +d,,,\/Dt7K

(3.57)
with
K-
Fn = : 1 K = 7
H (1_ Kw ) H (Kn "Kw ) (358)
win T urn

It will be shown later that S;(z,t) is always bounded, and after some reordering the
final form can be evaluated by computer without an& difficulty. P;(z,t), however,
still has some problem when put in computer though the integrals are gone. This is
due to the numerical values of d,, and G,,(t). From the definition of d,. (3.50) one
can see that it may have any value, even imaginary (for d,2<0). On the other hand,
(3.54) shows that G,, (t) may be either positively or negatively very large value and

(3.57) cannot be handled by the computer. Therefore, a further reduction is needed.

From (3.54) one observes that when n=r the first term in the braces in (3.57)

vanishes since G,, (t)=1. For n3r and with the definition of E,, (3.52) one gets

K.~ 1
F,E, = s
H(Kﬂ _Kw H (dna dnr)
o= =t
K7 1 1

w=j

wEn

Tk TTed-d) (0

w=7j
wF#n
wF#r

5o, nFEr, 1> +1



K, 1 ..
= , nFEr, i=j5+1
Kn _Kf (dni _dn?) (359)

Now let’s expand d,2-d,2 and d,2-d,? as follows:

K, K, MMy . K, K. X\,
D (K,,_K,)

2 g2
o= D (K,, 'K,
“Ky (n Mo (K =K )+E, g =2 (K -Ky ) ]

— Kn
D (K, -K,)K,-K,)
Ky [ Ko n (K K )+ E N (K =Ko )+ Ky N (KWK, )
D (K, K, K, ) e (360)

124 2=K,,)\,, +K,,K, X=X, )
nn~ Cnr D D K,,—K,.

K, { Kxh =K.\,
= [ nKn = .], n FEr (3.61)
Substituting (3.60) and (3.61) back into (3.59) one obtains for n #r
D yija i
(_) ! (I(n _Kr ) ! H (Kn —.Kw ) D
Ki-i ' wrn (77N - )
F B, —— n . wHr n
' - K, 2K, )
1 (Ko Ko ) TIEn N (Ko K 4Ky Ny (K —E 4K N (K —K )]
w=j w=j
v vl
DI (K, K, )}~ (K, A K, X,
(K, ) ) Cisin

B H (Ko Mg (K, K )+ Ny (K =K Ky My (K -, )]

w=y
wHn

wFEr



D

- i : 3.62
B K P (3.62)

For n =r, following similarly derivations one gets

D'
Fy By =—;
H (I{w )\w '—Kn >‘n ) (363)
w=jg
wFEn

Hence from (3.62) by interchanging n and r one sees that for n 5r
F,E,—-F.E,, (3.64)

Equation (3.64) is our key formula to make (3.57) computable for any combination of

the parameters: D, v, K;, ¢, \;, z, and ¢.

Since n and r both range from j to 7 as seen in (3.57), for every F, E,,, n#r,
there exists exactly one corresponding F, E,, . In addition, d,, =d,, from (3.50), and

Gpr (t)=G,, (t) from (3.54). Therefore, for n=j,5+1, ...,¢;r=5,7+1,...,4¢

2 d,, )z ")z _
FoEpe " (12, (6)4F, B e ™ (16,0 (1))=0 (3.65)

That is, the summation of the first term in braces in (3.57) from j to ¢is zero. Thus

i1 i i
Pi(z,t)=5 L AYINS Y Fy 3 Euy Gor (£)X

i=1 n=j r=j

(”v—'dm )7’ 2 (L+ dm )z r4
X[e 2P erfe( ———==—d,, /Dt /K, )+¢ 2P fo( ———=—=+d,, /Dt /K,
[ el S T /B )e el R )

(3.66)

To remove the difficulty caused by G,, (t) we make following rearrangement.

2 _ 023 +—Did 2
: K nr -\t T4DK, 'K,
Since G, (t)=1¢ " =¢ "¢ " "* from (3.32), we have




X _ t z 2 z 2
o (t)c(%id’")z‘—e Mt/ K" 2\/Dt/K,.) (2\/m/1< d,, /DUTK,)
nr -

Also, when n=r, G, (t)=1, d, =q,, and

t 2 2
Dt /K,
4DK,l Dt K, ) ( \/Dt /K, In »

( Xnt_(

—+q, )z

2D

Consequently, with X\; + =q;271()—, (3.48) and (3.66) are reduced to
i

4DK

xt( .
Si(z,t)= V K, DtK

X [H (—=2oe—=+¢; /Dt /K 4+ H (——=2eee—q; /Dt /K,
[ ( D e +¢; / s) (2\/‘5771?: g /t)]
LG W e
P(zt———EA N,-OEF,, Y E, ¢ " X
]—-1 n=y r=y

X [H (—seeee+ d,y /Dt [ K )+ H (—eeee—d,, /DE K,
[ (2\/—“Dt7K":' ) (2\/—7—1): K, »)
where
H(z)=¢ ’2erfc(9:)

For z >0, H(z) is always bounded.

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

Consider the case ~2——i——-< d., /Dt /K, , which makes the argument in H

Dt /K,

function negative, for some r %n . Since erfc(~z }=2-erfc(z ), one has

(L_dm )z
e 2P erf

¥4
—_—
W

Knxn—K,x,'t K, N\, -K X,
_(qnz du?)Dt/Kn=c K,-K, K,-K,

Now G,, (t)= so one more term 2e

+(—d
2

24
VDt /K, )=2e(2D ) —erfe(d,, /Dt /K, - \/W)

(3.72)

nr )z
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appears in (3.70). If is also less than d,, «/Dt /K, , then from our key for-

\/D t /K,
mula (3.64), this extra term will be canceled out. For ——===2d,, \/Dt /K, , one
\/D t/K, —
can show with little effort that
Kn >‘n "‘Kr >\r v
t d d d t /K,
KK, +( 5p ~dnr )z <0, for d,. >0 and \/ETK— —<d,, Dt/ (3.73)

Hence when (3.72) is combined with G, (t), one has

Kn xrL"Kr)‘v v
(55 ~dns )7 2 k't “'")z
G,, (¢t 2D fo ——=——d,, /Dt /K, )=2 v H{d,, /D t /K, i
(t)e erfe( 2/Dt /K, J=3¢ Dt K,,)

(3.74)

For n=r,

1/2
K, \,
dnr =drm dn = ( )2 ] —21)1')— (375)

So (8.72) is still bounded. With the help of (3.74) and (3.75) one obtains the comput-

able form for N (z,t) in terms of S;(z,t) and P;(z,t) (3.56) for all real d,,:

1o W R e
Ss’(z:t):EMoe [ N %

X H (5=t 0 VDT TRG )+ H (5 rmti Y DUTIG ), for

T v Dt Kt!
Di/K, DU/K, \/D TR 2y ;

13 z
_1 No{2e(2LD_qi)z +C—)‘"t—( iDK; ' 2. /Di K,
=N

S H (——feeeet-q; /Dt T V-H (g; /DE TR -———eees)] (, for — e < q; /DEJK;



(3.76)
: i1 i i
P;(z,t)=-—2— ZA:'(’)N]'OEF» EEnr W(z>dnr;\/Dt/Kn) (377)
i=1 n=3 r=j
where
W(z,d, /Dt /K, )
t z :
_)‘"t—( XERT‘”_Q e )2
=e X
X [H (— e+ d,,, /Dt K, )+H —dy /Dt /K, )], for ———e—>d,, /Dt /K, ;
G I /PR for TR, =
K, N\, K, : ., : '
n'n 77y t+( v d’")z —)\”t—( — v~ )2
—2¢ K, -K, 2D te Y4DK" 2,/Dt/K, x
+d,, Dt /K, (dpe /Dt J Ky ———ee)],
X (57t dor VIR TR )-H (4 DR i)
for ———-—<d,, /Dt /K, , n5r;
\/Dt/K
v A, ¢ ¢ - 2 )2
(559) iDK 2 /Dt /K

Dt /K, )],

z ' .
for W< dn \ Dt ;](n , n=r (378)

Error Functions of Complex Arguments

For d,2<0, d,, is a pure imaginary number, and we have error functions of

complex arguments from (3.78). Since
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H (z +iy )= @+ erfe(z +iy )=e 22161240 exfo(z +iy ),
H(z—iy )=e ¥ Perfe(z —iy )=—e 2%-v% 1229 orfe(z —iy )—H (z +y ) (3.79)
the sum H(z +1iy )+H (z -1y )=2¢ %% R cos2zy -1 sin2zy )=real, where R and I are the

real and imaginary parts of erfc(z +1iy ), respectively. Now in (3.70),

K,z
2 2 _ —
Ty 4Dt Dt/K (-d ),2:ry | dny 2 |, and

d.. VDt /K, |,

2/Dt/K, '
B and [ are given in the approximate forms* with the relative error bound <107

n2

R —erfe(z )- e;r i —c;)z2zy +2n¥l - ;_;2 [a
n?
-z2 e
fo_t . su;ixy " nX_:lF_::—a:?g” (3.80)
where
fo=2z [l—cosh(ng;/ )eos(2zy )]+ n sinh(ny )sin(2zy )
¢, =2z cosh(ny )sin(2zy )+n sinh(ny )cos(2zy ) (3.81)

Therefore,

H(z +1y )+H (z -1y )

= 2[e 22-1°R cos2zy —¢ +*°} sin2zy ]

= 9 [{ ¢ ‘”2[H(z )_1‘_“’531_2]_2*_ X

o2nx T

® 2ge -2 cos2zyM (n ,y )+n sin2zyN (n ,y )
P> T o2
n=1 . n°+4z

cos(2zy )+%X

*M. Abramowitz and I. A. Stegun, editors, “Handbook of Mathematical Functions,” p. 299, Dover Publica-
tions, Inc. New York, 1972.
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_y2sin2zy & 2z sin2zyM (n ,y )4+ n cos2zyN (n,y ) |_. (3.82)
x{c 2z T2n§1 n?+4z? in(22y )
where
et [ Ggf -u+~;—)2]
M(n,y)=e * cosh(ny )= 2‘
Len® [ (v-2P? -(y+2l)2]
N(n,y)=e T sinh(ny )= —2e (3.83)

Hence the complete solution for N;(z,t) for any combination of the parameters are

given in (3.56), (3.76), (3.77), (3.78), (3.82), and (3.83), and is always bounded.

For the case K, —»K, and nr, F, E,, —0 from (3.62) and | d,, | —oo from

(3.50). Thus H( |————=d,, /Dt /K, |)—0 for both d,, real and imaginary, and

2/Dt /K,

G (z,d,, /Dt /K, )—0. Hence the singularity is not present.
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Appendix B: Numerical Implementation of Equation (3.44")

To facilitate the numerical implementation of Equation (3.44") we follow the

same procedure as in Appendix A, with g, replaced by ¢, defined in Eq. (3.32") and

N;% replaced by z’) By e ", One obtains the comparable equations (3.45°) - (3.83")
k=1

with the following changes:

Kn )‘n_Kr >‘r

. ——_'————t‘kat
G (t)=¢ 7% . ron
1 ren (3.54")
K, KMo =K.\, -\ K, -K,
o == el (3.617)

D' (Kn _Kr )'._j_l/[ffn >‘n —Kr >\,- —kk (Kn _Kr )]

Fy By =— , for mz#r, 1 >7+1;
LT (K Xa (K =Ky )+ K Ny (Ky =K J+Koy Mo (Ko K )]
w=y )
M
= D for n 47, i=j+1
(Ko 7n Ky Nr N (Kn —K, )] =Y ,
(3.62)
F.E,, — D™
TT (Kw Mo =K A =g (K -K, )] (3.63")
v
t z z
(3p%dw)e —(X”'x")t—(\/ iDK, ' 2,/D/K 2 (2\/1):/1( e /DT
Gy, (t)e —e "e "
(3.677)

a

t £ o z 2
v =X, =N )t~ = + Dt /K
c(—wiv,.k)z . Ca-re)t-(y /9K, 2 /Dt /K, ) e(z\/m/x,, Ik »)

(3.68)
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The final solutions are given by
Ni(z,t)=S8;(z,t)+P;(z,t), i=12,..., 2>0, t>0 (3.56")
with

. Mt 2 )2

! DK, 2,/Dt/K;
Zt————-ZB.kC i

k—l

X H (—feee b g, DtK+H—-— o /DI )], for ——teeee> g VDU /K
[(2,———Dt/K'_ g /Dt JK; )+H ( DR -qi /Dt [K;)), for ,——Dt/K_ g /Dt /
t z
R G VA a7
=5 2 Bi +e X
. k=1

X [H (et qit /DE TR \~H (g3 /Dt K ~——eee)] (, for — e < g5t /Dt [ K
[ (2\/W ik n) (Qk § 2M)] or 2\/m.-<9k {

(3.767)

and

(2 t)_ ZA (1)23 ZF ZE,,,W 2 ,dy, /Dt JKs) (3.777)

1——1 n=j r=j

where

W (z,du /Dt /K, )

t z
Nt % ___
wt DK, ' 2,/D't7K") %

=€
X[H( d,, /DK, )+ H (——eed,,, /Dt /K, )], for ——ee>d,, /Dt /K, ;
[ \W—D DR T s ,/D7—K ), for 2/Dt /K, —

K, M\ <K, :
S s AL U I OV vy -l
—ge e " "X



B-3

X [H((

5 WK_MM VDU/K,))-H (d, /Dt K, - \/WK_)]

fi dur Dt Kn; ’
or — = Dt T ——<d,, /Dt n sr ;

7
(55-9nt )2 W _x”t_(‘\/ DK, '3, /0:71{ )’
=2e 2D " +e n n X

X[H((2_'£—_+an VDt;Kn ))_ —qnk VDt;Kn )})

z
Dt /K, 2/Dt /K,

z d
for T\/D—t—T—I?<an VDt/K, , n=r (3.78")

For d,2<0 or ¢,2 <0, i.e., for error functions with complex arguments, Eqgs. (3.82")

and (3.83") are identical to (3.82) and (3.83) with pm——— = Dt /K,
o/Dt /K,
or y = |qu VDt /K, |.

(<%~ sk )Nt . .
It can also be shown that for ¢,2>0, ¢ ?? Rl <1. Hence N;(z,t) is given
by (3.56") and (3.76")-(3.83") with any combination of the parameters, and is always

bounded.
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