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EXECUTIVE SUMMARY 

This report presents analytic solutions, numerical implementation and numerical illustra-

tions for the transport of radioactive decay chains of arbitary length in porous media of 

limited and unlimited extent. 

The transport of long radioactive decay chains is especially important in the safety assess-

ment of geologic repositories of spent nuclear fuel in which there are several long chains 

of the actinides. Failure to account for nudlides generated during transport may result in 

the underestimation of releases prescribed by regulations. Hitherto no analytic solution 

nor computer codes have been able to handle long chains. The solutions presented here 

are exact and general. 

It is important to derive solutions for the problem of chain transport in porous media of 

limited extent for practical reasons. For example, the backfill layer in a nuclear waste 

package or the damaged rock zone in a repository is a porous medium of finite extent. A 

different solution is necessary because there may be different fluid flow conditions inside 

the backfill and outside the backfill in the rock. 

The analytic solutions for the problem of chains transport in finite and semi-infinite media 

are complicated. Sophisticated numerical methods were required in order to implement 

the solutions as computer programs. These steps are detailed in the report. 

The main part of this report are illustrations of the solutions with problems in nuclear waste 

disposal. We show the transport of two chains, 234U-4230Th- 226 Ra and 245 Cm- 241 A1n--4 237Np 

233u229Th, from concentration-limited boundary condition and Bateman-type boundary 

condition, in a porous region of limited extent such as a backfill and in a semi-infinite field. 

These illustrations are examples of the capabilities and usefulness of these solutions. 
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TRANSPORT OF RADIOACTIVE DECAY CHAINS 
IN FINITE AND SEMI-INFINITE POROUS MEDIA 

1. Introduction 

In the prediction of radionuclide migration to determine compliance with regula-

tory standards[1], it may be necessary to consider radioactive decay chains explicitly. 

Actinide isotopes in spent fuel are mostly members of radioactive decay chains. 

Failure to account for the generation of daughter nuclides during the migration of the 

chains may lead to under-estimating cumulative releases or release rates[2]  prescribed 

by regulatory agencies. Available analytic solutions and computer codes such as 

UCBNE10.2 and UCBNE25[3] have limitations. The UCBNE10.2 code can only com-

pute up to three members with dispersion, and although UCBNE25 gives a non-

recursive general solution for a chain of arbitrary length, it can only solve the prob-

lem without dispersion. Recently Chambré has generalized the above two solutions[4] 

and made it possible to obtain non-recursive solutions for chain transport in porous 

media of both finite and infinite spatial extent. 

Transport in a finite domain is of interest for several reasons. In a practical 

sense such a solution is needed in nuclear waste disposal to evaluate ground-water 

flow in the region near waste packages, such as within the backfill or damaged rock 

zone. It is also of general interest. Most systems of equations for ground-water con-

taminant transport invoke a concentration or flux boundary condition at some loca- 

tion, most often at infinity. In this work we used a mixed boundary condition, allow-

ing the specification of concentration and flux at a specified location rather than at 
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infinity. We are not aware of other solutions of this type. 

The following analyses deal with the migration of radioactive chains of arbitrary 

length in geologic media. The governing equations are sufficiently general to model 

species transport by advection and dispersion in a water-saturated porous medium. 

They can also be applied to diffusional transport of radioactive chains where advec-

tion is negligible. 

The objectives of this study are: To obtain analytic solutions in closed form of 

the transport of radioactive decay chains of arbitary length in porous media of finite 

and semi-infinite extent; to implement the solutions in computer codes which are 

practical to use; and use the computer codes for numerical illustrations to show the 

usefulness of the analytic solutions in the U. S. nuclear waste repository program. 

The formulation of the equation system and its solution form are given in Sec-

tions 2 and 3 for finite and semi-infinite media, respectively. The solutions give 

nuclide concentrations in exact closed form (non-recursive) in finite and semi-infinite 

media. Numerical illustrations of the solutions follow in the respective sections. 
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2. Mass Transport through a Finite Medium 

2.1. Theoretical Analysis 

In a one-dimensional finite domain D f  with flow along the z direction and con-

sider the canonical system for O<z<L and t.>O 

ON1  ON1 	 02N1  
= D 1  

ON2  ON2 	 02N2  
K2— +v----+X 2K2N2  = D2 	+X 1 K 1 N1  

at 	Oz 	 0z 2  

(2 . 1 ) 

ON. ON. 	 02N. 
Ki 	 = D1–+X1KP 

at 	Oz 	 0z 2  

which is to be solved for N=IV(z,t), the concentration of the 	member, in a one- 

dimensional domain Df  for times t>o. In fact, this system of equations is general that 

we will also apply it to the case of (semi) infinite domain. Di  is the dispersion 

coefficient of the individual species to be specified later, Ki  the species retardation 

coefficient, X 1  the decay constant and v the ground water pore velocity. The functions 

IV(z,t), =1,2, 	are subject to the initial conditions 

IV.(z,O) = 0, zD1 	 (2.2) 

and the type-Ill boundary conditions 

ON 
—DE ---- +vEIV. = VEN1Pcb(t) for z=0, t>0 	 (2.3) 

Oz 

where (t) 0 for t<O, and € is the porosity of the medium 

–D1E--+vEN1  = h{N1_N11 (t)] for z=L, t>o 	 (2.4) 

where 1Vl(t) is the average concentration of the nuclide outside the span. 
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Here h is the mass transfer coefficient describing the mass transport at z=L, into a 

medium z>L, in which the 11h  species concentration is a prescribed function N,I(t). 

The boundary position z=L can, for example, be interpreted to represent the bio-

sphere boundary or the backfill-rock interface. As h varies from 0 to cc, the flux 

through the boundary at z=L varies from zero to some maximum value causing the 

species concentration to decrease there. The left hand side of both (2.3) and (2.4) 

represent the total fluxes of species i through the boundaries z=O and z=L, respec-

tively, while the right hand side represents the rate of supply of the same species in 

terms of the prescribed integrable function NP(t) and A1l(t) at z=O and z=L, respec-

tively. These functions describe the time release of the chain members from a waste 

form surface located at z=0 and from the biosphere or backfill-rock interface located 

at z=L. In case of no advection the terms involving v are dropped from (2.1) and 

replaced by other parameters in (2.3) and (2.4) as will be discussed later. 

The general form of the equation system (2.1) is 

K8N 	 82N. 
+u_ 1 N1_1 , 1=1 1 2, ... 	 (2.1a) 

ôz 2   

where 

K1 X 1   
1100, v=-:5--, Z1,_j = 	 ( 2.lb) 

The aim is to obtain the general (non-recursive) analytical solution for N,'(z,t). On 

account of the linearity of (2.1), the solution for the individual chain member Ni  can 

be represented as a sum of functions, which satisfy (2.1), and selected boundary condi-

tions (2.3) and (2.4). We specify 
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N 1 (z,t) = N')(z,t) 

N2(z,t) = N')(z,t)+N)(z,t) 

N3(z,t) = Nf')(z,t)+N2)(z,t)+N3)(z,t) 

and for an arbitrary i i" member 

N1(z,t) = 
	

(2.5) 

Thus, in order to obtain the concentration of the 1th  member, every function IV")(z,t) 

must be known. We begin with the construction of Nf')(z,t). It is chosen to be a solu-

tion of (2.1a) (with v0= 0) which satisfies both the initial condition (2.2) and the boun-

dary condition (2.3). This determines N1 (z,t). To determine N2(z,t) we require two 

solutions of (2.1a). N')(z,t) is chosen so that it obeys the initial condition (2.2) and 

the homogeneous boundary condition (2.3) with N=O. This function yields the con-

tribution to N2(z,t) which is due to the radioactive decay of its precursor N1 (z,t). 

N)(z,t) on the other hand is chosen to satisfy the inhomogeneous boundary condition 

(2.3), as well as of course (2.2). Since the precursor contribution to N2(z,t) is already 

accounted for, the inhomogeneous term zi 1 N 1  is not included in (2.1a) when one solves 

for N 2)(z,t). One proceeds comparably in the construction of N3(z,t). N')(z,t) and 

N 2)( z , t) are precursor contributions stemming from chain members N1 (z,t) and 

N2(z,t), respectively. Their solutions of (2.1a) satisfy homogeneous boundary condi-

tions, with N=0, while N 3)(z,t) yields the contribution to N3(z,t) due to the inhomo-

geneous boundary condition (2.3), with NO. However, for the determination of 

N 3)(z,t) the inhomogeneous term v2N2  is dropped from (2.1a). 
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According to this decomposition of the problem, the functions N)(z,t) must 

satisfy the following equation system for zED, t>0 

Kt  8Ni) 	82NJ) 
+u_1 NL, 

D( at 
+-.;- 

Oz 

L10 0, £=1,2,...,i, j<. 	 (2.6) 

The functions are subject to 

N 1)(z,O) = 0 
	

(2.7) 

ON) (0, t) 
- 	 +vcN 1)(O,t) = 61N2vc0a(t), ,<e 	 (2.8) 

aN 1) (L, t) 
—D, 	 +vEN)(L,t) = h[N1)(L,t) - o1N1(t)], j~ t, t.>0 	(2.9) 

where 6i i  is the Kronecker delta which vanishes for £j and is unity for £=j. Furth-

er more 

N'(z,t)0, for £<j 	 (2.10) 

which assures that for £(j the inhomogeneous (source) term v_ 1 N_ 1  vanishes. At 

this point one can verify that the solution to (2.6) through (2.8) when substituted into 

(2.5) will satisfy the original equation system (2.1) to (2.4) due to the linearity of this 

system. 

We now take the Laplace transform of (2.6) with respect to the time variable 

and define 

NJ)(z,8)_J'°e_8tN1)(z,t)dt; 	()__j4Doc-8t(t)dt 

The transform of (2.6), on utilizing the initial condition (2.8), yields 
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d2N' ) 	dN' 	

~ Dt
i 	'

= 	 (2.11) 
dz 2 	D1 dz 	J 

for N'=N'(z,8). It is convenient to remove the first-order derivative term by set-

ting 

V 

7J)(z,$)=e2tni)(z,$) 	 (2.12) 

Then 

d2ni) 	

~ Dj Vj
K1 	 1 	VZ 1 	1 

	

dz2 
- 	 8++( 

 2D1 	= —i 1_1 nLe 211 ' 	(2.13) 

With 

(K 1  
i — s+q I, q 	[

Vt+(
-_)21, 1t(-- 

	

D1 	
---) 	 (2.13a) 

I 	J 
(2.13) reduces to the compact form 

d2n1)(z,$) _ 
- p1n')(z,) = —u 1_1 n!i(z,$)e -

7
Iz 

 ,  
dz 2  

This differential-difference equation system with variable coefficients is the governing 

equation of our problems. Also, (2.10) transforms to 

n)1 (z,$)0, £<j 	 (2.14) 

The general solution to these equations is a matter of some complexity. Here we con-

sider two special cases of (2.13) which describe a number of physically important 

models. 

Equal Dispersion Coefficients 

We assume the dispersion coefficients of the radioactive species in the medium 

are equal, i.e., D 1=D for all £. Then 'Yt  vanishes, removing the complicating 

¶1 



exponential term from (2.13), resulting 

d 2 ni)(z,$) 

	

= —zi1_1n!)(z,$), j<t 	 (2.15) 
dz 2  

The boundary conditions transform to 

ôni)(O,$) 
—D€ 	+h1 n)(O,8)=5t1N° vE t(8), 2<1 	 (2.16) 

az 

t9n')(L,$) 	 _i&. 
Dc 	+h2 n')(L,$)-8e he 2DN(s), j~i 	 (2.17) 

Oz 

with h1=--, h2=h_?.  The corresponding equation system (2.1) together with (2.2) 

to (2.4) describes the migration problem in the presence of advection and dispersion. 

For a type-ITT boundary condition of the form (2.8) and (2.9), the general (non-

recursive) analytical solution for radioactive chains of arbitrary length has so far not 

been available to us. As mentioned earlier, the most extensive model to date has been 

the recursive three-member chain in a semi-infinite domain D c , on which the com-

puter code UCBNE10.2 is based. The other non-recursive solution/computer code, 

UCBNE25, applies only for the case D=O in a semi-infinite domain. In this section we 

shall solve the problem in D, while in the next section a solution in D c  will be 

derived. 

Negligible Ground-water Velocity 

Consider again the governing equation (2.13) but now without advection, i.e., 

v=O. By (2.13a) -it vanishes, thus removing the variable coefficient term from the 

differential-difference equation system. For this case, the species diffusion coefficient 

Dt need not be identical in order to obtain an analytical solution. The advection-free 
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formulation is applicable to the rock fracture problem where one wishes to account 

for the diffusion of radioactive species into rock from water-filled fissures. Another 

possible application can be found in the analysis of the diffusive migration of radionu-

clide chains with small half-lives in a water-saturated backfill region which surrounds 

a waste form. Densely-packed backfill materials, such as bentonite, have very low 

permeability to water flow so that the principal mechanism of transport through the 

layer may occur by diffusion. In case of the rock fracture problem the domain can be 

either Df  or D while in the backfill problem it is D. 

At the present time there appear to be insufficient data to apply the formulation 

to the diffusion of species with anisotropic diffusion coefficients: For this reason we 

conduct the analysis, assuming the radionuclides satisfy equation (2.15). The solution 

given below can however be readily generalized to include unequal Ds if desired. 

Since the boundary conditions remain the same mathematical form as in (2.16) 

and (2.17) it is seen that the advection-free problem is merely a special case of the 

equal-dispersion problem obtained by setting v=O in the governing equation (2.13) and 

replacing the dispersion coefficient with the diffusion coefficient. The two quantities 

h 1  and h 2  defined in (2.16) and (2.17) as well as their right hand side functions also 

need to be specially assigned accordingly. In the following we shall concentrate on the 

solution of the equal-dispersion/diffusion case, and the solution procedures used there 

can also be applied to the problem in D,,. 

The Solution of the Problem in D 

The solution of the system of equations (2.15) in Df  is constructed with help of a 

finite Fourier transform with respect to the varibable z. We define 

' 
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m,8)=jK(t3m,z)')(Z,8)dZ 	 (2.18) 

The Fourier kernel K(/3 m ,z) satisfies the Sturm-Liouville system 

d2K(f3, , z) 

dz2 	
+/3,K(/3m,z)0  

	

dK(/3m,O) +h
iK(/3 m ,O)=O 	 (2.20a) 

dz 

dK(/3 m  ,L) 
DE 	 +h2K(13 m ,L)=0 	 (2.20b) 

dz 

The /3s are the positive eigenvalues of this system. The kernel has the f orm * 

K(/3m,Z)" 	
$mOS($mZ)+iSifl($mZ) 

1 1/2 	
(2.21) 

[(fl+axL+ 	)+aij 

where a 1=---, a 2=--. The eigenvalues form a discrete, countable spectrum which is
Dc 

given by the solutions of the transcendental equation 

tan(/3mL)= 	 , m=1,2,• 

If one applies the kernel to every term of (2.15) and integrates with respect to z over 

the interval (0,L) there results in view of (2.18), since i'=, 

t0
dn)(z,) K(Pm,Z)dZ - iztn(/3 m ,$) = Vt_iflL(/3m,8) 	 (2.22) 

dz 2  

The integral term Jyields, with integration by parts, 

.J d2n)(z,$) K( 
	

dn')(z,$) - 
JEJ 	 /3 m ,z)dz [K(fim z) 

0 	dz 2 	 dz 

10 

V 

*1D L. Chambré, class notes taught in U. C. Berkeley. 
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z=L 

- 	s 	 J3m ,&) 	 (2.23) n')(z,) 
dK(/3m,Z) 

dz 
I 2 o 

By (2.20) and (2.21) 

dK(/3 m ,O) 	 dK(/3m,L) - 

dz 
iK(/3m,0); 	

dz 	
- - ü 2K(19 m ,L) 	 (2.24) 

so that 

dn 
JK(m 	

5) (L,$)
,L) [ +a2n(L,$) 

dz
l - 
j 

K13m,O) { dn
1)(0 8) 

- ( 	 - inI)(Os)] - 	 (2.25) 
dz 

On applying equations (2.16) and (2.17) together with (2.21) results in 

vL 

JK(13m  ,L)81 	e  WN(8)K(/9,O)s1jNLqs1(s) - /3, n (/3m,S) 	 (2.26) 
Dc 

When this is substituted into (2.22), one obtains the difference equation 

[Vt_i 4L 1  (/3 rn ,8)+5tj g($m ,8)]  
i<e 	 (2.27) (I3m,8) 

where 

- 13m K(/9 m ,O) 
gj(tim,$) K(,L) he 2'NI(s)+ 	Nvt(s) 	 (2.28) 

DE 	 D 

and h is the mass transfer coefficient defined in (2.4). Equation (2.14) transforms to 

n$J)1(/3,,$)=0, £< 	 (2.14a) 

Equation (2.27) is solved in a recursive manner by setting j=1 and letting £ run from 

£=i to £=i. This process is repeated for =2,3, . . . , I in order to obtain the solution 

for the I members of the chain. 
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Starting with j=1, and letting £ run through the values 1,2, . . . , 1, one takes 

from (2.14a) flY(fl m ,&)0, so that (2.27) yields 

flhl)(/9 m ,8)_ 

 

910m1 8 ) 

in-  

______________ - 	zi1g1(J3,$) 
') (flm,8) 	

-(+P1)(+P2) 

(+P1)(+2) . . (fl2.) 

Next one takes j=2 and lets £ run through the values 1,2, . . . ,i. From (2.14a) one 

has n12) (/9 m ,8)0. Hence (2.27) yields 

g2(/3 m ,$) 

Z/2742)(/im,8) - 	v29(/9 m ,8) 

- (fl+2)(+i3) 

12h13 

($+P2)(+#3) 	. (# +p
in 

Continuing in this manner one shows that in general, 

z>J 	
(2.29) 

H(i +p,) 
n=j 

where 
'I 

A,( 1 ]1V r , 
	 (2.30) 

U 

while for j=i one has 



13 

nP)($ m ,$)= 	 (2.31) 

14 	

Equations (2.29)-(2.31) represent the solution of the difference equations (2.27) and 

(2.28). 

We turn next to the Laplace inversion process with respect to the t variable. By 

(2.13a), with D=D, one has i3,+p=--(s+6), where 

D 	
(2.32) 

Hence (2.29) becomes 

]J(8+5) 	 (2.33) 

with 

A lf  

c11)= 11 K 	 (2.34) 

Now the inversion of 17(8+5)_1  is 

L' 

J1(s+5) J 'I1(örön) 	
(2.36) 

n=j r=j 
rn 

If one applies the convolution theorem to g($,t)  and et,  with the denoting the 

convolution integral defined by 

a(t) * b(t)/a(r)b(t—r)dr, 

equations (2.29) and (2.30) yield, 
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* 
Ki  

e
—&,t 

 
i>j 

J1(rn) 
t=j 
r96n 

(2.37) 

(2.38) 	 V 

This is followed by the Fourier inversion with respect to the z variable. The inverse 

transform of (2.18) is given by (with £ now replaced by i in n i)) 

00  n')(Z,t) . 'K(I3 m ,Z)nt(,3 m ,t), :>j (2.39) 

00  nh(z,t)='K(/ 3m,z)ni(l3m,t), 15 	 (2.40) 

The ni)(6m,t)  in the summation are taken from equations (2.37) and (2.38). The 

inversion can be shown to be valid if n, 1)(z,t) is continuous and satisfies Dirichiet con-

ditions on 0<z<L with t>0. From (2.32) one separates the $, dependence as follows 

6n-6r rrn/3,+' rn 	 (2.41) 

where 

r_D[__ 	 I - K - Kr J 	
(x_x)+() 2rrn 	 (2.42) 

There results with (2.37), (2.39), and (2.41), on substitution into (2.39) and (2.40), the 

inverse function 

—s K(13 m ,z)g,(/3 m ,t) * e 
i>j 

Ki 	n=j  m=1 

r=j 
r96n 

D °° 	 —s e t 
nh(zt)j 	'K(/3 m ,z)g j(/3 m ,t) * 

tn=1 

On re-introducing the exponential multiplier of (2.12) into th& last two equations one 
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obtains all component parts of the solution for the chain member i. TheiK substitu-

tion into (2.5) yields the general, non-recursive solution in D, 

Nj(z,t)=eWQ_ ~ M=l  

K(/3,z)g j(3,t) * e 	+ Ki   
IR 

K( m ,z)g j ( m ,t) * e_t I 

	

+ 20/ 1)2 2 	 I, 
1=1,2, . . . , z>O, t>O 

j 1 	nj m=1 11(f'nrI3n+'7nr) 

(2.43) 

It is readily verified that the dimensional terms in these equations have the following 

units (cgs): 

9.(/9,0=[9n/(cm)_9/2], *=[see], 8=[sec11, 

	

C/1)=[see 	Fnr=[em2/.seC], $=[cm2],  'ynr=[see'],  D=[cm2/sec] 

It follows from this that N1 (z,t)=[gm1cm 3], as required. The form of the solution (2.43) 

does not explicitly exhibit the steady state form of the solution N(z,00). This limiting 

form is contained in the convolution time integrals and it results on letting t—+cc. 

Alternately if one sets s=O in (2.33) (for l>j) and proceeds with the Fourier inversion 

with respect to z, following the indicated steps, one is led to N(z,00). The resulting 

series can in some instances be summed in terms of elementary functions. 

2.2. Numerical Evaluations 

We illustrate the theory with an application of the solution in the finite span 

D: O<z<L. It is assumed that the chains originate at the repository boundary z=O, 

i.e., there is no other source in the span. The boundary condition at z=O will be of 

type I, which is a special case of the one specified in (2.3). The other boundary 
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condition at z=L will be retained in its generality. Both type I and type III boundary 

conditions will be applied to z=L while two kinds of initial conditions for 

N1(O,t), 1=1,2, . . . will be used. 

2.2.1. Case 1: Constant Concentration at Boundaries 

In the first example we use the backfill in a nuclear waste package as the porous 

medium of finite extent. At z=O is the waste form-backfill interface and at z=L is the 

outer edge of the backfill, or the backfill-rock interface. We use the following boun-

dary conditions: 

N1(O,t)=N°, t>O, 1=1,2, . . . 	 (2.44) 

IV(L,t)=O, t>O, 1=1,2, . . 	 (2.45) 

(2.44) means that the waste package holds intact long enough that all members in the 

specified decay chain have reached either their solubility limits or the secular equili-

brium before they start leaching out. (2.45) implies that a sink (e.g., a strong water 

flow) exists outside the backfill. Later, this type I boundary condition at z=L will be 

replaced by the general form of (2.4). As mentioned before, these boundary conditions 

are the special forms of (2.3) and (2.4) for which the original problem was solved. By 

specializing the parameters in the previous section, the solution to the present prob-

lem is obtained by a limiting precedure. 

First the kernel function K(/3 m ,Z) is constructed from the equation system (2.19) 

and (2.20) with homogeneous boundary conditions of type I. The comparison shows 

that in the present case D—*0 in (2.20a) and (2.20b), so that a—oo, 2-00  With this 

(2.21) yields in the limit the kernel function 

p 
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K(z)= 	TI 9m,\/" (19 m Z) 	 (2.46) 

The eigenvalues P. are determined from 

Slfl/3 m LO 

with the positive solutions 

m=1,2, 	 (2.47) 

Now the theory developed above, and specifically the set of equations (2.23) to (2.27), 

assumes that the boundary conditions for K(/3 ?fl ,z) at z=O and z=L are of type III, i.e., 

of the forms of (2.20a) and (2.20b). Since in the present case the boundary conditions 

are of type I and thus do not involve the derivative term one must formally make the 

following limiting replacements in (2.28): 

K(/3 m ,L) - - 1 ÔK(/3 m ,L) K(13m,O) j ôK8m,O) 
(2.48) 

DE 	- 	h 2 	s9z 	' 	Dc 	h 1 	ôz 

where in this case h 1 =cv , h2=h - cv. Further, a comparison of (2.45) with (2.4) shows 

that N)(t)O so that N!(s)EO.  This leaves only the second term in (2.28) which 

reduces in time domain with the above to 

90., t)- --N2=%1T ÔK(13m,2) 	 (2.49) 
t9z 

With K(/3 m ,Z) and g,(fim,t)  determined the solution of the problem is given by (2.43) 

which reduces to 

INio 
	/m13mZ (1_et)+ 

LK, 	m=1 
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1 	- 	1 

	

(1—e 	) z>O, t>O, i=1,2, 
j=1 	n=j 

m=1 Jl(rnr/3 +inr) 6n 	 I 
t—j 	 I 
r n 	 ) 

(2.50) 

Next we will show that Equation (2.50) is a special (limiting) case of the more 

general solution of type III boundary condition at z=L. Here we use the general form 

of (2.4), with N)=O, instead of (2.45) at z=L, i.e., 

ON(L,t) 
—DE 	+vN8 (L,t) = hN1 (L,t), t>O 	 (2.51) 

t9z 

which means the material is transported into a medium with zero average concentra-

tion outside the domain D f. This is true if the finite domain is surrounded by an 

infinite medium, e.g., a backfill layer surrounded by rock. Since in this case D=O only 

in (2.20a), we have 

h h 2 	2 

	

a1=, 2j 	DE 

and the kernel becomes 

(2.52) 

where 

£ ?2 

	 (2.53) 

The eigenvalues 0 m  are now determined from 
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tan/3mL=- - ' 	 (2.54) 

which is to be solved numerically. With the help of (2.48) now evaluated at z=0, one 

has 

	

gL(/3m,t)= '\/ T3mNt° 	 (2.55) 

The final result from (2.50) and (2.55) is 

vz 	I 	( 
Ki  

Nj(z,t)— 	_p 	I 2 1/ m 8111I3 m Z 
—e 

m=1 L+tm J 	öi 	
(1_e_St)+ 

1 2 	m5mZ 	(l_ent +Zc,)N )l z>O, t>O, i=1,2, ' 

nj m1 L+m J 
ThTnr+nr)5n 

	

r=J. 	 I 

(2.56) 

When h, the mass transfer coefficient, becomes very large, i.e., /z—+c'o, which is 

simulated by a very strong water flow outside the domain Df  and results in a large 

mass transfer rate into the outside region, one finds from the definition of a 2 , that 

a 2-00. From (2.53) one has ç—+o and hence from (2.52) and (2.55) 

K(19rn,z)=\/" in(/3mz); g,(I3m,t)= '\/ ' /3mN2'71 

which are identical to (2.46) and (2.40), respectively, and the transcendental equation 

(2.54) returns to Slflfl mLO with the positive solutions specified in (2.47). Therefore, 

the final solution (2.56) reduces to (2.50). This demonstrates that the boundary con-

dition (2.45) and hence the solution (2.50) is a limiting case of the more general form 

(2.51) and (2.56) by letting h—+oo. 



Two computer codes were developed for the above two cases. UCBNE50 is used 

for equation (2.50) for infinite h and UCBNE51 is used for equation (2.56) for finite h. 

The following results are calculated using these programs. 

Numerical Examples 

The decay chains considered in this report are 2450m- 241Am--+ 237Np--+ 233U--+ 229Th 

and 234U- 230Th--+ 226Ra. The first one is chosen to show that our solution and algo-

rithm are capable of computing the transport of a chain of more than three members, 

while the second one is an important chain as far as nuclear waste disposal and the 

human environment are concerned. The domain we consider in this and the next sec-

tion is the backfill layer in a nuclear waste package. Because nuclear waste reposi-

tories are likely to be located in regions of low ground water flow, we will assume a 

zero pore water velocity (v=0) in the calculations though the solution and the corn-

puter code are not limited by this assumption. 

The mass transfer coefficient, h, needs more consideration. Because we are not 

aware of any experimental data available for this parameter, two previous analyses 

are used to estimate a value [2]. Both analyses give the same result (-10 4  m/yr) 

which will be used as the basis for comparisons. For parametric studies another value 

of h used in the calculations is 10 4  m/yr, which simulates a very strong water flow 

outside the backfill. 

The values for other parameters are for a potential wet-rock repository in 

basalt[5]. The values are: backfill thickness L=30 cm, diffusion coefficient D=10 

cm 2/sec =3.15x10 2  m 2 /yr, and porosity of the backfill c=0.3. Other parameters used 
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in these calculations are listed in. the following tables and in the figures. 

Figure 1 shows the concentration of the 234U—+230Th--+226Ra chain, normalized to 

IVP, as a function of distance at 10 years. 234U travels faster than the other two 

nuclides due to the smaller retardation coefficient. At 10 years none of the nuclides 

have reached the outer boundary of the backfill, even for the fastest moving 234U. At 

this time the boundary condition (2.51) has no effect at all. In fact, this figure is valid 

for all values of h at this time. This suggests that the semi-infinite medium solution 

to be discussed later can be used to evaluate nuclide concentrations during the early 

time period. 

In (2.50) and (2.56), the solutions include multiple summations and one of which 

is an infinite series. Since we cannot in reality compute an infinite series, some error 

bound must be imposed to stop the calculations. Here we use 10 as our criterion. 

Thus when the sum of tw .enty (20) consecutive terms is less than 10_8  times the total 

sum, the computation of the infinite series is stopped. Since the number of terms 

Parameters for Calculations 

Nuclides 234U 	230Th 226Ra 

K 120 	1500 300 
T 112  (yrs) 2.47x105 	8x104  1600 

ivP 1 	1 10 

Nuclides 2450m 241Am 	237Np 	233 U 229Th 

K,. 150 1020 	60 	120 1500 
T 1 , (yrs) 8500 430 	2.14x10 6 	1.59x10 5  7430 

Njo  1 0.1 	1 	1 1 
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Fig. 1. Normalized concentration profiles for 234 U- 230Th--* 226 Rain backfill as functions of distance 

at 10 years; concentration-limited boundary condition. 
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required is dependent upon the parameters used, it is difficult to predict the exact 

value of this number. However, one can see from the form of the solution that the 

ib 	 sine series would converge very slowly at small t, since it behaves as sin(nz)/n for large 

n, as in (2.32) and (2.47). This means a large number of terms is needed to make such 

calculations. To avoid this difficulty use the semi-infinite medium solution for early 

time calculations. The semi-infinite solution will be derived in the next section and is 

much more convenient to use. It contains no infinite series and is more economic in 

computations. We will discuss this further in Section 3. 

Figure 2 shows the concentration field at 1000 years. At this time 234U has 

reached steady state and the backfill is no longer retarding its migration. Since the 

decay of 234U is slow (T 1 12=2.47x105  years) its concentration is practically constant 

over the whole backfill. On the other hand, although 226Ra is also in its equilibrium 

state (to be shown in Figure 4) the decay effect is readily observable from the concen-

tration drop through the backfill ('- 20%). 230Th, however, is not in its equilibrium 

state due to the high retardation coefficient (K=1500). The concentration profile of 

230Th is still rising at this time and will reach its steady state at about 10 4 years, as 

will be seen in next two figures. Another important fact is that for h=10 rn/yr the 

outer edge of the backfill acts as an insulated surface since the concentration gradient 

at z=L is nearly zero, as shown in Fig. 2. 

Figure 3 shows the normalized concentration as a function of time at the outer 

t 
edge of backfill. Figure 4 shows the flux, normalized to N,P, of each member at both 

ends of backfill as a function of time. The solid curves represent the mass fluxes at 

inner surface while the dashed curves the mass fluxes at outer surface. Bot I Irgures 
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Fig. 2. Normalized concentration profiles for 234 U- 230 Th—+ 226 Ra in backfill as functions of distance 

at 103  years; concentration-limited boundary condition. 
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Fig. 3. Normalized concentration profiles for 234 U- 230Th--+ 226 Ra at backfill/rock interface as func-

tions of time; concentration-limited boundary condition. 
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Fig. 4. Normalized mass fluxes for 234 U_+230 Th—*226 Ra at both ends of the backfill layer as functions 

of time; concentration-limited boundary condition. 

N 

Ir- 

(I) 

'- I-- 

26 

'0 

is 



27 

show that 234U and 226Ra reach their steady state at about one thousand years while 

230Th reaches the steady state at about ten thousand years. Although Fig. 2 shows 

that 226Ra has decayed about 20% in the backfill (the concentration at z=L is 80% of 

that at z=O) it does not guarantee that the mass flux out of the backfill also decreased. 

In fact, Fig. 4 shows that the radium flux at z=L is one order of magnitude greater 

than uranium and thorium, in spite of the shorter half life of 226Ra. 

Figure 5 shows the effect of a much higher mass transfer coefficient at z=L, with 

h changed to 104  m/yr. At 1000 years, not only 234U and 226Ra have reached their 

steady states but 230Th is also almost at its equilibrium state, as can be seen in the 

next two figures. The concentration at outer boundary (z=L) drops to such a low 

level that it can be regarded as zero for all practical purposes. This conclusion has 

been cross-checked by computations using UCBNE50 based on the solution (2.50). 

Therefore, we will not show seperately the results from UCBNE50, since the results 

for h=104  m/yr can be well applied to the case of infinite h (i.e. UCBNE50). Figures 6 

and 7 show the concentration at the outer boundary and mass flux at both interfaces 

as functions of time, respectively, for h=104  rn/yr. In Fig. 6 we have also included the 

corresponding concentration profile for h=10 m/yr (the dashed curves) as a com-

parison. The concentration difference for different h is about six orders of magnitude, 

and the radium concentration is closer to that of uranium in the large h case than in 

the small Ii case. This implies that the large h condition will accelerate the speed of 

reaching the steady state and the decay effect has very little significance. In fact, Fig. 

7 shows that the mass fluxes at z=L are very close to those at z=0 at large times 

(>1000 years) that one can treat all three members as stable nuclides. Comparing 
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Fig. 5. Normalized concentration profiles for 234 U—+ 230Th—*226 Ra in backfill as functions of distance 

at 103  years; h = iO m/yr; concentration-limited boundary condition. 
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Fig. 6. Normalized concentration profiles for 234 U—*230Th--- 226 Ra at backfill/rock interface as func-

tions of time; concentration-limited boundary condition. 
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Fig. 7. Normalized mass fluxes for 234 U_*23OTh_*226 Ra at both ends of the backfill layer as functions 

of time; h = iO m/yr; concentration-limited boundary condition. 
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Fig. 7 with Fig. 4 one sees that the mass fluxes increase about two orders of magni-

tude in the large h case. Though not shown here, we have also made calculations for 

h=1 rn/yr and the resultan mass fluxes are identical to those for h=104  rn/yr case. In 

other words, a mass transfer coefficient of 1 rn/yr is large enough to simulate the 

strong water flow outside the backfill. 

To show the capacity of the solution to compute a chain of more than three 

members, we also present the results for the 2450m—+ 241Am--+ 237Np--+ 233U--+229Th chain. 

Figure 8 shows the concentration profile as a function of distance at 10 years. As in 

Fig. 1, at this time the nuclides have not reached the outer surface and the boundary 

condition at z=L plays no role in the nuclide migrations. Therefore, the semi-infinite 

medium solution can also be applied to this time period. The profile of each member 

is solely determined by the individual retardation coefficient, and decay has not 

affected the results. 

Figures 9 and 10 show the concentration profiles as a function of distance at 

1000 years. In Fig. 9 the h value used is 10 m/yr, while in Fig. 10 it is io rn/yr. 

Since 241Am has a short half life (430 years) at 1000 years more than 75% of the 

released amount has decayed to 237Np. On the other hand, 237Np has a very long half 

life (2.14x10 6  years) and it accumulates in the backfill. For the small h value in Fig. 

9, with the boundary at z=L acting as an insulated interface, the increase of 237Np is 

very significant. For a large value of h in Fig. 10, h accelerates the speed of reaching 

steady state, and the decay effect is not as pronounced as in the small h case, as dis-

cussed previously. Hence when the mass transfer coefficient is sufficiently large all the 

members of this chain except 241Am can be treated as stable nuclides. 
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Fig. 8. Normalized concentration profiles for 245 Cm 24l Am.*237 Np — 233 U—* 229 Th in backfill as 

functions of distance at 10 years; concentration-limited boundary condition. 
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Fig. 9. Normalized concentration profiles for 245 Cm- 241 Am--+ 237 Np — 233 U- 229 Th in backfill as 

functions of distance at 103  years; concentration-limited boundary condition. 



functions of distance at 103  years; h = 10 m/yr; concentration-limited boundary condition. 
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The analytic solutions and the computer codes are not limited by the zero pore 

water velocity assumption. We made additional calculations for the non-zero velocity 

case and found that for v=0.01 m/yr, the difference between the zero velocity results 

and the non-zero results are less than 5%, while for v=0.001 m/yr, the difference is 

less than 1%, for all times throughout the backfill. 

Next we investigate a different boundary condition at the inner surface. 

2.2.2. Case 2: Bateman-Type Boundary Condition 

In this case, a congruent dissolution, band release mode is assumed. The boun-

dary concentration at z=O obeys the Bateman equation 

(2.57) 

while the boundary condition at z=L remains the same form as in (2.51). The Bate-

man constant Bij  in (2.57) is 

B 1 = k N 	Hx7J/]J(Xt_X) 
m=1 	 r=m 	t=m 

where Nml is the initial concentration of the m'h  nuclide and the product term in the 

denominator is defined as unity when n2=j=1. Examining equation (2.28) one sees 

that the only change should be made is to replace 1V° with (2.57). The results are 
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g,(/3,t) * e _S t_\// 	B,,e_Xjt 1 



RR 

2_ 2 If we let 	 where 	
D Kn  

K 
then (2.56) changes to 

vz 	1. 

	

I 	 00 I 	2 	'/3mSu'V3nIZ(1 	
)+ - kt 

N,.(z,t)=e 
K I IBlke_Akt X' I L+m J 	&k 

	

1k=1 	rn—i 

00 
( 2 	3mS1rnZ 

 
j—1 	k—i 	 n=j rn=i L+em J 	

tn+7 nr )Ank  
r=j 	 I 
r~n 	 ) 

z>O, t>O, i=1,2, 	 (2.58) 

Equation (2.58) has been programmed into a computer code named UCBNE52, and is 

used to make our numerical calculations in the following examples. 

Numerical Examples 

For parameters values used in these calculations see the previous section. For a 

Bateman-type boundary condition, we need to know the initial boundary concentra-

tion of each member. To reveal the importance of decay in this case, we make the 

following assumptions. In both 234U—* 230Th--+ 226Ra and 

245Cm—+ 241Am—+ 237Np--+ 233U-- 229Th chains, all the daughters have initially no inventory 

in the waste canister, i.e., Ng (O,O)=O for i>2. The mother members ( 234U and 245Cm) 

have a initial concentration of unity, i.e., N 1 (0,0)=1. Although we adopt these values 

as our input data, we want to emphasize that neither the solution (2.58) nor the com-

puter code UCBNE52 is limited by this choice. One can select any reasonable values 

for the initial boundary concentrations in the chain. 
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Figures 11 through 15 are for the 234U—+ 230Th--+226Ra chain. In these figures the h 

values are 10 rn/yr. The vertical scale now is logarithmic to show the very small 

amounts of the daughter nuclides. Figure 11 shows the concentration profile, normal-

ized to N1 (0,0), as a function of distance at 10 years for the 234U—+ 230Th—+ 226Ra chain. 

Because initially there is no thorium, all 230Th come from the decay of 234U. This 

figure shows very little 230Th in the field, since all of it comes from the decay of 234U 

and 234U has a very long half life. The concentration of 226Ra cannot be shown in this 

figure because its value is well below the lower limit of the graph (106).  The solution 

(2.58) has one more summation term than Eq. (2.56). This implies a longer computa-

tion time is required to use this solution than the semi-infinite solutions implemented 

in UCBNE50 and UCBNE51. Hence the semi-infinite medium solution should be used 

whenever possible to economize the computing time. At this early time period one 

observes that the semi-infinite medium solution is a very good replacement for the 

exact solution (2.58) as mentioned in last section. It means the boundary condition at 

outer end (2.51) has not entered into the solution, and Fig. 11 can also be applied to 

other values of h. The semi-infinite medium solution for this kind of boundary condi-

tion will also be presented in Section 3. 

Figure 12 shows the concentration profile at 1000 years. At this time 234  has 

reached its steady state while 230Th and 226Ra are still rising. One interesting thing is 

that the 226Ra shows a maximum inside the backfill. This is because 230Th has a higher 

retardation coefficient than 226Ra inside the backfill, while in the waste form there is 

no retardation effect at all. Therefore, the production rate of 226Ra inside the backfill 

is greater than the rate in the waste form, for they both originate from the decay of 
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Fig. 11. Normalized concentration profiles for 234 U- 230 Th-- 226 Ra in backfill as functions of distance 

at 10 years; Bateman-type boundary condition. 
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Fig. 12. Normalized concentration profiles for 234 U—* 230Th--~ 226 Ra in backfill as functions of distance 

at 103 years; Bateman-type boundary condition. 
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230Th, and 230Th is nearly constant throughout the backfill due to the flat profile of 

234U. 

Figure 13 shows the concentration profile at t=10 5  years. Since 234U has a half 

life of 2.47X105  years, one can see the decay effect starting to take place. The profile 

of 24U is still flat but at a lower value than at 1000 years. 230Th and 226Ra on the 

other hand are still rising until one half of 234U has all decayed. Then the concentra-

tions of all three members decrease. 

Figures 14 and 15 show the concentration and flux profiles, both normalized to 

N1 (0,0), respectively, as functions of time at both interfaces of the backfill. In Fig. 14 

the solid curves indicate the concentrations at waste surface (z=0) while the dashed 

ones the concentrations at z=L. The dotted curve is the 24U concentration at z=L for 

h=104  m/yr as a comparison. The 230Th and 228Ra concentrations for a large value of 

h are less than the lower limit of the plot (10_6)  and are not shown here. Due to the 

interior maximum of 226Ra discussed above, the concentration at z=L is greater than 

that at z=0 after a few hundred years, which is the time to establish the flatness of 

the 234U profile. After several million years, all three members will have decayed out 

due to the Bateman-type boundary conditions. As in the case of constant boundary 

concentrations, the large h represents a strong flow outside the backfill, and the con-

centration at z=L falls to a very small value (about six orders of magnitude smaller 

than for the small h case). 

In Fig. 15 the solid curves represent the mass fluxes at z=0 and the dashed ones 

the fluxes at z=L. We also plotted the mass fluxes of 226Ra for high h at both ends by 

the dotted curves for comparison. For low h we only show 234U and 230Th fluxes since 



41 

0 
p*.) 

0 

to 

0 

0 
04 
0 

FIIWM 

Q) 
uQ 

0 0 
(I) 

0 

0 

It) 

0 

0 
0 
0 

00 	
7 	 ?c2 

U0IDJU8ZU03 POZIIDWJON 

Fig. 13. Normalized concentration profiles for 234 U--- 230Th-- 226 Ra in backfill as functions of distance 

at 105  years; Bateman-type boundary condition. 
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Fig. 14. Normalized concentration profiles for 234 U+23O Tl... 226 1 at both ends of the backfill layer 

as functions of time; Bateman-type boundary condition. 
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228Ra flux is too low to be shown. One can see that after 1000 years 234U has already 

reached a state that the mass flux at z=0 becomes almost equal to that at z=L, which 

means the backfill can no longer retard the migration of uranium. This state is called 

the saturated state. On the other hand, 230Th does not show the same phenomeno and 

the backfill still provides some degree of retardation effect for 230Th. This is also true 

for 226Ra though not shown here. The decay effect is strongly exhibited on thorium 

flux at z=O, since it has even a higher value than its mother, 24U, after one thousand 

years. 

The strong water flow can enhance the mass fluxes at the outer surface of 

backfill, as can be seen from the dotted curves. Later we will show that for a large 

value of h, 226Ra has the lowest mass fluxes in the chain at both interfaces. But these 

lowest mass fluxes are still higher than the mass fluxes of 234U evaluated at the small 

value of h after io years. Note that the mass flux of 226Ra at z=L is higher than that 

at z=O for both values of h due to its faster production inside the backfill than in the 

waste form. 

Figures 16 and 17 show the concentration profiles as a function of distance for 

h=104  m/yr at 1000 and 10 years, respectively. Strong water flow will decrease the 

concentrations at the outer interface, which in turn increases the mass fluxes there, 

the interior maximum of 226Ra is no longer seen. Instead, one finds that the concen-

tration profiles approach the secular equilibrium after 10 5  years, as seen in Fig. 17. 

Figure 18 shows the mass fluxes, normalized to N 1 (0,0), at both ends of backfill 

as functions of time for h=10 4  rn/yr. Again one observes that the large value of h will 

accelerate the speed of reaching the saturated state and the decay effect inside backfill 
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Fig. 16. Normalized concentration profiles for 234 U—* 230Th ,226 1ta in backfill as functions of distance 

at 103  years; Bateman-type boundary condition. 
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Fig. 17. Normalized concentration profiles for 234 U—* 230 Th---* 226 Ra in backfill as functions of distance 

at 105  years; Bateman-type boundary condition. 
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Fig. 18. Normalized concentration profiles for 234 U—* 230 Th—+ 226 Ra at both ends of the backfill layer 

as functions of time; Bateman-type boundary condition. 
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has less significance than for the small h case. Compared with Fig. 15 one observes 

that the time to reach the saturated state for 234U has been reduced from 1000 years 

to 100 years. Even 230Th now shows some degree of saturation after 30000 years, 

which is not observed in the small h case. We also see that for a large value of h, 

230Th fluxes are always less than those of 234U, in contrast to the situation shown in 

Fig. 15. As mentioned before, 226Ra fluxes are the lowest among all three members, 

but the flux at z=L is higher than that at z=O after a few years due to its faster pro-

duction rate in the backfill. 

To show the capacity of handling longer chain, we also made some calculations 

on the 245Cm- 241Am--+ 237Np--+ 233U-- 22 Th chain. Figure 19 shows the normalized con-

centration profiles as functions of distance at 10 years. It is seen that at this time 

period one can use the semi-infinite medium solution to calculate the concentration 

profile as in 24U chain. Hence this figure can be applied to arbitrary h values. One 

important thing to note is that 23 Np also shows an interior maximum as 226Ra in 

234U—+ 230Th.—+ 226Ra chain. It is due to the higher retardation coefficient of 241Am (1020) 

than that of 237Np (60), Furthermore, a faster production rate of 237Np appears inside 

the backfill than in the waste form. The last two members in the chain, 233U and 

229Th, have concentrations too low to be shown at this early time. 

Figures 20 and 21 show the concentration profiles at 10 5  years for h=10 and 104  

m/yr, respectively. In Fig. 20 one notes that all members have reached their 

saturated states at this time except 241Arn due to its short half life (430 years). Since 

245Cm has a half life of only 8530 years, one sees that both 245Cm and 241Am concentra-

tions drop to very low values at this time and keep decreasing. On the other hand, 
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Fig. 19. Normalized concentration profiles for 245 Cm—* 241 Am--+ 237 Np —+ 233 U--+ 229 Th in backfill as 

functions of distance at 10 years; Bateman-type boundary condition. 
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Fig. 20. Normalized concentration profiles for 245 Cm- 241 Am- 237 Np —+ 233 U—+229 Th in backfill as 

functions of distance at 10 years; Bateman-type boundary condition. 
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Fig. 21. Normalized concentration profiles for 245 Cm- 241 Am--* 237 Np — 233 U—+ 229 Th in backfill as 

functions of distance at 105 years; h = iO m/yr; Batemari-type boundary condition. 
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237Np has the longest half life in the chain (2.14x10 0  years), it thus remains at a rela-

tively high concentration value and its daughters, 233U and 229Th, are still increasing at 

this time. 

In Fig. 21 one can see that the large value of h accelerates the speed of satura-

tion and the decay effect of each member is not as important. Even 241Am shows some 

degree of saturation and it is in the secular equilibrium condition with its mother, 

245Cm. 233  and 229Th have not yet reached the secular equilibrium, but the tendency 

is apparent. The equilibrium condition will be established after few hundreds of 

thousand years. Though not shown here, all previous discussions on the effect of h 

can be applied to current situation. For example, for a large value of h, all members 

have lower concentrations and higher mass fluxes at z=L than for the small value of 

h. 
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3. Mass Transport through a Semi-infinite Medium 

3.1. Theoretical Analysis 

All the equations obtained in last section can be applied to present case with 

only minor changes. That is, we can obtain a set of equations (3.1)-(3.43) identical to 

(2.1)-(2.43) with some modifications, which will be discussed as follows. 

The boundary condition at z—oo (since we are working on a semi-infinite 

medium) is changed to 

ON =O(e_), for zoo, k>O, r0,1, 	 (3.4) 
ôz' 

Or in terms of Ni')  and n) one has 

O'N$ i) (z,t) 
=O(e_), for z—+c'o, k>O, r=0,1, 	 (3.9) 

9n ( z, s) 
=O(e_), for z—+oo, k>O, r=0,1, 	 (3.17) 

3z' 

Now we introduce an infinite Fourier transform with respect to the z variable 

n (p,s )= f°K(p , z) n (z, s) dz 	 (3.18) 

The Fourier kernel K(p,z) satisfies 

d2K(p,z) +p
2K(p,z)=O, O<z<oo 	 (3.19) 

—DE 
dK(p,O) +h

1 K(p,0)=0 	 (2.20) 
dz 

and instead of (2.20b), K(p,z) satisfies a boundedness condition as z—+oo. The solution 
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to this problem is given by * 

-' ,pc0s(pz)+a1sin(pz) 	
(3.21) K(p,z)= V . 	( p 2+c) 1 /2  

p replaces the eigenvalues /3 in (12.19), and it constitutes a continuous spectrum of 

range Op<co. One now transforms (3.15) with help of (3.18). This leads to a set of 

steps comparable to (2.22)-(2.27), except that L is replaced by cc. On account of the 

boundedness of K(p,z) and its derivatives and in view of (3.17) the contribution to Jat 

z=co vanishes leaving us with 

(3.27) 

where 

K(p,O) NvE.b(s) 	 (3.28) 
DE 

and 

nL)1 (p,$)=O, 1<1 

The steps of the solution of the difference equation (3.27) are identical to those in Sec-

tion 2 leading, on inverting with respect to t, to equations (3.29)-(3.38), with /3,,, 

replaced by p. However, the Fourier inversion with respect to z transforms to 

n,(i)(z,t)=j"°K(p,z)n1)(p,t)dp, 2> j 	 (3.39) 

n, 1)(z,t)=J"°K(p ,z)nN(p,t)dp, 1r j 	 (3.40) 

Hence all steps between equations (2.41) to (2.43) remain unchanged and one obtains 

L. Chambré, cla.ss notes taught in U. C. Berkeley. 
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the corresponding equations (3.41)-(3.43), except /3,,, replaced by p and the summation 

00 

by 	 () dp. The result is the general, non-recursive solution in D: 

vz 
A(z,t)=e2D{fK(P,z)gi(P,t) * e_Sttdp+ 

Ki 	
1 _______________ I 

dp. O<z<, t>O, i=1,2, 
1=1 	t2=j 	

JJ(r'nrp2+'7nr) 	I 
r=j 	 Jrv&n 

(3.43) 

with g.(p,t) prescribed by (3.28). One can verify by dimensional arguments of the 

right hand side of (3.43) that N1 (z,t)=[gm1enz 3 . 

3.2. Numerical Evaluations 

In this section, the general solution (3.43) obtained above will be applied to two 

special cases so that one can have some insight into this analysis. In either case, a 

type-I boundary condition will be used at the waste surface and a suitable form of the 

resulting solution will be derived to make the computational work easier and more 

practical. 

3.2.1. Case 1: Constant Concentration at Boundaries 

In this case we assume that the waste package holds intact long enough that all 

members in the specified decay chain have reached either their solubility limits or the 

secular equilibrium before they start leaching out. The boundary condition at z=O is 

then N,(O,t)=IVP and 



56 

K(p,z)= "\/1 iri(pz), g1 ( p, t) =\/" pJV2 .  

Hence the convolution integral becomes 

—tst  
g1(p,t) * e 	= j \/'-?-pNpe_ônTdr = 1—e 

and the solution is reduced to 

vz 

-  Nj(z,t) = e 	 ')dp + 
psin(pz) (1 	s 

K ir 

t 

xf psin(pz) 	(l_e_) 
dpi, z>O, t>O, 1=1,2, 

0 	' 

J7(rnrp2+.-inr) 	
(3.44) 

r=j 
) 

Although (3.44) is the correct formula, it is not practical for computing. For 

instance, the first exponential term on the right hand side may be arbitrarily large 

and exceed the computer limit (e.g., 1038  in a VAX-8600 machine) as the distance z 

increases. On the other hand, as z increases, the frequency of sin(pz) increases too. 

This causes the integrand to increase its oscillations, so that the resulting integration 

is not accurate enough due to the accuracy limit of the computer (e.g., 14 digits in 

double precision in a VAX machine). To give a numerical illustration, take v=1 

m/yr, z=500 m,D=1 m 2/yr, then the exponential term becomes e 250, which cannot be 

handled by the computer and the calculation would be aborted. To overcome these 

difficulties, one has to convert (3.44) to some other suitable form. One approach is to 

use the error functions to replace the integrals and combine the results with the first 

exponential term. The conversion procedure is given in Appendix A. The coded 

results are in the computer program UCBNE40, and used in the following examples. 

I 

0 
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Numerical Examples 

As in the finite medium calculations, we investigate two chains, 

It 	

234U—+230Th—+ 226Ra and 24 Cm—+241Am---* 237Np--+ 233U—s 229Th. All parameters remain the 

same as in the previous sections except the following changes. The semi-infinite rock 

porosity is E=3X10 3, the pore water velocity is v=1 m/yr, and the dispersion 

coefficient is D=50 m 2/yr. However, the solution and the code are not limited by 

these choices and can handle any combination of parameters. 

Figures 22-24 show the concentration profiles, normalized to JVP, as functions of 

distance for the 234U—+ 230Th--+ 226Ra chain at 10, 1000, and 10 5  years, respectively. At 

10 years, the effect of decay is not apparent. 234U travels at the fastest rate because of 

its smallest retardation coefficient, and covers the largest distance (about 10 meters). 

230Th and 226Ra follow the same behavior as 234U. 

At 1000 years, one begins to see the decay effect of 234U  in the field and the con-

centration profile for 230Th shows a bend at 30 meters, at which point the derivative 

of the mass flux with respect to distance becomes negative, i.e., the mass flux of 230Th 

decreases. This is due to the fact that at this distance, a significant amount of 234U 

has decayed to 230Th, which causes the concentration gradient to become smaller for 

thorium. Additional calculations on thorium alone show that if there is no 234U, 230Th 

itself cannot travel farther than 30 meters at 1000 years due to its retardation. Hence 

after 30 meters all thorium comes from uranium in the field. From Fig. 23 one can 

also see that the decay of 230Th occurs mostly within 20 meters. Since during this 

range 226Ra has a very high concentration one cannot see the increase in its concentra-

tion from thorium decay. The traveling speed is still governed by the retardation 
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Fig. 22. Normalized concentration profiles for 245 Cm- 241 Am-- 237 Np —4 233 U--+ 229Th in porous rock 

as functions of distance at 10 years; concentration-limited boundary condition. 
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Fig. 23. Normalized concentration profiles for 234 U—+ 230 Th--*226 Ra in porous rock as functions of 

distance at 103  years; concentration-limited boundary condition. 
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Fig. 24. Normalized concentration profiles for 245 Cm 24 lAm...* 237 Np — 233 U- 229Th in porous rock 

as functions of distance at 10 5  years; Bateman-type boundary condition. 
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coefficient as can be seen in Fig. 23. 

-. 	Neither 230Th nor 226Ra can travel very far even at 10 years, as shown in Fig. 24, 

since thorium has a high retardation coefficient while radium has a short half life. 

Seperate calculations on thorium and radium show that all 230Th and 226Ra will decay 

out within one kilometer, had there been no uranium present.i Thëturning points in 

both thorium and radium profiles are due to uranium decay. Beyond these points the 

thorium and radium all come from the decay of the mother nuclide, 234U. Another 

important observation is that at t=10 5  years 226Ra falls behind 230Th in the field. This 

is due to the relatively short half life of 226Ra, i.e., the decay effect of 228Ra is stronger 

than the retarding effect of 230Th in the field, though both effects limit their migration 

distance. One can also see that after these turning points thorium and radium tend 

to reach their equilibrium condition as time goes on. This will be discussed in the 

next figure. 

Figure 25 shows the normalized concentrations as functions of time at a distance 

of one kilometer. Here we use a leach time of 10 5  years in the calculations. It should 

be pointed out that the actual radium concentrations are one order of magnitude 

larger than what is shown here, since the normalization factor for radium (the boun-

dary concentration) is 10 while the normalization factors for the other two members 

are unity. From the discussion of the last figure we know that were not for the 

uranium present, neither thorium nor radium would have migrated as far as one 

kilometer, hence all thorium and radium concentrations in this figure are derived 

from the decay of 234U. Also, one observes that 230Th and 226Ra are at secular equili-

brium at this point. Since 234U has the lowest retardation coefficient, the leading and 



N 

62 

00 

(I) 
L. 
0 
(1) 
>- 

Q) 
E 

F- 

100 

7 

U040J4.U83UO3 peZ!,DWJON 

Fig. 25. Normalized concentration profiles for 245 Cm- 241 Am-- 237Np — 233 U,229Th in porous rock 

as functions of time at iQ m; concentration-limited boundary condition. 
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trailing edges all appear earlier than 230Th and 226Ra. This is also true for radium, but 

it appears at very low concentration range and cannot be shown here. 

Figure 26 shows the normalized concentrations for the 

• 	 245Cm +24 lAm....+ 237Np_+233U_+229Th chain as functions of distance at 10 5  years. One 

can see that the traveling speeds are basically following the same rule, i.e., the higher 

the retardation coefficient the slower the migration speed, except 241Am due to its very 

short half life. The decay from 241Am also results in the increase of 237Np concentra-

tion in the field for the latter has the longest half life in the chain. From this figure 

one infers that both 241Am and 229Th would not travel farther than few hundred 

meters if the parent nuclides were not present in the field. Hence because of the turn-

ing points present in 241Am and 229Th profiles, they are produced from the decay of the 

mother member after these turning points. 

Figure 27 shows the normalized concentration profiles as functions of time at 

1000 meters with the leach time equal to 10 5  years. Since 241Am and 229Th themselves 

do not travel this far one can expect that they will be at secular equilibrium condi-

tions with their parent nuclides. This is confirmed in this figure. The leading and 

trailing edges of each member is determined by its retardation coefficient, hence 237Np 

appears first, then 23U, and then 241Cm.  This rule cannot be applied to 241Am and 

229Th since they are produced from their mother members at this time. 

3.2.2. Case 2: Bateman-Type Boundary Condition 

As in the finite domain case, a congruent dissolution, band release mode is 

assumed. The boundary concentrations at z=O obey the Bateman equation 
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Fig. 26. Normalized concentration profiles for 25 Cm—+ 241 Am—* 237 Np — 233 U--+ 229 Th in porous rock 

as functions of distance at 10 5  years; concentration-limited boundary condition. 
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Fig. 27. Normalized concentration profiles for 245 Cm...* 24l Am.... 237 Np — 233 U- 229 Th in porous rock 

as functions of time at iO m; concentration-limited boundary condition. 



N,(O,t)= tBe_XJt 

66 

and 

g(p , t)= 

Hence 

—5,.t    
g1( t)   *   e  	=   J'4%%./'rpZBjjej(te_8dr 

=  	
EBjje_3t   1_e p, 	

n_))t 
0  

6—X 

Let 

__p_ (p 2 	-- 
Kn 	 ' 	

(p2+q,) +q)—X  

where 

2_ 2_!X 	V 2 

D 	
+--(X_X 1 ) 	 (3.32') 

then (3.44) changes to 

-x 
IV(z,t) = 	

psin(pz) (l e_A$kt)dp + 	'C,ca)ZBIkC k  x 
K, ir lk=1 	 'ik 	 j=1 	k=1 

1 
XjI 	

psm(pz) 	(1—e nk) 
dp z>O, t>O, i=1,2, 

J1(1'nrP2+'7nr) 	
nk 	 (3.44') 

r=j 
fj6 n 	 ) 

Again some conversions must be made to make the computations workable and 

practical analogous to those made in the last section. The detailed procedure is 

shown in Appendix B. The analytic solutions for this case have also been successlully 

implemented in the computer code UCBNE41 which is used in the following exarnil 
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Numerical Examples 

All parameters remain the same as in the previous sections except the boundary 

conditions at z=O is replaced by the Bateman equation (2.57). The initial boundary 

concentrations are the same as in the corresponding finite medium problem, i.e., unity 

for mother members and zero for all daughters. As shown in Appendix B, the solu-

tion and the program are not limited by this choice, and can be applied to any values 

of initial concentrations. 

Figures 28-30 show the concentration profiles, normalized to N 1 (0,0), as functions 

of distance for 2s4U_+23oTh+22eRa  chain at 10, 1000, and 10 5  years, respectively. In 

Fig. 28 we see only a small amount of 230Th present near the waste surface originating 

from the decay of 234U, while the 226Ra concentration is too low to be shown. By corn-

paring this figure with Fig. 22 one sees that the uranium profile is practically identical 

in these two figures. In fact, even at 1000 and 10 years one still sees this same result 

because of its long half life. Hence we conclude that for 234U the solution for 

Bateman-type boundary condition will result in the same concentration profile as 

from the solution for constant boundary concentration case up to 10 5  years. 

At 1000 years a significant amount of 230Th and some 226Ra begin to appear as 

shown in Fig. 29. The decay of 234U in the waste form is the driving force for 230Th 

migration in the field. Due to the high retardation effect of 230Th it cannot travel 

beyond a few tens of meters if there is no 24U in the field. Hence the turning in the 

thorium profile indicates the decay of uranium in the field, i.e., after 20 meters the 

230Th concentration totally comes from 4U. 
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Fig. 28. Normalized concentration profiles for 234 U- 230Th-- 226 Ra in porous rock as functions of 

distance at 10 years; Bateman-type boundary condition. 
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Fig. 29. Normalized concentration profiles for 234 U—* 230 Th--4 226 Ra in porous rock as functions of 

distance at 103  years; Bateman-type boundary condition. 
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Fig. 30. Normalized concentration profiles for 234U- 230 Th--* 226 Ra in porous rock as functions of 

distance at 10 5  years; Bateman-type boundary condition. 
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Figure 30 shows that at 10 years 234U begins to decay though by a small 

amount, and 230Th and 226Ra have risen to a significant amount. Like the correspond-

ing results for finite medium in Fig. 13, 226Ra shows an interior maximum due to the 

faster production rate in the field than in the waste form (cf. Fig. 13). This figure also 

indicates that after 200 meters, the decay of 230Th and 226Ra become important and 

the profiles are produced from the decay of 234U after this distance. In fact, one can 

see that both 230Th and 226Ra would not migrate beyond 1000 meters by themselves. 

Figure 31 shows the normalized concentration profiles as a function of time at 

1000 meters with a leach time of 	years. From the last figure we know that at this 

distance all 230Th and 226Ra are produced from the decay of 234U in the field. Hence 

230Th and 226Ra are already at secular equilibrium. We see that Fig. 31 is actually the 

same as Fig. 25, because 234U can be regarded as a stable species at this distance. 

Figure 32 shows the normalized concentration profiles as a function of distance 

for the 245Crn—+241Am--+ 237Np- 233U--+229Th chain at years. As in Fig. 26 one finds 

that 237Np travels fastest due to its low retardation coefficient and its longest half life. 

At 105  years almost all 2450m and 241Am have decayed away, but the normalized con-

centration of 237Np rises to nearly unity for it has not yet started decaying. Again in 

this figure we see that the migration distance is inversely dependent upon its retarda-

tion coefficient except for 241Am and 229Th. They cannot travel very far due to short 

half life or large retardation coefficient. In fact, this figure shows basically the same 

features as exhibited in Fig. 26, except at the waste surface. 

Figure 33 shows the normalized concentration profiles as a function of time at 

1000 meters with a leach time of 10 5  years. Only four members are shown in this 
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Fig. 31. Normalized concentration profiles for 234 U- 230 Th---* 226 Ra in porous rock as functions of 

time at 10 3 m; Bateman-type boundary condition. 



73 

r',1 	0 
oc 

-I- 
V) 

0 

00 
7 	 'V 	 LI) 	 w 

U01DJ4U3UO3 P8Z1I0WJON 

Fig. 32. Normalized concentration profiles for 245 Cm,241 Am-- 237 Np — 233 U- 229 Th in porous rock 

as functions of distance at 10 years; Bateman-type boundary condition. 
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Fig. 33. Normalized concentration profiles for 245 Cm..... 24 lAm... 237 Np —+ 233 U- 229 Th in porous rock 

as functions of time at 103  m; Batemari-type boundary condition. 
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graph because 241Am concentration is too low to be plotted. We find that 23 U and 

229Th are at secular equilibrium after 2x10 5  years since at this distance all thorium 

comes from the decay of uranium. This is also true for 245Cm and 241Am. The general 

features of this figure are similar to those in Fig. 27 and all discussions provided there 

can also be applied here. 

One very important point about these calculations is that this code UCBNE41 

can be used to replace the popular three-member-chain calculation programs 

UCBNE10.2 and UCBNE10.3 because it can compute the concentration profile of any 

member without any numerical difficulties and can also be applied to a chain of arbi-

trary length. Though not shown in the above figures, it can actually produce the 

results of the dispersion-free code UCBNE25 by setting the dispersion coefficient to a 

very small value (e.g., iO m 2/yr). One cannot set D equal to zero in UCBNE41 for a 

singularity will occur as seen from the solution form developed in Appendix A. But 

for very small values of D the results indeed have the same graphical trends as those 

from UCBNE25, with only the small rounding appearing at the leading and trailing 

edges. These are usually produced by the dispersion-free calculations. 
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4. Conclusions 

In this report, the general non-recursive solutions for the transport of radioactive 

decay chains are obtained. The first half of the report deals with transport in a finite 

span such as a backfill layer, while the second half analyzes mass transport in a semi-

infinite domain. Two decay chains, 234U—+ 230Th—+ 226Ra and 

245Cm—+241Am—+ 237Np---+ 233U—+ 229Th, are used in the numerical examples. 

A mass transfer coefficient h=10 m/y obtained in two previous studies is used 

in the finite span calculations. The outer boundary of the backfill acts like an 

impermeable surface at this value of h, since the flux at this position is nearly zero. 

Another value of h, 104  m/yr, is also used to simulate a strong water flow outside the 

backfill. The mass transfer rate for this value of h is at least two orders of magnitude 

greater than that for h=10 rn/yr. Since normally the underground water velocity is 

low (< 1 m/yr, which is equivalent to h<10 m/yr), the mass flux out of the backfill 

is quite small. 

At early times (<10 years), the finite medium calculations can be replaced by 

the semi-infinite medium solution, since the nuclides have not yet reached the 

backfill/rock interface. We would recommend that future users of these codes do this 

to reduce computing time and cost, though the finite medium codes UCBNE50, 

UCBNE51, and UCBNE52 can make the calculations without numerical difficulties. 

The zero velocity assumption in backfill used in previous chapters are justified 

by the finite medium calculations. For pore water velocity v=O.Ol m/yr, the relative 

error introduced by the zero velocity assumption is less than 5%; while for v=0.001 

rn/yr it is less than 1%. Since the pore water velocity normally encountered in 
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repositories is of the order of 10 to 10 9  m/yr, it is believed that the use of the no-

flow assumption in backfill calculations is sensible. 

In both finite and semi-infinite media calculations, 26Ra always shows an interior 

maximum within the field. This phenomenon is due to the combined effects of tran-

sport, decay, and retardation of radium and its precursors, and can be seen only in 

the chain calculations. Hence to get more details in the radionuclide migration 

analysis, this kind of chain calculations becomes necessary. 

In several figures, the concentration of a daughter nuclide built up so much in 

the field that it exceeds the concentration at the source. This would mean a back 

diffusion of the nuclide towards the source, due to an improperly specified boundary 

condition. Such a phenomenon occurs mostly in backfill with the lower value of the 

mass transfer coefficient. Calculations not reported here show that stronger flows 

outside the backfill would tend to weaken this phenomenon. 

In semi-infinite medium calculations, the nuclides with high retardation 

coefficients, such as 230Th, 226Ra, 241Am, and 229Th, would not travel farther than 1000 

meters in the field without transport of their precursors. This means that essentially 

all these nuclides come from their mothers at this distance. In the numerical exam-

ples, the mother members, such as 24U and 233U,  which need a few hundred thousand 

years to travel this far, are already in secular equilibrium with the daughters. Hence 

only the concentrations of the mother nuclides are required to get the entire concen-

tration profiles after 1000 meters. 

Before this analysis became available, sometimes a "compression" method was 

used to transform a long chain to a 3-member chain by neglecting the short-lived 
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members in order to use the existing code UCBNE10.2. Now a tool is provided to 

examine whether this approach is valid or necessary. If not, one has to turn to the 

solutions obtained here to make more precise calculations. 

Possible extensions of the current study would be to include different 

d isper ison /diffusion coefficients for each member of the chain. Another might be to 

utilize non-constant mass transfer coefficients h. The analysis could also be extended 

to cover different hi  for each member. 
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Appendix A: Numerical Implementation of Equation (3.44) 

In this appendix we discuss the conversions needed to implement the analytic 

solutions obtained in the main text. The solution for IV (z ,t) is given by 

N1 (z ,t) = e. _ . {N s Of 0  i sin(z)1_-ot )dp + 
	c1 u)Nj0 Ex 

xf
00 

	

	p sin(pz) 	(i_c_6nt) dp1, z >0, t >0, i =1,2, 0 	
5 H(rnr p 2+nr) 

r=i 	 I r 1n 

To implement this solution two transformations*  are needed 

fOO p siri(pz) dp = 	 (3,45) 
0 p 2+q 2 	2 

1
00 p sin(pz) 	

= 	e 
_2 

 12e 	-gz erfc(—q 	) - e qz  erfc(+q 	)] 

	

0 p 2+q 2 	 4 	L 	2 

(3.46) 

Now from the definition of 6 1  (3.32) and with the help of (3.45) and (3.46) one gets 

00 

p sin(pz ) (i_e6$t )dp 
0 

D 
K1 	00 

 p sin(pz  ) 	
-.--( p2+g,2)t 

p2+q2 
[i—e 	]dp 

	

z 	 vt  
- 	e 	erfc[ 	_____ - (X 1  t + 	) 1 /2]+e 	erfc[ 	

Z 	 )1/2]] - irKi [ -q,z 	 2 	 v2t 

- 4 D 	 2Dt /K1 	4DK1 	 2Dt /I( +(X, t + 4DK1 

(3.47) 

Hence the first term on the right hand side of (3.44) is converted to 

*Gradshteyn, I. S., and Ryzhik, I. M., "Table of Integrals, Series, and Products," Eqs. (3.723.3) and (3.954.1), 
pp. 406, 497, Academic Press, 1980. 
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v2t 	1 N °  r 	______ 
(X 	

v 2 t 	 _________ 	_____ 
Ic 	 ____ 

2 [ 	2Dt /K1 	
+ 	)1/2} 	

(g,+)z 
erfc{ 

2Dt /K1 +(X I + 4DK1 
)1/21 j 

(3.48) 

For the second term on the r.h.s. we do the following: 

=F' 

fJ(FnrP2+')'nr) 	
fJ1Tnr k 	fJ(p 2+d) 	J(p 2-i-d) 	(3.49) 

r=j 	 r j  
rn 	 rn 
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Hence 
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dp 

fJ (F,r 2+..) 	
Sn

nr 
r=i 
rn 

I 

 Enr 	
p sin(pz) 

= >  
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i 	[ 7r 
= F' 	E 	e 

-d,, z ir -(g, 2-d)Dt /K, 12e  '' z - 
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/DtZ 
	

dnr  Dt /K )—e dnrZ  erfc(_ 
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2/K 	 DtK 
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I C Z (l_Cnr (t))+Gnr (t)X 
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z x IC erfc( 
2 Dt/K 	

r  +dn \/Th /K ) ]} (353) _ 	erfc( 
2 Dt/K d

nr  Dt /K )+e dnrZ  

where 

KX_K, X 

(t ) = -(
g 2-d)Dt /K = 

e - 
K —K, 	

, r 

=1, r=n 	
(3.54) 

 

Therefore, the second term on the r.h.s. of (3.44) becomes 

E, {e 
(——d,)z 

 (lGnr 
 (t)) Gnr(t) 

x 
I j=1 TI=j 	r=j 

X 1e 
(, )z 	 ( 	+d , )z 

erfc( 
2JDt 

V _d 	

dnr  Dt /K )+ c 	erfc( 
2Dt /K +d

nr  fDt /K) J } I 	
/K 

(3.55) 

Let S1  (z ,t) and P; (z ,t) represent the first and the second terms on the right hand 

side of (3.44), respectively, N1  (z ,t) becomes 

N1  (z ,t )=S1  (z ,t )+P1 (z ,t), z >0, t >0, 1=1,2, 	 (3.56) 

with S1 (z,t) given in (3.48) and P1 (z,t) given in (3.55). 

If we use 	defined in (3.30) to replace 	in (3.44), P1  can be rewritten as 
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Gnr (t)  
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(3.57) 
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1 	 K,' 

K = 
H(K—K) 	 (3.58) 

w=i 	I t' 

wn 

It will be shown later that S (z ,t) is always bounded, and after some reordering the 

final form can be evaluated by computer without any difficulty. P (z ,t), however, 

still has some problem when put in computer though the integrals are gone. This is 

due to the numerical values of dn,  and Gnr  (t). From the definition of d,. (3.50) one 

can see that it may have any value, even imaginary (for d<0). On the other hand, 

(3.54) shows that Gnr (t) may be either positively or negatively very large value and 

(3.57) cannot be handled by the computer. Therefore, a further reduction is needed. 

From (3.54) one observes that when n=r the first term in the braces in (3.57) 

vanishes since Ga ,. (t )==1. For n yr and with the definition of Enr  (3.52) one gets 
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Substituting (3.60) and (3.61) back into (3.59) one obtains for n 
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i=j+1 	 (3.62) 

- K X. -K,. X,. 

For n =r, following similarly derivations one gets 

D 2  
I 

	

fJ(Icx–Kx) 	 (3.63) 
w=i 
w 

Hence from (3.62) by interchanging n and r one sees that for n 

	

F E. =-F,. E,. 	 (3.64) 

Equation (3.64) is our key formula to make (3.57) computable for any combination of 

the parameters: D , v , K,., c, X,., z , and t. 

Since n and r both range from jto i as seen in (3.57), for every F En ,., n 

there exists exactly one corresponding F,. E,. . In addition, d,. —d,.,, from (3.50), and 

G,,. (t )Grn  (t) from (3.54). Therefore, for n =j ,j +1, . . . , 1; r =j ,j +1, . . . , I 

(—d )z 	 (d )z 
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F. Enr  e 
	
(1-G,. (t ))=O 	(3.65) 

That is, the summation of the first term in braces in (3.57) from jto i is zero. Thus 
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(3.66) 

To remove the difficulty caused by G a ,. (t) we make following rearrangement. 

Dt v2t 

+On 
Since G0,.(t) 

= 	
= 	c_ 	Kn 	from (3.32), we have 
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where 
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For r >O, H(x) is always bounded. 
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appears in (3.70). If 2/ 
/K r  

is also less than 	JDt /Kr , then from our key for- 

mula (3.64), this extra term will be canceled out. For 	__ 
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(3.75) 

So (3.72) is still bounded. With the help of (3.74) and (3.75) one obtains the comput-

able form for N(  (z ,t) in terms of S (z ,t ) and P, (z ,t) (3.56) for all real d,,,. 

_Xit_(..v/v 	
'2 

Si (z ,t )=--N5°e 	
2 V 	X 

X [H( +q1  JDt /K )+H(_
Z

—q1 ,,/Dt /K )1 for 	
Z 	>q JDt /K; 

2JDt7K1 	 2/Dt/K1 	 2Dt1K1  

(-q,)z 	
t( v_2 )2 

2 
Njol2e -~D 

x [H( 2Dt /K +q Dt /K1  )—H(q1 DT7K— 
2Dt 	)1} for 

2Dt/K1 
 <qj D/K1 
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(3.76) 

_ 
P,.(z,t)=--A 1 ( ' )N10 F 	Enr  W(z,d nr ,/D_t/Kn ) 	

( 3.77) 
j=i 	n=j r=j 

where 

W(z ,d nr  ,Dt /K) 

-x n  t( v/ 	)2 

x 

X[H( 	
Z 	+ 4 t/ DK ) + H ( 	

Z 	
dnr  /Dt/K )], for 	

Z 	./Dt /K; 
2../Dt7K 	 2./Dt7K 	 2Dt/K 

K XK ,, —? >, 

=2e 	
,, 	

___________ ,, 	
v 	Z 	)2 

- K —K 	
+(—d,,, 

+e 
)z 	—X,, t—( 	

- 2Dt 1K,, x 

Z 	
+dnr  s./Dt /K,,))-H(d,, Dt/K- 	Z 

2Dt/K,, 	 2V 5 /K,, 

for 	z 	<d,,./Dt/K,nr; 
2/DT7K,, 

=2e 
(-q,,) 

 +e 	
t_( v_/K 

)2 
— Xn

x  

X [H(( 	+q,, Dt /K ))-H( 	
Z 	

-q,, yDt /K,, )11 
2Dt/K,, 	 12v"Dt/K,, 

for 	
z 	

<q,, /Dt /K,,, n =r 	(3.78) 
2/DT7K,, 

Error Functions of Complex Arguments 

For d,,<O, d,,r  is a pure imaginary number, and we have error functions of 

complex arguments from (3.78). Since 

t2 



A-b 

+y )=e ( 	2erfc(x +iy )=e 2 ' 2 e 	erfc(x +y H(x 	 ), 

H(x —ly )=e ( ' )2erfc(x —ly )=e 2_2 i 2xv erfc(x —ly )=H(x +iy) 	(3.79) 

the sum H(x+iy)+H(z_iy)=2e 22(?cos2xy—lsin2xy)=real, where .f? and I are the 

real and imaginary parts of erfc(x +1!,), respectively. Now in (3.70), 

X 
= 2Dt/K 

, y = dnr  Dt /IC , 22 Kz2 
—Dt /K (—d), 2xy = I d z , and 

1 and I are given in the approximate forms" with the relative error bound < 10_18: 

-- 

2x 	n 2+4x 2ffl ) 

E 	)- 	
[ 1—cos2zy 

	

=erfc(z 	 +2 	
e 

- 
e 1 	(3.80) sin2xy+2 	
2 	2 2x 	j n +4x 

where 

f,, =2x [1—cosh(ny )cos(2xy )]+n sinh(ny )sin(2xy) 

an =2x cosh(ny )sin(2xy )+n sinh(ny )cos(2xy) 	 (3.81) 

Tb eref ore, 

H(r +iy )+H(x —ly) 

= 2[e 	cos2xy —c z2_Y2Isin2xy] 

—2[{ e 2[H( x )_ 1_C0S2XY]_X 
- 	 2irx 	ir 

-y 
 00 

X 

	

2xe 	
4 -2x cos2xyM(n ,y )+n sin2xyN(n ,y) }cos(2xY )+!x 

n=1 

*M. Abramowitz and I. A. Stegun, editors, "Handbook of Mathematical Functions," p.  299, Dover Publica-

tions, Inc. New York, 1972. 
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Xf
C 	

2x 	 n2+4x2 	
in(2xY)] 

_2 sin2xy 
+2 	

2x sin2xyM(n ,y )+n cos2xyN(n ,y) 	 (3.82) 

where 

I 	_(+i)2] 

M(n,y)=e 	4  cosh(ny)=_[e 
	+e 

2 

[ 

n)2 

N(n ,y)=e 	sinh(ny)=_e 
	—e 	

] 	
( 3.83) 

2 

Hence the complete solution for N (z ,t) for any combination of the parameters are 

given in (3.56), (3.76), (3.77), (3.78), (3.82), and (3.83), and is always bounded. 

For the case K,, —K,. and n r, F,, E,,,. —*0 from (3.62) and I d,,,.  I — oo  from 

I (3.50). Thus H( 	
Z 	

±d,,,. .JDt /K,, ) 	for both d,,,. real and imaginary, and 1 2.JDt /K,, 

G (z ,d,, r  ,.JDt /K,, )—*0. Hence the singularity is not present. 



Appendix B: Numerical Implementation of Equation (3.44') 

To facilitate the numerical implementation of Equation (3.44') we follow the 

same procedure as in Appendix A, with q replaced by qk  defined in Eq. (3.32') and 

Nj O replaced by BIk et. One obtains the comparable equations (3.45') - (3.83') 

with the following changes: 

K fl X ft _K 0 X 7  
t t 

e 

	

- Ku-K, 	
rn 

	

=1, r=n 
	 (3.54') 

d 2—d 
2KnKnXnICrXrXkKnKr 

 nr 	 (3.61') 
D 	K. K, 

D'' (K Kr  ) 1 '/[K X n  K,. X —X (K K r )] 
F,, Enr  = . 	 , for n r , I > j + 1; 

fl [K,, X,, (K r  K )+Kr  >'r (K K,, )+K X (K,, K r )] 
to =2 

wr 

D 
for n 	, I =j +1 

[K,,XnKrXrXk(KnKr)] 1 	
(3.62') 

F,, E,,,, = 

[KWXW —K,,Xn —)\ k(KW—I(,,)] 	 (3.63') H  
w=i 

21Dt/K ±d,JDt/K)2 
G,,(t )e(2D± 	e 	

2 	 ____ 

e 

(3.67') 

(±g)z 	
-(X,, k )t 	

2D/Jc 	2Dt/K,, ±q 
	/K,, 

(3.68) 
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The final solutions are given by 

N1  (z ,t )=S1  (z ,t )-1-P1 (z ,t), I 	1,2, . . . , z.>0, t >0 	(3.56') 

with 

Z 	)2 

S(z,t)=1 	>Bjk 
_X.t_(./ 	V_ /7 _ 

2 k==1 

z 
x[H( 	

Z 	
+q1 JDt/K,)+H( 	Z 	 /Dt/K1 )], for 	 qik  /Dt/K,.; 

	

2Dt/K1 	 2 \/Dt/K1 	 2 \/Dt/K1  

1 	12c 
 

- ik 	t 	- s 

+C 	 X 

X [H(2 	
/K 	

Dt /K1  )-H(q(k  JDt /K1- 2Dt /K1 )1 
}, 

for 
2Dt /K1 < 
	Dt /K1 

(3.76') 

and 

1 

	

Pi  (z , t )= —  E Ai M  ~ Bjk  >F >Enr W(z,d0 ,/Dt/K) 	(3.77') 
j1 	k=1 	nj r=j 

where 

W(z ,(m nr  ,.j'Dt /K) 

Xt V 1 	)2 

x 

_______ 	 _______ 	 for ______ x[H( 	
Z 	

+dnr/Dt/Kn)+H( 
2Dt /K 	 2D:/K 

d DT/K )I 	
Z 

2 JDT/K 

- KX —K,X, 	 ______ 

	

K —K 	+(—d, )z 	X n  t (v 
2Dt/K 

=2e 	
, 	

+e 	 X 



FM 

X [H(( 2/1/K +dnr  .JDt /K ))H(dnr 
 jDt /K - 2Dt/K 

for 	
z 	

<dnr/Dt/Kn,nr; 
2fDt /K 

(-qk )z Xk t 	 (\Uv - 2Dt7K 
)2 

=2e 	 +e 	 X 

X [H(( 
2yDt/K 

 +q Dt /K ))—H( 2Dt/K — qnkyDt /K 

for 	
z 	<q j i./Dt/K, n=r 	(3.78') 

2JDt /K,, 

For d <0 or 	<0, i.e., for error functions with complex arguments, Eqs. (3.82') 

z 
and (3.83') are identical to (3.82) and (3.83) with x= 	, y= d,. JDt/K 

2/Dt /K 

or y = lqnk /Dt/K 

V 

It can also be shown that for q>O,e 	 <1. Hence N(z ,t) is given 

by (3.56') and (3.76')-(3.83') with any combination of the parameters, and is always 

bounded. 




