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It is shown that the explicit T2 dependence of 

damping due to quartic contributions is small in comparison 

with the 1' dependence from cubic ariharmonici ty. A two-

time Green's function method is used. 
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The problem of explaining the temperature dependence of the 

damping for lattice resonance of alkali halides has received consider-

able attention [1]. F.ecently, Mooij [2] pointed out that (1) previous 

theoretical considerations neglected the implicit temperature dependence 

of thermal expansion and (2) the quartic anharmonic contributions to the 

damping are negligible if thermal expansion is considered. 

We have derived a general expression tor the complex suscepti-

bility tensor by use of two-time Green's functions. The susceptibility 

is a function of the frequency shifts 6(~) and corresponding damping 

constant r(ro). The usual absorption coefficient is proportional to 

the imaginary part of the susceptibility tensor. 

It is found that the cubic anharmonic contributions give rise 

to T (n-+kT) dependence for the damping in the classical limit, and 

the quartic contributions introduce an additive T2 dependence to the 

damping. However, the quartic contributions are of the order 0(1/~) 

compared to 0(1/N) for the cubic contributions. 

The two-time retarded Green's functions used are defined by [3] 

G(t,t') -i9(t- t' )([A(t),B(t')]), 

((A; B)) G(A; B), (1) 

where 

9(t - t') 
={l,t-t'>O 

o,t - t• < o 
(2) 

and the canonical ensemble average is denoted by 
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( -BH ) Tr e • • • 
Tr e-f3H 

(3) 

The operators A and B are second quantized phonon operators in the 

Heisenberg representation. The Hamiltonian of the isolated system is 

denoted by H. The equation of motion of G(t,t') is obtained by 

differentiating eq· (1) with respect to time. On taking the Fourier 

transform of this equation of ~otion, we obtain (in the energy 

representation) 

EG(A; B)E 
1 
2rr ( [A,B] )E -t G( [A,H]; B ~ , (4) 

where E = ill + i€ and ~ = 1. The frequency of the applied field is 

given by ill. 

It is well known that the linear complex susceptibility is 

given by [3] 

X (ill) = -2rr G(M ; M )E , 
J.lV 1.1 V 

(5) 

where M is the electric moment of the crystal. The directions of the 

applied electric field and the response are v and 1.1 respectively. 

The Hamiltonian and electric moment in terms of phonon creation and 

a.rmihilation operators are [4] 

H 

ex ~·~·I 

+ (6) 

and 

M 
1-1 
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(7) 

where A =a+ +a ex -ex a The indices ~' ~· I• and £ 
~ 

represent both the wave vector ~ and polarization index j. For 

example, '! = ~j and ~ = ~· j~ The expansion coefficients in eqs. (6) 

and (7) are discussed by Born and Huang [5]. 

(ill) 
X 

J.lV 

where 

and 

On substituting eq. (7) into eq. (5), we obtain 

M (0) M (0') 
1.1 ~ v ~ 

I 
(ill ill' )2 

0 0 
~ ~ 

The scheme for solving the system of dependent equations is 

(8) 

(9) 

(10) 

G(l; ···) ~ (constant)1 + f1 (w) G(l; ···) + g2(2; ···) + g
3

(3; ···), 

(11) 

+ r
3

(3; ···) + r 4(4; ... ), 

. t <--de coupling ~ ~ . 

T(3)(E,n) G(l; ···) + e(l)(n) g2(2; 

(12) 

... ) 
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+ r4 ( 4; · • · ) + r 
5 

(5; · • ·) (13) 

~~ decoupling ~ ~ 
s(2 )(n) g2 (2; ···) + r(4)(E,n2 ) G(l; ···) 

where g2 (2; · · ·) and g
3

(3; ···)are higher-order Green's functions[2]. 

The numbers on the left of the semicolons in the Green 1 s functions 

indicate the.number of phonon operators present. The second, third, 

and fourth terms in each of the equations represent contributions from 

H0 , ~' and H4 respectively. The functions r(3)(E,n) and 

r(4 )(E,n2 ) are the cubic and quartic contributions to the damping; 

they give rise to T and T2 dependence of the damping constant. 

However, the T dependence is 0(1/N) and· the 2 T dependence is 

O(l/N2
). The decoupling scheme is as follows 

1 + + l 
g3 (a_~ a~ a_!; A£) ~ [n~ 5-~,~ 5_!•£ + (n~ + l) o~,-r o~1 £]G , 

(14) 

where off-diagonal terms are neglected and n is the usual average 

boson occupation number. A similar procedure is used to decouple the 

r
5

(5; ···) Green's fUnctions giving rise to n2 

in the classical limit. 

2 (or T ) dependence 

The details of this work will be presented elsewhere. 
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