
.1, 

LBL-24072 c-: ~ 
Preprint 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Accelerator & Fusion 
Research Division 

Submitted to Physics of Fluids 

'~AY " 1 '. d 1988 

L1BRA.fiY /-\ND 
~,",f"Ul 

- --" n1ENTS SECT/or,' 

Gyroresonant Absorption from Congruent Reduction 
of an Anisotropic Pressure Fluid Model 

L. Friedland 

October 1987 
TWO-WEEK LOAN COpy 

This is a Library Circulating Copy 

which may be borrowed for two weeks. 

Prepared ror the U.s. Department or Energy under Contract Number DE-AC03·76SF00098. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information. apparatus. product. or process disclosed. or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product. 
process. or service by its trade name. trademark. manufacturer. or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



.. 

.. 

LBL-24072 

GYRORESONANT ABSORPTION FROM CONGRUENT REDUCTION 

OF AN ANISOTROPIC PRESSURE FLUID MODEL 

. * 
Lazar Friedland 

Lawrence Berkeley Laboratory 

University of Califomia 

Berkeley, CA 94720 

A system of Maxwell, multi-fluid momentum and anisotropic pressure 

equations for a weakly inhomogeneous magnetized plasma is written in a 

special Hermitian form. A recently developed congruent reduction technique, 

for extracting embedded, multi-dimensional, pairwise mode conversion events, 

is applied in studying the electron gyroresonant absorption problem. The mode 

conversion from an electromagnetic mode !o a fluid pressure mode near the 

fundamental and second· harmonic grrofrequency is interpreted as 

gyroresonant absorption. The transmission coefficient is found for the 

perpendicular propagation case in an arbitrary three-dimensional plasma and 

magnetic field geometry, demonstrating the potential of the approach for 

systematically reducing the order in general multi-component wave 

propagation problems in nonuniform plasmas • 

* Permanent address: Center for Plasma Physics, Racah Institute of Physics, 

Hebrew University of Jerusalem. Jerusalem. Israel. 



2 

I. INTRODUCTION 

Gyroresonant absorption problems at both the electron and ion cyclotron 

frequencies and their harmonics in a nonuniform plasma belong to a class of problems 

typically requiring lengthy and complex calculations.1 The complexity is due to the fact 

that the absorption process basically is a thermal effect and therefore the theory 

necessarily involves solutions of the system of Maxwell and kinetic equations, a difficult 

task in usually three-dimensional plasma geometries. Even when the spatial variation 

of the equilibrium plasma parameters is sufficiently weak and the description of the 

waves via the geometric optics seems to be feasible, one cannot use the conventional 

geometric optics theory directly, since typically the gyroresonant absorption process is 

highly localized in space. This fact, in some sense, simplifies the theory, since various 

slab models can be used in studying the. details of the interaction. Nevertheless, even 
\ 

the one-dimensional calculations perlo )lled to date had been rather complex and 

certainly very different in each particular application. 

On the other hand, the recent developments of the congruent reduction2 and 

multi-dimensional mode conversion3 theories provide new tools in simplifying 

mUlti-component wave propagation problems in plasmas. These theories comprise a 

systematic method of solving homogeneous integral equations of form 

Jd\' Dij(X,X') Zj(x') = 0 (1) 

for an N-component vector-field Z(x) on space-time [x=(r,t)], where the dispersion 
" A" * kernel 0 is Hermitian [Dij(X,x')=Dji (x',x)] and known. In cases when Z describes a 

perturbation of a smooth, but weakly varying background equilibrium, the dependence 

" of 0 on (x+x')/2 is weak compared to that on x-x' and the eikonal representation 

Z(x)=A(x)exp[hv(x)] with slowly varying amplitude A and rapidly varying phase 'If is 

feasible. Then one can rewrite (1) as the slow amplitude transport equation 

O.A = {~ .:; + ~ d~(~)·A ]+O(S2) (2) 

where kJ.l.(x)=d'If/OxJ.l. , O(k,x)= fd4sD(X-S/2,x+s/2)exp(-ik.S) and Bcc1. is a small 

• 
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. dimensionless parameter associated with the nonuniformity of the background. It is 

our understanding of the solutions of Eq.(2), which had advanced significantly with the 

. development of the above-mentioned reduction and mode conversion theories. The 

congruent reduction theory2 yields an algorithm for eliminating some of the 

components of A from the problem by preserving, at the same time, the form, first 

differential order and the hermiticity of the reduced transport equation, which 

describes the remaining wave components. This reduced equation still has form (2) 

with 0 replaced by reduced matrix Dr of rank M~N such that all its elements are of 

0(8). Typically, in non-degenerate plasma regions, where only one of the eigenvalues 

of O(k.x) vanishes at a time, one has M=1 and thus the system reduces to a single first 

order POE for the last remaining component of the amplitude, so that the problem 

becomes easily integrable. In a more restricted class of problems the final reduced 

matrix has rank M=2 and describes the pairwise mode conversion problem, solution of 

which for a general geometry was found in Ref.3. The total wave-action flux is still 

conserved in this type of problems (degenerate plasma regions) but, nevertheless, the 

flux is redistributed in two distinct channels (modes) automatically prescribed by the 

reduction procedure. This redistribution phenomenon is typically localized , so that 

outside the regions of the near-degeneracy of Dr, the reduction to case M=1 is again 

possible and the simple integrability is re$tored for each of the two channels 

independently. 

Thus if a phYSical problem is described, in its unreduced form, by Eq.(2), the 

solution can be found systematically by combining the reduction and multi-dimensional 

mode conversion theories. We therefore conclude that the problem of finding the 

solution in practice can be replaced by the question of whether a particular application 

allows description in form (2). We shall use the term "Hermitian problem" if the answer 

to this question is positive and show that the mUlti-species, anisotropic pressure 

magnetized plasma fluid model, in its unreduced form, comprises a Hermitian problem 

(see Sec. III). Thus, within this model, all wave problems In weakly nonuniform 

plasmas can be dealt with systematically ,as described above. As an example, the 

actual reduction for the fundamental and second harmonic electron gyroresonance 

cases will be carried out. in Sec. V and the results interpreted as the mode conversion 

from the electromagnetic to plasma pressure-fluid modes. 
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II. HERMITIAN FORM FOR COLD MULTI-SPECIES PLASMA MODEL 

It is instructive to find the Hermitian form (2) for unreduced wave problems in 

the cold plasma case first. We start with the linearized Maxwell-momentum equations 

1 aS1 
VxE1 = -cat (3) 

Vxs
1 
= 1 aE1 + 41te ~ ZeN V 

c at c L..J a a aO al 
(4) 

a 

av 1 
m ~al = Z e e(E1 +- V xso) a Ul a a C al 

(5) 

and ea. are the mass, the charge number and its sign, 

respectively for species ex, and 80 and Na.O are the equilibrium magnetic field and 

density. We multiply Eq.(S) by (Na.O)l12 (note that C3Na()"at=O) and define vector 

c(41t) .1/281 b 

Z== c(41t) .1/2e 1 ==Re a exp(hV) (6) 

(N m )1/~ 
v 

a 

cO a al 

Now, by inspecting Eqs.(3-S), one finds that indeed, without any further approximation, 

the amplitude A == (b, a, va.) is described by Eq.(2) where the Hermitian dispersion ii 

matrix is given by 
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bx by bz ax ay az Vax. va.y Va.z 

0) 0 0 0 kz -ky 0 0 0 bx 

0 0) 0 -kz 0 kx 0 0 0 by 

0 0 ky -kx 0 0 0 0 bz 

0 -kz ky 0) 0 0 iO)pa. 0 0 ax 

0= kz 0 -kx 0 0 0 iO)pa. 0 ay (7) 

-ky kx 0 0 0 0) 0 0 iropa. az 

0 0 0 -iO)pa. 0 0 -in a.z ina.y Vax. 

0 0 0 0 -iO)pa. 0 ina.z 0) -in ax. va.y. 

0 0 0 0 0 -iO)pa. -iQa.y iQax. ro Va.z 

Here a fixed cartesian coordinate sy~tem is used and the corresponding amplitude 

. components are shown above and beside the matrix for easier identification of various 

matrix components. Also we use definitions cCll=ChvIdt , cO) -±(41te2Z 2N o/m )1/2 p- a. a. a. 

and cna.=±eZa.BO/ma.c, where the sign is defined by the charge sign of the 

corresponding species. Note that all the frequencies differ by a factor of 1/c from the 

conventional definitions, which is convenient since now 0) and k have the same 

dimensions. Thus we have demonstrated that the unreduced cold plasma case 

comprises a Hermitian problem and therefore, within the model, various wave 

problems can be systematically reduced as described above and therefore solved in 

principle. Examples of such a reduction can be found elsewhere.2 

At this point we shall discuss applications with the background magnetic field 

80 which defines a preferred direction in the plasma. The dispersion matrix 0 has the 

form given by Eq.(7) in any fixed cartesian coordinate system. We can ask the 

question about the effect on the form of the transport equation, if, instead of constant 

base vectors ex' ey' ez' one chooses a different orthogonal representation, say 81 ' 
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_ e2' e3 (eieej=Oij) associated, for example, with the direction of the magnetic field and 

thus dependent on position. The answer to this question can be found in Ref.2. Indeed, 

the use of the new representation is equivalent to introducing a linear transformation of 

the amplitude A , i.e. 

A(x) = Q(x)e'A(x} (8) 

where a is the transformation matrix. It was shown in Ref.2 that then, to 0(0), the 

transformed amplitude A is described by the transport equation of the same form as (2) 

with 0 replaced by is given by 

where z=(k,x) and {F,G}=(oFlOxJl)(oG/okJl ) - (oGldxJl)(oF/okJl ) is the conventional 

Poisson bracket. Now we can finally answer the question about the effect of 

introducing a preferred coordinate system. Since transformation a in (8) does not 

depend on k, the nontrivial Poisson brackets in Eq.(9) vanish and 0 is simply the 

congruent transformation of 0: 

(10) 

Therefore, in conclusion, Eq.(2) with 0 given by (7) holds in any slowly ,varying 

cartesian coordinate system.The convenient choice is the system with ez along the 

direction of the background magnetic field Bo. One can, of course, use a non-cartesian 

coordinate system, such as the conventional base vectors e±=(ex±iey)/{2 and 

ez=BO/IBOI. In this case we write S=S+e++S~e_+Szez I where S is either b, a, va. or 

k. Then, in the new representation, the evolution of the amplitude A=(b+, b_, bz' a+, a_, 

az' v<x+' va.-' vea} is described again by Eq.(2) with the dispersion matrix given by 

• 

' .. 
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b. 

o o o o o 

o o o ikz ·ik. o o o b. 

o o o o o 

ikz 0 o o o 

0= 0 ·ikz ik. o o o a. (11) 

o o o o o 

o o o o o 

o o o o 

o o o o o 0) Vaz 

where nex=±IQexl with the signs again defined by the charge sign of species ex. 

Finally. we observe that as the result of the Hermiticity of D. Eq.(2) yields the 

conservation law. i.e .• 

(12) 

In the cold plasma case described by dispersion matrix (7). Eq.(12) becomes 
au y+ V.G = 0 (13) 

where 

and ( ... ) describes the averaging over the rapid phase '1'. Thus, we simply obtained 

the energy conservation law for the perturbed fluid. 

III. THE ANISOTROPIC PRESSURE MODEL 

Addition of thermal effects modifies the momentum equations for various 

species, which now become 
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m (alOt + v • V)V = feZ (E +.! V XB) • ...!... V.P (14) 
a a a a ca N a 

a 

where the anisotropic pressure tensor P is described by: 4 
T ap IOt+P • (VV )+(P • VV ) +11 xP .p ill = 0 

a a a a a -a a a-a 
(15) 

We neglected the heat flux in the last equation, Le. assumed a sufficiently low 

temperature case. The effect of collisions was also neglected for simplicity. 

At this point we shall choose the most simple equilibrium, i.e. assume the 

Boltzmann distribution of the unperturbed density 

N ao(r) = n aoexp[±eZ a <I>(r)rr a] . (16) 

with temperature T a constant throughout the volume. Also we shall use an isotropic 

pressure model in the equilibrium 

P = N (r)T I 
aO aO a 

and assume no streaming in the fluid 

v =0 
aO 

(17) 

(18) 

It- can be easily verified that Eqs.(16-18) indeed describe a good equilibrium of 

Eqs.(14) and (15). 

Now we shall linearize the momentum and pressure equations 

T112 

m av lat = ±Z e(E1+.! V xB \. Na V.P 0 

a al a C al 0' al 
ao 

(19) 

(20) 

Here we defined Pal'= Pa1 /(Ta )1I2. It can be seen from Eq.(20) that Pal' is of 

O(T a 112). Let us make an additional ordering assumption, i.e. we shall treat the objects \,} 

kVthc/COC == (k/coc)(T alma) 112 as being of O(a). Then, to the lowest order; we can replace 

the operator V in (19) and (20) by ik and a/at. in (20). by -ioo. The result is 

av 1 ~12. 
m ~al = ±Z e(E1f-V lxB \. i Na k.P 

a C1L a C a 0' at 
aO 

(21) 
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ooP ext i(gexoxP exl- P ex I x.OexO) = N exoT ex (k.Vexll + kVexl + Vex I k) (22) 

In dealing with Eq.(22), at this stage, we replace the vector product in the left hand 

side by the equivalent matrix operations. i.e., write 

i (Q xp' - p' x.O ) = Q • P' + p' • Q T 
-aD exl exl -cxa =ex exl exl =ex 

where the matrix 0a is defined via 

o -in in exOz exOy 

in 0ex= exOz 0 -in exOx 

-iO in exOy exOx o 

(23) 

(24) 

It is convenient, at this stage, to introduce the representation in which .ea is diagonal. 

The desired base vectors are e± and ez as defined above. In terms of these vectors 

• • o = 0 (a a - a a ) = 0 (a e - e a \ (25) a=cx ex ++ •• ex +. -+' 

where na.=:tl Qaol. In this representation Eq.(22) is particularly simple and becomes, 

written in components (we shall omit the subscript a for simplicity) 

• 112 
(co-O)Pz+= NoT (kzv.+ kyz) 

• 112 
(co+O)Pz• = NoT (kzv++ k+vJ 

• 1/2. 
(CJ)-2.Q)P.+ = 2No T Ky. (26) 

• 1/2 
(0>+-2.Q)P+.=2NoT k+v+ 

112 
ooP ++= NoT [2(k+v.+ ky) + kzvz] 

• 112 
ooPzz= NoT (k+v. + ky+ + 3kzvz) 

and for the remaining tensor alements 

p.z= Pz+ : P+z = pz• : p .. = P ++ (27) 

Finally, we introduce new variables P++=P ++N2 and Pzz=(2Pzz-P ++)/{10 and. 

similar to the cold plasma case (see Eq.(6)) use the eikonaJ representation, i.e. define 

the wave field Z via 



1 0 

cB1/{41t) 1/2 b 

cE1 I{ 41t) 1 12 a 

{Nom)1/2Vl v 

(TNor1/2p . z+ Pz+ 
., 

z== (TNor1/2pz_ ==Re Pz- exp(hl') == Re(Aexp{hl')] (28) 

(TNor1l2p_+ P-+ 

(TNor1/2p +_ P+ -

(TNor1/2p+ P++ 

Pzz 

Eqs. (3), (4), (21) and (26) can now be written in form (2) for the amplitude A=(b, a, va.' 

Pz+. Pz-. p_+. P+_. p++, pzz} with the Hermitian dispersion matrix given by (compare 

with Eq.(11) for the cold plasma case) 

Dbb Dba 0 0 
• 

Dba D D 0 aa av 
0= • (29) 

0 0 0 0 av vv vp 
• 

0 0 0 0 
vp pp. 

where the various matrixes are 

Dbb=Daa=1 ~ 0 

~l Dvv=[T 
0 

:l 1 o>-Q (30) 

. 0 0 0 

Dav= IDl [~ 
0 

~l 
-i~ 0 ik+ 

1 Dba- 0 i~ -ik (31) 
p 0 0 ik -ik 0 + 



.. 

1 1 

0 ~kz 0 ~k. J2~k+ 0 

D ~kz 0 ~k+ 
vp 

0 l2~k. 0 (32) 

~k+ ~k. 0 0 ~k.j.[2 J 5/2~kz 
co-n 0 0 0 0 0 

·0 corn 0 0 0 0 

o = pp 
0 0 (ro-Ul}'2 0 0 0 (33) 

0 0 0 (CJ)tUl)fl 0 0 

0 0 0 0 Q) 0 

0 0 0 0 o C,t) 

Here ~=Vth/c and we observe that the thermal effects are introduced via the coupling 

matrix Dvp between the fluid velocity and pressure tensor perturbations. This 

completes the derivation of the Hermitian form (2) for the anisotropic pressure fluid 

model. 

We shall conclude this section by the following two remarks. The first is regarding 

the validity of the model. We expect the fluid description to be valid in cases when the 

phenomenon of interest involves interactions with the bulk of particle distributions. 

Therefore, such effects as the Landau damping by the distribution tails are clearly 

omitted from the fluid description. On the' other hand, in the vicinity of the cyclotron 

resonances, where CI)-n!lcx--O(B), the bulk of the distribution of the corresponding 

species is in the resonance, since, by our ordering assumption kVth/Cl)c--O(B) . 

Therefore, the fluid description of the resonant cyclotron interaction can be expected to 

be valid. This indeed will be demonstrated in the examples in Sec. VI by a direct 

comparison with the results of the kinetic theory. 

The second remark is related to the energy conservation. Due to the hermiticity of 

D. as in the cold plasma case, the anisotropic pressure model yields the conservation 
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law of form (13). This is of course an expected feature of the theory, since the 

. collisional dissipation was neglected. The energy conservation is especially important 

in the context of possible localized linear mode conversion events in our multi-degree 

of freedom system. The energy is conserved globally, still allowing the energy flux 

redistribution in various channels (modes) when the local linear mode conversion 

takes place. 

IV. CONGRUENT REDU.CTION 

Before proceeding to various examples, let us briefly describe the details of the 

reduction procedure.2. The method is applied as follows. Consider an unreduced, 

Hermitian, NxN dispersion matrix 0 characterizing a Hermitian problem, I.e. the case 

described by Eq.(2). If any diagonal element of 0 , say Dkk ' is of 0(1), then the k-th 

wave component Ak can be eliminated from the problem and the remaining N-1 

components are again described by Eq.(2), with 0 replaced by the reduced 

(N-1 )x(N-1) dispersion matrix Dr given by 

(34) 

This is the essence of the the Reduction Theorem proven in Ref.2. The case, when all 

the diagonal elements of 0 are of 0(8), but a non-diagonal elef!1ent is of 0(1),' still 

allows the reduction of order (even from N to N-2, in this case2). This situation, 

however, is very rare and will not be discussed here. 

Eq.(34) describes a single reduction step. The procedure is then repeated for the 

reduced problem described by Dr and so on, until one arrives at the final reduced 

dispersion matrix. 0 f with all elements of 0(8) . The final transport equation still has 

form (2) but is irreducible within the geometric optics approximation. In the most simple, 

doubly degenerate case, the rank of Of is 2 and the transport equation describes the \.i 

pairwise mode conversion problem3. Examples of this type of problem will be given in 

the next section. 

We notice that according to Eq.(34), Di{ (i,j~k) differs from the Original dispersion 

matrix element only if both coupling elements Dik and Dkj do not vanish. This is an 

important observation because of the sparsity of many unreduced dispersion matrixes 

(see, for example, Eq(29)). Indeed, we can shorten the reduction procedure, at each 
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reduction step, by eliminating the amplitude component (say Ak) characterized by the 

. smallest number of the non-vanishing coupling elements Dik (i¢k). Three cases of 

increasing complexity are then encountered frequently: 

Case 1. Dki=O (i¢k) . None of the components of the dispersion tensor are modified as 

the result of the reduction in this case, I.e. Di{ = Dij (i,j¢k), and component Ak simply 

drops from the problem [Ak .... 0(8)]. 

Case 2. 0klif-O. Dki=O ,i~1 (i,l;ek). Only one matrix element in changes in this case as 

the result of the elimination of Ak' i.e., the diagonal element 0llr = Oil - IDkI12/Okk' All 

the remaining elements Di{=Dij (i,j;tl). 

Case 3. 0kl;eO, Dkm;eO, Dki=O, i;tl,m (i, I, m¢k). In this case four elements of 0 are 

. . 

effected by the reduction, i.e., 011 ' Dmm, Dim and Dml 

Thus, in conclusion, the reduction algorithm is relatively simple for sparse 

matrixes and the algebraic complexlty increases rapidly when the matrix becomes 

increasingly non-sparse as the result of the reduction. At this point we proceed to 

examples in which Cases 1 and 2 above are the only ones encountered in the step by 

step reduction process. 

V. REDUCTION OF THE ANISOTROPIC PRESSURE MODEL AND 

GYRORESONANT ABSORPTION 

We return now to the anisotropic pressure fluid case and consider the electron 

cyclotron frequency range, neglecting the ion contribution. Also, Eqs.(26) show that 

thermal effects are most important in the vicinity' of the fundamental or second 

harmonic gyroresonances (i.e., where ro+O t or 00+20 are of 0(8» since one expects 

components Pz- or p+_ to be relatively large In these regions. Consequently, we shall 

neglect all the components of p but Pz- (or p+_ for the second harmonic case) in the 

wave amplitude [Eq.(28)]. We shall consider the fundamental resonance first, so that 

the amplitude vector is A=(b, a, v t Pz-) , where v represents the perturbed electron 

fluid velocity. Additional simplification is achieved by restricting the treatment to the 
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perpendicular incidence case, i.e., kx=k, ky=kz=O, described by the unreduced 

. dispersion matrix (see Eq.(29» 

b+ b. bz a+ a. az v+ v. Vz pz· 

co 0 0 0 0 iklv2 0 0 0 0 b+ 
" 

0 co 0 0 0 ··ikJv2 0 0 0 0 b. 
I.. 

0 0 co ikN2 ·iklv2 0 0 0 0 0 bz 

0 0 ·iklv2 co 0 0 icop 0 0 0 a+ 

0= 0 0 iklv2 0 co 0 0 icop 0 0 a. (35) 

·iklv2 ikJv2 0 0 0 00 0 0 imp 0 az 

0 0 0 ·ieo 0 0 ro+O 0 0 0 v+ P ,-\ 
l 
\ 

0 0 0 0 ·ico 0 0 ClrO 0 0 
j 

p v. 

0 0 0 0 0 ·iO) 
P 

0 0 0) ~kN2 Vz 

0 0 0 0 0 0 0 0 ~k/V2 ro+O Pz· 

At this point we start the reduction procedure, by focusing our attention on the 

vicinity of the fundamental cyclotron resonance. 0)+0-0(0). We eliminate the 

components b+. b •• and v. first. These reduction steps correspond to Case2 in Sec.IV 

(only one non·vanishing coupling element in the dispersion matrix). As was shown 

earlier, the reduction affects only the corresponding diagonal elements of the 

dispersion matrix. The reduced amplitude becomes A=(bz, a+, a •• az, v +' vz• pz.) and 1" 

the corresponding reduced dispersion matrix at this stage is 
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bz a+ a. az v+ Vz Pz-

co -ikJ[2 i~j2 0 0 0 0 bz 

ikJ,fi co 0 0 icop 0 0 a+ 
" 

-ikJ!2 0 C1)-CI)~/ (co-!l) 0 0 0 0 a_ 

'" 0 0 0 ~2/CO 0 icop 0 ~ (36) 

0 -iro 0 0 co+!l 0 0 v p + 

0 0 0 -icop 0 co PkJ,/2 Vz 

0 0 0 0 0 PkJ,fi co+Q Pz· 

Now we can eliminate az ' again Case 2 in Sec.IV. We assume, of course, that the 

corresponding diagonal element (co-k2/co) is of 0(1). The resulting dispersion matrix 

describes amplitude A={bz, a+, a_, v +, vz' PzJ and has the form 

co -w!2 ikJ.[i 0 0 0 

ikJ/2 co 0 irop 0 0 

-ikJ!i 0 co2-Cl!l-<% 0 0 0 
co-!l 

0= 0 -icop 0 0 
(37) 

0 co+!l 

0 0 0 0 
co(c02-k2_~ 

PkJj2 
co2.-k2 

.. 0 0 0 0 pw/2 co+!l 

'.I We observe now that the system splits into two decoup/ed problems for amplitudes 

A1 =(bz, a+, a., v+) and A2=(vz, Pz-) characterized by dispersion matrices 
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co oikl,f2 ikl,f2 0 

ikl..[2 co 0 icop ro(c.02-k2 -~ 
~kI..[2 

co'l_k2 (38) °1= -ikl.[2 0 
C02-c.on.-ro2 

0 °2= P 

c.o-n ~k/.[2 CJ>+n 

0 -ico 0 CJ>+n p " 

It can be easily verified that 01 represents the usual cold plasma extraordinary mode, .~ 

which, obviously, is not influenced by thermal effects at the resonance. No coupling to 

fluid-pressure modes takes place in this case. On the other hand, complete near 

degeneracy of 02 requires 

(39) 

since ~k and co+n are of O{O) by assumption. When Eq.(39) is satisfied; further 

reduction of 02 yields singular coefficients and thus is forbidden within the geometric 

optics approximation. The final near-degenerate dispersion matrix has the 

characteristic form 

(40) 

and the corresponding transport equation (2) serves as the system of 

coupled mode equations3 describing two weakly coupled modes, 

Db=co+n ... o, which is the fluid pressure mode, carried by the component Pz- of the 

pressure tensor perturbation. The coupling is due to the thermal effects and 11=Pkl..J2 

serves. as a weak, almost constant, troughout the degenerate region (normal 

degeneracy2), coupling coefficient . 

. Now we can find the transmission coefficient of the ordinary mode through the 

mode coupling region. The transmission, for general geometry, is given by3 

T = exp{-21t11112~81) (41) 

where 



:Ii 

(42) 

and is evaluated at the crossing point xo. kO (Da=Db=O at xo. kO) which is defined 

along the geometric optics ray generated by the dispersion Da=O (in our case the ray 

for the ordinary cold plasma mode). Evaluation of T in the case of interest yields 

( 
1tP2k

2
OO

2
) T = exp - p 

2roIJ~·val 
(43) 

This expression. for the perpendicular stratification of the magnetic field (Va 1. 80)' 

coincides with the result predicted bya more elaborate kinetic theory.5 Note that 

Eq.(43) was derived by using the multi-dimensional mode conversion theory3 and. 

therefore. is not limited to the case of the perpendicular stratification and can be used 

in plasmas of arbitrary geometry. 

At this stage we proceed to the second harmonic case and thus retain the 

component p+_ in the amplitude instead of p-z. Thus the unreduced amplitude 

becomes A=(b. a. v. p+_) and the corresponding dispersion matrix is [see Eq.(29)] 
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b+ b. bz a+ a az v+ v. Vz p+-

Cl) 0 0 0 0 ikl{2 0 0 0 0 b+ 

0 0 0 0 ·ikl{2 0 0 0 0 b. 

0 0 Cl) ikl..f2 ·ikl..f2 0 0 0 0 0 bz 

0 0 ·ikN2 m 0 0 irop 0 0 0 + 

0= 0 0 ikl..f2 0 ro 0 0 irop 0 0 a. (44) 

·ikl-J2 ik/~ 0 0 0 ro 0 0 irop 0 az 

0 0 0 ·iro p 0 0 ro+Q 0 0 Pkl.J2 v+ 

0 0 0 0 ·im p 0 0 CJ)-Q 0 0 

0 0 0 0 0 ·iro p 0 0 ro 0 

0 0 0 0 0 0 Pklv2 0 o (ro+2Q)1 pz· 

As before. for simplicity. we restricted the treatment to the perpendicular incidence 

case (kx=k. ky=kz=O)~ Now we observe that elimination of components b+. b •• v. and 

vz• again corresponds to Case 2 in Sec. IV. The resulting matrix 

, 

'. 



," 

.,,; 

.. 

) 
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bz a+ a.. az v+ p+-

co ikJ.[i. -iW..[2 0 0 0 bz 

-ikJ.{2 co 0 0 icop 0 a+ 

ikJ.{2 0 co- ~ 0 0 0 a 
co-O 

0= 2 (45) k +co2 
0 0 0 co- p 0 0 az 

co 

0 -ico p 0 0 eo+O ~kJ[i. v+ 

0 0 0 0 ~kJ[2 m±2n 
p+-2 

describes the amplitude A=(bz• a+. a.. az• v+. p+_). Now. obviously. component az can 

~e simply omitted (Case 1 In Sec. IV) and a_ can be reduced as Case 2. The result is 

bz a+ v+ p+-

(ID-O)(20)2_k~ - 2(00)2 
iklJ2 bz 

p 0 0 
2( ro2-con-O)2) 

P 

0= -ikl.[2 CIl iCllp 0 a+ (46) 

0 -iCll p CIl+.Q ~k/J2 v+ 

0 0 ~kI.[2 eo+2!l p+-
2 

Next. we reduce bz• which results in 

( co2-k2)[2oo(ID-n)-oo2]-~oo2 p p 
i,oop 0 2 

(ID-O)(2002-k ) - 2COC1l: 

0= -icop ~k1.[2 
(47) 

Cl>f-O 

0 ~kll2 CIl+2Q 
2 

describing A=(a+. v+. p+_). Finally. reduction of a+ (again Case 2) yields the final 

characteristic matrix 
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200[( 002- k2)( co2-.o2-oo2,\-(02( (02-002)] 
p" P P 

Of _ 
(48) 

describing the remaining amplitude components A=(v +. p+_). Similar to the ordinary 

mode case. one finds a possibility of a complete near-degeneracy of this matrix when 

2 co [(c.o2_k2) «(02-02-oo2}-c.o2(oo2-oo2)] 
D = p P p" ... 0(0) (49) 

a (oo2-k2) [2oo( co-O)-oo2]-c.o2c.02 p p 

Db = (0)+20)/2 - 0(8) (SO) 

Condition Da=O yields the cold plasma extraordinary mode dispersion relation. so that. 

in the degenerate region. (48) describes the coupling between the .extraordinary mode 

and the the fluid pressure mode (Db .... O). associated with the excitation of component 

. p+_ of the perturbed pressure tensor. The element 11=Pkl..J2 in (48) serves as a weak 

. [0(8)] coupling coefficient. 

At this stage we can find the transmission of the extraordinary mode at the 

second harmonic through the mode conversion region. Again we shall use expression 

(41) for the transmission coefficient, yielding 

T=exp - p ~ p 
{ 

7tp2k2(02 (OO2.-k2)[2CO(CO-O)-C021_OO2OO2} 

41k- VOl . ct(ro2-.o2-oo~ 
,(S1 ) 

Note that since Eq.(S1) is evaluated at the crossing point. where Da=Db=O. we can 

substitute 0>=-2.0 and 

c.o2-k2= oo2(c.02-oo2)f(002-02-ro2) 
P P" P 

(S2) 

Then. after some algebra. the transmission coefficient becomes 

[ 

7tj32k2oo2· (3OO2.-2~)2] 
T= exp - p p 

Ike VO/oo 3c02-4c.o~ 
(S3) 

again In a full agreement with the results of the kinetic theoryS in the case of the 

perpendicular stratification of the background magnetic field (BO .L 'YO ). 
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VI. CONCLUSIONS 

i. It was shown here that the unreduced anisotropic pressure, multi-fluid 

plasma model can be formulated in the Hermitian form (2), characterized by dispersion 

matrix (29). Consequently, within the model, all waves in a weakly varying plasma can 

be dealt with within the framework of the congruent reduction method.2 This method 

automatically yields either a single POE describing one of the wave components in 

the non-degenerate plasma case, or a system of coupled mode equations (two 

coupled POE's) in nearly degenerate plasma regions, where the mode conversion 

takes place. Thus the degenerate case reduces to the multi-dimensional mode 

conversion problem, solution of which for general geometry is already known.3 

ii. Examples of application of the reduction algorithm in the vicinity of the 

electron fundamental and second harmonic gyroresonances, in Sec. V, demonstrate 

our systematic approach to the reduction of order. The procedure yields the 

characteristic coupled mode system at the resonances suggesting the .interpretation of 

the gyro resonant absorption as the mode conversion from the electromagnetic mode to 

a fluid-pressure mode. The transmission coefficients thus obtained were found in a 

complete agreement with the predictions of the fully kinetic theory.5 

iii. We have considered the normal incidence case (k.LBO) and single species 

plasma in the examples in Sec. V . Nevertheless, since the method is general, it can be 

automated by using a computer, thus allowing the study of much more complicated 

mode interactions such as those in mUlti-species plasmas of arbitrary geometry, where 

the usual theories are typically restricted to slab models and become extremely 

elaborate and non-trivial. . 

.. iv. The possibility of formulating both the cold plasma and the anisotropic 

... 1 

pressure fluid models in the Hermitian form suggests that higher moment equations, 

and possibly the kinetic problem in the absence of colliSions, also comprise the 

Hermitian case. We shall address this problem in our future studies. 
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