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EFFECTIVE NONRENORMALIZABLE THEORIES AT ONE LOOP 

1. EllecLave Notirenorunilizable Theories in Physics 

1 I. Infrared limits of Lite standard model. 

Observed particle interactions can sometimes be described by effective nonrenor-

malizable theories that, in the context of the standard model for strong and electroweak 

interactions, correspond to a particular long distance, or low energy, limit of the un-

derlying renormalizable theory. For example, the Fermi theory of /3-decay correctly 

describes weak charged current interactions in the limit of small momentum transfer 

q,, compared with the mass mw of the charged intermediate bosons W that mediate 

these interactions: - 
1 92 <<rn 	/ g2 /8G 	 (1.1) 
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where GF is the Fermi coupling constant. Another example is the SU(2)1. x SU(2)R 
chiral invariant u-model that describes pion dynamics at energies that are small com-

pared with the inverse confinement radius of QCD. However, in this case, we cannot 

simply reproduce the effective low energy theory as a particular limit of a parameter 

(e.g., mw - on for the electroweak theory) of the QCD Lagi-angian; numerical meth-

ods used in attempts to establish such a connection will be described in the lectures of 

Petronzio 9. 

Finally, quantum gravity and its supers ymmetric extension, supergravity, are 

nonrenormalizable theories that are often conjectured to be the low energy/long dis-

tance limit of a finite (rather than renormalizable) theory which should become mani-

fest at energy scales large compared to the Planck scale or some other mass parameter 

characterizing the underlying physics. The current leading candidate for such a theory 

is a auperatring theory2  in ten dimensions, in which case the relevant parameter could 

be the compactification scale or the string tension, both of which are expected to be 

within a few orders of magnitude of the Planck mass. 

Effective four dimensional field theories suggested by superstring theories gen-

erally have a high degree of vacuum degeneracy at tree level which is related to symme-

tries of the effective Lagrangian under nonlinear transformations among scalar fields, 

similar to the chit-al invariance of the nonlinear u-model for low energy pious. An im-

portant question then is to what degree the degeneracy is lifted by loop corrections to 

the effective tree Lagrangian. In this lecture I will discuss one-loop corrections to ef-

fective nonrenormalizable theories, with special attention to loop expansion techniques 

that preserve all the invariances of the effective tree Lagrangian. Such symmetries play 

an important role in the superstring-inspired field theories that I will discuss in my 

second lecture. Here I illustrate the relevant techniques with examples drawn from 

the standard model where it is possible to compare results using the effective low en-

ergy/long distance nonrenormalizable theory with exact calculations in the underlying 

renormalizable theory. 

Recall first two important properties of ultraviolet divergent contributions at 

each order in the loop expansion for renormalizable theories: a) They are at most 

logarithmic - with the important exception of quadratically divergent contributions to 

scalar masses that I will discuss later in relation to the gauge hierarchy problem. b) 

They can be reabsorbed into redefinitions of the parameters of the tree Lagrangian - 

coupling constant, fermion masses, etc. 

Now consider Lite Fermi theory of low energy charged current weak interactions. 
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Figure 1: Divergent one-loop contri-
butions to 4-point (a) and 8-point (b) 
functions in the Fermi theory. 

Figure 2: Finite one-loop contribu-
tions to 4-point (a) and 8-point (b) 
fermion functions in the renormaliz-
able gauge theory. 

The elFet ire interac(ion I uee I •agraugIaht is of I lie Ioriii: 

(1.2) 

The one-loop coot ribut ion, Fig. I a, to the effective four-fermion coupling is quadrat- 

ically divergent. Cutting off the loop inoiueiit,uni integration at jpj = A gives the 

estimate (recall: there is a factor (4w) 2  for each loop integration): 

(1.3) 
20 

In the context of the standard model, we know that the Fermi theory is relevant only 

for momenta 1p1 2  <<m,; if we identify the cut-off A with the scale at which the Fermi 

theory ceases to be valid, A 2 we obtain, using (1.1): 

g - j- ( L- L)2  = 
2  V5GF 

8w 
	 (1.4) 

where a = g2 /4w is the weak "line structure" constant The result (1.4) can be 

compared with the low energy limit for external momenta of the diagram of Fig. 2a, 

which is finite and yields the same estimate: 

1 	
-. 	(Cue)pmni. 	 (1.5) ff 	160 

In the context of the Fermi theory, the quadratically divergent one loop correc-

tion (1.3) can be absorbed into a redefinition of the Fermi coupling constant. However, 

there are also logarithmically divergent contributions to the one-loop effective action 

that generate new couplings. For example, the contribution of Fig. lb can be estimated 

as .- (1.6)  

where p is a kr,iiioui mass In 1  or an external inoinentijili q,I•  1)iiiieiisional consider-

atin;:s and an analysis of the infrared behavior of the corresponding finite diagram of 

Fig. 2b gives the estimate 

5 I - 7 	ic ln(ni/s2 )(c c y,,1ia) 4 , 	 ( 1.7) )  

which, using (1.1), is the same as (1.6) for A 2  = m jp. Note that while the underlying 

physics dictates that A = O(mw), we cannot in general set A = m%v as an exact 

equality. Rather, we should set A = qmw with q = 0(1). The precise value of q 

depends on the details of the way in which new physics - in this instance the fInite 

range r rn) of the weak interaction - enters to damp the apparent divergences of 

the effective low energy theory. Moreover, the value of q can differ from one diagram 

to another. Thus, calculations using the effective nonrenormalizable theory should 

reproduce the correct order of magnitude of the quadratically divergent terms as well 

as the precise coefficient of the logarithmic divergence. In the latter case a rescaling of 

A by a factor of order unity can be reabsorbed into residual finite terms that cannot 

be reliably evaluated in the context of the effective theory. 

The above analysis is appropriate for the Fermi theory of charged current cou-

plings with one generation of quarks. When u i-" 3 charged current couplings are 

included in the effective tree Lagrangian (1.2), one would grossly overestimate one-

loop strangeness-changing neutral current transitions with the identification A mw. 
This is because there is a much lower threshold, A m (c=charm) where these tran-

sitions are damped by the (MM mechanism3. Comparison of calculations of this type 

with data provided an estimate3  of the charmed quark mass before the underlying 

theory 4  was known, In other words, an analysis of the divergent loop contributions to 
a known effective theory can point to thresholds where that theory must be replaced 

by a more convergent one. 

In the following I will foctis on a nonrenormalizable theory that is more closely 

related to those suggested by superstrings, namely a gauged nonlinear c-model, but one 

which can also be obtained analytically in a particular limit of a parameter (mH -+ oo) 

of the standard, renormalizable electroweak theory. This will provide another labora-

tory for testing the validity of calculations using the effective theory. We will find (as 

for certain superstring inspired models to be discussed later) features similar to those 

for the Fermi theory: quadratic divergences can be reinterpreted as renormalizations, 

while new terms are generated at the level of logarithmic divergences. I will also in-

troduce, in the context of more familiar physics, notions such as scalar metric, scalar 

curvature and nonlinear symmetries, that play an important role in formal aspects of 

string theories discussed by other lecturers. 

1.2 The large Higgs mass limit of the standard electroweak model. 

Neglecting gauge couplings, the scalar sector of the standard model 4  has the 

(renormalizable) Lagrangian 

= O,pO',3 — Aawr — V)2 	
(1.8) 

which is invariant under the group S0(4) or SU(2) x SU(2) of linear transformations 
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uiiuiig the [our real scalar fields that parallietrize t lie couiiplcx (101ililet y: 

 - ft\ - 1 fir 1  + ir 	
l9 

In terms of the component fields (31,0) Eq. (1.8) takes the standard form of the linear 

oinodel: 	
I 	 I 2 	2 

Acn = 3 .CO'(1  + 	s 	31 	A(i, 2  + r — v ). 	 (110) 

A useful nonlinear formulation is obtained by making the field redefinition 

= ;c.;•;/" (). 
	

(1.11) 

In terms of the field variables (8,p) the Lagrangian 

C,, = £xa(Op) - !A(p2  

displays explicitly the decoupling at zero four-momentum of the massless Goldstone 

modes 0., since these fielda appear in (1.12) only through derivative couplings (CK.E). 
The theories (1.10) and (1.12) are equivalent and give identical S-matrices as calculated 

by expanding about the vacuum defined by < $ > =< p >=< a >= u, p = 

a + O(II - v/,/) 2 , $ = s + O(IipI — 

Instead of (1.8), the Lagrangian relevant for weak interaction physics is that of 

a gauged scalar sector, with the replacement 

-+ 	(0,. + iA,.)p, A " = 
2T,,A 	 (1.13) 
2 

where the four 2 x 2 matrices T. represent the generators of SU(2)t x U(1) on the 

scalar doublet p,  and A,. are gauge fields. The gauged Lagrangian is invariant under 

the transformation 

U(x), A = UA,.U' + iO,.UU: 

C(A,') = £(A',,') 	£(A,'), 	 (1.14) 

where in writing the last line of (1.14) we have relabelled the gauge field A' A. In 

other words we treat the transformed gauge fields as the gauge degrees of freedom. 

With the particular choice 

(J=e'", v"=:3() 	
(1.15) 

we obtain the Lagrangian of the "unitary gauge" 

,Cu  = £(A,p), 	 (1.16) 

and we identify the physical Iliggs scalar as H = p - v. Loop calculations are most 

easily done in a renorinalizable gauge in which is represented linearly, Eq. (1.9) and 

the unphysical scalar degrees of freedom 7ri appear in the Lagrangian: 

-6- 

lii either case (lie physical lliggs mass is extracted froiti the potential in (1.10) or (1.12) 

as: 
111 211  = 20A. 	 (1.18) 

The physical particles of the theory are the massless photon i  the massive 

vector bosous W  and Z and the lliggs particle II. The vector boson masses are 

extracted by expanding the covariant derivative (1.13) around the vacuum IpI = 
in terms of the linear field variables (1.9): 

= 2.-2 
(w:w"- + 2 	 + mwW, &',r + - - - 	(1.19) 

The vacuum expectation value (vev) u is fixed by the experimental determination of 

the Fermi constant Gp and the identification 

= 	= (v'iG,) 	
4

(TeV). 	 (1.20) 

Although the wi are not physical degrees of freedom of the theory, the relevance of the 

a-model (1.10) or (1.12) to physics is through a theorem which states that S-matrix 

element.a including longitudinally polarized W'a and Z'a(W, ZL) can be calculated, up 

to corrections of order mw/Ew and mz/Ez, by replacing W and Z, respectively, by 
31* and iro  as external particles and using the Feynman rules of a renormalizable gauge, 

i.e., using the Lagrangian (1.17). This result is intuitively plausible if one recalls that 

the physical, or unitary, gauge of Eqs. (1.15) and (1.16) was obtained by a transfor-

mation W,. -. W = W,. + 0,.r that introduces a longitudinal component O,.ir into the 

vector field. Alternatively, in an unphysical gauge, the last term in (1.19) introduces 

a mixing of W, with the longitudinal vector 0,,r. In practice, calculations are usually 

performed in a renormalizable R gauge9  in which the gauge fixing term is arranged to 

precisely cancel the W - 31 mixing term in (1.19). The Lagrangian is no longer man-

ifestly gauge invariant, but is invariant under nonlinear BRS transformations' °  that 

are related to gauge transformations. The Ward identities of BRS invariance can be 

used38  to derive the vector-scalar equivalence theorem stated above. 

Now consider the limit mj -. oo. Since u is fixed by experiment, Eq. (1.20), 

it follows from (1.18) that A -+ 00, i.e., that scaler self-interactions become strong." 8  

If the potential energy-density in (1.10) or (1.12) is to remain finite in this limit, 1p1 2  
must be fixed at its ground state value. 

p2 =a2 +ir2 =u2 . 	 ( 1.21) 

The variable p or a, and therefore the physical scalar H, is eliminated from the effective 

theory as an independent scatar degree of freedom: 

or = (u2 
- 312)1/2 	 (1.22) 

Note that the constraint (1.21) is invariant under SO(4) or SU(2) x SU(2). When the 

condition (1.22) is imposed, the linear transformations 

6ir1  = .3k0j 11k + 13a, 

L,j = L(A,a,w), H a - v. 	 (1.17) 	 a = —f3,7r, 	 (1.23) 
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where n, anti 	),, I = 1,2,3 ale (Ile painilieters "1, respectively, a "Vetitir' anti it I I 
whit It gics For (1.29) 

112A. S1I(2), are replaced by the nonlinear (ranslorutiat urns hi deL 	 (1.33) 

61r, = 	+ j,(n 3  - 	 (I 24) 
For a (iciiorinaiizable) interacting field theory, with Lagrangian 

The Lagrangian (1.10) takes the form £ 	pÔ,' - V() 	 (1.34) 

Lit -. 	O,ir'O',rg,, 	 (1.25) the effective action is, in practice, evaluated as an expansion in perturbation theory. 

In the background field method one expands the functional S(pI around a classical 

where background field configuration Vo . Setting V = 	o + 	: 
ff., 

(1.26) 
6S1 	6S 

is the scalar metric. One can check that (1.25) is explicitly invariant under (1.24). = S[I + 	" + 	 (1.35) 

The Lagrangian (1.25) defines an effective nonrenormalizable theory, that, ac- 
The first term in (1.35) is the effective tree action expressed in terms of 1P0 . 	The 

cording to the equivalence theorem stated above, describes *2,7.13  the strong self. 
second term vanishes by virtue of the classical equations of motion in the presence of a  

couplings of longitudinally polarized W'j and Z'a in the c.m. energy region rnw background field 'o•  More precisely, one adds a source term J,(çpo)' to the Lagrangiazs 
i <<mi, in the large mj limit of the standard model. Although the theory is strongly od for ip 	The third = (1.34) which assures that the equations of motion are satiefi 
coupled, invariance under chiral SU(2), Eq. (1.24) assures' 4  that the low energy limit 

term in (1.35) determines the one.loop correction to the effective action. 	Inserting  
of S-matrix elements for ir - 	(and hence WL, ZL) scattering are given precisely by 

(1.35) into (1.29) gives  
the Born, or tree, approximation to the Lagrangian (1.25); 

S = S8,,,,(1 + 0(,/16*r 2v2)). 	 (1.21) S.6  = S(y'oI+ iln JdN exp(_ 	Jdz 	(ta_'),01 ) + 

This is because (1.25) is the only form invariant under (1.24) that is at most quadratic 
= SIipoI + i In det I/3 	

f... = S[o1 + 	iTrin 	"  +. 	(1.36) 
in momenta (i.e., in derivatives). 

1.3. The one-loop scalar action. Ilere A is the propagator in the presence of the background field 	defining the 

(background field dependent) "mass matrix"  
In this section I will outline a loop-expansion procedure for the effective action 

that explicitly preserves the invariances of the tree action. I start by recalling elements 32V 	i U,(x) = U.(0(z)j 
of functional integration, background field methods and the derivative expansion. 8'Ô 

Consider first a free scalar field theory, with Lagrangian 
we obtain 

£ = 	- m2 '), 	i = 1,. . . , N. 	 (1.28) 
A'() = ( 	+ U(x))6(x - y) = (O + Uij 

The effective quantum action is 

S,,g = iln Jd e'1 	 (1.29) 
d4  

= / 	4 e"(—P + U(—iO/Op))e 1 . 	 (1.37) 

where the tree action as a functional of V is given by 
By thus expressing the inverse propagator in terms of its Fourier transform, the x- 

integrations implicit in (1.36) become trivial, and as the p-dependence reduces to 

S[I = Jd4 xC(cQ) = 	 (1.30) 
21 

products of s-functions one obtains' 6  

The inverse propagator Tr In 	= J dxJ 	ln(—p2  + U(x - *i9/Op)). 	(1.38) 
(2ir) 4  

LV'(x,y) = (O + m2)6(x - y) 	 (1.31) 
The remaining p-integration can be performed after a Wick rotation and a suitably 

can be considered as an infinite dimensional matrix including the space time position defined expansion of the logarithm in (1.38) with 

x as a matrix index. Then the integration (1.29) can readily be performed using the 
U(x - zO/Op) = U(x) - iU(x)8/Op +" 	 (1.39)  

gaussian integral 

/ 
d"ye' 5,M.,5, = deL - "2M 	 (1.32) which gives the one-loop effective action as a series in increasing orders of derivatives' 6 . 

C 
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I,, the case of a scatar theory with derivative CotIhuigS, the above forpiialisun 

uiiust be generalized to provide an expansion that, at each 1001) order, is niaiiifestly 

invariant under field redefinitions. Consider a general a-model with the Lagrangian 

£ 	 — Vp). 	 (1.40) 

Under a change of field variables: 

.' Z(p), oZ = 	 (1.41) 

the scalar metric is redefined according to 

— h,s(Z) = az—oij- ( 1 .42) 

The integration measure d"p in the expression (1.29) for the effective action must 

now be replaced' 7  by the invariant measure d 7det"g(), and a covasiant expansion 

is obtained' 20  by replacing the functional derivatives 6/60 in (1.35) by covariant 

functional derivatives A: 

S[,j=S[poJ+ DSI'+ Ab2sLi+.... 	(1.43) 

As previously, the second term on the right in (1.43) vanishes by the equations of motion 

(with appropriate covariant source terms), and the third term determines the one-loop 

contribution which is governed by the inverse scalar propagator' 9  for the theory (1.40) 

in the presence of a background field configuration : 

bibisiva
= 	

— F,(çpo) 	 — y) 	(1.44) 

where 1' is the scalar connection determined in the usual way from the scalar metric g. 

Explicit evaluation of (1.44) gives20  

= —g.,(,o)[d + I) + R)4(x - y),  

with 

U, gDsDV(ço), R 	mM 	 (1.46) 

where D, is the covariant scalar derivative, analogous to the covariant functional deriva-

tive in (1.44), mj is the scalar curvature tensor, and 

8 6' + Fk8M 	[a + (')] 	
( 1.47) I. ,.,, 	M S 

is a scalar field redefinition covariant four-derivative. Inserting the above results into 

the quantum action (1.29) and using (1.32) we obtain 

SOOI = — TringA. =  — Trin[d + U + RJ 

= _Jd4zJ 1 4 TrinA(p.x_-iO/Op) 	 (1.48) 

with 
A(p,z - 1818p) = (ip, - 	+ 0 + R, 	 (1.49)  

-10- 

where, for all arbitrary (iiiatiix-valtied) function F(x) 	I'(,20(.r)), I dehine Lite curie- 
sponthiuig barred function by 

F(x) F(z - iO/Op) = 

= F(z) - iôaFô/Ôpa  +.... 	 (1.50) 

The derivative expansion (150) is not term-by-term covariant under scalar field redef-

initions. An explicitly covariant expansion is obtained 20  by noting that if we define 

B = UAU', U = 	 ( 1.51) 

then 

J d4xJ4TrinA=Jd4xJ!14TrinB,  

where 4, is defined in (1.47). The equality (1.52) holds because à/äp acting on the far 

right of the integrands makes no contribution, nor, by integration by parts, does ô/Op 

acting on the far left. Under the transformation (1.51) the functions F, Eq. (1.50), 
become: 

FE UFU' = 	 = F(x) - i[d,FJO/ôp+..., 	(1.53) 

which gives an expansion that is term-by-term covariant. Furthermore, we have 20 : 

U(ipM - ,)U = (PM + O. w ô/ôp,) 	 (1.54) 

where the covariant operator 	O/Op) is defined in terms of the scalar curvature 
and its covariant derivatives 

[d,, d = 

= 	- 	 +....  

Assembling these results, we may write the one-loop effective action, Eq. (1.48), 

in the manifestly invariant form 

S'°°" = JdzJ 	4 TrLn[—(p + O_O/op.) 2  + U + Al 

= A4  x constant - 32 
J d

4xTr {A(U(x) + R(z)) 

- In A2 [(U(x) + R(x))2  + GG4 '1 + finite terms, 	 (1.56) 

where 1 have performed the momentum integration to display explicitly the divergent 

contributions. The leading quartic divergence is field independent and therefore irrel-
evant as long as we are not interested in gravitational interactions (i.e., in the value 

of jthe cosmological constant). For supergravity models that I will consider in Sect. 

2 this term is exactly cancelled among bosonic and fermionic loop contributions. For 

the case of a constant background field, 0,,Vo  = 0, we have ii = U,_ = 0, and the 

expression (1.56) reduces to the familiar Coleman-Weinberg result 2 ' for the one-loop 

effective potential; 

-- J d4xTr(A 2 M2 () + 	ln(M2 /A2 ) + constant), (1.57) 
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with (lie nlruitilicaliot> 1!2(,,) 	tI(,) for the held- iIe1>eiuleiit net_cs iteitrix. \iili liml 

constant background lickis I here is, in particular, an atlilil inial qiiadrat it_ally divergent 

term proportional to the scaiar Iticci tensor: 

TrR = fiO,'&p' 	 (1.58) 

which represents a one-loop correction to the scala.r metric tensor g,. 

1.4 The (gauged) nonlinear a-model. 

We can immediately apply the results of the preceding Section to the nonlinear 

a-model defined by Eqs. (1.25) and (1.26). There is no potential so U = 0, and the 

scalar curvature is readily evaluated to give 22  

(1.59) 

and the Ricci tensor 	
(1—N) 

V 	
9i 

2  
	 (1.60) 

where N is the number of real scalara s, is in this case proportional to the metric 

tensor. This is because the expression (1.25) with metric tensor (1.26) is the only 

two-derivative form that is invariant under the SU(2) x SU(2) transformations (1.23). 

Combining the one-loop result (1.56) with the tree Lagrangian (1.25) weobtam for the 

one-loop corrected effective Lagrangian 

(N-1)A2 ) = 	
( - 16n2  

+ -jTr (R2 + o> c>' ) ln(A2/?) +....  

The first term in (1.61) can be viewed as a renormalization of the pion fields and vev 

U: 

 

	

irn = ZW, yR = Zu, z 2  = 	621) 	 (1.62) 

The second, logarithmically divergent, term involves couplings that are not present at 

tree level. The argument of the logarithm is necessarily dimensionless. However in 
the massless a-model, there is no scale parameter to scale the dimensionful cut-off - 

hence the question mark in (1.61). In this theory, successive terms in the derivative 

expansion are increasingly infrared divergent, although S-matrix elements are well 
defined. Thus to get a sensible answer we must resume the expansion. The correct four-

point scattering amplitudes can be obtained simply by dimensional analysis 22 : since R2  

and 62  are at least quartic in scalar fields, the only dimensionful quantity appearing 

in the formal expression (1.56) that can appear in the argument of the logarithm is the 

derivative operator. Thus the last term in (1.61) should be replaced by 

----Tr 1R(ln - + a)R + G,(1n 	+ a')GM'j + O(ô/A), 	(1.63)
all 64z2 	02 

where a and a' are constants of order unity that cannot be reliably determined, as 

discussed in Sect. 1.1 

SI)(> i.>hI/.it:g I,, I lu (41_SI! N 	:,, w1jich is al)Propriate for I lie large ni 11  hiiiijt >f 
he sI iuulard il>04lC1(4i11(l for 1>1011 i>hiysics), we obtain, for example, for the , r + ir  elastic 

scattering aniplitude at one looj)22 (here I set a = a' = 0): 

M(,r+jr _ _I W71) = — lu/u2  

+6124 a   (32 ln(A2/ - a) + 30 ln(A2/ - ) + 2u 3  ln(A2/ - u) 

_!1210(A2/ -a) - !32l11(A2, —1) + u2(ln(A2/ - a) + ln(A2/ - 1)j}, 	(1.64) 

a result which has been obtained previously 24 , using different techniques, in the context 
of pion physics. In Eq.( 1.64) a, I and u are the usual Mandelstain variables: .s > 0, u, t < 
0. The term proportional to ln(A2/ - a) ln(A2/3) + 1,1 contains the absorptive part 
due to on-shell rescattering. 

In the large m jq limit of the electroweak theory, Eq. (1.64) can be interpreted as 
the one-loop corrected amplitude for the elastic scattering of longitudinally polarized 
WIV. The tree amphitude87  is given by the first term in (1.64), which contributes to 

Figure 3: Vector boson fusion pro-
cess for diboson production via strong 
WL, WL rescattering in fermion colli 
shoes. 
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Figure 4: WtVE and ZLZL pair production rates in pp collisions at / = 20 
and 40 TeV with a rapidity cut lvi < 1.5 and a cut-off A = 3 TeV. The amplitudes 
have been unitarized as described in the text. 

Figure 6: Diboson production via fermion-

+ >< 	antifermion annihilation through renor- 
VVVV 	gauge couplings. 
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a- and p-wave scattering only. The one-loop correction contains all partial waves (as 
well as a comparable aniplitude 22  for elastic Z scattering, which vanishes at tree 
level) and therefore represents a more realistic scattering model that incorporates the 
correct symmetry and analyticity properties, although it is not Fully unitary. For IVIV 
center of mass scattering energies < I TeV, unitarity corrections are expected 
to be important only for the lowest (s) partial wave. Including a correction 22  for this, 
expected yields for pp —. (ZLZL or 1VIVj) + anything, via the fusion process of 
Fig. 3, are shown in Fig. 4 for a rapidity cut jyj < 1.5 and pp c.m. energies of 20 
and 40 TeV, where they can be compared with predictions' using (unitarized) tree 
amplitudes. 

The one-loop corrections shown in Fig. 4 are surprisingly large, and one may 
question the usefulness of the one-loop approximation. The expansion parameters are 
effectively ww/(4wv) 2  and (A/4wu)2 , so the series converges for jww,  A2  (4wu) 2  
(3TeV)2 . Thus if A 3TeV, the results of Fig. 4 should be reliable in the energy 

range m, <<sww << A2 , and will cease to be meaningful above the scale A of 
"new physics" which could take the form of a Higgs scalar (or broad resonance in the 
I = J = 0 channel if mj 2  TeV) or a richer resonance spectrum. in the region .sww < 
A2 , the experimental signature' 3  for strong WLZL interactions is an enhancement of 
IVW, ZZ and WZ production over what is expected from the scaling contribution from 

qq annihilation, Fig. 5. For mu —* oo, the tree contribution of Fig. 3 was found to 
exceed 94 annihilation for Ji 2  (1/2 - 1)TeV; the one mop corrections yield an 
even larger strong interaction contribution in the subresonance continuum region. 

If we interpret the results of Fig. 4 and Eqs. (1.61).(1.64) as applying to 
the large mu limit of the standard model, the underlying theory is renormalizable. 
We can compare these resulta with those obtained by calculating in the finite m, 
renormalizable theory, and then taking the large mu limit. For this purpose, we start 
with the linear c-model of Eq. (1.10), in which case we have 

R=G=0, 	 (LOS) 

where I identify (po,,•• ,'p) (0,w 1 ,. . ,w,V). The expansion (1.56) now gives 

£i_ioop = -- 

	

 
w2 

(A 2TrLJ - TrU In A2  + finite terms), 	(1.66) 
32 

which, in particular contains no divergent derivative terms. 

Now consider the limit A —. oo. It is convenient to introduce the variables p 
and 0,: 

IN 

ci = pcos(0/v), w, pö,sin(0/v), 0 	(0) 	. 	 (1.67) 

The potential is independent of the Goldstone modes 0,; exciting these modes with 
zero four-momentum costs no energy, even in the limit A -. oo. However, for p & v 

the potential energy is infinite. As discussed in Sect. 1.2, p  remains fixed at its ground 

state value: p2  = a3  + ir2 = 0. in other words, to evaluate the effective action (1.29) 

we may introduce source terms for the 0, but not for p. Imposing the classical equation 

of motion for p: 
6S GabS thr'bS\

Oss= + l (1.68) 
bp 	p& 	Op6lr'/ 8  

c 
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we can eliminate the hackgiouiid field ci = a(i,,d,r) in tertims of the fields Ir, and 
their derivatives. The integral in (1.56) (or (1.37)) is most easily performed by first 
diagonalizing the "mass matrix" U(ir,ör). There is one eigenvalue 

	

"rn" = A(3p2  - v2 ) —'00 	 (1.69) 
A—oo 

that grows with A and decouples (up to a field-independent contribution) for m 2 >> A2 , 
and N eigenvalues 

	

= A(p 2  - u2)—.finite 	 (1.70) 

that remain finite in the limit. Since we are working with a renormalizable theory 
we can interpret A as the renormalization scale. The effective theory obtained for a 
particular choice of A is then a good approximation for energy scales in the neighbor-
hood of A, and only light eigenmodes, I"m"I £ A, contribute to the loop integrals for 
the effective theory. We expect the effective nonreriormalizable c-model to be valid at 
scales much smaller than the Higgs mass "m,,(w,hr)", i.e., for 

"m" <<A3  << "m". 	 (1.71) 

Indeed, when (1.66) (or more precisely (1 37)) is evaluated by taking the limit m, -.00 
before the limit A —* oo, the previous result, Eq. (1.61), is exactly reproduced 20 '25 . 

The large mu limit of the standard electroweak theory is, in fact, a gauged 
nonlinear a-model. The generalization of the above results to include background 
gauge fields A,, is easily realized by replacing ordinary space-time derivatives by gauge-
covariant derivatives: 

d,,=O,,+',-'d,,=D,+y,.. 	 (1.72) 

Then the expression (1.55) for G,M, is modified to include a term proportional to the 

gauge field strength 
(1.73) 

and the logarithmically divergent contribution in (1.56) proportional to G2  includes a 

term 
= e2F,0,F" 	 (1.74) 

that contributes to the one-loop -function 20 . 

To fully determine the one-loop action, however, we must also include internal 
vector boson loops. This is complicated by the fact that when the tree action is 
expanded, as in (1.36) or (1.43), up to terms bilinear in the quantum fields (or functional 
integration variables) there are in general vector-scalar mixing terms: 

S 3 Jd4xlD,,iI 2  3JdxiA77o' ô. 	- 

3 JdxpoA,if' + he. = _Jd x'ö"(A,,io) + h.c.  

- 

To evaluate the effective potential 2 ' with 0=constant, A. = 0 one usually works in the 

Landau gauge, 0,,A" = 0, so that the last term in (1.75) vanishes identically and there 

is no vector-scalar coupling. When nonconstant scalar and vector background fields are 
present the situation is more complicated and one must find the gauge condition most 
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aIipr(>priate for I lie specific calculat loll. The case relevant to I lie large mil stmidard  

mijoilel , namiicly the globally SI 1(2) x SLI( 2) symuimet nc iii mlimiear (7-111odel ci iihem I hi I 

in an SU(2),. x SU( 1) gauge group, turns out to be particularly complicated, but has 

been soIved. The divergent contributions to Lite effective scalar and gauge boson 

action have been determined, giving an expressIon of Lite 1oriii 26  

A 2 	mA 3  
= — j -- ID'l2  + 

1 60 
 j (aF.,F" + bDp2  

+c('D,')2  +-•) + finite terms. 	 (1.76) 

The first three terms in Eq. (1.76) can be interpreted as renormalization of fields and/or 

parameters of the tree Lagrangian. In fact parts of these logarithmically divergent 

contributions remain divergent for finite mu. In particular, the coefficient a determines 

the /3-function for scales intermediate between rnW and m. 

The dots in the coefficient of In A 2  represent terms at least quartic in the gauge 

and scalar fields. According to the equivalence theorem of Sect. 1.2 we can calculate 

S-matrix elements by interpreting A. as a field operator for transversely polarized 

vector bosons and the ri in the expression (1.9) for p as field operators for longitudinal 
bosons. An examination of the exact expression for these terms shows that there 

is a factor of the weak gauge coupling constant g for each external transverse boson, 

and that the vertex functions with no external AM  are precisely those obtained in the 

ungauged model. 

In other words, the only divergent correction from gauge loops to the effective 

scalar action of Eq. (1.61) comes from the fourth term in Eq.(1.76), which has been 

identified27  as the only two-derivative term that is SfJ(2)L x U(1) gauge invariant but 

breaks global 51.1(2) x SU(2). It also contains a correction to the parameter 

p m,/mcoe2 O,,. 	 (1.77) 

In the unitary gauge: 

('D)2 L = 
— 9 

2  V  2 
ZM ZM, 	 (1.78) 

16 cos 0. 

which contributes a shift in the Z-mass but not the W-mass Using the explicit value 

found °  for c in Eq. (1.75), one gets for the correction to the p-parameter (1.77): 

_32 
tan 2  0,, In M1 + finite 	 (1.79) 

1 64jr 

which is well within experimental limits: I ,  — 11 < 0.004 if we take A < 3TcV as 

discussed above. Conversely, experimental limits on 1p — 11 assure27  that this term 

cannot contribute significantly to the WL, Z5 scattering amplitudes. 

If we now set A 2  = in Eq. (1.79) the result is precisely that foundss  by 

taking the large mH limit of the one-loop corrected p-parameter as calculated in the 

renormalizable (finite mH) standard model. Similarly, the logarithmically divergent 

four point functions (i.e., dots) in Eq. (1.76) agreess with previous resultsss found 

for those contributions that grow with IAMH as calculated diagrammatically in the 

standard model. 
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it Ii I lie large 11111 liii it of One loop calculations evaluated usiu ig the reiiornializable 

theory. 'Fliis result kids a degree of credibility to the 1oop expansion of the effective 

uionreutonmumahizable theory. 

On the other hand, the results shown in Fig. 4 are of much more general 

validity than the standard model. If the scalar sector possesses a chiral SU(2) x SU(2) 

symmetry, as mentioned in Sect. 1.2, the leading behavior of low energy S-matrix 

elements are necessarily those determined by the effective tree Lagrangian of Eqs. 

(125) and (1.26). There is only one possible gauge invariant, chiral symmetry breaking 

correction (Eq. (1.78)) to this low energy behavior and it is constrained to be small 

by observation: p 1. The effective tree Lagrangian (1.75) is therefore universal 27  up 

to corrections of order hui — 1, and so, therefore, is the divergent part of the effective 

one-loop Lagrangian. 

If in Eq. (1.26) we replace u by I,,, the decay constant for n - 	then Eq. 

(1.25) is the effective Lagrangian for pion physics, valid at energies s,,,, £ 	i.e., the 

resonance region in pion scattering. In this case the underlying renormalizable theory 

is (approximately) massleas QCD, with Lagrangian 

Np 

ICQCD = 	. DO. + G,,C' 	 (180) 

where N1 is the number of quark flavors, G,,, is a gluon field strength tensor and the 

covariant derivative is Ii,. = 8 +ig. A A /2, with AC  a 3 x 3 matrix operating on color 

indices. The Lagrangian (1.80) is invariant under global flavor SU(NF)L x SU(Np)R 
transformations on quarks: 

where AF is an NF x N1 matrix acting on flavor indices. Empirically, the first gener-

ation of quarks is very light, rn,,, ma = 0, so chiral symmetry is a good approximation 

for Np = 2. Experimental data tells us further that the vacuum is not chiral SU(2) 
invariant. We attribute this observation to spontaneous symmetry breaking; the vac-

uum energy is lowest for < & >& 0. The quark condensate < & > is not chiral 

invariant; its presence breaks chiral SU(2)1. x SU(2)R to ordinary flavor SU(2), i.e., the 

subgroup of transformations (1.81) with 0L = a. Spontaneous breakdown implies the 

existence of massless Coldstone bosons, which are assumed to be the (almost) massless 

pions. Chiral SU(2) dictates that their low energy S-matrix elements be determined 

by the chiral invariant Lagrangian (1.25), (1.26). Loop corrections 24  then generate 

the one-loop effective contribution of Eqs. (1.61)-(1.64), where the effective expansion 

parameters are now s,,,,/(41rf,,) 2  and (m/41rf,,) 3 . 

Technicolor i8 a nonstandard scenario for the spontaneous breaking of the elec-

troweak gauge symmetry based on the extrapolation of the observed nonperturbative 

phenomena in QCD from the scale Itqcti - 100MeV where color couplings become 

strong, to the scale v 250GeV of electroweak symmetry breaking. One assumes a 

new gauged technicolor interaction among techniquarks i,&r and techni-gauge boaons 

AT  that is asymptotically free and strong at a scale Arc .-' 250 GeV. From the 

observation that 
>- A00 - f 	(100 MeV)3 	 (1.82) 

We have thus established that one-loop effects calculated in the effective non- 	 one infers that 

renormalizable theory defined by the 	-+ oo limit of the standard model agree 	 >— A 0 	(250 GeV) 3 . 	 ( 1.83) 

lot 	C 	 z 
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'flie inassless Guldstone bosons are technipions, SF,  the analogues of pions. The lechni-

quarks are assumed to carry SU(2)1. x U(1) quantum numbers such that the condensate 

(1.83) also breaks the electroweak gauge symmetry. Then the technipions couple to 

the weak gauge bosons via the effective gauge invariant coupling (1.19), so that the 

IV and Z acquire masses and 'teat" the technipions which become their longitudinally 

polarized components. The equivalence theorem of Sect. 1.2 holds by construction, 

and chiral flavor invariance of the technicolor Lagrangian implies that (1.25),(1.26) is 

the effective technipion tree Lagrangian. Thus the results of this section apply specili-

cally to technicolor models, and the yields of Fig. 4 are correct at energies below the 

technirho resonance mass where, of course, cross sections will rise dramatically. 

The phenomenon of fermion condensation in a strongly coupled nonabelian 
gauge theory has also been invoked as a possible mechanism for breaking supersym-

metry,' 3 ' as will be discussed in my second lecture and the lectures of John Ellis. 32  

1.5 Supergravity and the gauge hierarchy problem. 

The gauge hierarchy problem can be simply stated by noting that scalar masses 

have quadratically divergent loop corrections in nonsupersymmetric renormalizable 

theories. In general, if the theory possesses elementary scalar fields W , the one-loop 

corrections will include mass terms: 

A2  
£;_j,, 3 a1---j . 	 (1.84) 

Technically, the term (1.84) can be reabsorbed into a renormalization, but the appear-

ance of scaler masses much smaller than the natural scales of the theory, such as the 

grand unification scale maur or the Planck scale mp, becomes very artificial. More-

over if the ultimate theory - including gravity - underlying observed physics is a finite 

rather than a renormalizable one, all mass parameters must be calculable in terms of 

the fundamental length scale (e.g., mp _1)  of the theory. 

In a theory with unbroken supersymmetry (SIJSY) a = 0 identically in Eq. 

(1.84) because there is an exact cancellation between base and fermi loop contributions 

to the scaler mass. Since SUSY is necessarily broken, the cancellation cannot be 

complete, but in the context of broken SUSY one anticipates an effective cut-off A 

msugy, i.e., the scale that governs boson-fermion mass splittings. 

The scaler sector of the standard model, Eq.(1.8), is weakly coupled if the 

coupling constant A is small, A/4r . 1, implying for the physical Higgs mass, Eq. 

(1.18), mH £ 1 TeV. There is in fact no experimental evidence that the Higgs sector 

is not strongly coupled. On the other hand one must ultimately explain the known scale 

of electroweak symmetry breaking, v = 1/4 TeV. It is unlikely that this scale is orders 

of magnitude less than the scale parameter of the effective low energy scaler Lagrangian, 

even in the strongly coupled limit. In other words, experimental observation requires 

an effective cut-off less than or the order of a TeV. 

In addition to SUSY, scaler masses (as in technicolor models) can be protected 

by spontaneously broken global symmetries. If W is the Goldstone boson of an exact 

symmetry of the Lagrangian that is spontaneously broken, it is necessarily massless 

and again a = 0 in Eq. (1.84). If there is a small explicit breaking of the global 

symmetry, p can acquire a correspondingly small mass. Consider for exainl)le, the 
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QUD Lagrangian, Eq.( 1.80), but with quatk basses included: 

£QCO £QCD(iflq = 0) - m,,Ou - madd•.•.  

The nonvanishing mass terms m, .d j4 0 explicitly break SU(2),. x SU(2). An empir-

ically good formula for the pion mass is: 

	

2 	Tfl, 

	

m 	
4 
	aA 2.  

Ilere the pion mass is governed by two effects: the scale A = m where the effective 

pion theory (1.25) breaks down and the ratio a = m,, a/f of explicit to spontaneous 

symmetry breaking. (There is no factor (41r) 2  in (1.86) because m,,,d j4 0 is a tree 

level effect.) 

Now consider the minimal coupling of N real scaler fields to gravity, with the 

action 

	

S = Jd xy(g"âpip'&ip' - 	 R). 	 (1.87) 

Here g is the space-time metric det 1/3  g) and ft is the space-time curvature. ioop 

corrections to the action (1.87) will generate divergent contributions to the scaler self-

energy, Fig. fia. In the supersymmetrized gravity theory, or unbroken supergravity, 

the contributions of Fig. 6a will be exactly cancelled by the gravitino (0) exchange 

diagrams of Fig. 6b. 

-- '---- 	

t 
... 

Figure 6; ContributIons to scaler () self energy from (a) graviton (G) and (b) 
gravitino (0) loops. In Fig. 6b xi is the fermionic superpartnei- of W i. 
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Figure 7; Two-loop contributions to 
	

Figure 8; Cravitino-boop contribu- 

	

scaler masses through combined gauge 	tions to the gaugino mass; it is a gauge 

	

and gravitational interactions, which 
	

boson. 
may be approximated as a one loop 
contribution with nonvanishing (at one 
loop) gaugino () mass. 

(1.86) 
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\Vlien SUSY is broken the graviti ito acquires a iliass, Ind j 0, at id LI a: cancellat ion is 
no longer coIO1)lete. Then one expects a (quadratically divergent) coiili'iloituon to the 

scalar mass terni: 
A 2  
—i- 	 (1.88) 

where A is the appropriate cut-oIl. If A 	hip, ekctroweak pluenoinenology requires 
. 10 '1eV 

I lowever the action (1.87), as well as its supersyminetric extension, is invariant 
under global S0(N) transformations among the Wj. Thus to all orders the effective 

quantum action will depend on the scalar fields only through SO(N) invariant quanti-
ties: IV12 = , Ô,&Ip', etc. II the vacuum energy of the theory is lowest for 
a value < IV1 2 > 0, SO(N) will break spontaneously to SO(N - I), producing N - 1 
Goldstone bosons. Thus, only one of the 's will acquire a mass of the order of (1.88) 
while the N - 1 others will remain massless to all orders. 

In the real world, scalars have interactions other than gravitational ones. In 

particular there are gauge interactions that explicitly break the SO(N) symmetry of the 
action (1.87), so one can expect a pnona (mild) suppression factor a cs, where a is 
the gauge interaction fine structure constant. Suppose, however, that SUSY is broken, 
so ma  0, by the vev of a gauge singlet scalar. In the absence of gauge couplings 

S0(N) is an exact symmetry of the Lagrangian, so the diagrams of Fig. 6 cannot 

generate scalar masses. On the other hand, if SUSY breaking is not communicated 

at tree ,lcvel to the gauge sector, i.e., if the gaugino masses (rn1 ),,,,, = 0, gauge ioop 
diagrams (see Fig. lIb below) vanish by supersymmetry. At the two-loop level, gauge 
interactions that know about S0(N) breaking, and gravitational interactions, that 

know about SUSY breaking, can combine, as in Fig. 7, to yield nonvanishing gauge 
nonsinglet scalar masses that one might estimate 34  as: - 

In - (41r) mj' 	
(1.89) 

requiring rnô < 105 . CeV if A - mp. One can estimate the two-loop contribution of 
Fig. 7 as a two-step process. First calculate the one-loop contribution, Fig. 8, to the 

gaugino mass (the blob in Fig. 7), and then use renormahization group equations to 

obtain the low energy value of the scalar masses, which should be of order 

2 	2in 	 (1.90) 

The two diagrams of Fig. 8 separately give contributions of the form: 

am 
(4)2 A/fltP + 	ji(1nO/mP)  [bln(A2/ns) + c]  m1 = 

For a 	0, using (1.90), we would get the estimate (1.89). however, the divergent 
contributions from the two diagrams of Fig. 8, have been found35  to cancel identically. 
'I'iuen if c 910, using (1.91), we obtain instead of (1.89) 

In 2 

requiring only ma  10 4 mp 1014  GeV. Thus a large hierarchy for electroweak syrn- 

metry breaking could arise from a rather mild hierarchy for SUSY breaking relative 
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In t lie I 'Iaii,'k scale, In fact, siilise,1iiciit calculatiouis 5 " shanved hunt I lie two couti ri-  
huuitioiis of l'ug. 8 to (lie gaugino mass cancel completely. In my scoiid lecture I will 

discuss oIlier sources of gauugino masses at one kx)p. 

The above discussion is still unrealistic in that Yukawa couplings, which also 

break the 0(N) symmetry of the action (1.87) have still not been included - they 

are indeed necessary in the standard model for generating quark and lepton masses. 

Moreover, for a nonininiinal gravitational coupling, i.e., for a nontrivial scala.r metric, 

6,,, the gravitational action is not S0(N) symmetric. It may however, as for the 

c-model of Eqs. (1.25) and (1.26) possess a nonlinear symmetry that could play the 

same role. This is the case for a class of superstring inspired models, to be studied in 

Sect. 2, that possess a nonlinear noncompact global symmetry of the kinetic energy 

term. 

A compact symmetry, such as S0(N), leaves invariant the form 	under 

linear transformations, and, in particular, the canonical kinetic energy 

£K.E. = 
	

:°53'3 	 (1.93) 

is S0(N) invariant. A noncompact symmetry, such as S0(m, N - m) leaves invariant 

the form - under linear transformations. The corresponding invariant 

kinetic energy term 
N 

= 08wi)3 - (0)) 	 (1.94) 
/ 

is physically unacceptable as it contains ughosta.  Only nonlinear realizations of non-

compact symmetries among scalar fields can lead to physically acceptable theories. For 

example the Lagrangian 

OU(Ps&P -  
£K.E. 	 I = 0,..., N 	(1.95) 

(1 - IAOT 

where the W i = ()t are N + I complex scalars, is invariant under nonlinear SU(N + 
1,1) transformations. This can be seen most easily by writing (1.95) in the form 

(1.96) 

which, as discussed by Ellis,32  is the most generalss  form for the kinetic energy in 

N + 1 supergravity theories. The real function G(,) is the Kähler potential. For the 

Lagrangian (1.95) it is given by: 

Q= —In(1—'). 	 (1.97) 

which is obviously invariant under compact, linear SU(N + 1) x U(1) transformations. 

The remaining 2N + 2 transformations of SU(N + 1, 1) are characterized by N + 1 
complex parameters a, of the coset space SU(N + 1, 1)/SU(N + 1) x U(l). Under the 

non linear transformations 

bVi = a. - 	 (1.98) 

the Kähler potential is not invariant 

bg = a+'a. 
	 (1.99) 

4 	 Kr 	J 
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however, since its variation is a aiim of functions of P and of 9, the Kälikr metric 
and (he hence kinetic energy terms are invariant. 

In N + I supergravity theories, as discussed by Ellis 32  the scalar potential (iie-
gkcting gauge-induced D-ter,ns) is derived from the Kähler potential 

= c(Q(')'G' - 3), 

OV  = = Ni 

For the Kähler potential (1.97), V() is invariant under linear SU(N + 1) transfor-

rnations, since 9 is, but it is not invariant under the nonlinear transformations (1.98). 

The Yukawa couplings, which are similarly derived 32 ' from the Kähler potential are 

also not invariant. 

However the form of the kinetic energy term (1.95) does not uniquely determine 

the ICähler potential. To obtain an alternative KihIer potential we make the change 

of field variables. 

T= !!_±2,  C, = -.--, I = 1,...N.  

Then (1.97) becomes 

	

= - ln(T + T— CtC,) + f( ,) 	+ J(). 	 (1.102) 

The first term in (1.102) appears in the KihIer potential for "no-scale aupergravity 

model, 30  as well as some superstring.inspired models. 4 ' If instead of (1.97) we take 

the KAhIer potential 

	

= —ln(T+T—C,C') 	 (1.103) 

we obtain the same kinetic energy, (1.96) which is SU(N + 1,1) invariant. The Kähler 

potential (1.103) is invariant, not under SU(N + 1,1), but under 42  a noncompact 

lleisenberg group Gn of nonlinear global transformations. 

C, -. C. + a, 

	

T—.T+ãC+ãa+ip 	 (1.104) 

with N complex parameters ai and one real' parameter t' of a compact axial U(l) 
symmetry: 6 Im T = constant. A supergravity theory defined by the Kähler potential 

(1.103) is, for vanishing gauge coupling constant, fully invariant under C,, which can 

be shown42  to imply mc = 0 to all orders. 

Neither (1.97) nor (1.103) defines a theory with realistic Yukawa couplings for 

the low energy theory. The class of .uperstring-inspired models that I will study in the 

following lecture have a Kähler potential of the form: 32  

	

= —31n(T + T— 1C12)+ In W(C)+ 	In W(f)+ 	 (1.105) 

where the dots refer to functions of fields other than T and 01, and the super potential 

W(C) generates the observed Yukawa couplings of the gauge nonsinglet sector C. 
Both W(C) and the gauge couplings break invariance under (1.104). Nevertheless, 

as discussed in Sect. 2 below, C,, invariance of the function (1.103) is sufficient. 42  to 
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hirotect scaler lileases mc at one loop in the class of models define,I by (1.105) that 

have a vaiiiahiing cosmological constant at tree level. 

2. Sunerstring-lnsnired Sunereravitv Models. 

2.1 An effective tree potential. 

In most of this lecture I will study a prototype model obtained by a simple 

conipactification of 10-dimensional supergravity, with nonperturbative SUSY breaking 

effects incorporated.3 ' At the end I will discuss the generalization of the results to 

a class of more realistic models. Ellis 32  has outlined the steps used in constructing 

the prototype model. Here I shall recall the relevant physical aspects and present the 

resulting potential. 

Compactification from ten to four dimensions generally entails a number of 

acalar fields associated with the geometry of the compact manifold. In particular there 

is the dilaton field ipo  related to scale transformations in lO-d supergravity, and the 

breathing mode a associated with fluctuations in the size of the compact manifold. 

The parti(iular combinations 

ReS = 	 ReT = 	+ 	 (2.1) 

where the N complex fields Vj  are gauge nonsinglets, are the scalar members of two 
chiral supermultiplets. In addition there are other gauge nonsinglet scalars associated 

with the detailed topology of the compact manifold that I will comment on later. 

The possible relevance of these fields to phenomenology is that a) they couple 

only with gravitational strength to observed matter and thus provide the possibility 

of communicating weak SLJSY breaking to the observed sector through quantum cor-

rections, and b) they are associated with (classically) flat directions in the space of 

scalar field values. Specifically, if SUSY is unbroken, the effective tree potential in four 

dimension, is of the form 

V = f(ReS, ReT) V(ip,) 	 (2.2) 

with < 	>= 0, so the vev, of ReS and ReT remain undetermined at the classical 

level. 

In order to make contact with observed physics, the vacuum degeneracy must be 

lifted and SUSY must be broken by nonperturbative quantum effects. Two sources of 

nonperturbative SUSY breaking have been proposed 3 ' in the context of the E5  x E, 

heterotic string.44  With Calbai-Yau compactification, 32  for example, the gauge group in 

four dimensions is E5  x E8, where E8  is the gauge group of the observed sector and E, 

that of a hidden sector, coupled only gravitationally to observed matter. Both groups 

can be broken down further° at the compactification scale Ar by loops of gauge 

flux trapped around topological singularities in the compact manifold. The surviving 

subgroup of E8  must contain the observed SU(3) x SU(2),. x U(1) of the standard 

model for strong and electroweak interactions. The hidden gauge theory is assumed to 

be a pure supersymmetric Yang-Mills theory which is asymptotically free and therefore 

becomes strong at some scale A. This means that, as in QCD, Sect. 1.4, the gauginos 

of this strongly coupled sector may form a condensate: 

<AA>xh760 	 (2.3) 
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u-liieh breaks slIllursyllIllut  ry' (a_s well as a thirst Syllitll(t I)). 	III ttiiliiiiciisi,iiial 

supergravity there is also a field strength !ILMN(L, Al, N = 0,- 9) that is an 

symmetric, rank-three Loreiit z tensor. This field may aquire a iioiivaiiisliiiig vacituimi 

expectation value (l,rn,n = 5-- 

< "i,,,,, >IX c$ 0 	 (2.411) 

that satisfies a quantization condition 45 : 

j dE" < lI,,,n  >= 2mm 	 (2.46) 

when integrated over a closed 3-surface S of the six-dimensional compact manifold. 

The vev (2.4) also breaks supersymnmetry. Either (2.3) or (2.4) alone would induce a 

positive cosmological constant. Combined they can contribute to the vacuum energy 

density in the form of a perfect square 31  

<V10  >cx< (H + f(cpo)AA)> 	 (2.5) 

which also involves the dilaton field Wo. When one integrates over the compact 6-

manifold to obtain the effective 4-d action the size of the compact manifold 

mp < e >= mp < (ReS RcT)'3 > 	 (2.6) 

also appears, and the resulting potentiat depends on the scalar fields S and T in such a 

way that, for fixed values of the parameters c and h, the degeneracy in S is lifted. This 

is because it is the S-field that couples in four dimensions to the gauge bosona ana 

gauginoe. As a consequence its vev determines the unified gauge coupling constant: 

Specifically, the full effective tree potential in this model takes the 	 40.31.38 
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i.e., in the lIst S5(C hunt mii - oc, if supersymumnetry is uubrokemi. Eqs. (29) are 

expressed in units of (he reduced Planck mass: 

1 mp = (8rGN) 	2 x 10' 8GeV. 	 (2.11) 

where 0N  is Newton's constant. 

Each terni in (2.8) is separately positive semi-definite. V and V are minimized 

for Vi  = 0 and therefore vanish at the ground state. If the SUSY breaking parameters 

c and h are absent, W(p) = 0 forces U = 0 and the vevs of S and T are undetermined. 

When the supersymmetry breaking vevs of Eqs. (2.3) and (2.4) are turned on the 

vacuum energy vanishes for 

/3ssI=41rn, 	n t Z, 	 (2.12a) 

t'tk5 :c= —h(1+t0)e'°12 . 	 (2.126) 

(The choice of sign in Eq. (2.12b) assures a CF-invariant 0-vacuum, i.e., F? does not 

contribute to the quantum action.) The vev of T remains undetermined at tree level, 

as does the value of the gravitino mass. 38 

=< eg >=< (S + S)- '(T + tY3Ic  + h 	 (2.13) 

At tree level there is therefore a four-fold vacuum degeneracy; in addition to < ReT> 

and < Im T>, there is a two-fold degeneracy in the parameter apace defined by c, h 

and uk>.  We shall now see to what extent this degeneracy is lifted at the one-loop level. 

2.2 The Effective Theory at One Loop. 

The effective one-loop potential is obtained by a covariant expansion of the 

quantum action with constant scalar background fields z, as in Eq. (1.43), but where 

now higher spin loops must be included. The result is the Coleman-Weinberg potential: 2 ' 

(2.8) 	 . 	 Veil = Vtrce + 2(4 )S StrfdPP(P + M 2 (z)), 

p2  + M2 (z) = Z(z)1'(p2 ,z). 	 (2.14) 

(2.9o) 	 A'(p2 , z) is the propagator in the presence of the background scalar field3 z and Z(z) 

is a field dependent normalization matrix. For scalar loops Z,(z) = g,,(z), the scalar 

'2 96' 	
metric, and M(z) is determined from the second covariant derivative of the potential, 

as discussed in Sec. 1.3. In a general aupergravity modeP 8  the fermion and gauge boson 

(2 9c) 	
kinetic energy terms are of noncanonical form. For example the fermion part of the 

Lagrangian is of the form 

where the matrices 7' represent the generators of the observed gauge group on the 

chiral fields. In writing (29a) I have introduced the notation 

/3!m. 	 (2.10) 
26 

where b0  governs the /3-function of the strongly coupled hidden gauge sector. The 

superpotential W() = (tV())t is cubic in the gauge nonsinglet fields. V and V are, 

respectively the F-term and D-term that appear in globally supersymmnetric theories, 

0 + M(z)J,/,' + O(Oz) + o (2) 	 +... (2.15) 

and the vector part is of the form 

Lv = f4z)F,,F " + 	(M,'(z)) 2 0  A'" + 

+ total deny. f.... 	 (2.16) 

Vtre,, = U + i,  + P 

with 

U = (S + .)'(T + D - klpI 2 ) 3IW(p) + C + lt(1 + 

= (S + .)-1(T  + T - 

V = E(3kcp 7 cpj)3 (T + T — kII2 ) 3(S + .)', 



The inircs>oiitliiig in.tss iii.iI I ices it iieanug in (2.11) ar,, resli.(t i'Iy 

(,v()) 2 	= (f117(z) (%I,'(z)) f_/12(z)) 	 (2.17) 

I work in the Landau gauge, &A = 0, so that, as (liscussed in Sect. 1.4, the gauge 

bo&)ns decouple from the scalar fields. Similarly, iinposiiig the gauge condition 

o on the gravitino field (i,, assures that it decouples from ferniions. The relevant part 

of the gravitino Lagrangian reduces simply to 

= 	 (2.18) 

With these gauge conditions the supertrace F of a function of M 2  is defined by46  

STr F(M 2 ) = 3Tr F(M) + Tr F(M) - 2Tr F(Af.) 

- 4F(nt) + 2F(4rn), 	 (2.19) 

where the last term is the Fadeev-Popov "ghoetino" contribution. The integral in Eq. 

(2.14) is divergent and must be regulated by a cut-off or subtraction parameter A. 

Neglecting terms of order M2/A2  we obtain: 

V,;j(z) = V1,, + I  [qA2sTr M 3  + STr M4 ln(M2/pA2)1, 	(2.20) 

where A is the appropriate cut-off and q and p are prescription dependent parameters 

of order unity that reflect uncertainties in threshold factors and finite contributions as 

discussed in Sect. I.I. 

One can extract some of the qualitative features at one loop, that are indepen-

dent of the precise shape of the effective potential, 8imply from dimensional analysis. 41  

The only dimensionful quantities in (2.20) are the mass matrix M and the cut-off A. 

Since the potential has dimension four the one-loop contribution is necessarily of the 

form 
V1 _1,, = STr M4 f(M2/A2 ). 	 - 	(2.21) 

We wish to evaluate (2.21) in the neighborhood of the tree ground state, so we set 

V. = 0 and /3 = f. Then the elements of the squared mass matrix M2  are all linear 

homogenous functions of the SUSY breaking parameters c and Pt: 

M 2('. = 0) = (ReT) 3(a(w)ch + d(L')h 2 1 
= h3(ReT) 3 t-'(w) + 0(h), 	 (2.22) 

where in writing the last term in Eq. (2.22) I have used the tree level condition (2.12b) 

and Pt is the loop expansion parameter. The effective tree theory with potenti4, (2.8), 

(2.9) is valid at scales below the scale of gaugino condensation, i.e., the scale where 

the hidden gauge interactions become strong, which is determined by renormalization 

group equations to be, using (2.6), 

== ("P) 

= (e 0 /3) 	 (2.23)  

6D 
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iii l'ldIi,k iliass units. l)eliuiiiig the varjal,Ies 

it = h2 (ReT) 3  

	

= PC 	 (2.24) 

we have Al' = LC(w), AI 2 /A = xv'(w), so identifying A 2  = A in the supertrace (2.21) 

it takes the form 

	

V1 _1o,,,, = 	 (2.25) 

Near its ground state Wj = 0 the tree potential is proportional to a perfect square: 

= 0) = (ReT) 3  Ig(c, h,i.)( 2 	 (2.26) 

with g = 0 when (2.12b) is imposed. Shifts of order Pt from one-loop effects contribute 

at 0(h 2 ) to the tree level vacuum energy. Therefore to determine the one-loop vacuum 

configuration we iteed only retain the contribution (2.25). Since this is already 0(h), 
one loop corrections to the ground state condition (2.12b) will also contribute at 0(0). 

At tree level there is a three-fold degeneracy in the parameter space defined by 

(ReT), (), h and c. Thus, subject to the condition (2.12b), we must minimize the 

contribution (2.25) with respect to three independent variables in this space, that I 

take to be p, x and t. The extrema of the one-loop corrected potential therefore occur 

for 	
= 	

= 0 	 (2.27a) 
OX 

and 

	

i2 =0orf=0. 	 (2.27b) 

Either of the conditions (2.27b) assures that the energy-density vanishes at all extrema 
of the potential. This implies that if the potential is not positive semi-definite every-

where it is unbounded from below. If the function f(x,) is positive semi-definite, 

there is always a global minimum at p = 0, for which supersymmetry is unbroken and 

all particles remain masaless. If this is the only solution it means that one-loop correc-

tions force the potentially SUSY breaking nonperturbative effects to vanish. As higher 

order perturbation corrections cannot break SUSY, this is not a physically acceptable 

solution. 

if we impose the conditions (2.27a) with p2  y4  0, f(x,?) = 0 the function f is 

overdetermined and a fine tuning of parameters other than the dynamical variables x 
and u, is required for such a solution to exist. The theory contains no free parameters 

(such as coupling constants) other than the dynamical variables. This means that 

whether or not a nontrivial (p2  It 0) solution exists depends on the detailed way in 

which the physics of the, presumably finite, underlying theory enters to damp the 

divergent integral (2.14). In numerical searches 41  for solutions to the minimization 

equations (2.27) we varied the uncertainty factors i and p using an approximation 

of the form (2.20). We considered a solution as acceptable if it occurs for plausible 

values of these parameters. If any such solution exists, and if the potential is bounded, 

it has vanishing vacuum energy and is infinitely degenerate, because the function f is 

independent of the parameter p that determines the scales of the theory. In other words, 

if one-loop corrections permit a vacuum with a finite, nonvanishing SUSY breaking 

gravitino mass the tree level degeneracy is lifted in all but one direction (aside from 
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the axion, !mT, direction) in the space of dynamical variables. 'I'lius the ratio ma/A, 

is fixed, for example, but not the value of m. However the quantization condition 

(2.46) implies that this degeneracy is discrete, and that all scales are fixed by the 

topology of the compact manifold. 

I emphasize that, unlike the scalar field degrees of freedom, S and c are only 

parameters—not propagating fields --- of the effective low energy theory valid at scales 

below A. 'fhere is a doubly infinite set of effective theories corresponding to possible 

choices for these parameters. Since they are, however, dynamical variables of the 

underlying theory they should relax or tunnel to those values that minimize the overall, 

fully quantum corrected vacuum energy. If there is any solution to (2.27) with finite 

rn,j there is one for any value of , Eq. (2.24) and hence for any value of ccx h + 0(h). 

Once c chooses one of its allowed values, all other vevs (except (JmT)) are fixed. 

I now assume that there exists a solution with finite gravitino mass. Soft super-

symmetry breaking in the observable sector can be probed by expanding the one-loop 

effective theory around the ground state field configuration z0 . The Vi dependence of 

the effective potential can be obtained by writing the field dependent mass matrix as 

Al 2 (z) = M 2 (zo) + A M -t-  A. 	 (2.28) 

The supertrace of an arbitrary function F(M 2 )) can then be expanded as 

STr F(M 2) = STr F(M) + STr(AF'(M)) + 0(A 2 ). 	(229) 

Since A = O('p), the second term in (2.29) contains the quadratic and cubic - 

dependent terms that appear as soft SIJSY breaking effects in the low energy, effective 

renormalizable theory. 

In the most general supergravity models supersymmetry breaking, ma $ 0, at 

tree level induces both nonvanishing acalar mass 5,ss  proportional to ma,  and "A-

terms" which are terms of order ma  that are linear in the auperpotential W(). No 

such terms appear at tree level in the effective tree potential (2.8), (2.9) but they could 

appear at the one-loop level with coefficients suppressed by Lite loop factor (47r) 2 . An 

explicit evaluation of the mass matrix (2.28) gives, however, for the potential (2.21) 

when expanded as in (2.29), the following result. 4149  If V11 is the one-loop corrected 

potential (2.14) and we define: 

V(c, ReT,o) V11('p 	0), 	 (2.30) 

then the p-dependence of V1  is given by: 

t,jj(z) = V(c + W(ç), ReT - Iy'I,L) + 0(!) 	 (2.31) 

which is precisely the form of the p-dependence of V1, alone. In writing (2.30) I have 

not used the tree level condition (2.1214. If we now expand (2.31) up to terms cubic 

in the Vi we obtain 

Vjj = Vjj(p = 0)- 

avcfj 
+IW() +  

(2.32) 

'l'hie ground state conditions OV/ö ReT = ÔV/Oc = 0 assure the vanishing of both the 

mass term and the uA_tertllsn.  Note that there is a quartic terni in the expansion 

k2 	4ô2Vjj 	!IiI.T 	4oc t,jj 	j-I'I filleT2 	2 I'I 	 (2.33) 

	

that could lead to non-negligible SIJSY breaking effects if 	is large. However it 

can be shown that this term disappears from the effective low energy theory for p, 

when the heavy field ReT is correctly integrated out. 4249  - 

The vanishing of the scahar masses 105 ' can be traced 42  to the invariance of the 

form (1.103) under the Ileisenberg group G,, introduced in Sect. 1.5, as I will indicate 

more explicitly in Sect. 2.4. The vanishing of the A-terms 41  is less transparent; it occurs 

only when one minimizes the potential with respect to the parameters c and h, as well 

as scalar vevs, and is therefore related to the vanishing of the cosmological constant. 

Large nonvanishing A-terms with vanishing scalar masses would be a phenoinenological 

disaster, since all gauge nonsinglet scalars could acquire vevs, breaking, in particular, 

color and electric charge conservation. 

Another possible source of soft supersymmetry breaking is gaugino masses. 

Since gauginos transform according to the adjoint representation of the gauge group, 

which is real, their masses, as for scalars, do not break the gauge symmetry. There 

are two sources for gaugino masses that are generated by radiative corrections. Tile 

first is from one-loop gaugino self-energy diagrams, 37  Figs. 8 and 9. As mentioned 

previously the diagrams of Fig. 8 cancel exactly, as do those of Fig. 9a. 

A 	 CTY 
+ 

Figure 9: One-loop contributions to the gaugino mass from (b) the scalar field S 

and (a) its chiral superpartner xs. 

The quadratically divergent contributions to Fig. 9b also cancel and the result gives a 

contribution 3T  of order mö  m 3  ln(A2/m).
UA 

In addition there is a "tree-level" gaugino mass induced 31 '52  by the shift at one 

loop in the tree level relation (2. 12b). In the model3 ' considered here, the tree-level 

gaugino mass is given by 

=< 	 s(S + .) >=< U' 12  >= 0(5) 	 (2.34) 

where G  is the Kähkr potential and U is defined in Eq. (29a) or (2.26). If, for example, 

LJ l  = c. + & t is the vev of uj as determined at one-loop, with co given by (2i2), we 
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get a ci,uil rihiut sun I,, I lie g;uuugulsu iiva.ss 

bun9 = 	) = 

'I'lue shift &j is determined by 

tx ((rinul hose lucius. liii, ot tier two terms correspond to dmagrauuis with two external 

fermion lines. The secomuul term has a closed scalar or ferimuomi line as in time second 

(2:15) - diagram of Fig. 8, 9a and Oh, while time third term has one boson and one fermion 

internal line as in the fIrst diagram of these figures. It is however easier to evaluate 

these terms by making a change of integration variables: 

OV 	= 	G + 	L=, = 0. 	 (2.36) 

Writing U in the form, (2.26), we have 

01] lOg 	\ 
= 2(RcT) 3  (()) &m + 

Old 

(X - j °",' L= 	 (2.37) 

When adding these two contributions care must taken to treat all divergent integrals 

in a consistent fashion. This can be done by evaluating the effective one-loop action 

in the presence of constant background gaugino as well as scalar fields. The term 

bilinear in gaugino fields, evaluated at the scalar ground state configuration, can then 

be identified with the gaugino mass term. The result found 49  in this way is that 

the two contributions to the gaugino masses cancel identically when one imposes the 

minimization conditions (2.27). 

To show how such a cancellation can occur I will briefly outline the calcula-

tion. In the presence of both boeon () and fermion (m,b) background fields the inverse 

propagator can be written in the form 49  

= A')1  S1. L. 	[Z(P + 6)L, 	 (2.38) 

where i,j refer to all quantum field degrees of freedom, Z() is the normalization 

matrix introduced in Eq. (2.14) and 

P E 8(0 + M))B + Ffry. 0+ MF())F, 	 (2.39a) 

6 = 86BFF + .16F88 + 86888 + F6FFF + 0(3). 	 (2.39b) 

In Eqs. (2.39) 8 and Fare projection operators on, respectively, the boson and fermion 

subspaces in the space of quantum fields (i.e., the functional integration variables 0,). 
Eq. (2.39a) determines the propagator for 0 = 0. The -dependent part is expanded 

in Eq. (2.39b) where 68F  and 6FB are linear in kb and bBB  and 6FF  are quadratic in *,lu. 

The effective one-loop Lagrangian is given by 

= InJ dd det I12Z()e 	 () 

= —STrin(P+6) 

= - (STr In P + Sir P'6 - STr P'6P'6 + O( 4 )}. (2.40) 

The first term in brackets gives the effective one-loop bose Lagrasigian, in particular 

the effective potential. It represents a sum of one-loop diagrams with any number of 

	

= + (j 0+ Af('))'6p. 	 (2.41) 

In terms of the fields and ç'  the propagator takes the diagonal form 

= 13(02 + M') + ABubcb)B 

	

+F(03  + A1() + iFi/)F+ 0(0 4 ), 	 (2.42) 

and, with the appropriate gauge conditions, the supertrace reduces to the form of Eq. 

(2.19) where the mass matrices M now contain terms bilinear in m,t, . 

For the case of interest V - z, the set of scalar fields, and , -. A, the back-

ground gaugino fields, and we obtain 

_C 001  = STr F(A,Ma(Z) + ts(z)L) 

= STr F(tt, M2 (z)) + AASTr(ta(z)-F(tt, M2(z))) 

(2.43) 

where I have expanded as in (2-.29). The first term on the right in (2.43) is the scalar 

potential of Eq. (2.21): F(A,M 2 ) M2f(M2 /A2 ). The second term gives the one-

loop gaugino self energy, Figs. 8 and 9. To compare this contribution with the one 

arising from the shift in the tree level relation (2.12b), I define 

be as c-f h(1 +t)e 2  = 0(h). 	 (2.44) 

Then by reasoning identical to that of Eqs. (2.34)-(2.37) we have 

bmj  oc 6c
avi-toop (2.45) 

Oc 

It is straightforward to verify that when the minimization equations (2.27) are imposed 

(and the appropriate coefficients included) Eqs. (2.37) and (2.45) give the same result. 

Since V1_,,, depends on c only through the squared mass matrix M2 , we obtain 

6 	 = STr IOM (uP)OF(AM2)j. (2.46) mo 	
t9c 	Oc0M 2  

The right-hand side of (2.46) and the last term in (2.43) are supertraces over the 

same matrix valued function, OF(A, M 3)/0M2 , with different weight matrices, namely 

0M2/Oc and ts(z). These matrices can be calculated, and one finds that when the 

ground state conditions are imposed: 

0 = STr F = STr F = OA STr 
OF 0M2  OF

+  -- j, 	 (2.47) 
 iiM 

the two contributions cancel identically, independently of the functional dependence of 

f(M 2/A 2) = M -2 F(A,M 2 ) on its argument. 
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2 .il'I,e si •,llity of t lie git>iciitial. 

The results of the )recc(IiaIg section were ohtai,,etl ,,,,tler the assiIiIlptuoii that 

the effective oiie.loop poteiitial is bounded from below. If time approxmiiiate forum (2.20) 

is used, with q, p = 1, the potential is indeed bounded' for LOO  > 1  (oc;ur. I) as a 

function of ReT with c and h fIxed, but it is negative at its minimum in this (lirection. 

In view of the results of Sect. 2.2, this implies that it slopes to —00 in seine direction 

in time (c, A) plane. Moreover, examnination 5  of the O(Al 2 /A 2 ) corrections to time ap-

proximation (2.20) shows that they destabilize the potential in Lite direction ReT -. 0, 

or ,n -. oo. Explicitly, for Al 2  >> A2 , Lite integral (2.14) becomes 

(2.48) 
640 

where the notation Af implies that the supertrace is over the subspace of massive 

modes; ni2  >> Al. The stability of the potential therefore depends on whether there 

are more massive bosonic or fermionic states 

Sign(V)r_. o  = Sign(B - F)m . 	 (2.49) 

For the theory corresponding to the tree potential (2.8),(2.9), one finds (B— F)m  
—4, and the potential is unstable. However loop corrections calculated for this theory 

are not valid at field values for which M 2  > A, since large M2 (z) in the loop propa. 

gators probes comparably large momenta. At scales larger than the condensate scale 

A,, the gauge couplings are weak and there is no gaugino condensation. We expect 47  
the effective theory relevant at scales between A and the compactification scale ACUT 
to be approximately described by the potential (2.8) but with A = 0 in Eq. (2.9a). 

The mass spectrum of the corresponding effective supergravity theory, evaluated at the 

ground state z = z0  of the tree potential with h 4 0, satisfies47  

(B—F)&,,,=2N-2No-32A+1 (2.50) 

where N is the number of chiral supermultiplets and Na the number of gauge multi-

pleta, so the potential is bounded if 

A=N—Na-22:0. 	 (2.51) 

Of course one-loop corrections calculated for the effective theory with h = 0 also cease 

to be valid for M2(z)> Ar. However the condition (2.51), if satisfied, assures that 

an apparently stable ground state found using an approximation like (2.20) will not be 

simply an artifact of that approximation. 

The results of the preceding section imply that the potential is unbounded 

in some direction of parameter apace unless it is positive definite everywhere. Since 

V(M 2 (z)) = 0 for M2 (z) = 0, this implies in particular that the slope at the origin 

of M2  must be positive. The behavior at small M2  is governed by tIme quadratically 

divergent term in (2.20), proportional to STrM 2 . 

For the supergravity theory defined by the potential (2.8), (2.9) (and by the 

gauge field normalization matrix, Eq. (2.16), f(z) = & 0S) one finds5 ' 

	

STrM 2  = 2AU - 2(e 9- 
 U) + 0(4)• 	 (2.52)  
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fr /1 j4 0,11 	0 and e > 0 at time tree ground state, so STr.'tl < 0, and (lie 
potential is unho,,ndcml in time direction nil = e0  -. 00. For A = 0, U 	c, so the 
slope at the origin of nic for ip, = 0 depends on the sign of A, defined in Eq. (2.50). 

If we split Lite loop integrals into two regions 

a) 	fpj2 	A, h j4 0, 	 2.53u) 

6) 	Ah = 0, 	 (2.536) 

the effective one-loop potential takes the general.form: 

V1 ..1 = STrV,,(M 2 , A) + STrV5 (AI2 , AUT, A), 

V = M 4 F,(M2/A) 

Vb = M 4 l,(M 2/A, A/A T ), 	 (2.54) 

where M2  and M2  are, respectively, the appropriate mass matrices for regions (a) and 

(b) of integration. If the quadratically divergent term in V(b) is positive and dominates 

that in Vp,, the slope at the origin of ;n will be positive and the potential may be 
positive semi-definite everywhere.47' 49  This requires in particular A > 0, or since A as 
defined by Eq.(2.50) is an integer 

A 2: 1. 	 (2.55) 

Ilowever, with the inclusion of one-loop corrections to condensate effects, to be dis-

cussed below, the interpretation of the effective parameter A that actually governs the 

slope at the origin may be modified, and it is not necessarily an integer. 

The mass matrix relevant to region (b) is of the form 

0) = c2 (ReT) 3ii(u) = h 2 (ReT) 3i'() + 0(h) = pi"(w), 	(2.56) 

where I have used (2.12b), and since A/A 	(see Eq. (2.23)) depends only on , the 

modified one-loop potential (2.54) is still of the form (2.25). Then the reasoning leading 

to the conditions (2.27), and the conclusions of Sect. 2.2 regarding the cosmological 

constant, are still valid. 

Using approximations of the Form (2.20) for both terms in (2.54), the potential 

has been studied4749  numerically by varying its parameters. Solutions to the mini-

mization equations were found for plausible values of the uncertainty factors q, and p, 

small values of A and values of ub in the range 2 . 	' 5. This corresponds, via Eqs. 
C 	C 

(2.7) and (2.10), to 1/16 ocur  1 where I assume that 

.06 < 1s. :5 0.56, 	 (2.57) 

i.e., that the hidden gauge group G,,,, satisfies SU(3) C G,,jj C Es . The poten- 

tial for one such solution is shown in Fig. 10. As the vacuum is degenerate absolute 

C 	- 
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Figure 13: Contributions from nonrenormalixable interactions to (a,b) soft SUSY 
breaking terms in the effective potential and to (c) scala.r couplings to gauginos. 

Figure 10; The one-loop effective po-
tential in the c - (fteT)' plane for 
fixed values of the other dynamical vari-
ables in the case where a minimum ex-
ists for finite ma. 
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IIOLSS scales are not (Iet.erIOIuIe(l, but their ratios are determined; one huols 
x 

- - IID------ 	-- 	 mO/nip - 0.lfj" 2 AGur/mp 	 (2.58) 
 il 

10) 	 where m) is one of the threshold factors. 

	

ç.A 	 As before, we can expand the potential (2.54), or the corresponding effective 
- - - 	- 	- 	- -. 	 Lagrangian, about the ground state field configuration to study soft supersynimetry 

• '.,4 1' breaking in the observable sector. One finds 49  that there are again no "A-terms", i.e., 

terms proportional to the superpotential W(p). However, if one simply integrates the 

expression (2.14) over A,2  < fr <A o  with M 2  replaced by M 2  one finds (including 
• 	 • 0 	 a threshold uncertainty factor 5) soft SUSY breaking terms in the potential that are 

proportional to the factor 

	

= ln(?A/Aur). 	. 	 (2.59) 

Figure 11: One loop contrjbutjons to 	 Note that this factor does not grow with the cut-off scales for fixed w. It is as ill- 
the scalar () self energy in a renor- 	 determined as any of the finite (i.e., cut-off independent) terms. The shape of the 
mahizable SUSY theory which vanish 	 potential for Vi = 0 is in fact not very sensitive to its presence; setting a() = 0 has 
when tree level masses (x) vanish, 	 little influence49  on the characteristics of the solutions to the minimization conditions. 

However, we wish to ascertain the presence or absence of soft SUSY breaking 
independently of the details of the potential; therefore we should assume a priori that 
a() 94 0. We then find two types of SUSY breaking terms arising from region (b) of 

loop integration. First, for ii = 0 and c j4 0 gauge nonsinglet scalars and gauginoe have 

SUSY breaking tree-level masses proportional to the gravitino mass. These masses 

are renormalized at one loop through the standard diagrams, Figs. 11 and 12, of 
• renormalizable (softly broken) SUSY gauge theory. These terms simply represent 

• renormalization of the parameters that define the theory at scales p > A. above 

gaugino condensation, and cannot change qualitatively the features of the physics at 

scales p < A,,. The mass terms generated by the diagrams of Figs. 11 and 12 would 
in fact vanish if we first renormalized (at one loop) the effective theory for p> A. and 

then let < AA >$ 0 to determine the effective theory for p < A,,. 

A second source of soft SUSY breaking terms in the effective one-loop scalar 

potential is from nonrenormalizable interactions. Expanding the term et7  in the tree 

potential for region (b); 

	

Vlb)tree =  e0  + il  + V 	 (2.60) 

yields the one ioop contributions of Figs. 13a,b to terms that are quadratic (mass 

terms) and cubic (but not proportional to W (p))  in the gauge nonsinglet scalar fields. 

However, the effective scalar one-loop Lagrangian, including background gaugino fields, 

also contains the AA-dependent terms generated by the diagrams of Fig. 13c. When 

the. diagrams of Figs. 13a,b and 13c are added the and terms in the effective 

one-loop Lagrangian, as expanded about the h & 0 tree vacuum, are proportional 49  to 

< + AA >. On the other hand, the nonderivative part of the tree Lagrangian 

valid at scales p > A,, is (including only scalar and gaugino fields) 

£(z, A) - £K.E(Z, A) = (e 2  + .XA)  + + V. 	 (2.61) 

The vanishing of the tree level vacuum energy for a nonvanishing gaugino condensate: 

-11- 

Figure 12: Caugino mass renormal. 
ization for nonvanishing tree-level gaug. 
mo mass (x). 

<e'2  + A >= 0 	 (2.62) 
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should also iiiipiy the vaiitsliiiig, at scales below A, where < AA > Is 	0, of I lie soil 

SUSY breaking terms generated by the diagraiiis of Fig. l3c. 

One might then wonder whether the contribution of region (b) of loop iiitegra-

tion is entirely cancelled by one-loop contributions to gaugino condensation effects, 

in which case the slope of the effective one-loop potential would be negative at the 

origin of ma.  This is almost certainly not the case. 'F lie effective tree potential of Eqs. 

(2.8) and (2.9) that defines the effective theory for p < A. can be obtained Iroiii the 

effective nonderivative Lagrangian of Eq. (2.61) by the replacement < AA >—. f(z). 
The effective scalar mass matrix, obtained as the second (covariant) scalar derivative 

of the effective Lagrangian is not invariant under this replacement: 

>= 0, 	-f(:) t 0. 	 (2.63)
19  

One could therefore conjecture that the net effect of region (b) loop contributions, alter 

inclusion of loop corrections to condensate effects, is only to modify the contribution of 

scalar loops. Using this conjecture one finds 49  that the effective value of A - 
that governs the slope of the potential near ma = 0 is a (generally noninteger) function 

of w, independent of N and N0. A positive semi-definite potential can occur for 

LJ < 17 (ocayr > 0.4), and the value of turns out to be naturally of order 

unity, which is consistent with the results of the numerical analysis described above that 

require a value i 1 for the existence of a solution to the minimization equations. 

The functional form of is,j;(), and hence the condition w < 1.7, depends on the 

precise functional form the potential, Eq. (2.9a), while the qualitative results of Sect. 

2.2 are independent of this. 

However, the above reasoning is not really correct since one cannot obtain the 

effective Lagrangian, incorporating the correct symmetry properties, that is appropri-

ate for the description of physics scales p < A, by a simple and unique substitution 

XA -  f(z) in the Lagrangian valid at scales p> A. The correct procedure is to 

first determine the effective superpotential appropriate for scales p < A,; the effective 

Lagrangian is then determined by the standard prescriptionss for N = 1 aupergravity. 

Therefore, to correctly incorporate one-loop effects from physics at scales p> 

A,, one should fIrst calculate the effective one-loop Lagrangian, including corrections to 

gaugino couplings, relevant at these scales. For the effective theory with h = 0, all the 

quadratically divergent contributions that have been calculated thus far 51 ' °'49 '65  have 

the property that they are proportional to terms that appear in the tree Lagrangian 

of that theory. This strongly suggests that these terms can be interpreted as field 

and Kähler potential renormalizations in such a way that the tree plus quadratically 

divergent one-loop effective Lagrangian can be cast in standard form.ss  One could then 

define a corrected effective "tree" Lagrangian valid at scales just below A, following the 

procedure of Affleck et al.,54  to which, of course, the one -loop corrections of Sect. 2.2 

should be added. On the other hand, logarithmically divergent corrections involve 2055  

terms of higher order in space-time and Kähler derivatives and in the Kähler and space-

time curvatures. Interpreting these corrections in a similarly consistent fashion would 

first. require a generalization of the standard N = 1 supergravity Lagrangian to higher 

derivative terms. 

As mentioned above, the structure of the effective potential relevant to the 

determination of the vacuum energy is insensitive to the presence of logarithmically 
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divergent terimis, Eq. (2.59). in particular, a determination of the qitatliatic divergences 

is sufficient to resolve the issue of time boundedness of the potential. On time other hand, 

the logaritlimimic divergences immust be understood to fully address the question of soft 

SUSY breaking. Neglecting radiative corrections to condensate effects (i.e., to A) 
couplings for i > A,), one finds 19  contributions from nonrenormalizable interactions to 

gaugino masses that are of order (4ir)m and (41r) 2 A2xn6. A complete evaluation 

of the quadratically divergent contributions would at least determine whether or not 

terms of the second type are present and set a bound on one-loop gaugino masses. 

2.4 Possibilities for a viable phenomenology. 

Let me first summarize the results 4149  of the preceding sections. 

In the model studied above it was found that if the one-loop effective potential 

is not positive semi-definite everywhere it is unbounded from below, resulting in an 

infinite, negative cosmological constant and infinite gravitino mass- clearly a physically 

unacceptable solution. If the potential is bounded, the ground state vacuum energy 

vanishes. One possibility is that the ground state is uniquely determined with ma = 0 

and unbroken superaymmetry. This is equally unacceptable since we live in a vacuum 

that is noninvariant under SUSY. A numerical analysis 4749  of the potential shows that 

there are plausible values of the parameters for which an acceptable vacuutn, with 

broken SLJSY, a finite gravitino mass and no cosmological constant, can occur. In this 

case the vacuum has an infinite degeneracy, and the scales ma,  A, and AGUT remain 

undetermined, although their ratios are fixed. The degeneracy is lifted by fixing, for 

example, the parameter c that appears in the effective potential, Eq. (2.9a). If this 

parameter is interpretedt as proportional to the vev of the 10-d three-form, Eq. (2.4a), 

then all scales are determined by the topology of the compact manifold. Furthermore, 

the quantization condition (2.4b) suggests that the vacuum energy is discrete, and 

therefore does not have an associated, massless Ooldstone mode. 

Assuming the existence of a vacuum with finite ma,  the effective one-loop La-

grangian can be expanded to determine whether effective soft SUSY breaking terms 

are generated in the observable sector. No such terms are found to be generated by 

one-loop corrections in the effective theory for p < A,. However, the potential can 

be bounded and positive semi-definite only if we include loop corrections from physics 

at scales A, < p < A01j3, and a complete evaluation of their effects requires further 

study. The heuristic arguments of Sect. 2.3 suggest that no soft SUSY breaking terms 

are generated in the effective one-loop scalar potential. 

If, in addition, no gaugino masses are generated, it is difficult to guess the origin, 

or estimate the magnitude relative to ma,  of SUSY breaking effects in the observable 

sector, in particular the ratio m,,/mO that governs the gauge hierarchy discussed in 

Sect. 1.5. It could he that scalar masses arise only in a very high loop order and are 

therefore suppressed by many powers of the effective loop expansion parameter 1/1670. 

Alternatively they might be dominated by effects of higher string and/or Kaluza-

Klein modes and thus suppressed by powers of ma/mr and/or a'm, where a' is the 

inverse string tension: a'm 2 . In either case the observed gauge hierarchy might be 

realized but certainly cannot be calculated with present technology. 

tAn alternative interpretation, in terms of the vev of a scalar field, has recently been proposed. 56  

54 	C 	 . 



II, u isi cad qi rant urn corred U)IIS [mit scales r'r 	r < i\Gi ir gei ierett e lair ivan - 

ishing garigino masses at one-loop, they are either of order 

m - m/(4rr) 2 rn, 	 (2.64n) 

or of order 
22< 

rn1 	A2 urô/(4rr) np 	l00mô/(4n) 2rn 	 (2.6-I6) 

where I have used the result 

ma 0.3A 	0.1Ajr 	(I(' - 10: 2 )/ \,/. 	 (2.65) 

As explained in Sect. 1.5, (2.64a) requires 

ma 10 4mp 	 (2.66a) 

for a viable gauge hierarchy, while (2.64b) requires 

- -Itt- 

ill pail icular the irirrirher of iriatter general ions is given by b 1  - b- 	ubservationi I here- 

fore re(juires b 11  > 3. in addition to the scalar field S, there are a total of b1 gauge 

nonsiliglets 'I, whereas only one (7') was included in the above model. One should 

therefore pin-point the qualitative features of the model studied that assure desirable 
features at one loop and try to identify a class of more realistic models that incorporate 

the same features. 

As I will explain more explicitly below, the sufficient ingredients 42  to ensure van-

isining gauge nonsinglet masses at one loop are a) a partial invariance of the effective 

tree Lagrangian under a noncompact lleisenberg group 0,, of nonlinear transforina-

tiona, b) a "no-scale" structuress of the tree potential, and c) vanishing vacuum energy 

at tree level. In this context I define "no-scale" by the absence of a term in the poten-

tial proportional to e0 , which, in the absence of nonperturbative effects, would force 

an unbroken supersymmetric solution ma = 0. In the general class of models that 

I consider the tree-level vacuum configuration has rp, = 0, and its vacuum energy is 

determined by the contribution (2.9a), defined more generally by 

- 	 ma £ 10 5 mp. 	 (2.66b) 
U=e 	 (2.72) 

( 

02C )_1 P 12 

If the parameter c is proportional to the vev of H1,,., Eq.(2.4a), the quantization 

condition (2.4b) implies a quantization condition for c of the form 49  Thus the condition for vanishing vacuum energy at tree level is 

(_! 2)3 jdi'fl Etm . = 2,mn 	 (2.67) Cs 	0 	 (273) 
as 

16r/ 

where es,,,,, is the anti-symmetric Levi-Civita tensor and I use complex coordinates for 
The vanishing of the cosmological constant at one-loop for the model studied above 

the compact 6-manifold: en,,., = (C(,as). "  In writing (2.4b) and (2.67) the metric of the 
follows essentially from dimensional analysis and therefore should be a feature of a much 

compact manifold M has been normalized by defining45 
more general class of models. Finally, the vanishing of A-terms - and possibly gaugino 

masses - at one-loop, is intimately connected with the vanishing of the cosmological 

gj.,. = c"gn,s(0) constant. There is no reason why this result should not generalize to more realistic 

models that incorporate the features a), b), and c) enumerated above, although at 

I d'zddetgi,,,( 	
mP ( 

0) = 	 (2.68) present we have no understanding of it in terms of symmetries.  

To see how these conditions assure the vanishing of gauge nonsinglet scalar 
Then one expects 

/  mp 
dE4"'tt 	1 	 (2.69) 

masses at one-loop, recall first (Sect. 1.5) that exact invariance under OH implies 

This invariance is broken by both the superpotential W() and m5, = 0 to all orders. 
the gauge interactions. In a broken SUSY theory, the latter will induce scalar masses, 

which implies for is & 0: 
c = 103n/I 2 1000. 	 (2.70) 

via the diagrams of Fig. 11(b), of order 

Using the range of values (2.57) for bo gives m -  --m. 	 (2.74) 
4,r 

ma 	
r;n 0.4 - 12) x 10 	 (2.71) In most superstring-inspired models, as in the toy model studied above, the 

tree-level gaugino masses are determined by the S-field: 

which may, from (2.70) be consistent with the requirements (2.66) for a viable gauge 

hierarchy. It is also interesting that a value as large as (2.70) for c might also allow for 

a successful inflationary scenario. 51  

The model studied in the preceding sections is-in fact a toy model when in-

terpreted as emerging from the compactification of ten-dimensional supergravity. The 

topology of the compact manifold is characterized by Hodge numbers b,, that are posi-

tive integers and determine45  the spectrum of massless states (before SUSY breaking). 

m = e0(S + 	 (2.75) 

and vanish when the condition (2.73) for a vanishing cosmological constant at tree-level 

is satisfied. The presence of a superpotential W() induces the contributions shown 

in Fig. (ha) to the scalar self energy. By 8upemsymmetry they cancel identically for 

vanishing scalar and chiral fermion tree-level masses. 
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In order to geuierale iionvanisliiuig gauge iioiisiiigkt scalar inasst's tue iiivils I lit-
interplay of a G,, breaking interaction (W(,) 0) with a SUSY breaking iiiteractioii 

(e.g., IV(S) 0). An analysis of the possible contributions to scalar IiOSS(S ShOWS 

that they vanish if Eq. (2.73) is satisfIed. This is a one-kiop argument only. The 

conventional wisdom is that gauginos acquire masses at one loop and therefore that 

scalars will acquire masses, Eq. (2.74). at the two-loop level. If, however, one-loop 

contributions to gaugino masses vanish, as suggested by the study of contributions 

from scales p < A, where the theory is unambiguously specified, it is unclear whether 

scalars will acquire masses at higher loops. A more thorough understanding, in ternis 

of symmetries, is needed to better address this question. 

Since, on the other hand, the vanishing of scalar masses can be understood in 

terms of a partial lleiseiiberg symmetry GH, we can ask whether any potentially real-

istic models possess this partial symmetry. It has been shown' 3  that C g  is a remnant 

of a partial symmetry, which is exact for vanishing gauge couplings, of ten-dimensional 

supergravity. Under this symmetry the gauge fields A51 and the antisymmetric field 

B5,N (of which the three-form "LMN,  Eq. (2.4), is the covariant derivative) transform 

according to: 

-. A 1  + 11,, 

BAI N BAIN +A 1Ii, 	 (2.76) 

where "M  is a harmonic form. In Calabi-Yau compactification,TM where the SLJ(3) 

subgroup of one 4 is identified with the holonomy group of the compact manifold, the 

limit of vanishing gauge coupling constant is singular, and the appropriate invariance 

under C,, may not survive' 3  in the effective 4-d theory. However, it is expected to 

survive for orbifold compactification. 

Quite generally, consider an effective 4-d Kähler potential of the form 

= 0(7', t, C, C) + Gs(S, .) + In I W(C) + W(S)1 2 	(2.77) 

where IV(S) iA 0 induces tree-level SUSY breaking, and 

C(T,D,C,C) -EQAInUA 	P8lndetU8 . 	 (2.78a) 

The functions VA are of the form 

VA = T5  + TA - C'C'.A 	 (2.78b) 

and the L8 x L 9  matrices U8  are of the form 

Ual 
= 

Tl j+ T,4-8 - C 8Cf8 . 	 (2.78c) 

In Eqs. (2.77), (2.78) the fields S,TA and some of the C'.s are gauge singlets. The 

superpotential defined in this way yields an effective tree-level potential of the form: 

V = e0 I9sI3  + C°n + V + 	 (2.79) 

where 

n=>QA+P8LB-3 	 (2.80) 
A 	B  

-40- 

and V are 	are, respectively, the usual U- and F- teruis that are qiiartic in (lie 

gauge nonsinglet fields. The criteria enumerated above, that assure vanishing one-

loop scalar masses, are satisfied for gs = is = 0. Specific examples, based on orbifold 

coinpactification, of theories satisfying these criteria have been given by Ferrara et al. 4 ' 

with field content and Kähler potential specified by the following table: 

nA  nB Q P L 
0 	1 	- 	13 

3 	0 	1,1,1, - 	- 

2 	0 	1,2 	- - 

1 	1 	1 	12 

The existence of these effective theories suggest that a superstring theory in 

ten dimensions might yield an effective field theory in four dimensions with a realistic 

particle spectrum and the possibility of generating the hierarchy of scales needed to 

Onderstand the observed scale of electroweak symmetry breaking. 
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