
) "

,""\
''(

LBL-24137 C'.d---,.

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA, BERKELEY

Information and Computing
Sciences Division

Presented at the 7th Annual Symposium on Principals of
Database Systems, Austin, Texas, March 21-23, 1988

Analytical Modeling of Materialized View
Maintenance Algorithms

J. Srivastava and D. Rotem

October 1987

~ ~- " -
.',"..:. v C I • ~,

U,WRENCE
::":;\('"'1 r' U\','".pe~f''' ,

JUL ':' 1988

LIBRARY t~ND
::SUMENTS SECT!C~:

,
, , ,

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
Califomia. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

/

"i

, ! .
(~~ ,
~-i. t- ~ " ~ ,1

LBL-24137
... tt,

i
./

Analytical Modeling
View Maintenance

- , ~(..,>--"

of Materialized
Algorithms

• < . .

Jaideep Srivastava
Computer Science Division

University of California
Berkeley, CA 94720

Doron Rotem
Computer Science Research Department

Information & Computing Sciences Division
Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720

October 1987

Presented at the 7th Annual Symposium on Principals of
Database Systems, March 21-23, 1988, Austin, Texas

This research was supported by the Applied Mathematics Research
Program of the Office of Energy Research, U.S. Department of Energy under
Contract DE-AC03-76SF00098.

.'

'f

Analytical Modeling of Materialized View Maintenance Algorithms

1. Introduction

Jaideep Srivastava

Computer Science Division

University of California

Berkeley, CA 94720

Doron Rotem

Computer Science 8& Mathematics Dept.

Lawrence Berkeley Laboratories

University of California

Berkeley, CA

A materialized view is a stored copy of' the result of retrieving the view Crom the

database. We consider here, views that can be constructed Crom the relational algebra

operations select, project and join. Also aggregates such as sum or count over views are

considered.

Materializing a view before a query is made on it has been a recent proposal. Con

ventional systems use query modification, w here the query on a view is modified to

operate on one or more of the base relations [STON 75]. Being derived Crom the base rela

tions, materialized views have duplicated data. Any changes in the latter have to be

reflected in the former, and vice tler8a, to maintain consistency between them. Refreshing

materialized views by generating periodic databa8e 8nap8hot8 has been proposed by

[ADIB 80, LIND 86]. [BLAl< 86] has proposed the immediate refre8h policV, i.e. updating

the copy of the view alter each transaction. [ROSS 86, HANS 87] have proposed the

deferred refre8h po1icll in which the view is updated just before data is retrieved from it.

[BUNE 79] presented a method for analyzing each update command before execution to

see if it could cause a view change. If the system could not rule out the possibility, the

view would be completely recomputed. This was done for evaluating complex trigger and

- 2 -

alerter conditions.

Performance of view materialization algorithms can be significantly improved by

screening of each tuple inserted into or deleted from the base relations. Ir a tuple fails the

test then it cannot change the view, and hence does not cause a view rerresh. The screen

ing described in [BLAK 861 is done by substituting the tuple in the view predicate, which

is then tested ror satisfiability. Carrying out this test for each tuple incurs significant run

time cost. [BUNE 19) proposes a screening test which has a compile time phase and a run

time phase. During the compilation of a transaction a check is made to see if any of the

fields being updated are present in a view definition. If no such fields exist, the update is a

readil,l ignorable update (RIU) with respect to the view, and cannot cause it to change. If

the transaction is not an RIU, the individual tuples are screened further at runtime. With

RIU transactions there is associated only a per-transaction cost, while with non-RIU ones

the cost associated is proportional to the number or tuples involved. This is similar to the

cost pattern of [BLAK 86]'s screening scheme. A scheme called rule indexing has been

proposed by [STON 86]. Index intervals covered by one or more clauses of the view predi~

cate are locked by special markers called t-loCk6. When a tuple is inserted into the rela

tion, if an index record containing a t-Iock is disturbed, the tuple passes the screening test.

This can produce false drops (i.e. tuples which pass the screening test but do not satisfy

the view predicate), which are handled by substituting the tuple in the predicate.

Research in the maintenance of materialized views has focussed on two independent

problems. First is the problem of screening tuples, either at compil~time or at run-time,

to decide if an update needs to be done to the view at all. Second is the problem of update

frequency of the materialized view that maintains it up-to-date, and incurs low cost.

[BUNE 79, BLAK 861 have focussed on the first problem while [ADIB 80, LIND 86, ROSS

86, HANS 871 have focussed on the second. [BLAK 861 also outlines a scheme ror the

second problem. In this paper we develop a queueing theory based analytical modeL for

view materialization which focusses on the second problem. A class of efficient update

algorithms are presented that are shown to be more general than those proposed earlier.

As far as we know this is the first attempt to develop an anlytical model for this problem.

Section 2 outlines the existing algorithms for materialized view maintenance. Section

3 introduces a queueing theory model ror the materialized view maintenance problem and

-3-

discusses the criteria on which the algorithms will be evaluated. Section 4 presents our

algorithms (or two variations of the problem and discusses their generality. Finally, Sec

tion 5 presents conclusions and suggests directions (or future research. (or view materiali

zation

2. Analytical Modeling of View Materialization

This section describes the mechanics of maintaining materialized views, develops a

queueing model for it, and discusses the criteria for comparative evaluation of mainte

nance algorithms.

2.1. Mechanics or Materialized View Maintenance

A materialized view is a stored copy of the view which is created at the time of its

definition. Any changes made to the base relations have to be reflected in the materialized

view. This is done by means of a periodic maintenance process or refres4 process. The

mechanics of materialized view maintenance can be described in terms of the files that

exist in the system and the processes that manipulate them.

Files: The base relations Crom which the view is derived are stored in the file

BaseRel and the materialized view in the file MatView. If MatView is refreshed as soon as

a change is made to BaseRel, then these are the only files required. However, deferring the

refreshing of Mat View has advanta~es of being more efficient under certain conditions,

[ROSS 86, HANS 87]. Thus another file, the TempFile, is required to store the changes

between successive refreshes to the MatView. These are shown in Fig. S.9{a).

Processes: There are three kinds of processes in the system which are of interest to

us, as shown in Fig. S.9{a). First are Read Queries, or Reads, that are directed to the

MatView and processed using it. Second are the Update Queries, or Updatess, that can be

directed either to the Mat View or to the Base ReI. These are handled by making the

appropriate changes to the BaseRel t and also recording it in the TempFile. If the Update

is an insert (delete), a data item is added to (deleted from) the BaseRel and the change is

t Changes to BaseRel are done anyways and not because or maintaining materialized views.

- 4 -

recorded in the TempFile. Handling Updates directed to BaseRel requires more care.

Only some of these Updates affect Mat View and are the only ones that have to be

accounted for. This is done by screening each Update directed at the BaseRel against a

filter (i.e. the logical predicate defining the view), to determine if it does indeed affect the

view [BUNE 79, BLAI< 86}. The ones that do so are recorded in the TempFile in addition

to being added to (deleted from) the BaseRel. The third kind of processes are the

Refreshes, or Refs, which are executed periodically and whose function is to refresh the

MatView using the contents of TempFile and bring it up-to-date with respect to BaseRel.

This involves inserting/ deleting all data items that have been marked for insertion/ dele

tion respectively in TempFile. A point to note is that no changes have to be made to

BaseRel when a Ref is executed, since the former is always up-to-date. Also, every time a

Ref is executed, it merges MatView and TempFile, emptying the latter.

2.2. A Queueinl Model

The operation of the materialized view maintenance mechanism is modeled as a

queueing st/stem. The arrival of a Read or an Update, or the creation of a Ref is the

arrival of a job for service, and the time required for its execution is the service time.

Fig. 5.9(6) gives a pictorial representation of the model.

Nature of the Processes: The Reads and Updates are both assumed to be stochas

tic processes having the Poisson distribution [ROSS 85}. Their arrival rates are AR and AU

respectively. Thus,

Read - Poi88on (AR)'

Update - Poi88on (Au),

Costs associated with processes: The cost associated with a process is its execu

tion time. For a fair comparison of materialized view maintenance algorithms we have to

develop a cost model that measures precisely the e:ctra overhead that a database system

incurs in maintaining MatView and TempFile. An example is the effort required to handle

insertions/ deletions to BaseRel. However, this would be required even if there were no

materialized views, and thus we do not include its cost. Thus, the cost of a process

includes precisely the extra effort it has to do for view maintenance. There is a cost asso

ciated with screening the tuple to decide if it affects the view; and if it does, there is the

\'"

Read Query

(RQ)

Differential File

(DF)

- 5 -

Update Query

(UQ) ····-············1'-__ B_ase_(_~_R)_ti_.o_n __ ..J

UQ UQ

Costs:

m
r'1 o

r
d r

RF UQ

(a)

RQ

--+! RT ~

lLfE
i
i
I

RF

Cost or inserting UQ in DF

Cost or mergins DF into MY

[] Cost or processins RQ on MY

(b)

UQ RF UQ UQ

Fig. 5.3 Mechanics of Materialized View Maintenance.

RQ

rm
i r
iL:J
i
i
i

RF

- 6-

additional cost of inserting it in the OF. Given below are the costs associated with the

three processes in our model.

CR : The cost of accessing the required data from MatView, and processing it to

answer the query.

Cu: If the update is to MatView, the only cost is of recording it in TempFile. When

the update is to BaseRel, it also has to be screened to see if it affects Mat View. From

our point of view only the relevant updates [BLAK 861, i.e. the ones that affect the

view, are of interest. Since screening is done in main memory I its cost is negligible

and is henceforth ignored. Thus, the cost associated with a Update is that of record

ing it in TempFile regardless of whether it is directed to MatView or Base ReI.

Cp : The cost of merging TempFile with MatView to bring the latter up-to-date.

The work done in maintaining the files MatView and TempFile is expressly for the

purpose of view materialization. Thus the extra cost incurred by the database system

shold be borne by the queries made to the view. This is done by taking the total extra

work done in a certain time period, dividing it by the number of view queries in the same

period, and adding the result to the cost of processing each view query. Table 5.2 lists

the various parameters of the model.

2.3. Evaluation Criteria

The performance of materialized view maintenance algorithms can be seen from two

viewpoints, namely the user's and the system's. The only concern of the former is the

minimization of the re8pon8e time ofbis query, i.e. the time that elapses between the sub

mission of a query and the return of the result. The only concern of the latter is the

minimization of the resources spent in doing the overall job. None is concerened with the

other's objective, and this may lead to confficting requirements for view maintenance algo

rithms. We define below two evaluation criteria, the first captures the user's viewpoint
•

while the second the system's.

AWe: Average Waiting Cost, i.e. the average time elapsed between the submission of

a query and the returning of results.

APe: Average Processing Cost, i.e. the amount of effort spent by the system, on the

average, for processing a query. This includes the cost of manipulating the BaseRel

as well as the average cost of the extra work done for materialized view maintenence.

- 7 -

Symbol Meaning

Read Read Query

Update Update Query

ReI Refresh Process

PR,PU'P"
probabilities

of arrival

AR,'AU,'A,. arrival rates
'1..1=-'1..111 of processes

GR,GU,G,.
service distribution

of processes

CR,cu,C,.
service time of

pro<:e$Ses

Pj=='AjE(Cj)
utilization of

process j

G==EpjGj
overall service

distribution

C overall service
time

p=a ,LPi='AE(S) overall utilization

Qj time average number of
j. job3 in queue

Q=-EQj
time average number or

jobs in queue

dj
averap queue delay

or a j.job

d=-Epjdj
anrage queue delay

or a job

Table 5.2 Queueing Notation Used.

A linear combination of the above, called Average Query Cost (or AQC), is a gen

eralized criteria and can be expressed as,

AQC =- a(APC) + (l-a)AWC; a <a ~I

a and I-a are importance attached to the user and system respectively.

3. Materialized View Maintenance Stratesies

4. Efficient View Maintenance

This sections discusses the materialized view maintenance problem, keeping in mind

both the user's and the system's viewpoints. Two vel"5ions of the problem are discussed.

The first does not include queueing delays while the second does. Update policis are

designed which minimize the Average Query Cost (AQC), which is a combination of the

Average Waiting Cost (AWC) and the Average Processing Cost (APC).

- 8-

Consistency Requirement A requirement that has not been explicitly stated so far is

that whenever a Read is processed the Mat View should be up-to-date, i.e. the effect of all

the Updates preceding the Read must be reflected in it. Relaxing this requirement, i.e.

allowing the data in the materialized view to become outdated o~ imprecise, introduces a

V!hole new dimension to the problem [SRIV 87].

4.1. Problem 1: Queueing Delays are Negligible; Algorithm At

The problem is to determine how often should a Refresh process be run, i.e. how

often should the MatView be brought up-to-date by merging the contents of the TempFile

with it. The stochastic nature of the arrivals of Reads and Updates causes some queueing

delays, which for now are considered negligible. Previous research [ADIB 80, LIND 86,

BLAI< 86, HANS 87) also ignores queueing effects.

The aim is to design the Refresh process, Ref, that minimizes the Average Query

Cost (AQC). Thus, formally

Given,

Read - Pois8on (X R).

Update - Pois8on (Xu).

Design a refresh proee88 Ref that minimizes the o6jective function,

aAPC + (1 - a)AWC.

'-0 I I I
I I I

UQ UQ RF-R UQ RF-C UQ UQ RF-R UQ UQ RF-C

UQ: Update Query RF-R: Refresh (Regular)

RF-C: Refresh (Cleanup)

Fig. 6.2 Optimal Refresh Process, Ref opt.

UQ

)I
t

The approach we take is to design the optimal refresh process, Ref, as a superimpo

sition of two processes, refresh-regular (Ref-R) and refresh-cleanup (Ref-C) Thus,

Ref = Ref-R ~ Ref-C

- 9 -

where ~ is the superimposition operator. Fig. 0.2 shows our design. This two part

design is necessitated by the consistency requirement mentioned above. Howsoever the

process Ref may be designed, unless it is identical to the process Read, it is possible for

MatView not to be up-to-date because of arrivals of Updates since the last execution of a

Ref. Whenever a Read arrives, an instance of Ref has to be generated to take care of

these residual Updates. As shown in Fig. 0.2 the Refs forcibly generated on the arrivals of

Reads are called Ref-Cs. The rest of the Refs are called Ref-Rs. Since there exists exactly

one instance of Ref-C for each instance of Read, we have,

Ref-C - Poisson (AR).

Now we are left with the problem of designing the process Ref-R to optimize the

objective function, and then design Ref by superimposing it with Ref-C (= Read). The

process that would achieve optimality could be some general process. However, it would in

general be extremely difficult to characterize it and then superimpose it on Ref-C. Thus,

we restri~t our search of the optimal Ref-R to the set of Poisson processes, because of the

useful property that the superimposition of any number of Poisson processes is itself Pois-

son.

The actual design of the process Ref-R depends on the various parameters of BaseRel

and Mat View. The parameters we choose are taken from [HANS 871, wherein he has com

pared his and [BLAI< 86)'s algorithms. This choice of parameters, shown in Table 6.2, will

enable us to compare our algorithm with theirs.

Symbol Meaning

N * or records in BaseRet

f
size or Ma~ View 38

a rrac~ion or BaseRel

T * records per disk block
CIl cost or a disk access

n==l * records inserted! deleted
by a Upda~

C~l Cost of processing an Update
using algori~hm Al

C~l Cost or processing a Read
using algorithm AI

C~l Cost or processing a ReI
using algorithm Al

Table 6.2 Datahase Parameters Used.

ConsiderFig. 0.2, where our design of the optimal Ref is shown. TempFile is merged

into MatView whenever an instance of Ref occurs, and each Update inserts/ deletes a

single record,

Also,

- 10-

E{size of TempFilel == (arrival rate of Update) -(E{interarrival time of Ref J) *1

~ E{size of TempFilel == (Au) *(A~) == ~

At C - ('Au 'Au)t
Cu ~ II Y >:;' TAl" ,1

E{# of Updates between succ Refsl

.. (arrival rate of Update)*(Elinterarrival time of Ref!)

AU
==-A,.

We assume that in the steady state the net size or MatView does not change appreci

ably over time, i.e. the rates or insertion and deletion to it are roughly the same. For

analysis purposes we hencero~h couider the size or Mat View to be a constant over time

and equal to fN records. This assumption is the same as made by [HANS 87}. Hence the

cost or processing a Read on Mat. View, i.e. C~l, is constant.

Now,

APCA1 =- C~l + C~t*(E{* of Ref arrivals between 8UCC Reads!)

+ CaU(EI* of Update arrivals between 8UCC Read8 D
A

~ APCA1 .. C~l + C~l*(.2:..)
AR

+ CaU ('Au)
AR

The final step in the solution IS to consider the expression Average Query Cost

(AQCA1)

AQCA1 =- aAPCAt + (l_a)APCAl

which has only a single independent variable, AFI and minimize it using a standard

minimization technique like calculus.

t y(n ,m ,k) is the expected number or disk accesses required to retrieve a group or k records togeth
er, from a database havig n records and m data. blocks.

4.2. Special Cases or Algorithm Al

In this section we show that our algorithm is more general than those proposed ear

lier. Specifically, we show that the algorithms proposed by [ADIB 80, LIND 86, BLAI< 86,

ROUS 86, HANS 87] are special cases or our algorithm.

Lemma 6.3 DRA i8 a 8pecial case of Al.

Proal: On making a ==1, the general cost equation above becomes,

AQCAI :=II APCAI

== C~l + (~:)-C" ~(~; ,n,.,l)

x,. _. IN XU
+ (r;) C" y(fN'T'>:;)

The Yao (unction, y(n,m,k), is n-Monotone Decrea8ing as well as m-Monotone

Decrea8ing, as mentioned in Appendix A. Hence, the above expression is minimized ror

the smallest possible value o(X RF. Now, since ReI .. Rel-R @ Ref -C,

And,

Re/-C = Read

~ XR :=ill Xp'-R + XR

Hence, AQCAI is minimized when

Xp'-R:I:II 0

~Rel 5iRead

The algorithms proposed by [ROUS 86, HANS 87] are DRAs. Thus we conclude that

they are special cases or algorithm AI.

Lemma 6.4: IRA i8 a 8pecial C08e of Al.

Proal: On making a :=II 0 the general cost equation becomes,

AQCA1:=ill AWCA1

CAl C. (IN IN Xu)
.. R + tl y 'T' Xp'

The Yao (unction is k-Monotone Increa8ing, as mentioned in Appendix A. Hence,

the a.bove expression is minimized (or the smallest possible value o(k, i.e k == 1.

Au
:==>-=1

)..,.

isRel == Update

- 12 -

The algorithms proposed by [ADIB 80, LIND 86, BLAK 86] are all IRA!. Thus we

conclude that they are special cases oC algorithms AI. The above two lemmas are

equivalent to proving the Collowing theorem and corollary.

Theorem 6.2: DRA and IRA are special ca8e8 of A1.

Corollary 6.1: When queueing dela,. are negligible,

(i) DRA i8 an optimal algorithm if onl, APC .8 con8'dered.

(ii) IRA .8 an optimal algorithm if on/, Awe i8 con8idered.

4.3. Problem 2: Queueing Delays are Significant; Algorithm A2

3 job

eluees

RQ~

UQ ~)Io-I-" -II --'111-1 -~)IoO>---')Io exi~
IiDp

RF sincle
queue

(a)

R~
~ delay ~
~RT -.

:~~~~::»~~~~~:

UQ RF-C

• Con oI..mc:iD, UQ

~ Con 01 servic:iD, RF

Cl CoR 01 semc:iD, RQ

(b)

UQ

Fig. 6.3 Queueing S,8tem Model.

i I

i I

ui.R UQ RF-C

Fig. 8.9{a) shows a queueing system that models the view maintenance mechanism.--

The characteristics oC the system are as Collows:

Arrival Di8tribution: There are three classes oC jobs, Read, Update and Ref. Their

arrivals are Markovian t with arrivals rates }..R, }..U, and }..F' respectively.

t Read and Update are given as Markovian. A:I discussed in previous sections, the requirement or
strict consistency makes the choice or Rer &I Markovian an attractive one too.

Ii

u

• 13·

Service Distribution: The service distributions are GR, Gu, and GF•

Server: There is a single server in the system.

Queue Discipline: FIFO, except Ref has higher priority than Read. This ensures that

Refs are serviced before Reads, to ensure strict consistency.

Rest of the parameters remain the same as Problem 1. Thws, formally

Solve Problem 1 taking queueing dela!ls into consideration.

The average processing cost for a query, APe, is not affected by queueing considera

tions because it depends only on the size of the database. The average response time for

queries is affected though, as shown in Fig. 6.3(6). Now,

A .. AR + AU + A,.

AR
PR~T

XU
Pu" -X

A,.
P"-T

Let gR, gu, g,. be density functions of the three service times CR, Cu, C,., respectively.

Now,

gR: P(SR -CR) =- 1

AU AU
gu: P(Su =- y(>:;' T>',. ,1)) .. 1

IN g,.: P(S,. =- yUN'T,Ie))

== P(A(t+J...) - A{t) .. Ie)
>..,.

XQ

e>:; [Xu l" =----k! X,.

Also, if g is the density function for the overall service time, C. Then,

g - EpjgJ

The average delay of a Read job, dR, is

d
R

=- >'E(B
2(I-p,.)(I-P,,-PR)

The Average Response Time of a query, AWCA2 consists of two components, the

expected service time of the query, C~2, and its average queueing delay, dR'

isaAWCA2 == dR + C~2

• 14·

The average processing cost of the query, APCA2 is the same as before because it

depends only on the database parameters and not on queueing delays. The last step in

designing the optimal refresh process is to determine the value of Ap that minimizes the

expression,

Note: Part (ii) of corollary 6.1 may not. hold any more. The intuitive reason (or this

being that the triangle-inequality property of the Yao function favors grouping Update

jobs before service because the overall service time is reduced, thus reducing queueing

delay.

5. Conclusions

In the recent past there has been increasing interest in the idea of maintaining

materialized copies of views, and use them to process view queries [ADIB 80, LIND 86,

BLAI< 86, ROSS 86, HANS 87]. Various algorithms have been proposed, and their perfor

mance analyzed. However, there does not. exist a comprehensive analytcal framework

under which the problem can be systematically studied. We present a queueing model

which faclitates both a systematic study of the problem, and provides a means to compare

various proposed algorithms. Specifically, we propose a parametrized approach in which

both the user and system viewpoints are integrated, and the setting of the parameter

decides the relative importance of each. Table S.l below compares our work with that

done in the past.

Algorithm APe Awe
Mathematical

Remarks
Model

Adiba 80 - - · heuristic
Lindaay 86 . · · It

optimizes on AWe w/o
Blakeley 86 . X · queueing considerations;

a.uthor doesn't mention

Roussopoulol 86 X · · optimizes on APC;
a.uthor doesn't mention

Hanson 87 X · · intuitive argument to
optimize on APC

model using renewal &

Srivastava 81 X X X queueing theories;
optimization based on

APC andAWC

Table 5.1 Compariaoft 01 various algorithma.

We have described one kind of mechanics for materialized view maintenance. Many

variations on the basic theme are possible. One is to use the same TempFile to store the

updates for more than one materialized view. Whenever one of the views needs to be

refreshed, the others are refreshed automatically. The advantage comes from the reduced

overhead of maintaining one TempFile instead of several. Another variation is to use idle

CPU and disk time time to refresh views so as to reduce the work when a view query

actually arrives. Such an approach is reminiscient of Dijkstra's concurrent on-the-foJ gar

bage collection [DIJK 7]. The analysis of these variations is a non-trivial task. The solu

tions presented above select the refresh process from the set of Poisson processes. Other

variations would be to consider preiodic time and periodic count policies. A comparative

study of these policies would be interesting.

Materialized views have their most potential in a distributed environment where a

copy of the view is kept at. the u.ser's site [LIND 86], or in a workstation-based database

environment where each u.ser has a workstation with a copy of the view while the main

database resides at a remote location [ROSS 86]. It has been shown that materialized

views work very well in such environments. The analytical model presented here can be

enhanced by introducing communication costs, i.e. modeling the communication channnel

an message queues as part of an overall queueing network. This can be used to analyze the

performance of materialized view maintenence algorithms in a distributed environment.

6. References

[ADIB 80] Adiba, M. and B.G. Lindsay, "Database Snapshots", Proc. of the Inti. ConC.

on VLDB, October 1980, pp86-91.

[AGRA 83] Agrawal, R. and D.J. DeWitt, "Updating Hypothetical Data Bases", Infor

mation Processing Letters 16 (April 1983), 145-146, North Holland.

[BLAK 86] Blakeley, J.A., P.Larson and F.W.Tompa, "Efficiently Updating Material-

j ized Views", Proc. of the 1986 ACM-SIGMCD Conf. on Management of

Data, Washington DC, May 1986,61-71.

[BUNE 79] Buneman, C.P. and E.K. Clemons, "Efficiently Monitoring Relational Data

bases", ACM Transactions on Database Systems 4,3 (September 1979).

[CARD 75] Cardenas, A.F., "Analysis and Performance of Inverted Database Struc

tures", Comm. of the ACM 18, 5 , May 2975, 253-263.

- 16-

[HANS 871 Hanson, Eric N. "A Performance Analysis of View Materialization Stra

tegies," Proc. of the 1987 ACM-SIGMOD IntI. Conf. on the Management of
"

Data, San Francisco, CA, May 1987.

[LIND 861 Lindsay, B.G., L.Haas, C.Mohan, H.Pirahesh, and P.Wilms, "A Snapshot

Differential Refresh Algorithm", Proc. of the 1986 ACM-SIGMOD Conf. on

the Management of Data, Washington DC, May 1986, 53-86.

[ROUS 861 Roussopoulos, N. and H.Kang, "Principles and Techniques in the Design of

ADMS+/-", Computer, December 1986.

[SRIV 87] Srivastava, J. "Precision-Time Tradeofl's: Data Management and Query

Processing in Distributed Databases", Qualifying Exam Proposal, CS Divie

sion, University of California, Berkeley, June 1987.

[STON 75] Stonebraker, M., "Implementation of Integrity Constraints and Views by

Query Modification", Proceedings of the 1975 ACM-SIGMOO International

Conference on Management of Data, San Jose, CA, June 1975.

[STON 86] Stinebraker, M., T. Sellis and E. Hanson, "An Analysis of Rule Indexing

Implementations in Data Base Systems", Proceedings of the First Annual

Conference on Expert Database Systems, Charleston SC, April 1986.

[WOOD 831 Woodfill, J. and M. Stonebraker, "An Implementation of Hypothetical Relae

tions," Proc. of the 9th VLOB Conference, Florence Italy, December 1983.

[yAO 77] Yao, S.B., "Approximating Block Accesses in Database Organizations,"

CACM 20, 4 April 1977.

- ------

.,

• ."...'1i;..'--

LA WRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

-~

r

