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1. Introduction 
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A materialized view is a stored copy of' the result of retrieving the view Crom the 

database. We consider here, views that can be constructed Crom the relational algebra 

operations select, project and join. Also aggregates such as sum or count over views are 

considered. 

Materializing a view before a query is made on it has been a recent proposal. Con

ventional systems use query modification, w here the query on a view is modified to 

operate on one or more of the base relations [STON 75]. Being derived Crom the base rela

tions, materialized views have duplicated data. Any changes in the latter have to be 

reflected in the former, and vice tler8a, to maintain consistency between them. Refreshing 

materialized views by generating periodic databa8e 8nap8hot8 has been proposed by 

[ADIB 80, LIND 86]. [BLAl< 86] has proposed the immediate refre8h policV, i.e. updating 

the copy of the view alter each transaction. [ROSS 86, HANS 87] have proposed the 

deferred refre8h po1icll in which the view is updated just before data is retrieved from it. 

[BUNE 79] presented a method for analyzing each update command before execution to 

see if it could cause a view change. If the system could not rule out the possibility, the 

view would be completely recomputed. This was done for evaluating complex trigger and 
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alerter conditions. 

Performance of view materialization algorithms can be significantly improved by 

screening of each tuple inserted into or deleted from the base relations. Ir a tuple fails the 

test then it cannot change the view, and hence does not cause a view rerresh. The screen

ing described in [BLAK 861 is done by substituting the tuple in the view predicate, which 

is then tested ror satisfiability. Carrying out this test for each tuple incurs significant run

time cost. [BUNE 19) proposes a screening test which has a compile time phase and a run

time phase. During the compilation of a transaction a check is made to see if any of the 

fields being updated are present in a view definition. If no such fields exist, the update is a 

readil,l ignorable update (RIU) with respect to the view, and cannot cause it to change. If 

the transaction is not an RIU, the individual tuples are screened further at runtime. With 

RIU transactions there is associated only a per-transaction cost, while with non-RIU ones 

the cost associated is proportional to the number or tuples involved. This is similar to the 

cost pattern of [BLAK 86]'s screening scheme. A scheme called rule indexing has been 

proposed by [STON 86]. Index intervals covered by one or more clauses of the view predi~ 

cate are locked by special markers called t-loCk6. When a tuple is inserted into the rela

tion, if an index record containing a t-Iock is disturbed, the tuple passes the screening test. 

This can produce false drops (i.e. tuples which pass the screening test but do not satisfy 

the view predicate), which are handled by substituting the tuple in the predicate. 

Research in the maintenance of materialized views has focussed on two independent 

problems. First is the problem of screening tuples, either at compil~time or at run-time, 

to decide if an update needs to be done to the view at all. Second is the problem of update 

frequency of the materialized view that maintains it up-to-date, and incurs low cost. 

[BUNE 79, BLAK 861 have focussed on the first problem while [ADIB 80, LIND 86, ROSS 

86, HANS 871 have focussed on the second. [BLAK 861 also outlines a scheme ror the 

second problem. In this paper we develop a queueing theory based analytical modeL for 

view materialization which focusses on the second problem. A class of efficient update 

algorithms are presented that are shown to be more general than those proposed earlier. 

As far as we know this is the first attempt to develop an anlytical model for this problem. 

Section 2 outlines the existing algorithms for materialized view maintenance. Section 

3 introduces a queueing theory model ror the materialized view maintenance problem and 
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discusses the criteria on which the algorithms will be evaluated. Section 4 presents our 

algorithms (or two variations of the problem and discusses their generality. Finally, Sec

tion 5 presents conclusions and suggests directions (or future research. (or view materiali

zation 

2. Analytical Modeling of View Materialization 

This section describes the mechanics of maintaining materialized views, develops a 

queueing model for it, and discusses the criteria for comparative evaluation of mainte

nance algorithms. 

2.1. Mechanics or Materialized View Maintenance 

A materialized view is a stored copy of the view which is created at the time of its 

definition. Any changes made to the base relations have to be reflected in the materialized 

view. This is done by means of a periodic maintenance process or refres4 process. The 

mechanics of materialized view maintenance can be described in terms of the files that 

exist in the system and the processes that manipulate them. 

Files: The base relations Crom which the view is derived are stored in the file 

BaseRel and the materialized view in the file MatView. If MatView is refreshed as soon as 

a change is made to BaseRel, then these are the only files required. However, deferring the 

refreshing of Mat View has advanta~es of being more efficient under certain conditions, 

[ROSS 86, HANS 87]. Thus another file, the TempFile, is required to store the changes 

between successive refreshes to the MatView. These are shown in Fig. S.9{a). 

Processes: There are three kinds of processes in the system which are of interest to 

us, as shown in Fig. S.9{a). First are Read Queries, or Reads, that are directed to the 

MatView and processed using it. Second are the Update Queries, or Updatess, that can be 

directed either to the Mat View or to the Base ReI. These are handled by making the 

appropriate changes to the BaseRel t and also recording it in the TempFile. If the Update 

is an insert (delete), a data item is added to (deleted from) the BaseRel and the change is 

t Changes to BaseRel are done anyways and not because or maintaining materialized views. 
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recorded in the TempFile. Handling Updates directed to BaseRel requires more care. 

Only some of these Updates affect Mat View and are the only ones that have to be 

accounted for. This is done by screening each Update directed at the BaseRel against a 

filter (i.e. the logical predicate defining the view), to determine if it does indeed affect the 

view [BUNE 79, BLAI< 86}. The ones that do so are recorded in the TempFile in addition 

to being added to (deleted from) the BaseRel. The third kind of processes are the 

Refreshes, or Refs, which are executed periodically and whose function is to refresh the 

MatView using the contents of TempFile and bring it up-to-date with respect to BaseRel. 

This involves inserting/ deleting all data items that have been marked for insertion/ dele

tion respectively in TempFile. A point to note is that no changes have to be made to 

BaseRel when a Ref is executed, since the former is always up-to-date. Also, every time a 

Ref is executed, it merges MatView and TempFile, emptying the latter. 

2.2. A Queueinl Model 

The operation of the materialized view maintenance mechanism is modeled as a 

queueing st/stem. The arrival of a Read or an Update, or the creation of a Ref is the 

arrival of a job for service, and the time required for its execution is the service time. 

Fig. 5.9(6) gives a pictorial representation of the model. 

Nature of the Processes: The Reads and Updates are both assumed to be stochas

tic processes having the Poisson distribution [ROSS 85}. Their arrival rates are AR and AU 

respectively. Thus, 

Read - Poi88on (AR)' 

Update - Poi88on (Au), 

Costs associated with processes: The cost associated with a process is its execu

tion time. For a fair comparison of materialized view maintenance algorithms we have to 

develop a cost model that measures precisely the e:ctra overhead that a database system 

incurs in maintaining MatView and TempFile. An example is the effort required to handle 

insertions/ deletions to BaseRel. However, this would be required even if there were no 

materialized views, and thus we do not include its cost. Thus, the cost of a process 

includes precisely the extra effort it has to do for view maintenance. There is a cost asso

ciated with screening the tuple to decide if it affects the view; and if it does, there is the 
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additional cost of inserting it in the OF. Given below are the costs associated with the 

three processes in our model. 

CR : The cost of accessing the required data from MatView, and processing it to 

answer the query. 

Cu: If the update is to MatView, the only cost is of recording it in TempFile. When 

the update is to BaseRel, it also has to be screened to see if it affects Mat View. From 

our point of view only the relevant updates [BLAK 861, i.e. the ones that affect the 

view, are of interest. Since screening is done in main memory I its cost is negligible 

and is henceforth ignored. Thus, the cost associated with a Update is that of record

ing it in TempFile regardless of whether it is directed to MatView or Base ReI. 

Cp : The cost of merging TempFile with MatView to bring the latter up-to-date. 

The work done in maintaining the files MatView and TempFile is expressly for the 

purpose of view materialization. Thus the extra cost incurred by the database system 

shold be borne by the queries made to the view. This is done by taking the total extra 

work done in a certain time period, dividing it by the number of view queries in the same 

period, and adding the result to the cost of processing each view query. Table 5.2 lists 

the various parameters of the model. 

2.3. Evaluation Criteria 

The performance of materialized view maintenance algorithms can be seen from two 

viewpoints, namely the user's and the system's. The only concern of the former is the 

minimization of the re8pon8e time ofbis query, i.e. the time that elapses between the sub

mission of a query and the return of the result. The only concern of the latter is the 

minimization of the resources spent in doing the overall job. None is concerened with the 

other's objective, and this may lead to confficting requirements for view maintenance algo

rithms. We define below two evaluation criteria, the first captures the user's viewpoint 
• 

while the second the system's. 

AWe: Average Waiting Cost, i.e. the average time elapsed between the submission of 

a query and the returning of results. 

APe: Average Processing Cost, i.e. the amount of effort spent by the system, on the 

average, for processing a query. This includes the cost of manipulating the BaseRel 

as well as the average cost of the extra work done for materialized view maintenence. 
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Symbol Meaning 

Read Read Query 

Update Update Query 

ReI Refresh Process 

PR,PU'P" 
probabilities 

of arrival 

AR,'AU,'A,. arrival rates 
'1..1=-'1..111 of processes 

GR,GU,G,. 
service distribution 

of processes 

CR,cu,C,. 
service time of 

pro<:e$Ses 

Pj=='AjE(Cj ) 
utilization of 

process j 

G==EpjGj 
overall service 

distribution 

C overall service 
time 

p=a ,LPi='AE(S) overall utilization 

Qj time average number of 
j. job3 in queue 

Q=-EQj 
time average number or 

jobs in queue 

dj 
averap queue delay 

or a j.job 

d=-Epjdj 
anrage queue delay 

or a job 

Table 5.2 Queueing Notation Used. 

A linear combination of the above, called Average Query Cost (or AQC), is a gen

eralized criteria and can be expressed as, 

AQC =- a(APC) + (l-a)AWC; a <a ~I 

a and I-a are importance attached to the user and system respectively. 

3. Materialized View Maintenance Stratesies 

4. Efficient View Maintenance 

This sections discusses the materialized view maintenance problem, keeping in mind 

both the user's and the system's viewpoints. Two vel"5ions of the problem are discussed. 

The first does not include queueing delays while the second does. Update policis are 

designed which minimize the Average Query Cost (AQC), which is a combination of the 

Average Waiting Cost (AWC) and the Average Processing Cost (APC). 
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Consistency Requirement A requirement that has not been explicitly stated so far is 

that whenever a Read is processed the Mat View should be up-to-date, i.e. the effect of all 

the Updates preceding the Read must be reflected in it. Relaxing this requirement, i.e. 

allowing the data in the materialized view to become outdated o~ imprecise, introduces a 

V!hole new dimension to the problem [SRIV 87]. 

4.1. Problem 1: Queueing Delays are Negligible; Algorithm At 

The problem is to determine how often should a Refresh process be run, i.e. how 

often should the MatView be brought up-to-date by merging the contents of the TempFile 

with it. The stochastic nature of the arrivals of Reads and Updates causes some queueing 

delays, which for now are considered negligible. Previous research [ADIB 80, LIND 86, 

BLAI< 86, HANS 87) also ignores queueing effects. 

The aim is to design the Refresh process, Ref, that minimizes the Average Query 

Cost (AQC). Thus, formally 

Given, 

Read - Pois8on (X R ). 

Update - Pois8on (Xu). 

Design a refresh proee88 Ref that minimizes the o6jective function, 

aAPC + (1 - a)AWC. 

'-0 I I I 
I I I 

UQ UQ RF-R UQ RF-C UQ UQ RF-R UQ UQ RF-C 

UQ: Update Query RF-R: Refresh (Regular) 

RF-C: Refresh (Cleanup) 

Fig. 6.2 Optimal Refresh Process, Ref opt. 

UQ 

)I 
t 

The approach we take is to design the optimal refresh process, Ref, as a superimpo

sition of two processes, refresh-regular (Ref-R) and refresh-cleanup (Ref-C) Thus, 

Ref = Ref-R ~ Ref-C 
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where ~ is the superimposition operator. Fig. 0.2 shows our design. This two part 

design is necessitated by the consistency requirement mentioned above. Howsoever the 

process Ref may be designed, unless it is identical to the process Read, it is possible for 

MatView not to be up-to-date because of arrivals of Updates since the last execution of a 

Ref. Whenever a Read arrives, an instance of Ref has to be generated to take care of 

these residual Updates. As shown in Fig. 0.2 the Refs forcibly generated on the arrivals of 

Reads are called Ref-Cs. The rest of the Refs are called Ref-Rs. Since there exists exactly 

one instance of Ref-C for each instance of Read, we have, 

Ref-C - Poisson (AR). 

Now we are left with the problem of designing the process Ref-R to optimize the 

objective function, and then design Ref by superimposing it with Ref-C (= Read). The 

process that would achieve optimality could be some general process. However, it would in 

general be extremely difficult to characterize it and then superimpose it on Ref-C. Thus, 

we restri~t our search of the optimal Ref-R to the set of Poisson processes, because of the 

useful property that the superimposition of any number of Poisson processes is itself Pois-

son. 

The actual design of the process Ref-R depends on the various parameters of BaseRel 

and Mat View. The parameters we choose are taken from [HANS 871, wherein he has com

pared his and [BLAI< 86)'s algorithms. This choice of parameters, shown in Table 6.2, will 

enable us to compare our algorithm with theirs. 

Symbol Meaning 

N * or records in BaseRet 

f 
size or Ma~ View 38 

a rrac~ion or BaseRel 

T * records per disk block 
CIl cost or a disk access 

n==l * records inserted! deleted 
by a Upda~ 

C~l Cost of processing an Update 
using algori~hm Al 

C~l Cost or processing a Read 
using algorithm AI 

C~l Cost or processing a ReI 
using algorithm Al 

Table 6.2 Datahase Parameters Used. 

ConsiderFig. 0.2, where our design of the optimal Ref is shown. TempFile is merged 

into MatView whenever an instance of Ref occurs, and each Update inserts/ deletes a 
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E{size of TempFilel == (arrival rate of Update) -(E{interarrival time of Ref J) *1 

~ E{size of TempFilel == (Au) *( A~) == ~ 

At C - ('Au 'Au )t 
Cu ~ II Y >:;' TAl" ,1 

E{# of Updates between succ Refsl 

.. (arrival rate of Update)*(Elinterarrival time of Ref!) 

AU 
==-A,. 

We assume that in the steady state the net size or MatView does not change appreci

ably over time, i.e. the rates or insertion and deletion to it are roughly the same. For 

analysis purposes we hencero~h couider the size or Mat View to be a constant over time 

and equal to fN records. This assumption is the same as made by [HANS 87}. Hence the 

cost or processing a Read on Mat. View, i.e. C~l, is constant. 

Now, 

APCA1 =- C~l + C~t*(E{* of Ref arrivals between 8UCC Reads!) 

+ CaU(EI* of Update arrivals between 8UCC Read8 D 
A 

~ APCA1 .. C~l + C~l*(.2:..) 
AR 

+ CaU ( 'Au) 
AR 

The final step in the solution IS to consider the expression Average Query Cost 

(AQCA1 ) 

AQCA1 =- aAPCAt + (l_a)APCAl 

which has only a single independent variable, AFI and minimize it using a standard 

minimization technique like calculus. 

t y(n ,m ,k) is the expected number or disk accesses required to retrieve a group or k records togeth
er, from a database havig n records and m data. blocks. 



4.2. Special Cases or Algorithm Al 

In this section we show that our algorithm is more general than those proposed ear

lier. Specifically, we show that the algorithms proposed by [ADIB 80, LIND 86, BLAI< 86, 

ROUS 86, HANS 87] are special cases or our algorithm. 

Lemma 6.3 DRA i8 a 8pecial case of Al. 

Proal: On making a ==1, the general cost equation above becomes, 

AQCAI :=II APCAI 

== C~l + (~: )-C" ~(~; ,n,.,l) 

x,. _. IN XU 
+ (r;) C" y(fN'T'>:;) 

The Yao (unction, y(n,m,k), is n-Monotone Decrea8ing as well as m-Monotone 

Decrea8ing, as mentioned in Appendix A. Hence, the above expression is minimized ror 

the smallest possible value o( X RF. Now, since ReI .. Rel-R @ Ref -C, 

And, 

Re/-C = Read 

~ XR :=ill Xp'-R + XR 

Hence, AQCAI is minimized when 

Xp'-R:I:II 0 

~Rel 5iRead 

The algorithms proposed by [ROUS 86, HANS 87] are DRAs. Thus we conclude that 

they are special cases or algorithm AI. 

Lemma 6.4: IRA i8 a 8pecial C08e of Al. 

Proal: On making a :=II 0 the general cost equation becomes, 

AQCA1:=ill AWCA1 

CAl C. (IN IN Xu) 
.. R + tl y 'T' Xp' 

The Yao (unction is k-Monotone Increa8ing, as mentioned in Appendix A. Hence, 

the a.bove expression is minimized (or the smallest possible value o( k, i.e k == 1. 

Au 
:==>-=1 

)..,. 

isRel == Update 
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The algorithms proposed by [ADIB 80, LIND 86, BLAK 86] are all IRA!. Thus we 

conclude that they are special cases oC algorithms AI. The above two lemmas are 

equivalent to proving the Collowing theorem and corollary. 

Theorem 6.2: DRA and IRA are special ca8e8 of A1. 

Corollary 6.1: When queueing dela,. are negligible, 

(i) DRA i8 an optimal algorithm if onl, APC .8 con8'dered. 

(ii) IRA .8 an optimal algorithm if on/, Awe i8 con8idered. 

4.3. Problem 2: Queueing Delays are Significant; Algorithm A2 

3 job 

eluees 

RQ~ 

UQ ~)Io-I-" -II --'111-1 -~)IoO>---')Io exi~ 
IiDp 

RF sincle 
queue 

(a) 

R~ 
~ delay ~ 
~RT -. 

:~~~~::»~~~~~: 

UQ RF-C 

• Con oI..mc:iD, UQ 

~ Con 01 servic:iD, RF 

Cl CoR 01 semc:iD, RQ 

(b) 

UQ 

Fig. 6.3 Queueing S,8tem Model. 

i I 

i I 

ui.R UQ RF-C 

Fig. 8.9{a) shows a queueing system that models the view maintenance mechanism.--

The characteristics oC the system are as Collows: 

Arrival Di8tribution: There are three classes oC jobs, Read, Update and Ref. Their 

arrivals are Markovian t with arrivals rates }..R, }..U, and }..F' respectively. 

t Read and Update are given as Markovian. A:I discussed in previous sections, the requirement or 
strict consistency makes the choice or Rer &I Markovian an attractive one too. 

Ii 
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Service Distribution: The service distributions are GR, Gu, and GF• 

Server: There is a single server in the system. 

Queue Discipline: FIFO, except Ref has higher priority than Read. This ensures that 

Refs are serviced before Reads, to ensure strict consistency. 

Rest of the parameters remain the same as Problem 1. Thws, formally 

Solve Problem 1 taking queueing dela!ls into consideration. 

The average processing cost for a query, APe, is not affected by queueing considera

tions because it depends only on the size of the database. The average response time for 

queries is affected though, as shown in Fig. 6.3(6). Now, 

A .. AR + AU + A,. 

AR 
PR~T 

XU 
Pu" -X 

A,. 
P"-T 

Let gR, gu, g,. be density functions of the three service times CR, Cu, C,., respectively. 

Now, 

gR: P(SR -CR) =- 1 

AU AU 
gu: P(Su =- y( >:;' T>',. ,1)) .. 1 

IN g,.: P(S,. =- yUN'T,Ie)) 

== P(A(t+J...) - A{t) .. Ie) 
>..,. 

XQ 

e>:; [Xu l" =----k! X,. 

Also, if g is the density function for the overall service time, C. Then, 

g - EpjgJ 

The average delay of a Read job, dR, is 

d
R 

=- >'E(B 
2( I-p,.)( I-P,,-PR) 

The Average Response Time of a query, AWCA2 consists of two components, the 

expected service time of the query, C~2, and its average queueing delay, dR' 

isaAWCA2 == dR + C~2 
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The average processing cost of the query, APCA2 is the same as before because it 

depends only on the database parameters and not on queueing delays. The last step in 

designing the optimal refresh process is to determine the value of Ap that minimizes the 

expression, 

Note: Part (ii) of corollary 6.1 may not. hold any more. The intuitive reason (or this 

being that the triangle-inequality property of the Yao function favors grouping Update 

jobs before service because the overall service time is reduced, thus reducing queueing 

delay. 

5. Conclusions 

In the recent past there has been increasing interest in the idea of maintaining 

materialized copies of views, and use them to process view queries [ADIB 80, LIND 86, 

BLAI< 86, ROSS 86, HANS 87]. Various algorithms have been proposed, and their perfor

mance analyzed. However, there does not. exist a comprehensive analytcal framework 

under which the problem can be systematically studied. We present a queueing model 

which faclitates both a systematic study of the problem, and provides a means to compare 

various proposed algorithms. Specifically, we propose a parametrized approach in which 

both the user and system viewpoints are integrated, and the setting of the parameter 

decides the relative importance of each. Table S.l below compares our work with that 

done in the past. 

Algorithm APe Awe 
Mathematical 

Remarks 
Model 

Adiba 80 - - · heuristic 
Lindaay 86 . · · It 

optimizes on AWe w/o 
Blakeley 86 . X · queueing considerations; 

a.uthor doesn't mention 

Roussopoulol 86 X · · optimizes on APC; 
a.uthor doesn't mention 

Hanson 87 X · · intuitive argument to 
optimize on APC 

model using renewal & 

Srivastava 81 X X X queueing theories; 
optimization based on 

APC andAWC 

Table 5.1 Compariaoft 01 various algorithma. 



We have described one kind of mechanics for materialized view maintenance. Many 

variations on the basic theme are possible. One is to use the same TempFile to store the 

updates for more than one materialized view. Whenever one of the views needs to be 

refreshed, the others are refreshed automatically. The advantage comes from the reduced 

overhead of maintaining one TempFile instead of several. Another variation is to use idle 

CPU and disk time time to refresh views so as to reduce the work when a view query 

actually arrives. Such an approach is reminiscient of Dijkstra's concurrent on-the-foJ gar

bage collection [DIJK 7]. The analysis of these variations is a non-trivial task. The solu

tions presented above select the refresh process from the set of Poisson processes. Other 

variations would be to consider preiodic time and periodic count policies. A comparative 

study of these policies would be interesting. 

Materialized views have their most potential in a distributed environment where a 

copy of the view is kept at. the u.ser's site [LIND 86], or in a workstation-based database 

environment where each u.ser has a workstation with a copy of the view while the main 

database resides at a remote location [ROSS 86]. It has been shown that materialized 

views work very well in such environments. The analytical model presented here can be 

enhanced by introducing communication costs, i.e. modeling the communication channnel 

an message queues as part of an overall queueing network. This can be used to analyze the 

performance of materialized view maintenence algorithms in a distributed environment. 
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