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ABSTRACT 

To obtain good representation in the critical region, a semi-theoretical 
correction is added to a conventional expression (e.g. van Laar or NRTL) 
for the excess Gibbs energy of a binary or ternary system. This correction is 
an exponential function of a carefully defined distance from the critical 
point; it is apprecia~le in the critical region but not elsewhere. In the 
correction function, the pre-exponential factor is determined from stability 
considerations. In the exponential argument, two parameters are determined 
from theoretical scaling laws. While the coordinates of the critical point 
must be known (or estimated), no phase-equilibrium data in the critical 
region are required to determine parameters. The semi-classical method 
presented here provides an excellent continuous approximation for phase 
equilibria close to and remote from critical conditions. Further, the method 
allows simultaneous representation of VLE and LLE including the critical 
region. 
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To be submitted to AIChE Journal. 



- 2 -

INTRODUCTION 

Liquid-liquid extraction has found extensive applications in the pharmaceutical, fine
chemical and petrochemical industries. While industrial processes have become more 
sophisticated during the last 20 years, there has been no significant change in the 
molecular-thennodynamic models used to describe liquid-liquid equilibria for nonelectro
lytes. 

For nonelectrolyte .liquid mixtures, conventional models often provide a good 
representation of experimental data except in the critical region, where there is much need 
for improvement. The so-called "classical" treatments typically overpredict the two-phase 
region of partially miscible mixtures. The unusual behavior of a fluid mixture near a critical 
point is now well understood, and a thennodynamic treatment of critical points is now 
available (Sengers et aI., 1978); in our work here we have incorporated into a classical 
model some of the features observed in the critical region. We propose some modifications 
to conventional expressions for the excess Gibps energy; these modifications are guided by 
the modem theory of critical phenomena but in essence, they· remain classical. Our 
modified expressions are here called semi-classical. 

In the first part of this paper we consider the effect of temperature on those binary 
liquid mixtures which exhibit an upper consolute point. In the second part we consider 
isothennal ternary liquid mixtures having a plait point. 

The extent to which the miscibility gap is overpredicted depends strongly on the kind 
of data used (VLE or LLE or both) to detennine the parameters of a given model. 

For engineering work, it is often desirable to have a single model that can represent 
adequately both vapor-liquid and liquid-liquid equilibria. However, when parameters 
obtained from VLE data are used to predict LLE, the prediction is almost always very poor 
in the critical region. In the third part of this paper we suggest a procedure toward better 
simultaneous representation of ternary VLE and LLE. 

PART I - BINARY LIQUID-LIQUID EQUILIBRIA 

We consider first a simple binary liquid mixture whose molar excess Gibbs energy gE 
is given by a two-suffix Margules expansion: 

(I) 

Equation (1) gives the molar excess Gibbs energy as a quadratic function of mole frac
tion x. Figure 1 shows a typical temperature-composition diagram obtained from Equation 
(1) when (positive, temperature-independent) binary constant A 12 is detennined from experi
mental data remote from critical conditions. The calculated critical temperature Tc is too 
large. . 

Classical models for the excess Gibbs energy not only overpredict the coexistence 
region; in addition, such models give a coexistence curve which, near Tc ' is quadratic in 
composition, in conflict with experimental data and the modem theory of critical 
phenomena. Near the upper consolute temperature, the coexistence curve is much flatter 
than that predicted by Equation (1). 

.. 
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Classical models are not appropriate near a critical point because they fail to take 
fluctuations into account. When a critical point is approached, the correlation length rises 
rapidly, producing large fluctuations of the order parameter (Rowlinson et al., 1982). For a 
pure fluid, the order parameter is the difference between liquid and vapor densities. The 
fluctuations take the form of drops of liquid interdispersed with bubbles of gas, and there 
are drops and bubbles of many sizes (Wilson, 1982). For a binary liquid mixture, the order 
parameter is the difference in composition between coexisting phases; fluctuations are drops 
of phase (') traveling through phase (") and vice versa. Near a critical point, the properties 
of a liquid mixture are dominated by the long-range correlation rather than by molecular 
details, and therefore all liquid mixtures exhibit similar behavior very close to critical con
ditions. A theory that describes a mixture near its critical point must take into account the 
effect of fluctuations. 

Critical points are properly described in terms of critical exponents. As discussed, for 
example, by Greer and Moldover (1981), as the consolute point of a binary mixture is 
approached, the shape of the coexistence curve is given by: 

I x' 1 - x" 1 I = H(1) t f3 + ... (2a) 

x' + x" 
1 1 = xl c +H(2)t l - a + ... 

2 
(2b) 

where t=(T-Tc)/Tc and where H(1) and H(2) are mixture-dependent amplitudes. Here Xl c is 
the mole fraction of component 1 at the critical point. 

The difference I x' -x" I is the order parameter. For an upper consolute point, it is so 
defined that it is zero in the high-temperatur.e phase and non zero in the low-temperature 
phase. The observed critical exponent f3 is approximately 0.35, regardless of the system; a 
classical treatment predicts a value of 1/2. 

The variable (x'+x")/2 is the diameter of the coexistence curve. Critical exponent a 
is the same as that of the divergence of the specific heat at constant volume for a pure fluid. 
The observed value is approximately 0.12. If critical exponent a were zero, we would 
recover the familiar "law of rectilinear diameter". Since a is small compared to unity, it is 
difficult to verify Equation (2b) experimentally. Further, Scott (1978) has shown that if a 
non-symmetric composition variable is used, the observed exponent for the diameter tends 
to 2/3, rather than (1- a). It has often been suggested that volume fractions, rather than 
mole fractions should be used because coexistence curves for binary mixtures are then more 
nearly symmetric. Unfortunately, this choice of variables does not necessarily guarantee 
that the true (I-a) = 0.88 will be observed; for the system 3-methyl pentane/nitroethane, 
for example, Stein et at. (1973) obtained (I-a) = 0.62 from the precise measurements of 
Wims et at. (1969), using volume fractions. In this regard, complete agreement between 
theory and experiment has not been achieved. 

Equations (2a) and (2b) can only describe the asymptotic behavior of the coexistence 
curve as the consolute point is approached; they only hold in its immediate vicinity. The 
region of validity depends on the system and on the choice of composition variable (Greer 
et aI., 19~n, and Scott, 1978). 

A simple way for introducing fluctuations in a conventional model for the excess 
Gibbs energy is through composition averages. The instantaneous mole fraction x is related 
to the time-average mole fraction x through 

Xi = Xi + OXi (3) 
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where 8x is a fluctuation. To take into account the effect of fluctuations on gE , we must 
rewrite Equation (1): 

(4) 

where the bars denote time averages. We now propose a reasonable but essentially empiri
cal expression for the fluctuation term. We restrict attention to the coexistence curve, i.e. to 
temperatures below Tc and to compositions at saturation. 

The fluctuation term must satisfy two boundary conditions: first, fluctuations are 
significant in the critical region, and second, they are negligible remote from the critical 
region. We propose the "semi-classical" expression: 

(5) 

where binary constant A 12 is obtained from experimental data remote from critical condi
tions; Tr is the reduced temperature, T fTc ; K, a and b are parameters which, as shown 
later, are found from purely thermodynamic considerations. LLE data in the critical region 
are not used to determine these parameters. However, Tc must be known. 

At the critical temperature, Equation (5) reduces to 

(6) 

As we move away from the critical temperature, the distance (l-Tr ) increases; since parrun
eter a is negative and parameter b is positive, we recover the original equation (fluctuations 
disappear): 

(7) 

We obtain parameter K from thermodynamic criteria for incipient inmiscibility at the 
critical point. In a binary mixture these criteria are: 

(a2
!1g ) = 0 ax2 c 

(a
3
!1g ) = 0 ax3 c 

(8a) 

(8b) 

where subscript c refers to critical conditions. The molar Gibbs energy of mixing !1g is 
given by the sum of the excess Gibbs energy of mixing and the ideal Gibbs energy of mix
ing: 

Substitution of Equation (5) into Equation (8a) gives 

2RTc 
K=---l 

A12 
(9) 

When K is calculated from Equation (9), the temperature-compOSItiOn curve goes 
through the critical point, regardless of parameters a and b. However, the curvature of that 
curve depends on parameters a and b. We return to these parameters presently. but we first 
consider a model for gE somewhat more realistic than the two-suffix Margules equation. 

.. 
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As shown in Figure (1), the two-suffix Margules equation leads to a coexistence 
diagram which is symmetric in mole fraction. Real systems seldom behave this way. To 
correct approximately for asymmetry, we use the van Laar equation 

gE = Adxlql + x2q2)q,1q,2 

where the effective volume fraction of component i is defined as 

(10) 

(11) 

Here qj is the cross-section of component i. Binary parameters A 12q I and A 12q2 are found 
from experimental data remote from critical conditions. To take into account the effect of 
the critical region, we write as before 

(12) 

where gE co is now given by Equation (10) (subscript co denotes "conventional"). Using sta
bility criteria as before, parameter K is now given by 

(13) 

where subscript c refers to the critical state. To find K, we need to know the coordinates of 
the critical point, Tc- and Xc- (For a two-suffix Margules equation ql=q2 and x('=1I2.) For 
the more realistic case where ql~q2 ' xlc is given by 

(14) 

Note that Xc is not affected by our correction to the conventional van Laar equation. 

Parameters a and b are determined from critical exponents a and f3 . In Equation (12). 
parameters a and b are adjusted such that Equations (2a) and (2b) hold over a reasonable 
range of temperatures. We say "reasonable" because a critical exponent, as pointed out by 
Scon (l97~). represents the limiting behavior as T approaches Tc- . Using Equation (12), we 
calculate the coexisting compositions cp' and cp" using the known value of K and using first 
approximations for a and b. Our experience indicates that b is always very close to 0.36. 

We then plot In(cp'-q,'') and In(q,'+q,"-2CPc) vs. In(l) in the region 10-2 > t > 10-6 , and 
obtain the average slopes ( f3 and (I-a), respectively) by numerical techniques. The pro
cedure is repeated, using new values of a and b, until the calculated slopes agree with the 
accepted values. 

We recognize that, because our semi-classical method (Equation 12) is analytic, at 
exactly T=Tc critical exponent f3 is erroneously given by the classical value. However. by 
fixing a and b as indicated above, we can obtain excellent agreement with experimental 

liquid-liquid equilibrium data in the critical region, including very small values of t (:= 10-6
). 
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Figure 2 shows typical results. The calculated coexistence curve was obtained using 
Equation (12) and experimental data obtained remote from critical conditions. The data 
shown in Figure 2 represent sonie of the most precise measurements available near the con
solute point of a binary mixture (Wims et aI., 1969). Parameter K was obtained from Equa
tion (13). Parameters a and b were found as shown in Figure 3, where the slopes of the 
lines are 13=0.34 and (l-a)=0.72. While Equation (12) fails very close to Tc, it provides 
good results for the practical region of interest in engineering calculations without requiring 
new adjustable parameters from binary data. When Tc is known and LLE data are available 
at conditions remote from critical, parameters K, a and b are found entirely from theoreti-
cal criteria. . 

Figure 4 shows the calculated coexistence curve for another binary system obtained 
with Equation (12). In Figures 2 and 4, we used only experimental data remote from the 
critical point and the coordinates of the critical point. Appendix I gives parameters for these 
examples. 

We now turn attention to the magnitude of constant K. When using the van Laar equa
tion. its value is approximately 0.4, providing a correction of 40% to that conventional 
model at the critical poi~t. The range of temperatures where the correction has a noticeable 
effect is probably much larger than the region where fluctuations are significant. This is not 
surprising, since the van Laar model with temperature-independent parameters cannot 
represent adequately the coexistence curve of a binary mixture, even for a temperature 
range well removed from critical. 

To include a reasonable temperature effect on binary gE co parameters, we consider the 
NRTL equation (Prausnitz et al., 1986) which has a moderate built-in temperature depen
dence. However, this built-in temperature dependence is also insufficient. We obtain consid
erable improvement when we allow the NRTL parameters to vary linearly with temperature. 
as Sorensen et al. (1979) have suggested. In Figure 5, the left curve was calculated with the 
NRTL equation and parameters having a simple linear temperature depeIidence . However, 
that moderate temperature dependence is not useful for the critical region. To describe the 
coexistence curve in the critical region, we require a strong temperature dependence which 
decays rapidly as the reduced temperature falls. Equation (12) supplies that desired tempera
ture dependence without requiring LLE data in the critical region. The coordinates of the 
critical point must be known, but parameters K, a and b are found from theoretical con
siderations. 

Unlike the van Laar equation, when the NRTL model is used in Equation (12), the cal
culated critical composition is slightly affected by our modification. The magnitude of K is 
now around 0.07, giving only a 7% correction to the conventional equation. The curve 
shown on the right of Figure 5 was calculated with the modified NRTL equation and param
eters linearly dependent on temperature. 

PART II - TERNARY LIQUID-LIQUID EQUILIBRIA 

For engineering applications, ternary liquid-liquid equilibria are more interesting than 
binary equilibria. When isothermal ternary liquid-liquid equilibria are calculated for a plait-
point system using conventional models for gE, the predicted two-phase region is too large. 
The plait point of a ternary mixture is analogous to the consolute point of a binary mixture. 
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In our discussion on binary mixtures with an upper consolute point, we proposed a 

correction to the conventional gE ; that correction depends on D, a dimensionless "dis
tance" from the critical point: 

(15) 

For isothermal ternary systems, we propose a distance that can be best understood 
using a geometric representation of the Gibbs energy surface Ag(x2,X3) at constant tempera
ture and pressure. Figure 6 shows this surface for a ternary system that exhibits a plait 
point. One condition for the stability of the system is the convexity of the energy surface 
(Prigogine et aI., 1954, Reid et aI., 1974). When a fold appears in the surface, convexity is 
lost and the system splits into two phases. The boundary which separates that part of the 
surface which is convex-convex from that which is convex-concave is called spinodal (Pri
gogine et aI., 1954); it is defined by 

dAg dAg _ ( d
2
Ag )2 = 0 (16) 

dX2 dX3 dX2dX3 

The spinodal indicates the appearance of a fold in the Ag surface. 

For a ternary two-phase mixture, the conditions of equilibrium are 

i = 1,2 and 3 (17) 

where (') and (") denote the coexisting phases. It can be shown (Prigogine et aI., 1954) that 
at the two points representing coexisting phases in Figure 6, the tangent planes coincide; 
therefore Equations 17 are equivalent to: 

(dAg), = ( dAg)" (I8b) 
dX3 dX3 

Ag' - x/(dAg), _ X3,(dAg), = Ag" _ X'l"(dAg)1 _ x/,(dAg)", (I8c) 
- dX2 dX3 - dX2 dX3 

We add Equations (l8a) and (I8b) to obtain a definition for D. The proposed dimen
sionless distance for a ternary mixture is : 

(19) 

where the meaning of subscripts co and c will become clear as we explain the calculation 
procedure. Distance D vanishes at the plait point and increases smoothly as we move away 
from it. 

To calculate the ternary LLE diagram, we' first choose a conventional model for gE 
that is adequate for representing the excess Gibbs energy of a ternary mixture at conditions 
well removed from critical. In the examples that follow we use the NRTL equation, but 
other models could also be used. Consistent with our proposal for binary mixtures, we now 
suggest 
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(20) 

where gE eo is the conventional NRTL model, using parameters obtained from experimental 
data at conditions remote from critical. Distance D is given by Equation (19). Parameter K 
is found from incipient inmiscibility conditions. Parameters a and b are found from adjust
ing the curvature of the binodal curve (near the plait point) to the appropriate critical 
exponents, as discussed below. 

At the plait point, D =0 , and Equation (20) becomes: 

gEe = gEeo (1 + K) 

Stability criteria yield a value of K that forces the binodal curve to go through the plait 
point. For a ternary mixture these criteria are (Reid et aI., 1974) : 

d2~g d2~g 

dX? dX2dX3 
~= d2~g d2~g =0 (21a) 

dX2dX3 dxl 

a~ ~ 
aX2 ax) 

c;= a2~g a2~g =0 (21b) 

aX2dX3 dX2dX3 

Solution of Equations (21) gives the coordinates of the plait point; note that these coordi
nates depend not only on K, but also on the excess Gibbs energy parameters. The calculated 
plait-point coordinates are compared with those obtained experimentally or by empirical 
estimation procedures (see Appendix II), and the difference between both sets of coordi
nates is minimized. 

The procedure we propose is composed of two steps. The first step is the calculation 
of the equilibrium compositions, using the conventional NRTL model with its standard 
parameters (determined from data remote from the plait point). To calculate coexisting 
equilibrium compositions, Equations (17) were satisfied; therefore a numerical value is 
available for the derivatives appearing in Equations (18). These values correspond to the 
conventional model. It is precisely these values that we use in Equation (19) where, as else
where. subscript co stands for "conventional". 

In a ternary system, we have three equilibrium equations (17) and four unknowns: two 
mole fractions in each phase. To equate the number of unknowns and equations, a material 
balance is introduced to perfonn an isothennal flash calculation (2). Consider one mole of 
mixture splitting into two phases (') and ("). We have three material balances: 

L'+L"=l 

(22) 

where x2 and x3 are overall mole fractions, and L' and L" are respectively the nwnber of 
moles in phases (') and ("). The number of unknowns and equations is equal to six: four 
mole fractions. L' and L". The overall composition is fixed externally each time a new set 
of equilibrium compositions is calculated: by setting this composition equal to that of the 

.. 

.. 
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observed plait point, and using the conventional model, we calculate in Equation (19) those 
derivatives with subscript c. These calculations provide a numerical value for the distance 
function D. 

The second step in our procedure is to solve the isothennal flash problem again for the 
same overall composition, but this time using Equation (20) to obtain the desired set of 
equilibrium compositions. To use Equation (20), we require parameters a and b. We obtain 
these parameters from critical exponents. 

Widom (1966) derives an expression for order parameter I in a ternary mixture. As the 
plait point of a ternary, mixture is approached 

I = d{3I(l-a) (23) 

Order parameter I is the length of a tie line and d represents the orthogonal distance from 
this tie line to the plait point, as shown in Figure 7. The exponent in Equation (23) is 
obtained through a renonnalization of exponents ( 13 and a are the same as those for binary 
systems ). The observed value of f3/(l-a) is approximately 0.38 (Zollweg, 1971). A classi
cal treatment predicts 13=112 and a=O. Classically, therefore, f3/(l-a)=1I2. 

Disagreement between classical theory and experiment is not as pronounced near a ter
nary plait point as it is near a binary consolute point (where the observed exponent is about 
0.34 and the classical value is 1/2 ). Variables I and d are illustrated in Figure 7. Unfor
tunately , there is a substantial lack of data for ternary mixtures in the vicinity of the plait 
point. To the best of our knowledge, the exponent in Equation (23) has been measured in 
only a few mixtures (Zollweg, 1971, van Dael et aI., 1982). 

Figure 8 illustrates our proposed method for calculating ternary liquid-liquid equili
bria. The "conventional" results as well as the final equilibrium compositions are shown for 
a hypothetical ternary system showing a plait point. 

Figure 9 shows a composition diagram for the system benzene/acetonitrile/ cyclohex
ane. The points represent data by Nagata et al. (1983): the left curve was calculated with 
the conventional NRTL model and parameters from LLE data obtained remote from critical 
conditions. The two-phase region is overpredicted, but to a somewhat lesser extent than it 
was in binary mixtures (e.g. Figure 5). The right curve was calculated with the modified 
NRTL equation and parameters from LLE data remote from the plait point. 

When the "non-randomness" constants of the conventional NRTL equation are fixed. 
the six remaining binary parameters for a ternary mixture must be detennined from experi
mental data (if the non-randomness parameters are not fixed, then nine parameters must be 
detennined). On the other hand, constant K appearing in Equation (21) has to be calculated 
from the observed or estimated position of the plait point. In general, if NRTL parameters 
and constant K are detennined independently. the coordinates of the plait point are close to, 
but not equal to those estimated. Rather than to perfonn these data-reduction calculations 
one after the other, we have found that simultaneous fitting of the NRTL parameters and 
constant K yields better results. In this calculation we minimize the difference between cal
culated and experimental equilibrium compositions. and simultaneously we satisfy Equa
tions (21). NRTL parameters are not significantly altered by this procedure, but a small 
change in these parameters can improye the calculated coordinates of the plait point. 

To use Equation (20), we require the observed or estimated plait point. An experi
mental value is seldom available, but often it can be found using empirical methods sum
marized in Appendix II. 
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Our experience indicates that in Equation (20), exponent b is always close to unity. A 
good starting value of b is 0.85. Parameter a is negative. Both parameters are adjusted to 
obtain the correct curvature of the binodal in the vicinity of the plait point. The procedure 
we follow to find these parameters is the same as that for binary mixtures. The only 
difference is that now we adjust a and b until a plot of In(l) vs. In(d) gives the desired 
slope = 0.38. We emphasize once again that determination of K, a and b does not require 
LLE data in the critical region, but only an estimate of the plait-point coordinates. 

As shown in Figure 10 for the system acetonitrile!benzene/cyclohexane, the curvature 
near the plait point is essentially correct. It is not perfectly correct because very close to the 
plait point, our semi-classical equations give the erroneous classical result. 

The example shown in Figure 10 is based on conventional NRTL model parameters 
obtained from LLE data remote from the plait point. 

While the conventional gE models overpredict the two-phase region, this overpredic
tion is sometimes masked by simultaneously fitting data in the critical region and data 
remote from the critical region. In some cases the overall representation of the equilibrium 
compositions is then fairly good but, in general, a moderately good representation of the 
critical region is obtained only at the expense of unsatisfactory representation of the region 
remote from critical. In any event, if only data remote from the plait point are used to deter
mine the parameters of the conventional NRTL expression (when K is set equal to zero in 
Equation (20», the coexistence curve is always overpredicted. Figure 11 shows illustrative 
results. 

While it is important to calculate correctly the size o~ the two-phase region, in a ter
nary diagram a second, and equally important, requirement is correct calculation of the 
slopes of the tie lines. Extraction processes are usually designed to operate well below the 
plait point of the mixture. Accurate tie lines for this region can be obtained from a conven-

tional gE model provided that the fit is based only on data from this region; if critical data 
are also used in data reduction, these tie lines can be adversely affected. 

PART III - SIMULTANEOUS REPRESENTATION OF VAPOR-LIQUID AND 
LIQUID-LIQUID EQUILIBRIA 

In all previous examples, only LLE experimental data were used to obtain the parame
ters appearing in the excess Gibbs energy model. A more conventional procedure is to use 
LLE data only for the partially miscible binary and to use VLE data for the two completely 
miscible pairs. When that procedure is used to predict ternary LLE, the miscibility gap is 
overpredicted to an extent larger than that when parameters are obtained from ternary LLE 
(Fabrics et aI., 1977, De Frc et aI., 1976). Poor agreement with experiment follows. in part, 
from fluctuations in the critical region, and from a lack of three-body terms in conventional 
Gibbs energy models. 

Calculated ternary LLE diagrams are very sensitive to the method used to determine 
the conventional excess-Gibbs-energy parameters from VLE data. When the regression of 
experimental binary VLE data uses a method that takes into account the experimental error 
(e.g. the maximum likelihood method), many sets of parameters are obtained that represent 
the data equally well. As long as the parameters lie inside a certain conJidence ellipse, any 
one set is as good as any other for the representation of binary VLE. However, the choice 

.. 
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of binary parameters has important consequences on the calculation of liquid-liquid equili
bria (Novak et aI., 1987). 

As discussed by Anderson (1968), when ternary. LLE data are available, it is advanta
geous to fit LLE and VLE experimental data simultaneously. However, when using a con-

ventional expression for gE, simultaneous fitting does not guarantee a correct description of 
the miscibility curve. Figure 12 shows typical results for the ternary system N
heptane!benzene/acetonitrile. In this example, the regression of the three sets of experimen
tal data was performed simultaneously (only two LLE tie lines were used); nevertheless, the 
calculated two-phase region is too large. How large it is depends on the weight assigned to 
each experimental point but, in any event, a large correction is necessary to obtain a good 
fit of the entire two~phase region. 

Much better results are obtained using Equation (20). To use that equation, we proceed 
as follows. We begin by estimating the position of the plait point (Appendix II). Second, 
binary VLE experimental data for the miscible pairs and a few tie lines (remote from the 
plait point) are regressed along with the critical coordinates to obtain conventional NRTL 
parameters and constant K. To guarantee adequate representation of the binary systems, 
conventional NRTL parameters are restricted to lie within the correspondent binary 
confidence ellipses. The objective functions are the difference between the experimental 
and calculated eqUilibrium compositions and the conditions of incipient inmiscibility at the 
critical point (Equations (21». Finally, parameters a and b in the correction term can be 
determined by the method described earlier. However, in this case it is advisable to use all 
LLE data to determine appropriate values for a and b . Since the correction can sometimes 
be significant (up to 20%), it not only affects the region in the immediate vicinity of the 
plait point but may extend well outside that region. One must therefore verify that agree
ment between experimental data and calculations is also good at conditions removed from 
critical. 

Figure 12 shows results for the system n-heptane!benzene/acetonitrile; Figures 13 and 
14 s~ow the corresponding binary VLE for the two miscible pairs. 

Finally. in Table I we show experimental and calculated ternary VLE for the same 
system. Throughout this work we have restricted our attention to compositions along the 
coexistence curve. While our VLE results are not conclusive, they seem to indicate that the 
modification proposed does not affect significantly the prediction of ternary VLE. When the 
correction factor (last column in Table I) is close to unity, the results obtained with the 
modified model are essentially equal to those obtained with the conventional model. When 
the correction becomes important. the calculated pressures obtained with the conventional 
model are somewhat closer to the experimental values than the ones obtained with the 
modified model. The vapor phase compositions, however. are somewhat closer to the exper
imental data when calculated with the modified model. Further. in this example the correc
tion to the conventional Gibbs energy model is quite large. The magnitude of the correction 
(constant K) determines the extent to which calculated ternary VLE are affected by the pro
posed modiJication. 

Our limited experience indicates that while a critical-region correction has a profound 
etfect on ternary LLE. its effect on ternary VLE is much smaller. 
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Table I Comparison of Calculated with Experimental Total 
Pressures and Vapor Composition for the System 
n-Heptane(1)/Benzene(2)/Acetonitrile(3) at 45 C. 

P (bars) xI x2 YI Y2 gEl gE co 

0.316 0.1055 0.8648 0.0760 0.8370 
0.302 0.0677 0.8453 
0.301 0.0675 0.8479 0.974 

0.373 0.0130 0.5137 0.0260 0.5050 
0.362 0.0262 0.5213 
0.362 0.0261 0.5214 0.998 

0.371 0.1725 0.6930 0.1280 0.5860 
0.345 0.1079 0.5884 
0.338 0.1078 0.6010 0.943 

0.422 0.5162 0.1880 0.2750 0.1450 
0.436 0.2453 0.1180 
0.409 0.2551 0.1264 0.926 

0.422 0.3896 0.2314 0.2600 0.1790 
0.419 0.2459 0.1563 
,0.395 0.2480 0.1665 0.911 

0.423 0.3595 0.2123 0.2640 0.1680 
0.418 0.2590 0.1466 
0.396 0.2575 0.1552 0.914 

Ex stands for experimental, Co stands for conventional NRTL model, and M stands 

for modified NRTL model.The ratio gEl gE co represents the correction factor to the 

conventional model, gE co. 

CONCLUSIONS 

In the last decade much progress has been achieved in understanding critical 
phenomena. Various theoretical equations have been proposed that represent accurately the 
thennodynamic properties of tluids and tluid mixtures near their critical points. However, 
these equations are not useful for conditions well removed from critical. 

In this work we have proposed a semi-classical modification to conventional excess
Gibbs-energy models which allows simultaneous representation of coexistence curves at 
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conditions both near and well removed from critical. The modifications we propose are 
classical in nature (and therefore theoretically incorrect very near the critical point); 
nevertheless, they provide an accurate description of coexistence curves in the. critical 
region of binary and ternary liquid mixtures. 

Finally, we have presented a procedure for calculating the excess Gibbs energy of ter
nary systems that pennits simultaneous representation of VLE and LLE data, including the 
critical region. 
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APPENDIX - I Methods to estimate the plait point of a ternary mixture 

The coordinates of a ternary system's plait point can be estimated by a variety of 
methods. Here we describe briefly two of these. For infonnation concerning other methods, 
see text by Treybal [19]. 

Treybal's method [19,20]. consists of. plotting on log-log coordinates the ratios 
x3\/XII vs. X32/x22 where, following the author's notation, Xij denotes the mol fraction of com
ponent ; in the j phase, and components 1 and 2 represent the partially miscible pair. This 
plot should give a straight line. 

On the same scale, solubility data are plotted in the fonn X31x\ vs. x3/x2 • A solubility 
curve is then obtained. The straight line described in the previous paragraph intersects the 
solubility curve at the plait point; by extrapolating both plots, we can estimate the ratios 
(X3/X\)c and (X3/X2)c and obtain the position of the plait point. Figure A-I illustrates the 
method. 
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Figure A-I 

Fleming et al. [21] propose a method which takes into account non-classical behavior. 
Using the appropriate critical exponents, the authors derive a function·for the mass fraction 
of a given phase along a path of constant concentration ratio of two of the components. 
Such a path is shown in Figure A-2, where the ratio of component I to component 3 is held 
fixed. 

Figure A-2 
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Since the derivation of this function is long, we only give here its final form and refer 
the reader to the original paper. The mass fraction F of one of the coexisting phases is 
given by 

This expression contains three adjustable parameters, Co, C" and 1..; C denotes the con
centration of one of the components. Function F is calculated along a path of constant con
centration ratio of two of the components; fixing this ratio and the concentration C of one 
component, determines the overall composition. co is the concentration at which a phase 

disappears, and 1 CO-C" 1 represents the "closeness" of a certain path to the plait point. Thus 
the problem is that of finding the path (ratio of compositions) that minimizes the difference 

1 co_~ I. Using this criterion of minimization, tie line data are fitted to find that ratio and 

the parameters appearing in the equation for F. Following this procedure, co will be the 
concentration of a given component at the plait point; from the path's ratio, the other two 
concentrations are calculated . 
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APPENDIX - II Parameters used for calculations 

In this Appendix we give the parameters for several examples, including the ones 
shown in this paper. We use the following notation: 

(VL) van Laar equation. Parameter A 12ql is denoted by A12 and parameter A 12q2 

is denoted by A21 • 

(NRTL-L TO) NRTL equation with parameters linearly dependent on temperature. (This 
equation is only used for binary systems.) The g;) parameters are thus 
replaced by g;) = A;JT + 0;). Parameters A;). 0;), and a appear in Table A-I. 
(Since a;j=aj; we omit the subscript.) 

(NRTL) NRTL equation with conventional NRTL parameters. This model is used 
for ternary LLE systems (and the corresponding binary and ternary VLE 
systems). When conventional NRTL parameters are obtained from LLE 
data remote from the critical region ·the superscript r is used (NRTL r). 

When NRTL parameters are determined fromLLE data remote and near 
the critical region we use superscript rc (NRTL rc). Finally. for NRTL 
parameters Obtained from binary VLE data and ternary LLE data (remote 
from the plait point), we use superscript VLE (NRTL VLE). 

For the binary systems, we give the consolute temperature Tc and the critical composi
tion Xlc' For the ternary systems, we give the plait point coordinates Xlc. X2c. and X3c' 

Parameters for the binary systems are given in Table A-I, and parameters for the ternary 
systems are given in Table A-2. 

Table A-I Parameters for some binary systems 

System IEquation AI2 A21 0 12 0 21 a K a b Tc Xlc 

I) N ilroelhane VL 7973.00 17900.00 - - - p.373 1-19.0 p.36 ~99.60 0.497 
2) 3-Methylpentane 

1) Perftuoro methyl VL 9085.00 ~096.00 - - - p.167 1-12.3 p.38 ~62.07 0.300 
cyclohexane 

2) Toluene 

1) Hexane VL 5000.00 ~036.90 - - - p.1l8 -8.3 P·35 ~93.17 P·570 
~) Nitrobenzene 

1) Carbon disulfide NRTL -3.60 -3.12 2004.7 865.9 ~.2 0.072 1-20.0 P·36 ~02.95 P·722 
~) Acetic anhydride LTD 

I) Aniline NRTL 4.80 -8.38 1-1000.9 3074.8 Hl.2 0.075 1-16.0 P.36 ~39.16 P·586 
~) Hexane LTD 

o 
~) 

'v 
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Table A-2 Parameters for some ternary systems 

System Equation j j gij gji (Xij K a b X!c X2c 

(1) Acetonitrile 1 2 1388.5 -305.9 -0.2 
(2) Benzene NRTL r 1 3 467.3 676.3 -0.2 0.040 -6.0 0.84 0.433 0.202 
(3) Cyclohexane 2 3 -168.8 1051.7 -0.2 
(T = 298.15 K) 

(1) I-Hexene 1 2 87.5 246.2 -0.2 
(2) Benzene NRTL rc 1 3 2233.0 529.5 -0.2 0.0 
(3) Sulpholane 2 3 82.5 457.8 -0.2 
(T = 348.15 K) 

(1) I-Hexene 1 2 -74.4 -45.8 -0.2 
(2) Benzene NRTL r 1 3 1227.3 468.7 -0.2 0.091 -1.55 0.70 0.295 0.450 
(3) Sulpholane 2 3 504.7 -271.2 -0.2 
(T = 348.15 K) . 

(1) n-Heptane 1 2 -308.2 536.3 -0.3 
(2) Benzene NRTL VLE 1 3 415.3 780.9 -0.2 0.227 -0.54 0.84 0.317 0.186 
(3) Acetonitrile 2 3 257.8 83.3 -0.3 
(T = 318.15 K ) 
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FIGURE 1 - Typical coexistence curve for a binary 
mixture showing an upper consolute point. 
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o Data of Wims et al. (1968) 

• Consolute point 

- Modified van Laar equation 

a = -19.0 
b = 0.36 

~T . 0.2 K 

, 

C\1~ ________ ~ __________ ~ ________ ~ ________ -, 

0.1 0.3 0.5 0.7 

Mole fraction of nitroethane 

FIGURE 2 - Coexistence curve for 
the system nitroethane / 3-me
thylpentane. Note the expanded 
temperature scale. 
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- Modified van Laar equation 

slope = 0.34 

slope = 0.72 

-12.0 -10.0 -8.0 

log(l - T/Tc) 

FIGURE 3 - Calculation of parameters 
a and b for the system nitroethane I 
3-methyl pentane. 
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• Data of Hildebrand (1949) 
o Consolute point 

Modified van Laar equation 

a = -12.3 
b = 0.38 

0.2 0.4 0.6 

Mole fraction of (1) 
0.8 

FIGURE 4 - Coexistence curve for the 
systemlerfluoro methyl cyclohex
ane (1) toluene (2).Parameters 
a and b are obtained from universal 
critical exponents. 
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• Data of Jones (1928) 
o Consolute point 

- Conventional NRTL equation - Afodified NRTL equation 
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~~,----~,~--~----~~----~--~ 
0.:: OA O.G 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

~Iole fraction of (1) Mole fraction of (1) 

FIGURE 5 - Coexistence curve for the system carbon 

disulfIde (I) / acetic anhydride (1). Calculations shown on 

the left are based on the conventional NRTL model with 
binary parameters linearly dependent on temperature. Cal

culations shown on the right are based on the same NRTL 
equation v.'ith the same binary parameters but with the 
mod i flcation proposed in th is work. 
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Plait Point 

Equilibrium Compositions 

(). 
() 

/ 

FIGURE 6 - l'vlolar Gibbs energy of mixing surface 
f1g / R T , at constant temperature and pressure, show
ing stable and unstable regions. Coexisting composi
tions on this surface have a common tangent plane. The 

projection on the (x2,x3) plane is the familiar ternary 
diagram. 
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o~ ____________________________________ ~~ ____ ~ 
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Mole fraction of component 3 

FIGURE 7 - Definition of order parameter I and distance d 

for a ternary system at constant temperature. The distance 

from the plait point to the tie line is d. The length of the 

tie line is I. 
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FIGURE 8 - Proposed method for the calculation of ternary 
LLE. The upper curve represents calculations with the conven
tional model. The lower curve represents calculations with the 
modified model. The overall composition used to calculate a 
tie line is the same for both models. The result obtained with 
the modified model depends on the first derivatives of the 

Gibbs energy of mixing b.g, evaluated at the equilibrium com
positions predicted by the conventional model. 
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FIGURE 9 - Ternary diagrmn at 25 C for the system 
acetonitrile (1) / benzene (2) / cyclohexane (3). The calcu
lations on the left are based on the conventional NRTL 
equation with parameters from LLE data remote from the 
plait. point. The calculations on the right are based on the 
same model, with the same parameters but with the 
modification proposed in this work. 
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_ Modified NRTL equation 

slope = 0.39 

-7.0 

a = -6.0 
b = 0.84 

log d 
-6.0 

FIGURE 10 - Calculation of parameters 
a and b for the system acetonitrile / 
benzene / cyclohexane at 25 C. In 
this calculation, b is restrained to 
be close to unity. 
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- Conventional NRTL equation 
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FIGURE 11 - Ternary LLE at 75 C 
for the system I-hexene (1) / 
benzene (2) / sulpholane (3). 

I) Conventional NRTL equation with 
parameters from LLE data remote 
and near the plait point. . 

II)Conventional NRTL equation with 
parameters from LLE data remote 
from the plait point. 

III) Modified NRTL equation with 
parameters from LLE data remote 
from the plait point. 
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• Data of Palmer et al.(1972) 
- Modified NRTL equation 
- - - Conventional NRTL equation 
o Estimated plait point 
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FIGURE 12 - Ternary LLE at 45 C for the system n

heptane (1) / benzene (2) / acetonitrile (3). The NRTL 

paralneters used for this ternary calculation are the same as 

those used to calculate the VLE shown in Figures 13 and 
14. 
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• Data of Mato et al.(1967) 
- NRTL equation 

~~--------~--------~--------~--------~------~ 

c:c 
o~--------4---------+---------+-------~~--+----4 

~~ 
'~o~--------4---------+---------~~~----~------~ .-.. 
~ --~ 
o 
~ 
o ..... 
~-.:t< 

Q '~--------~--~~--~--------~--------r--------4 
Cd

o 
~ 
~ 

(J) 
....-4 o 
~ 

C\1 

o~--~~--~--------+---------+---------r--------; 

o o ~ ________ ~ ______ ~~ ______ ~ ________ -+ ________ ~ 
I 

0.0 0.2 0.4 0.6 0.8 
Mole fraction of (1) in liquid 

FIGURE 13 - Binary vapor-liquid 
equilibria for the system benze
ne (1) / acetonitrile (2) at 760 
torr. The NRTL parameters used 
for this calculation are the same 
as those used to calculate ternary 
LLE (see Figure 12). 
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Data of Hlousek etal.(1970) 
- NRTL equation 
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FIGURE 14 - Binary vapor-liquid 
equilibria for the system hepta
ne (1) / benzene (2) at 760torr. 
The NRTL parameters used for 
this calculation are the s arne as 
those used to calculate ternary 
LLE (see Figure 12). 
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