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ABSTRACT

The three-to-three inclusive optical theorem expresses
the inclusive cross section for the proéess a+b + c+anything -
as a multiple of a certain discontinuity of the scattering function
for the process a+tb+c =+ a+b+c. This tﬁeorem is derived
here from s-matrik'principles as a special case of a general formula
that expresses in terms of physical scattering functions all of the single,
double,‘and higher-ﬁrder multipie diécdntinuities formed from the
members of a large set of different boundary values of an arbitrary
three:to-three scattering function. Thesé.differgnt boundary values
correspond to taking the_limit Imk -~ O from different combinations
of sides of the nqrmél-threshold cuts in the various channel invariants.
The formula is efact and global: all singularities are taken into

account and the result holds at all energies, not just near thresholds.

.

of Regge theory, known expressions in terms of Regge parameters. It
thus opens the'way to an enlargement of the scope of Regge-Mueller

analyses.

‘I. INTRODUCTION
The inclusive optical theorem expresses the inclusive cross
sectioﬁ for & proéess a+b — c+---+f+anjthing as a multiple of a

certain discontinuity of the scattering function for the process

- a+b+e+e -+ +f +'a+b+c+.;.+f. The recent theoretical interest in this

theorem stems largely from the work of Mueller and.Tan. Mueller [1]
showed that important.properties of inclusive cross sections could be
derived from the assumption that certain matrix elements of products
of currents enjoy Regge behavior. Tan [2] then observed that
Muel;er's specii} assumption about matrix elements of currents can

be replaced, with the aid of the inclusive optical theorem, by the

. general S-matrix assumption that discontinuities of scattering

functions across leading normal threshold cuts enjoy Regge behavior.
The inclusive optical theorem itself was first proved in

ref. [3], on the basis of field theory. One aim of the present work

-is to give an S-matrix proof for the special case in which

c+...+f = ¢. A heuristic S-matrix derivation of this.result has been
ST

given by Tan [2], who used crossing arguments. However, many cuts

‘stand in the way of on-mass-shell continuations to the crossed

channels, and the effects of these cuts were not fully analyzed by

Tan. The present proof does not depend on crossing arguments, and

- p——.

thus avoids the difficulties inherent in that approach.



~3-

A second and more important aim of this paper is to derive a
certaiﬁ general discontindity formula. This formula contains, as a
particulaf insfance, the inclusive optical theorem for the case
¢+ -+« +f =c. Its importance lies in the fact>that.each of the
discontinuities given by the formula is expected to enjoy Regge

behavior. Moreover, each of these discontinuities is expressed in

terms of physical scattering amplitudes. Hence the formula, together

with the Regge hypothesis, imposes numerous direct constraints on
physical scattering functions, opening the way té an enlargément of
the scope of Regge-Mueller analyses.

This general diécontinuity formula will be described presently.
First the inclusive optical kheorem and certain felated formulas are
reviewed.

The inclusive optical theorem is essentially a formula for the
discontinuity of the scattering function across a certain basic cut,
evaluated on specified sides of each of the other ba!%b cuts. These
basic cuts are cuts in the channel energies that start at the lowest
normal thresholds and extend to plus infinity. This formulation is
based on field theory, and the use of channel energies as basic
variables, rgther than channel invarianks, stems from the fact that the
scattering function has simple cut-plane analyticity in the complex
energy variables if the three-momenta are all held fixed and real [3].
In particular, the singularities are confined to the union of the
surfaces Im Eg = 0, where Eg is the channel energy associated with
channel g.

For the three-to-three case the complex energy space is five

dimensional, since one energy variable is fixed by energy conservation.

. -k- ' ’
There a}e sixteen channels g associated with Basic cuts. These are
the one direct or total-energy channel, the three initial subenergy
channels, the three final subenergy'channels, and the nine cross-

energy channels that are defined by'éets consisting of one initial

particle and two final particles, or by the complementary sets con-

Ly

sisting of two initial particles and one final particle.

The sixteen planes Im Eg = 0 divide the five dimensional
space of imaginary energies into 2282 regions called‘zonés. Each
zone is a cone-shaped region with apex at the origin.. The scattering
function is anaiytic in each zone, and has; for each zone, a corres-
ponding boundary value, which is defined by letting the complex point

P = (Pi,---,Pé) approach the real boundary point p = (pl,--.,p6)

from within that zone. The inclusive optical theorem, for the case

¢+ «-. +f =c, is essentially a formula for the difference between
two of these 2282 zone boundar& values.

In the S-matrix frameﬁork the mass-shell constraints are
retained. Hence the energies are real if the three-momenta are real.
Consequently, the zones defined above do not intersect the (mass-
shell) domﬁin of definition of the scattering function. It is there-
fore necessary to define the boundary values by a different procedure.
This procedure uses the sixteen chgnnel invariants sg, instead of the
sixteen energy eneréies Eg' ‘ . &

The sixteen channel invariants sg are not independent

L1}

variables: they are functions of the eight independent scalar
invariants. Suppose for a moment, however, that these sixteen
variables could be treated as independent variables, and that the

scattering function had only normal-threshold singularities, and



(%

_57.
hence enjoyed cut-plane analyticitj in (sl,~.-5sl6) space, with the

singularities confined to the union of the planes Im Sg = 0. In this

case there would be 216 boundary values, one corresponding to each

combination of sides of the 16 cuts Im sg'z 0. Stated differently,
16

for every one of the - 2 subsets G of the set E of sixteen

indices g there would be a boundary value MG(sl,--.,slé) obtained

by_approaching the real'boundéry point v(sl,4~-,516) from the lower-
half Sg plane for every g in .G, and from. the uppef half ’sg
plane fqr every g in the complement G=E -G of G.

Actually the sixteen variables sg are not independént, and
the singuiarities,of tﬂe scattering function are not confined to the

surfaces Im sg = 0. Nevertheless, there is a set of 216 functions

MG(p) that is- analogous to the set of 2l6 functions MG(sl""’sl6)
defined above. A large number of these functions MG(p) satisfy the

primary properties to be described next, and the rest satisfy a

weakened version of these properties.

The primary properties of the functions MG(p) are as follows:

(1) MG(p) is-analytic at all real p, except on certain
Lgndau singularity surfaces.

(2) MG(p) is a single an;lytic function: it continues into
itself around each Landau singulafity»surface by some infinitesimal
detouf, .

(3) MG(p) continues into itself around each normal-threshold
singulgrity surface sg = (E: mj)2 by passing into the lower- or
upper-half sg bplane according to whetherv g 1is contained in :G or

e
T. Here &_mj is some sum of physical particle masses.

-6~

(h) MG(p) - MGg(p) venishes if sg(p) bisvless than its
value on the leading g-channel normal threshold. Here Gg = GlJg.

(5) M(p) ;vM¢(p) is the physical scattering function, which
is the connected part of the S-matrix, divided by (2“))’L al‘(z pi,zpf)_

(6) ME(p) = - MT(p). This ‘property is hermitian analyticity:
the scattering function evalqated below all the cuts is minus the
hermitian conjugate scattering funcfion. »

It might seem that these properties ﬁould be easy to satisfy:
one might try to define the functions MG by simply continuing the
scattering function according to the prescribed rulé around every
normal-threshold singularity éurface, and continuing it according to
any arbitrary rule around every other singularity surface. This
procedure does not work. For the way in which the function is con-
tinued around a normal-threshold singularity surface determines the way
in which it must be continued around any non-normal-threshold singu-
larity‘surfaces that emerge from it. ‘And this determination fixes,
in turﬁ, the way in which the function must be continued around any
normal-threshold singularity surfaces into which this non-normal-
threshold ;ingularity surface merges. Ccnsequently, it is not evident

that a set of 216

functions MG(b) -éatisfying the principal
defining properfies exists. And given that such a set exists it ié
not clear that these functions can be expreésed in terms of physical
scattering fupctions alone,.as contrasted to unphysical boundary
vélues of the anaytic continuations of écattering functions.

A set of functions MG(p) that satisfy the primary
defining properties is constructed in later sections by first

constructing two sets of partial solutions, the TG and the TG.
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* The 216‘ functions T satisfy properties (1), (h), (5), and (6),
with 10 replacing M7, and half of (3); the function 1°
continues into itself around each normal-threshold singularity
sy = (E: mj)2 for g € G by passing into the ;ower—half sg' plane.
Similarly, the 216 functions T satisfy properties (1), (L), (5),
and (6), with 0 replacing M7, and the other half of (3); the
1fUnctio£_'TG continues into itself around each nb:mal threshold
singularity 'sg = (2: mj)2 for g € G by pg;sing into the upper-
half Sg plane. For 26,018 of the 216 = 65,536 possible sets G
the identitj TG = TE-G holds. For these values of G the functions

MG are defined by
VI B i
Then @he final condition, propefty (2), is proved. This is nontrivial,
because each MG(ﬁ) is constructed as a sum of functions MH(p) only
one of which, M¢(p) = M¢(p) = M(p), 1is a single analytic function.
Each of the component functions MH except M¢ =M ié a
unitarity-type sum of products two or more physical scattering
functions, or their complex conjugates: In a fiéld theory framework
off-mass-shell extensions of the scattering functions are introduced.
Thus in that frameyork the fuﬁctions ‘MH’ and hence also the functions
.MG, have off-mass-shell extensions. Near the off-mass-shell point
pl'=.--- =pg =0 all of the differences MG(p)v- MGg(p), vanish,
and hence all of the functions MG(p) are equal. .Thus in this off-
mass-shell framework the 26,018 functions MG are all different
boundary values of the analytically continued scattering function.
They are, accordingly} called boundary values of the analytically

continued scattering function, even though no mass-shell path of

-8-

!
continuation that links each function MG to the.ph&sical function
M 1is constructed in the present work.

By virtue of property (3) the boundary value MG(p) is a -
boundary value from below the normal-threshold cuts corresponding to .
channels g € G and from above the normal-thfeshold cuts corresponding
to channels g ¢ G. For breyity this boundary valﬁe MG(p) is called
the scattering‘funétion.evaluated below the cuts é.é G and above

the cuts g ¢ G. Similarly the difference M° - M =u % is callea

»

the discontinuity'across the cut g evaluated below the cuts g' € G
and abovg the.cuts g' € E - Gg. The higher-order multiple discon-
tinuities are defined similariy;

For the rem&iniﬁg 216 - 26,018 values of G no functions
MG(p) that strictly satisfy all of the primary properties have been

found, and we believe that none exist. However, it is convenient,

for reasons to be discussed later, to enlarge the set of 26,018

16

'boundary values MG into a full set ¢of 2 functions Mg by means

of generalized Steinmann relations. This is discussed next.

The Steinmann relations can be formulated in terms of the

- notion of overlapping channels. Two channels are said to overlap if

and only if neither of the two complementary subsets of particlés that
defines one channel is contained in either of the two complementary
subsets that define the other; - The Steinmann relations are equivalent

to the following Steinmann discontinuity property: if two channels

g and h overlap then the discontinuity across the cut g does not
depend on whether it is evaluated abo?e or below the cut h. The
ordinary Steinmann relations assert that this property holds for

all discontinuities formed from the 2282 zone boundary values, with
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MG are given by Mg =T

- 16
. uniquely imbedded in a set of 2
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the cuts g and h identified as two of the channgl-energy cuts that
separate these zones. The generalized Steinmann relations assert that

the Steinmann discontinuity property holds for all discontinuities

16

MG - M9€ = MgG formed from the 2 functions MG.

16

Tt is not obvious that there is a set of 2 functions ME

that includes the.26,018 boundary values Mg defined above and that
also satisfies the generalized Steinmann relations. However, there

is such é sef, and it is unique. In this set the remaining functiong

G G

or M = TE-G according to whether E

16

or G contains the direct channel label g = t. This set of 2

functions MC satisfies the properties (1), (&), (5), and (6), and,

>for each G, half of property (3). The remaining half of (3) is

disrupted by certain singularities that are associated with closed

16

loop diagrams. Thus property (3) holds for the 27~ - 26,018

functions MG(p) in a tree-diagram approximation.

16
Property (2) does not hold in general for the 27~ - 26,018

functions MG. Thus these functions cannot, in general, be identified
as boundary valﬁes of the énalyticglly continued scattering function.
However, the singﬁlarities that block the continuation are also
associated witﬁ cldsed loop diagrams. The situgtion ié therefore
this: for 26,018 v#lues of  G there are boundary values

MG(p) of the analytically continued scattering function that satisfy
all of the primary properties. This set of 26,018 boundary values 1s
functions MG(p). that satisfy
(1), (%), (5), and (6), together with the general}zedFSﬁeinmann

16

relations. These extra 2 - 26,018 functions satisfy the two

‘remaining ﬁroperties, (2) and (3), in a tree-diagram'approximation.

. from the set of 2l
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16

The 2 functions MG(p) are connected in a natural way to

the 2282 zone boundary values. Each of the 2282 zones lies below some

set G of basic (channel energy) cuts, and above the rest. Thus each

16

of the 2282 zone boundary values corresponds to one of the 2
functions fMF, and in fact to one of the 26,018 boundary values MG.
It is shown in ref. [4] that éach of the zoﬁe boundary values is
equal to the .corresponding function MG. Thus the full set of:j

functions MG is an extension of the set of 2282 zone boundary values
6

to a’ set of'21_ functions that satisfies the generalized Steinmann

relations. This extension is unique [4]. Moreover, each of the

functions MG can be expressed as a linear combination of the 2282

zone boundary values [k].

set of 216

These results imply the.uniqueness of the
functions MG(p) insofar as one demands both their agree-

ment with the zone boundary values and the validity ef the generalized

~Steinmann relations.

A formula is given in Section II that'compactly expresses in

16

terms of physical scattering functions each of the 27 functions MG,

and each of the_single, double, and multiple discontinuities formed
6 functions MG(p). The relevance of this formula
to Regge theory is now discussed. »

Regge behavior in its simplest form is simply a fall-off
property of thé scattering amplitude itself in certain limits.
However, under the impetus of Mﬁeller’s,work the hypothesis of Regge
behavior was extended to cover also discontinuities ‘across the basic
normel threshold cuts. To get Mueller's results it is sufficient

to assume merely that the particular discontinuity that occurs in the

inclusive 6ptical theorem enjoys Regge behavior. However, it then
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becomes natural to assume that the discontinuities across the other
basic cuts .also enjoy Regge behavior.

Thié expanded concept of Regge behavior was explored in detail
and it was soon recognized that the steinmann relations impose impor-
tant cbnditions on the structure of the Regge vertices [5]. Uitimatel&,
on.the basis of‘manj wqus;Wéis [6] obtained é general formula for .

‘diséontinuities that consolidates the tenets of Reégé‘theory with the
conditioné_imﬁoéed by the Steinmann relationé.

A fundamental aspect of the Regge hypothesis for scattering
functions is that the stipulated behavior holds for the actual
scatteriﬁg function itgelf, not merely for some part of the amplitude,
or for some approximation to the amplitude. Similgrly, the stipulated
behavior of the discontinuities should hold for the actual discon-
tinuities themselves, not merely.for parts of the discontinuities, or
for approximations to the discontinuities. Thus the question arises:
What are the discontinuities to which the Weis formula applies. The
problem is thaf this formula refers to discontinuities associated with
‘the various normal threshold cuts, but it is not specified exactly how
the functions on tﬁe various sides of the normal threshold cuts are to
be defined. To the extent that the formulas are to be restricted to
"the discontinuities formed from the 2282 zone boundary velues defined
by the channel-energy cuts, the answer is clear. However, the Regée
considérations are formulated in an é-matrix framework, and there is
no indication there that the formulas should be limited in this wéy.

Within the S-matrix framework it seems natural to define the

~ discontinuities in question as the discontinuities formed from the

26,018 boundary values MG(p). These boundary values correspond to

-12-

continuations around fhe normal threshold singularities in the
prescribed fashions. Moreover, they are part of the unigue extension
of the set of 2282 zone boundary values to a set of 216 functions
MG(p) satisfying tbe generalized Steinmann relations. In the

derivation of the Weis formulas there is no restriction to the 2282

zone boundary values, and hence the Steinmann relations used there are

.actually the geheralized Steinmann relations. Thus the boundary values

to which these formulas apply must evidently Sétisfy thése generalized
relations. This requirement uniquely determines the functions MG(p).

16

By the same argument the remaining 2 - 26,018 functions
from which the ngs discontinuities are formed must be the remaining
functions MG(p). ~These remeining functions are not boundary values
of the analyticqlly continued scattering function. However, they
must, -as linear cambinations of the 2282 zone boundary values, fall
off in the Regge manner, if the zone boundary values do. Hence there
seems to be no reason to restrict the Weis formulas to include only
ﬁhose discontinuities formed from the 26,018 boundary values. If the
remaining discontinuities are to be defined at all as differénées of
well-defined functions, then these functions must be the MC(p).

It seems theref&re,réasonable to propose, within the general
framework of contémporéry Regge fheory, that the discontinuitiesv
specified by the Weis formula are the discontinuities formed from the

16

277 functions MG. This hypothesis, together with the general

discontinuity formula discussed earlier,adds substantial new conditions

- to Regge theory, for it allows the detailed Weis expressions in terms

of Regge parameters to be identified with corresponding expressions in

terms of physical scattering functions.

o
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The first application of this hypothesis, which will be
described in a later work, is the derivation of a unitarity type

relation for particle-reggeon scattering amplitudes. This relation

-is identical in form to the'unitarity equation for a two-particle

scattering amplitude, exéépt that one initial particle ié réplaced by

a reggeéon and one fihal particle isxreplaced by a reggeon.v |
The plan of the paper is as follows. In seetion IT the

notation is infroduced and the general fbrmula that defines the él6

functions MG, and the discontinuities formed from them, is described.

The rule that identifies the 26,018 boundary values MG is given at

the end of that éection) in eq; (2.25). 1In section III a preliminary

discussion of the functions- TG. and TG is given. This discussion

is heuristic, because it expresses each of the functions TG and TG

as a formal infinite sum of bubble-diagram functions. Three properties

of these formal expressions are identified in section IV as tﬁe defining

G =G

properties of the functions T° and T , and a fundamental analytic

property of these functions is derived from their defining properties
alone. In section V the functions TG and TG are expressed in a
well—defined way as sums that, like unitarity sums, reduce to finite
sums of bﬁbblé-diagram functions on any finite.region-in P séace.
Then it is shown that ¢ - PC for the 26,018 sets G specified by
eq. ( 2.25). '

In section VI the functions MC = T° = ¢ are shown to
satisfy the six primary properties; The proof is divided inté‘tﬁo
parts. First a proof is given in a slightly enlarged the;fetical

framework in which it is assumed that the physical scattering

functions, and hence the functions MG, can be extended infinitesimally

~1h-
off the mass shell. Then the analytic continuations that connect the
functions MG on different sides of the Landau surfaces can pass
through slightly off-mass-shell regions. In this off-mass-shell
framework the rule for continuing around any singularity surface can
be expressed és a function of -the Landau diagram D that corresponds
to the surface, without specifying the ﬁarticular point P on the
surface near which the céntinuatioﬁ takes place. In tLe second part
of the proof the ﬁass-shell constraints are rigorously observed. In
this mass-shell framework the continuation depends both on the diagram
D and on the point p near which the continuation takes place.

Certain general properties of Landeu surfaces are derived in
aépendix A. In particular, it is shown that each Landau surface is
confined to an algebraic variety of dimension at least one less than
the dimension of the mass shell, and that the union of the Landau

G

singularity surfaces associated with each of the functions M~ also

has this property locally.

II. NOTATION AND RESULTS
A channel g 1is defined by a separatién of the comblete set
of incoming ahd outgoing particles of a reaction into t&o comple-~
mentary disjoint subéets, Jg and 38’ each of which has at least
two particles. For a 3 - 3 process there are twenty-five channels.
These are the direct or total-energy channel. t, the three initial

subenergy channels i, the three final subenergy channels f, the

nine cross-energy channels (if), and nine other cross-energy channels, '

which will remain unnamed. These channels are defined in fig. 2.1.

For definiteness the sets Jg and 7é are defined so that J

conteins at least two final particles.
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(a) (v) (e)
Fig. '2.1. Definition of the channels.

.
Throughout this paper the index i .stands for 1,2, or 3. A

liﬁe i is a line corresponding to one of the three initial particles;

the channel 1 1is the corresponding initial subenergy channel speéi-

fied in fig. 2.1. The index f always stands for 4,5, or 6, and.

is used to label finai lines, and also the corresponding final sub-

energy channels, as indicated in fig. 2.1le.

Stability conditions preclude the existence of normal-threshold.

singularities in the nine channels of type (e) of fig. 2.1, and these
channels will henceforth be ignored. ‘Thus the complete set E of
channel labels g 1is the set of sixteen elements
= {t,1,.,6,(1h),---,(36) ).

An afbitrary line will generally be represented by the letter
j. The channel invariant sg is the square of the sum of the
momentum-energy vectorsv ké of either one of the two séts J_ or
Eg: |
2

€ jeJ
JJ BANCACS

The symbol sj is a sign that is plus or minus according to whether
J 1s an f or an 1. The real physical momentum-energy of particle

J 1s denoted by pj.

-16-
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The set E has 2 different subsets G. For each of these

G there is a function MG.

In this section a formula is given that
expresses each of these 2;6 functions M ,-and every single, double,
and higher-order multlple discontinuity formed from these >MG, in
terms of physical scattering functions for other processes. Cértéin :
properties of these functiéns MG are derived in later sections.

The functien e MG(p) is a function of the set of six
real on-mass-shell energy-momentum conserving four-vectors

P = (P, ;D). It is convenient to call these functions M vy

. the names that would be'appropriate if the sixteen channel invariants

sg were independent variables. Thus’ MG is called the function

evaluated below all the cuts g in G and above all the cuts g in

the complement G=E -G of G. Similarly the difference

M- M ' (2.1)

in

M
g

is called the discontinuity across the cut g. And for any. h in . G
the difference

wé = o™ . (2.2)

is called fhe discontinuity acréss the cut h evaluated below all the
cuts g in G and above all the cuts g not in Gh = GUh. The cut
g means the cut lying in Im s_ = O.

There are, in addition to single discontinuitiés, also double
discontinuities, and.higher—order multiple discontinuities. The
double discontinuity across a pair of different cuts h and k is
the discontinuity across the cut h of the discontinuity across the

cut Kk:

[k 4
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'M}'lk = (- ) - oF )
I S (2.3)

Similarly the multiple discontinuity across the set of cuts

H = (hl,h2,~-;,hm), with the h, all different, is the discontinuity

across hl- of the discontinuity across hg +++ of the discontinuity .

across hm' It is equal to

o= Y ()R (2.a)

H'CH

where M¢ =>M¢ = M and the sum runs over all different subsets H'
of H, including the empty set @, and n(H') is the number of

elements of H'. Similarly, for GMH = @,
1 t
MHQ = 2: (-1)n(E") M (2.4p)
H'CTH
is the multiple discontinuity across the set of cuts H evaluated
below all the cuts g in G and above all the cuts g not in
GH = g UH.

Note that the multiple discontinuity MHG is independent of

the order of the elements in H. It is also independent of the order’

of the elements of G. These sets are regarded as unordered sets.

The formulas (2.4a) and (2.4b) can be inverted to give

&~ 5 (nten) S

Moo= ()T M (2.5a)
G'Ca

and, for GNH = g,

-18-

R M GO e I (2.50)
G'CaG
Equation (2.5a) is just a special case of (2.5b). These formulas,
which are derived in appendix B, express: . all 216 functions MG,
and also all the single, double, and higher-order multiple discon-
tinuities formed from theﬁ, evaluated on all possible sides of all the
remaining cuts, in terms of the various multiple discontinuities MH'
Qur general discontinuity formula is equation (2.5),together
with explicit formulas for all of the functions MH occurring on its

right-hand side. Most of these functions MH vanish by virtue of

‘the generalized Steinmann relations.

The generalized Steinmann relations assert that the discon-
tinuity MhG across any cut h is independent of whether it is
evaluated above or below any "crossed cut” g. Two cuts g and h
are said to be crossed if and only if the corresponding channels
overlap: 1i.e., if agd only if each of the four sets Jgf\J P
ng\Jh, Jgf\jh,‘and Eg/\jh i; nqnempty.. This rquiremenﬁ is
equivalent to the condition that nqng of the four sets Jg’ th Eg,
and 35 >bé a subset of any of the othefs.

Two different cuts heE vand keE are crossed if and only if
one of the folloQing five conditions holds: _ (2.6)

(a) both are initial subenergy cuts i, :

(b) both are final subenergy cuts f,

(c) both are cross-energy cuts (if);

(d) one is a cross-energy cut (if), and one is the total

energy cut t.
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(e)l one is a cross energy cut (if) bend the other is a
subenergy cut thet is neither i nor —f.

It is convenient to speak of g as either'a label, a channel,
or a cut; ﬁence a set of g's can be called a set of labele, a set |
of'channele, or a set of cuts.

A necessary and.sufficient cendition for the‘generalized
Steinmann relaeion to hold is that .

MH = O> if H contains any pair of cfossed cutsf

: (2.7)
It is immediately evident from (2.5) thet this condition is sufficient:
(2.7) and (2.5b) ensure that MhG is independent of the presence in
G of any cut g such that g and h are'crossed. Conversely, if
the M° satisfy the generalized Steinmann relations then (2.7)‘
follows from (2.&&). For if .g and h are two crossed cuts in H
then for every term (-l)n(H') MH' in (2.4a) such that neither g
nor h 1is in H' there are three other terms with H' replaced by
gH', hH', and ghH', respectively,'end the sum of these four terms
will vanish, by virtue of the independence of MhG upon whether g
is in G.

The conditions (2.6) entail that.every set H of more than
three cuts contains a pair of crossed cuts. In fact, the generalized
Steinmann relations are equivalent to the following set of conditions:

:MH

b for n(H) >3,

(2.8a) »
= 9 (2.8b)

ii

Mpgr = Mooy = 0, : (2.8¢)
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Maryite) = Mae)ier) = Mae)ie)

= Magy@aren = Mae)@ae)n = Maegpien = 00
- - (2.84)
M(if)t = Mgy = O (2.8e)
and ) ’
Mi;(if:) = M.(if)f’ = Mi'(.i'f)h = Mueym= 9
. : ‘ (2.8f)

where i and i' are different elements of the set (1,2,3}, f

and f' are different elements of the set {4,5,6}, h is an

 arbitrary element of vE, and Hh = HUh.

The conditions (2.8) reduce the number of nonzero M, to 68.
Moreover, all these are obtained from twelve basic forms by inserting
particular integers for i and f. It is therefore feasible to
exhibit explicitly all the nonzero MH’

Because topological connections are of central importance it
is cenvenient to represent MH in diagrammatic notation [7]. The

S matrix is represented by a plus box:
g - .'-I'l . . ' (2.9a)

The inverse of the 8§ matrix (or ST) is represented by a minus box:

st - st - JJLE:}RT ) (2.9b)

Thus unitarity says that

m@itﬁ[}}m = m{Tlor (2.9¢)

»
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and

ol = =ER
, o L (2o
where the I-box represents the identity operator.. The shaded strips

represent arbitrary sets of lines, and there is an implied unitarity-

type sum over all (mass-shell) values of all possible sets of inter-

mediate-particle variables [8].

The connected part of § 1is represented by a plus bubble:

s m(om BENCES

o~

and the connected part of ST = S-l is represented by minus the

*
minus bubble:

EEEI = - Iﬂ@ﬂl (2.91)

The cluster decomposition of the S-matrix reads, in various special

cases that are needed below,

- s e SR,

The notation differs from that of ¥ef. [7] by the extra minus sign
in eq. (2.9f), which is introduced to meke the minus bubble represent
the continuation of the scattering function to below all the cuts.
Also, iﬁ the present work the diagram are to be read-from.left to
right, with initial lines coming first. Sums of diagrams represeht

the corresponding sums of functions.
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mrl = *mEr o+ mIl @.50)
L -+ 0m I i o o

where  + is plus or minus throughout each equation. Two. frequently

used identities are

= —(@Em i (2.9k)

and

= ]@: | | (2.92)

They follow immediately from unitarity and (2.9¢) and (2.%h),

respectively, together with the property of the I-box (91,

where the X box represents any combination of boxes and bubbles.

Another frequently used symbol is defined by

This equation combined with (2.9g) and (2.9h) gives
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and . _ ’ _ It 1s convenient to introduce -special symbols to represent.

H

t:: Jzziziz:“' . ’ the sum of terms of S (or of SP) that have special connectedness

(2.9p) properties. The symbol defined by

These two equations will be used later. A _ : < '
. . . . B "w L) un
' ; = . + -, L)
The function Mw.E Mg EZM is the connected part of the " ,t = ¢ "' ¢t

physical scattering amplitude:
.‘l
o5 T 3

The sixteen single discontinuities Mg are v go straight through. - Similarly the symbol

'. ' ‘ - % . $ -
Losemy R - o -
1 t » } ’ i

represents the sum of terms of S (or ST) in which the final line

(2.123)

can be shown [10] to represent the sum of the terms of S(or ST)

Sny

. » , M
(2.10) in which the initial line 1 is connected to some nontrivial bubble ;

i.e., it represents the sum of terms in which the line 1 does not

=
1]

(2.12v)

%

- (2.11a) : f does not go straight through. Finally, the symbol

£

. ‘ ‘
. = =, * f =, ".m'" m (2.12¢)
3 -1 . L i .
' . = i (2.12d)
| v P ‘ ‘ ty - . . . '
‘ M(if) ) % (2.11¢) . represents the sum of terms of S (or S') in which neither i nor
- L : )

f  go straight through. Two frequently used identities, which follow

ﬁ;:
Il

L]
-

H)

H

and B . from (2.12a,b) and (2.9¢,d,m), are

) \ ' * A trivial bubble is a bubble that is connected to only two lines.
w o Ao FCE 2.na)

It is usually represented by a dot.
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=3
L

and

In

if

it
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terms of these symbols the nonvanishing Mgh

+i

Jl
|
I+

| o v{

1]

(2.12e)

(2.12r)

are given by

(2.13a)

(2.13b)

(2.13e)

~26-

Yiie) = 4

1]
|
)

Moy

'.'
o
L
()

The nonvanishing functions- Mghk

are

=
0

="fi

and

(2.13d)

(2.13e)

(2.14a)
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Waeye = . E%n + ) Mfif) = Mar) = Mar)e

Lg%

_ ‘ . ' ' ' | i £ ' | p ‘
_ | R O = e
N . - B G o Sy o

:

£ - | - ;_

+ (- v (2.14b)

~

The first form given for each of ihese functions MH’ although
ionger than the succeeding ones, exhibits a systematic rule: - there ' » .
is a minus box for each h in H, and these minus boxes occur = i% -
between the parts of plus boxes that contain nontrivial bubbles on
which the appropriate external lines terminate. |

To ghow hgw these fqrmulas work we calculate Mfif),whlch is (2.15a)

a

the discontinuity across the cut (if) evaluated below the cut f,

but above all the other cuts. Using in order equations (2.5), (2.1lc), . .
' ' In a similar way one obtains

+

L%—E’O:- | (2.15b)

These formulas (2.15) contain the inclusive optical theorem for the

(2.12a), (2.13e), (2.12a), (2.9m), and (2.92), one obtains

M%.

if)

case c+--.+f = C.
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The formula (2.5a) expresses the 20 functions MC as the

function Mﬁ = MQ = M, which is the function evaluated above'ayl the

éuts,.plus the sum of discontinuities that shift the point of

-evaluation, to below the set of cuts G. There is an equivalent

formula that expresses: MG as:the function M = -MT, which ié the
function evaluated below ali the cuts, pius the sum of discéntiﬁuities
that movestthe_point of evaluation to above the complementary set‘of
cuts G = E - G;

To exhibit these other formulas we introduce for any functlon

F formed from boxes and bubbles the notation

F = -FT 5 » . e : (2.16a)

where dagger represents hermitian conjugate. 'In particular, for

any function F represented by a single diagram one has

F

N
—(71)bF(+<—>—) , (2.16b)

where Nb is the number of explicitly appearing bubbles in ﬁhe
disgram, and F(+ < -) is the»function represenfed by the diagram
obtained from the one répresenting F by revefsing the sign inside
each bubble, box, and hodified Boxi[sﬁch as occurs. in (2.12) and
(2.9n)].

The functions MG all satisfy the important property [see

(5.58)]
TE <SR » ' (2.17)

But application of F>TF and G~-G to (2.5a) gives

-30-

Z (-8 g, . ‘ (2.18a)

G'cT

M

Since the sums in (2.5a) and (2.18a) are over complementary sets,
one of these formulas for Mg may have fewer terms than the other.
Similarly, the application of F » F and G +T to (2 5b)

gives, for GNH =

Z (1)n(G)MHG, -  (2.18p)

G'cC

These functions Hﬁc satisfy (see (2.4b))

ne - Z ()

H'CH

Z (-1)PCH-H") §/O(H-H")

H'"H

n(H) Z (l)n(H" -—1 G-H)H"

H"<CH

SYAE S I (2.19)

or, equivalently, for GNH =@

G _ n(H)

M, vIH o ' (2.20)
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‘The function M;G (for H{)E.= @) is the multiple discon-
tinuity across the set of cuts H evaluated”above the sei of cuts
geG  and below the set of cuts geG-H. The extra factor (JI)n(H)
in (2.19) and (2.20) reflects the fact that the multiple discon-

tinuities mhc are calcuiated by the rule Tunction below the cut
minus function above the cut". The sets of cuts referred to in

(2.19) are shown in fig. 2.2

G-H { :
H { -t
A { T

Fig. 2.2. The function ﬁhc represents the multiple discontinuity
across the set of cuts H (calculated by the rule below minus above )

evaluated above the set of cuts G, and below the set of cuts ‘G-H.

As an example of these alternative formulas note that the
discontinuity across the (if) cut-evaluaﬁed'bélow all other cuts

is given by (2.20), (2.16), and (2.11lc) as

(i) = " M T

&

(2.21)

This same discontinuity is given by (2.5), (2.8), and the definitions

(2.11c), (2.13d), (2.13¢), and (2.14b), as
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(ir) Miig) = Mi(if) - M(if‘)f * Mi(if)f

(2.22)

Introducing the definitions (2.12), and the identity property (2.9m)

of the I-box, one obtains
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o . .
L O Ry B D

(2.23)

which, by virtue of the unitarity equation (2.9d) and the identities

(2.9%,2,m), becomes
(! j - ] F . -
Miiry = L% e L (2.24)

 which agrees with (2.21).

These results, together with several other single discon-

tinuities that can be derived in similar ways are summarized in

fig. 2.3. Other valid formulas follow from these by a reflection
about a vertical axis together with the substitution 1 <> f. Still

others follow from the uniform substitution -+ — for all signs

' Fig. 2.3. The single discontinuity formulas. -
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oe: and all signs inside bubbles, boxes, énd modified boxes. The ¢
sign standing outside the bubble on the left-hand side is not to be
changed: it signifies that the discontinuit& on the left-hand side
is defined to be the.function above the cut minus the function‘below
the cut. That is, it is the difference M(dg = +) - NKog f ;).

The formulas described above define the 216 functions Mg,
and all the discontinuities formed from them. In the following
sections it will be shown that 26,018 of these functions have nice
analyticity properties, and, in particular, continue in a well-
defined wéy around each real p singularity surface. The 26,018
functions MG that ha;e this propérty can be identified in the‘
following way: For any set G 1let the set of signs ng be defined
by the condition that _ng is plus if g 1lies in G and minus if ¢
lies in G. Then MG is one of the 26,018 boundary values if and
only if there is no pair (i,f) such that the following conditions

are all satisfied:

Nip) SNy T Ty T ot ng - (2.25)

ITII. HEURISTICS
The properties.of the functions _MG will be derived in
section VI from the properties of a similar set of functions TG.
These functioﬁs TG are heuristically defined in this section as -
formal infinite sums of bubble diagram functions. Three properties
éf the functions TG will be identified in section IV as their
defining properties, and finite e#pressions for them will be obtained

in section V.
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If one introduces the definition

R = s-1 (3.1)

then unitarity takes the form

R = -Rrl - &R

. Iteration gives, formally,'

R - }: (et . o (3.2)
n=1

This is an infinite series expansion for R in terms of RT.

The connected part of (3.2) can be expressed in the form

. o 2{: Pz . . (3.3)

Here, as throughout this paper, the symbol B~ represents a bubble

(11l

X
"
2]
0
=
i

diagram every bubble b of which is a (nontrivial) minus bubble.
The sum in (3.3) is over all bubble diagrams B~ with the appropriate
external lines, and ¥ is the bubble diagram function corresponding

to the bubble diagram B”. A typical bubble diagram B~ is

T *
T (=Y }:@q@ (3:4)

and the corresponding function FB is the product of the four

indicated functions M = - SZ, integrated over the physical values
of the variables associated with the six sets of intermediate lines.

Further details can be found in ref. [11].
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By definition a bubble diagfam B is required to have

its bubbles partiélly-ordered by the condition that every line that.
connects two bubbles of B runs from the riéht—hand side of one
bubble to the left-hand side of another bubble that stands completely
to the right of the bubble from which the line came. This méans that
_all_lines can 5e drawn as directed lines that point from left to
right. A diagram such as the one in fig. 3.1 is not a bubble

diagram.

.
S——

Fig. 3.1. A diagram that is not a bubble diagram.

Consider an arbitrary channel g. It‘is defined by a
separation of the set (1,---,6) into two complementary disjoint

sets Jg and ﬁé. The set @B~ of all B~ (with initial lines

1,2,3 and final lines 4,5,6) can be separated into two sets 'Oggg

and d? g by the following rule: B belongs to a;g or &;g
according to whether B has or does not have an explicit g-channel
cut set.

Definition. An explicit g-channel cut set of B is a set of internal

lines of B which if cut separates B into two connected bubble
diagrams B(Jg)' and B(ﬁé), where B(Jg) contains all the external

lines jng, and B(jé) contains all the external lines jejé.
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Moreover, each line Lj of the cut set must be directed from
B(J_ ) to B(J_).

(g)_ (g)

Thus, for example, the diagram B~ of (3.4) belongs to d;

for g=1,4, and t, and to B E for all other g in E.
This decomposition of (B~ induces a corresponding
decomposition
T = T + 18 (3.5a)
of the infinite series expansion T of M . given in (3.3). Here
_ B~
T o= T F . (3.5b)
, g Y .
B e
GBg |
and
B
AN F (3.5¢)

Be@®E
For each channel g one can make this decomposition

g

B
F~ one can use (3.3) to give an expansion of F in terms of bubble

T=T + Tg. Moreover, for any sum F of bubble diagram functions

diagram functions FB , and then use the same procedure to define a
separétion of F into two parts;

F o= Fg+-Fg, C(3.6)

where vFg corresponds to a sum of B each of .which has an explicit
g-chanﬁel cut set, and o] corresponds to a sum of B~ none of
which has an explieit g-channel cut set. In particular, one can

write

T, = Thg+Thg’ (3.7)
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and

- o |
- Thg_*Tg : : (3.8)

These definitions entail that Tyn = Thgt both symbols

represent the sum of FB » over those B~ that héve both an explicit

g-channel cut set and explicit h-channél cut set. In a similar way

one can define Tghk’ Tghkm’ ete., all of which are independent of

the order of'their'subscripts. From this symmetry property it
follows that all of the varicus functions THG with both upper and
lower indices are independent of the order of their indices. For

example, (3.7) gives

g _
Ty = Ty - Thg ' (3.9a)
while (3.6)lgives

&

h (T - Tg)h = T, - Tgh ’ ' (3.9b)

& _ g
so that fTh T b

An expansion formally similar to (2.5) follows directly from

(3.6). For example,

(r-7 )P = hoph
g E g

Tgh

= T—Thb—Tg+Tgh . (3.10)

More generally, one finds

G ) ' :
o= E: ('l)n(H) Ty - (3.11a)
HCG '
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The functions T° and Tﬁ defined by ¢ = - (TG)T and
— - T .
TH’ (TH) satisfy.
A Z (-1)(H) T, . (3.11b)
HCG '
IV. ANALYTIC PROPERTIES OF T AND T

A. The Structure Theorem

The proofs of analytic properties will be based on a theorem
ﬁhat épecifies the analytic properties of_an arbitrary bubble-
diagram function FB. This theoreh has been described in detail in
ref. [12]. A resumé of.its main content is given here.

The main assumption of the theorem is a set of bhysical—
region analyticity properties called the normal analytic structure.
This analytic structure is equivalent to the S-matrix macrocausality
condition {13). It is also a formal b;bperty of the perturbation
theory expression for any scattering fupction. Roughl& it is the
property that the singularities of the physical scattering function
are confinedkto positive-a Landau surféces, and that in some»real
neighborhood of almost any boint. P on any one of these surfaces

the physical scattering function is the limit of an analytic

- function fromdirections lying in a certain cone. . The rules specifying

these directions are called the plus ie rules.

The Landau surfaces are surfaces associated with diagrams
called Landau diagrams. A Landau diagram is a topolégical diaggam
consisting of a set of direéted line segments LJ and a set of point

vertices Vr. The topological structure of the diagram is specified
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by a set of structure coefficients €5r defined as follows:

{

+1 if Lj terminates at V}
€ip © { -1 if Lj originates at V_ o (4.1)
e otherwise

\
The‘lineé of phe diagram are classified as incoming, outgoing, or
internal according to therruie:

,

incoming if sjr >0 for all r

Lj is < outgoing if Ejr'S 0 for all r

internal otherwise

\
The incoming and outgoing lines are collectively called external
lines.

Each internal and external line 'Lj_ of a Landau diagram D
is associated with a physical particle (of positive mass mj > 0), and
with a momentum-energy four-vector pj. Each internal line ‘L. is

"assoclated also with a scalar parameter o,. The Landau equations

corresponding to ‘D are the mass-shell constraints

p.” -m.S = O (a21 j), o (4.2a)

the conservation-law constraints

ijvejr = 0 (all r), o (4.2b)
p _
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the Landau loop equations

j{: aj pj njl = 0 (all fel), (4.2¢)
jelnt

and the nontriviality condition

z or.jz—l =0 . | (4.2d)

jeInt

The set Int -is the set of indices that label the internal lines
of D, L 1is the set of indices that label the closed loops that

can be constructed on the internal lines of D, and nJ.2 is the

number of times loop & passes along line L. in the positive
direction minus the number of times loop £ passes along line Lj
in the negative direction. (It is sufficient to consider a set. of

linearly independent loops; then the an can be restricted to
+1, and zero.)

let p represent the set of momentum-energy vectors p.

corresponding to the external lines of D. Then the complex Landau

“surface L{(D) is the set of complex points p such that for some

choice of the complex pj and aj associated with the internal
lines Lj of D the Landau'equations corresponding to D can all
be satisfied.

To describe the real Landau surface corresponding to D let

a sign Oj be introduced for each internal line Lj of D. The

set of signs Oj is denoted by o. Then the real Landau surface

L(Do) is the set of points p that satisfy the above Landau

" equations and also the conditions
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Im Py = 0 all j , ' _ (4.2e)
Ime, = 0  all jelnt , C (4.2f)
0 . , o
p; > 0 all j , » (4.2g) .
and
oja; > 0 all jelnt . R " (4.2n)

The equations (4.2&5 through (4.2h) are called the Landau eqﬁations
corresponding to bo.

The sign oj is allowed to bé i; in which case the
corresponding equation.(4.2h) is'elimiﬁated from the equations tha£
define L(D°).

The symbol D' represents a D° with all o, = +. The
corresponding Landau surface L(D+) is called a positive-a Landau
surface. The union of all L(D+) is called L'.

The Landau equations corresponding. to D' have a simple

physical interpretation [14,151. The significance of the mass-shell

and conservation-law constraints is obvious. The significance of

the Landau loop equations is this: they ensure that the "displacement"

vectors

A, = a, P _ (4.3)
fit together to form a geometric diagram in a four-dimensional space.
" This geometric diagram has the topological structure épecified by
D+, and it can be interpreted as a space-time diagram representing a
possible classical multiple-scattering process in which point
particles scatter at point vertices. The conditions (4.2e) through

(4.2h) ensure that positive energy is carried forward in time on each

bl

leg of this multiple-scatteriné process.i The parameter aj_ is the,
p?oper time associatea with Lj’ divided by the mass mj.i This
geometrical inferpretation of the solutions of the positive-a

Landau equations makes it clear that - L(D+) ¢an. be nonempty only

if the vertices of D+ can be partially ordered by the condition that

each internal line Lj of D point from left to right.

These space-time. diagrams are called space-time representa-

tions of D°.. For every solution of the Landau equations corresponding
————:;—————

. to D there is an associated space-time representation of Do.

The vectors from an arbitrary origin to the vertices Vr of the
space-time representation are denoted by W The line Li ‘is

represented by the four-vector

8, = Zeir w, - . (4.4)

One of the conclusions of the.structure theorem is an 1ie
rule of continuation for bubble diagram functions. This rule is a
simple generalization of the plus  ie rule, and it is most easily
described by first describing the plus ie rule itself.

let w = (wl,---,wm) represent the set of @, corresponding

to a space-time fepresentation of some DO. Let D+ be some
positive-g diagram, and let D be some point on L(D'). Let
Q(D+,p) be the union of all w that corrgspond to space-time
representations of D+ having external lines specified by the set
of (external) variables p. Let Q+(p) be the union of the sets

Q(D+,pj over all positive-o diagrams.
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) +
The plus ‘ie rules can be stated in terms of a cone C (p)

. + .
that is closely related to 2 (p). Let gq (ql,qz,-v-,q6) represent

the‘imaginary part of the eomplexification of p = (pl,p2,‘..,p6). Then

¢(p)

1t
fre)
[
™
Kol
€
v
(@]

JeExt
reVer

!

 for all m€Q+(p) 1-(4.5&)

Here Ext is the set of indices j that label the components pj
of p = (pl,...,p6), and Ver is the set of indices. r of the
components w, of w. By virtue of the Landau equations the cone

c*(p) can be written in the alternative form [16]

q : Z qj'Aj(w) > 0

Jelnt

VC+(p) =

for all wel (p)) , (4.5b)
where Aj(m)' is defiﬁed by (4.4), Int 1is the set of indices
labelling internal lines of the diagram spe?ified by.bp, and the qj
for jeInf‘ are ggz_sef of four-vectors that satisfy for every T
the momentﬁm—energy conservation-law constraints quj gjr =0,
where the exterr_lal qj' are fixed by q. .

The plus ie rule says this: Let p be any point of €%72,
which is the réal mass shell restricted by moﬁéntum—energy conserva-
tion. let C(p) be any cone that is closed apart from its missing
- apex q = 0, aﬁd that is contained in Cf(p') for all points p'
in some real neighborhood of p. Let 9?20 Vbé the complex mass

shell, restricted by momentum-energy conservation, and suppose the
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intersection of ﬁh?c with {qeC(p)} has p on its boundary. Then
p has a real neighborhood ”72(p) lay Eﬁn such that the physical
scattering function in 71\(p) 0 9”? is the boundary value {(in a

distribution sense) of a function that.is analytic [15] in the set
. ) weNE3 O faectp)} N {aen?

where N C U#hl is some neighborhood of q = Of ‘This statement of
the i€ rule will be used presently. -
‘The first main conclusion of the structure theorem (171 is
*
this :
(1) Let B be any bubble diagram, and let FB(p) be the
corresponding bubble diagram function. Then FB(p) is analytic at

all real (mass-shell) points p not lying on

L(B) = U yr’) , ' (4.6)

e B
where D’ is contained in B (i.e., D B) if and only if D°
can be constructed by replacing each plué bubble b of B by
either a point vertex VB or a connected positive-o Landau diagram

D; such that L(D;) f @, and by replacing each minus bubble b of

The contraction condition occurring in the statement of the
theorem given in reference [17] is here replaced by the rule that
condition (4.2h) isﬂrelaxéd for lines Lj that are expiicit lines
of* B itself. This new version is‘slightly stronger than the
original version, but follows from essentially the same argument.
f ﬂ?4n is the réal 4p—dimensional space, and n 1is the number cf

particles, which is six in the case under consideration.
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B by eitﬁer a point vertex Vb or a conngéted negative-a Landau'
diagram D{) such that- L( D;) # @. The initial and final lines of
b’ are ﬁo match the incéming and outgoing lines of Db‘ Thﬁs each
line Lj of ° ¢ B 1is either an internal line of a D; or D;,
in which case it carries the sign oj =+ or éj = -, respectively,
or it is a line Lj of the original bubble diagram B. In this.
latter case tpis line is assigned the sign 0‘j = +, which means'that
the corresponding parameter aj can be positive, negative, or zero.

These lines of B 1itself are sometimes called explicit lines.

An example of a D0 C B 1is given by

B = (4.7a)
and
0’ - (4.7)

" The internal lines of each D; and D;' are drawn so as to lie
inside the corresponding bubble b.
The set Q(Do,p) is defined, in analogy to Q(D+,p), as the

set of all w that correspond to space-time representations of °

that corresbond to solutions at p of the Landau equations correspond-

ing to p°. and QB(p) is defined in analogy to Q+(p) as

Bp) = § JQ(D",p) - o (4.8)

°<B

‘no assertion about analyticity properties of F
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. B .
Finally, C(p) is defined, in analogy to C+(p), as

B
C = HEE .
(®) = {a Z A
JeExt
reVer
. '. B -
for all w in Q (p) (4.9a)

q: Z dj-Aj(w) > 0

jelnt

for all w in. QB(pif . : (4.9b)

- The second main consequence of the structure theorem is this:
(a) The functions FB(p) satisfy an ie rule that is the
same as the plus ie rule described above, except that CB(p)

replaces C+(p).

B . .
If C°(p) is empty then the ie rule is devoid of content:

B gt ‘P is made.

‘An important case where CB(p) is empty is the case in which
. + + .
p lies on L(p (Bi), where D (B) is the positive-q diagram

obtained by contracting all the bubbles of B to point vertices.

-For example, if

' o+ '
B - z%&-" (4.10a)
3 é ) .

then

-
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(4.10b)

To see that CB(p) "is empty in this case note that if p
lies on L(?+(Bi) then it also lies on L(?-(BX), because the

Landau equations are invariant under the transformation aj > - Q.,

J

0, + - 0.,. But the change o, + - a, reverses all vectors Aj’ JeInt.

N J d d
But then the CB(p) defined in (4.9b) is empty, since both

D*(B) <. B and D_(B).c: B.- Thus no analyticity properties are
.asserted for FB at p on L(p+(BX).

It is in fact weil-known (18] that F° is identically zero
on éne side of the surface L(p+(Bi>, but not (in general) on the
‘other. V

The example jﬁst_given illustrates a>simple way in whiéh the
analytic continuation of a sum F of bubble diagram functions can be
blocked: for some Landau diagram D% the function F has a landau
singularity surface corresponding to both D0 and D_o, where D—0
is p° with all the signs -Oj reversed. The 1ie rules associated
with DC aré opposite'to those associated with DO, and hence the
structure theorem provides no way to continue the sum F past the
surface L(DO) = L(D-O). l

This situation in which a funétion can havé singularity .

i surfaces associated with both a diagram D’ and also the associated
.diagram D% is the canonical situation in which continuation is
blocked. However, for a full proof that continuation is-never

blocked one must alsoc rule out the possibility that surfaces
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corresponding to topologically different diagrams conspire to block
the continuation. This will be aonp in section VI.
The proofs.of section VI depend on certain analyticity

=G

properties of the functions TG and T . These properties are

derived in subsection D by combining the results described in this
subsection with the properties of the functions TG and TG
described in the next subsection.

B. Properties of the TG‘ and TG

In this subsection three properties of the functions TG
are déscribed, These properties are satisfied by the formal expressions
for these functions given in section III, and can be considered to be
the defining properties-of these functions as will be discussed in
the next subsection. The analytié propérties of the functions TG
and TG that are derived in section D follow from these properties
alone, and.hence apply, in particular, to the well;defined expressions
for these functions given in section V;

The three properties of the Tg are now described. .
Property 1 ‘

Each TG can be written in the form

° - Z (-1 2(H) T, » ~ (4.11a)
HCG ’
where the T, are a set of 2;6 functions that can be written in the
form

Ty = /. o . ' ‘ (4.11b)
BEQ?H
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where every B iﬁ, d?H has‘an explicit h-channel cut set for every
h in H. [These cut sets are defined above (3.5).] Property 1
follows, for the-infinite series expressions, from (3.11a).
Property 2.

Each TG can be converted.SOIely by means of the unitafity
and cluster decomposition properties of S from the form given in

(4.11) to the form

¢ = Z FB o (4.12)

BstG5

where no D0 cC d3 G has a positive-a g—channel_cut set for any g
in G. Here the following definitions are used:
Definition A positive-o g-channel cut set of D° is a set of
internal lines of D° such that I° is separated by the cutting
p;ecisely once = of every line of this set into two conneéted
diagrams Dc(Jg) and Do(Tg) such ‘that Do(Jg)_ contains all the
external lines jng and Do(jé) contains all the external lines
js?é. Moreover, each line 'Lj of the cut set must be directed fro@
_Dc(jé). to Do(Jg) and have a sign Oj =+ or f. .
Definitioﬁ A 1° _ ﬁS is a bo such that for some B the
conditions 'DG < Be & hoid.
Remark For any collection. QZ of diagrams B - having only minus
bubbleé the statement no D° le QS has a positive—d g-channel cut
sef is equivalent to the statement no Dcc; Q? has an explicit
g-channel cut set. This is because only explicit lines of B~ can
belong to a positive-d g-channel cut set. Thus property 2 follows

from the meaning given in (3.5) and (3.6) of superscripts.
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Property. 3
T = T¢ = T =M (
p . 4.13)

Remark In equations such as (4.1la ) and (4.12) involving sums of

functions FB over sets Be 03 it is to be understood that the

‘diagrams B of (B can eventually have signs or other numerical

coefficients, and that the functions Fo inherit these coefficients.

The functions T ana Tﬁ are defined, in accordance with

(2.16), by
™ - L%
= Z FB : (4.14a)
BS'GEG
and
TH = _(Tﬁ)t R
= Z P . (4.14b)
BEGH : |

‘where @G and G are .obtained from @G and QH by the

H
mapping
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wom - =
T > o=
=l o> il

(4.14e)

followed by an overall sign change. The last two mappings in (4.14e)
apply also to the special boxes defined by (2.9n), (2.12a), (2.12b),
and (2.12¢). '

Negative-a g-channel eut sets are defined in the same way as
: positive—a g-channel cut sets [see (4.12)] except that "positive-a"
is replaced by "negative-a", and 0j =+ or + is replaced by

TR or +. It is thus clear that no ’ < dEG has a negative-a

g-chahnel cut set for any g in G. .

C. Uniqueness of the TG

In section V a set of 217 well-defined functions TG and’ TH

satisfying properties (1), (2), and (3) is constructed. The’ question

1 .
of uniqueness arises: Can there be two different sets of 2 7 functions

TG and Ty sétisfjing these three properties?
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In this section it is shown that the functions TG and T

H
are unique in the following sense: Let TG ‘and TH be members of
_any. set of 217,functions that satisfy properties (1), (2), and (3).
Let T_G . and Tﬁ be the infinite series expressions obtained by

introducing for each plus bubble of the expressions (4.12) and (4.11b)
for TG and TH’ respectively, the expansion (3.3), and then

combining together the different terms that are multiples of each of

~ the distinct possible minus-bubble diagram functions FB . -Then

T G and Ti are precisely the infinite eums that were represented

in section III by the symbols TC, Ty- This result justifies the
ﬁse of the same symbols TG and TH to represent, on the one hand,
the infinite series expressions defined in section III, and, on the
other hand, the finite expressions that are obtained in section V.

For a complete proof of uniqueness one should, strictly

speaking, show that two different well-defined expressions in terms

of bubble-diagram functione that have the same ekpreseion in terms of
minus bubble diagram functions are in fact equal. This can probably
be done. However, it is not neceSSaTy for our purposes. All that

we need is some set of well-defined funciiens that satisfy the
properties (1), (2), and (3), and these functions-wiil be taken ﬁo be
the functions defined in section V. We doubt that others exist, but
the uniqueness of the MG is based in any case on the generalized
Steinmann relations.

Because uniqueness is not really essential to our argument

the proof of it will be simply sketched, rather than presented in

full detail..
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If the infinite series expansion (3.3) obtained from unitarity
and the cluster decomposition is introduced back into the unitarity.
equation - one finds that it is identically satisfied: 1i.e., if (3.3)

is introducecl‘:'.m:o'CSSJr - I = -0 then one obtains the result

ZE: B -0 | (4.15)

3,

where 03 é is empty. -This means that if any function

F = Z FP (4.16a)

is converted by means of (3.3) to an infinite series

F = P , (4.16b)
B e @_F

then QB_F is invariant under a change in form of F generated by
the application of unitarity: 1i.e., if F and F' are equal by

virtue of unitarity and the cluster decomposition of S then-

8" - @_F' . (4.16¢)

This is true because (4.15) implies that any identity among bubble

diagram functions that follows from unitarity and cluster pfoperties

is identically satisfied when all the components are expanded in terms
B .

of F functions: 1i.e., unitarity acts as the identity in the minus-

bubble representation.
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. Let TG and TH be members of a set of 217 functions that

satisfy (1), (2); and (3). The formula {4.11a) for 1% entails

- (see Appendix B) that the functions THG defined for GN\H = g by

G W(G') ’
T, = (-1) Tyor | (4.172)
: G'CG '
satisfy
¢ S ) o |
Ty = s (-1)y™" 7T _(4,17b)
H'CH
and also
G . GK'
Ty = - Tggn ; , (4.17¢)
KI'K"
K'UK"=K
K'NK"=g

where in (4.17¢c) the sum is over all nonintersecting sets K' and
K" whose union is any fixed set K that does not intersect. GWH.

A special case of (4.17¢) is

G . GK!

T = TS . ‘ (4.28)
K'co GK'
. This gives TG as a sum over terms of the form T_F. Equations (4.17a)
and (4.17b) give
' v
¥ - :E: (-1C¢ ) ¢ (4.19a)
K . KG'

G'CK
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. N ' ' .
7 X - Z (-pyn(E) i  (4.19b)
. H'CK '
The equality of the right-hand sides of (4.19a) and (4.19b)
follows from (4.11a) alone: it is identically satisfied if (4:118)
is introduced into (4.19b). According to property (2) the equality
" of the expressions (4.11) and (4.12) for TG follows just from

unitarity and the cluster decomposition of S. Thus, accordihg to

(4.16c), equation (4.11a) with ¢ and T, replaced by T_G and

Tﬁ, respectively, is identically'satisfied: both sides have the same

minus-bubble repreéentation. But then the replacements of the TG

- and TH on the right-hand sides of (4.19b) and (4.19a) by T_G and

TH’ respectively, must yield the same answer: both procedures must

give the same formal expression

T - Z P, | (4.20)
K

Be QZ:F
K

where & :F is some well-defined set of B™.
K

Let QB-G be the set of B~ obtained by the expansion of
the Be GBG' in terms of B 's. And let & é

be the set of B~
obtained from the seriés expansion of Q& y in terms of B 's. The

characteristic properties of ] G and '68 g are not destroyed by

the series expansion. That is, no D0 < QB-G can contain a

€0

positive-a g-chénnel cut set for any g in G, and every Be ; o

-58-

contains an explicit-h-channel cut set for every >h in H. Moreover,
the condition that no D° & @ ~C contains a positive-a g-channel
cﬁt’set is equivaleﬁt to the condition no Be GB_G 'contaiﬁs an
explicit g-chammel cut set, since all lines Lj of any B~ with

Gj =+ or + are explicit 1ine$ of B~. Thus, by virtue of (4.19),
43 :F contains a B_' only if ‘B_. has no explicit g-channel cut set
forKahy g in K, and has an explicit h-channel cut set for every

h in X. But then any given B~ ‘can be contained in one and only -
of the sets 63 %g, namely thé one such that K is the set of all g

such that B~ contains an explicit g-channel cut set.

Fach B~ must in fact be contained exactly once (with
-K
X

(3.3), (4.13), and (4.18) for the special case G = @. Thus each

coefficient plus one) in the union of all d? This follows from

® :? is, by virtue of (4.11-13), exactly the set of all B~ such
K .

that B~ contains an explicit g-channel cut set for every g in K,

and contains no explicit g-channel cut set for any g in K. That is,

each QB :F is uniquely defined by the conditions (4.11-13). Thus,
K

by virtue of (4.18) and (4.20), every’ T_G is also uniquely defined

by the defining properties (1), (2), and (3) of Tg. The Té are
uniquely defined by (4.20) and .
HK!
T, = 2{:_ Togr - (4.21)

D. Analytic Properties of TG and TG

For any g in G consider the Landau surface
+ - . . . + -
L(Dg) = L(Dg) corresponding to the pair (Dg’Dg) of g-channel

normal-threshold diagrams. [See fig. 4.1.] The diagram D; has a
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positive-o g-channel cut set. Hence property (4;12) impiies that no
D; satisfies D; .C:‘GBG- If only normal threshold diagfams need to
be considered then the generalized ie rule stated below (4.9) says
that the function TG continues into itself around L(D;) = L(D;)
by the rﬁle associated with ﬁhe negativefd diagram Dé. This rule is
the minus ie rule,whichAprescfibes a detour into the lower-half s
plahe; »

Tﬁis argument extends immediately to a large class of

singularities: property (4.12) excludes from TG all singularities

associated with diagrams o° that can be contracted to any positive-o

diagram D;, for any g in G.

By a similar argument TG can have no singularities
associated with diagrams that can be contracted to any Dé for any g
~in G. If G - TE"G;Vthen this function has no singularities
associated with any diagram dl havihg a positive-a g-channel cut
set for any g in G, or having a negative-a g-channel cut set for
' any g in E-G.

This property is the basis of the proof in section VI of the
analyticity propérties of the 26,018 boundary values MG. Before
giﬁing'that broof.we shall, in the following section, construct

finite representations for the functions TG and TG, and show that

TG = 0 for the values of G defined by (2.25)
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.
T e) i1>t

' +
) Dip

Fig. 4.1. All connected posifive«xLahdau diagrams with 3 incoming
lines, 3 outgoing lines, and 2 vertices are shown. Line 1 is any
oné of the‘initiai lines 1, 2, 3; and line f  is any one of the final
lines 4, 5, 6. The blus signs on the internal lines indicate that the
corresponding Landau @'s are positive. The number of the internal
lines, n, is an arbitrary'positive integer. The 6 diagrams of (a)
and (b), the 9 diagrams of (é), and the_diagraﬁ of (d) are called sub-
energy diagrams, cross-energy diagrams, and total-energy diagram,
respectively. The connected negative-o g-channel diagram Dé‘ is
obtained from D; . by simply changing all the plus signs Oj to

minus signs.
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V.  CONSTRUCTION OF THE TC
In this section a set of functions © is exhibited that

satisfies the three properties listed in section IV. The procedure

is to make an ansatz for the fﬁnctidns TH, and then to show that

—these three properties hold. The ansatz is that

Ty = Mﬁ. : : (5.1a)
in all cases except those given by the formulas
Teaeyr = Tigaeye = Taees = Tigae)ree
o = Dypr . S (5.1b)

‘The functions MH are defined by (2.7-14), and the functions Dif

are defined by

(5.1c)

Inspection of (5.1) and (2.11-14) shows that (4.11b) is
satisfied. Thus if ’TG is defined by (4.11a) then property (1) is

satisfied. . Property (3), i.e., eq. (4.13), follows from (4,11 ) and

_(5.1); Thus it only remains to prove property (2), which is that the

expression for TG given in (4.11) can be converted solely by means of

unitarity and cluster properties to the form (4.12).

The donditions imposed by (4.12) can be compaétly stated with

the aid of the following

Definition ‘A function F is said to belong to YOE,G if and only if

F can be expressed, using only unitarity and'clﬁster properties, in the

form
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F = B (5.2)
ngégF' | '

where no D°<: 63 F has a positive-o g-chamnnel cut set for any

g in G.

In . terms of this definition (4.12) is the requirement that for

: » G
- every G the function TG belongs ﬁo GZ .

This property (4.12) must be proved for each of'phe 216

possible sets G. The sixteen special cases in which G consists
of a single element GeE . are covered by

Proposition 5.1 ™=r1- Tg belongs to Qg.

Proof

Unitarity (2.94), and the cluster decomposition formulas

(2.91), (2.95), and (2.9m) give

GE - ZEE - é%;—_(a?

EPEo-Sbre

- OmEE - TE

(5.3)
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The left-hand sideiof (5;3) is T - 1. ‘The right-hand side is
the required expression for Ti, for it is clear by inspectionJf
that every term iﬁ this expreésion belongs to dli.
Case 2 g=1¢ , |

The proof is essentially the same as for case 1: one

merely uses the alternative form (2.9¢) of unitarity, in which the

minus box appears on the right-hand side instead of the left-hand

Case 3 g = (if)

Equation (5.9) of ref. [9], specialized to the present case,

reads

(5.4a)

f Né’ Doc: B can have a positive—a‘g—channel cut set if any
minﬁs‘bubgle of B +touches e#pernal.lines from both Jg gﬁd ié.
And no p° c B can_havé a positive-o g-channel cut set if B

is not a connected diagram. Thése remarks will be used repeatedly

in the arguments that follow, and will be indicated always by

' the dagger symbol that jdentifies this footnote.

. _64_

where the function represented by the Rc box éppearing dn the

right~hand side belongs, as éxplained below, to Oe(if). The last

" three terms on the left-hand side of (5.42) are disconnected, by

virtue of (2.90) and (2.9p), and hence cancel the disconnected terms
on the right-hand side. . This givés the required result.
The fact that the function represented by the Rc box in

(5.4a) belongs to 62(1f) follows from results of ref. [9].

- Comparison of egs. (5.6), (5.8), and (5.9) of [9] shows that

= B - {+] (5.4b)

where D.P. 1is a sum of disconnected parts and H 1is a sum of

FB over a set 6? of B with.the property that for any Doc,ﬁ?

the line 1 can be comnected to line f by a directed path from

i to f +that consists ofra sequence of Lj having the property

that every one of these Lj with Oj = + or + points in the direction

of this path from 1 +to f. This directed path is indicated in the
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second 1ine of (5.4b). ~[The lines L, with oj‘= - can be ignored].

The existence of such a path is implied by (5.7) of ref. [9]. It
einsuies that no 'Do < @ has a positive-a (ifr)—channel_cut set.
Case 4 ‘g'= t | ‘

‘ Let A, B, and C denote certain bubble-diagram fuhctions,
an& let A ‘and C each be decomposed into a.sum of two bubble;

diagiaﬁ functions so that

A' + A" ' , - (5.58)

i

A
and
¢c =cr+cC" . (5.5b)

Then one finds, trivially, that

ABC = A'BC + ABC' - A'BC' + A"BC" . (5.6)

Here the product forﬁ indicatés the usual product of bubble-diagram
functions so that, for example, in ABC .the outgoing lines of the
Abubble diagram corresponding to A are identical with the ingding
lines of the bubble diagram corresponding to B. ' '

V Consider the special casé of (5.6) where A and C each
represent the'plus-(minus) box and wheré B represenis the minué

(plus) box. Unitarity {Eq. (2.9c,d)] takes the form

AB = BC = I . C ' (5.7)

Substituting (5.7) into (5.6) one obtains

A = A' +C' - A'BC' + A"BC" . , T (5.8)
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Suppose, specifically, that in (5.8) A and C represent
fhe plus box and that B represents the minus box. Also let A'

and C' each denote the circled‘plus box and let A" and C"

each denote the Plus bubble [so that egns. (5.5a) and (5.5b) are a

form of (2.9n)]. Then (5.8) takes the form

e = OCRGEE
- TEE - 2

(5.9a)
Similarly, one finds
- B - OECE
- RERTE -
(5.9b)

Equations (2.9n), (2.91), and (2.9j) show that



—67-

vy At + L E o+ LE

.F
(5.10)

It is'cléar by inspectionT that the last three terms of
(5.10) belong to R t. The first term can be written with the aid

of (2.9k,2) in the form

(5.11)

where the vertical lines a,y, and- 8 cut through the sets of lines

"that are to be identified with the sets éf lines labelled by a,Y;
énd 8 1in (6.1) of [9], respectively, and B is identified With
the empty set.

Suppose that B is replaced by an equivalerit B' as is
explained in corollary 6.1 of {9]. Let p° bve any ’c B' and
supﬁose that "Do has a positive-a t-channel cut set. Then the
right end point of every line of Yy must 1lie in -DO(Jt). This is

. sas (o}
true because no line of a positive-o cut set of D” can be an
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6utgoing line of the right minus'bubble or an internal line of a
negative-a Landau Qiagram D; correspending to this minus bubble.
Similarly, line & is in DQ(Ti), Hence, all the conditions
fequired by the last sentence of Corollary 6.1 of [9] are met [To
convert the notation bf [9] to thét of Casé 4 of the present papef
use the correspondence: .w =w > {1,2,3}, w''= wy + {4,5,6},
connected X(C,w') + Do(Jt), connected X(C,w) » DO(T£), simple
positive (w,w') cut set with X(C,w') and X(C,w)
connected > pdsitive~a t-channel cut set.]. Thus, if that part of
o

D~ that corresponds to Bé (Bé is equivalent to ?3) is denoted

by DBO, then all points of D3é-— a lie in Do(Jt). This means
that the parfbof D0 that corresponds to the part of B' 1lying to.
the right of the set .of lines @ must lie in Do(Jt). But then the
remaining part of p° must be disconnected, and the existence of

a positive-a t-channel cut set is precluded. |

Proposition 5.1 is a special ca@se of

Proposition 5.2 The function

- ZE: (-1t g | o (5.12)

can be converted by means of the unitarity and cluster decomposition

properties of S +to the form

° - :E: B | (5.13)

Be B°

where no D° & @ ¢ has a positive-o g-channel cut set for any g

in G.
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* That is, the TG ‘defined by (5.12), with the T, defined

H where D.P. stands, in general, for any sum of disconnected parts.

by (5.1), belongs to ®°. The first two quantities appearing in the last line of (5.14d)

Proof Several uantities that occur often in the proof are defined .are defined by

as folloﬁs:
_ _ : ir) © Tary ~ Tigar)
A = , (5.148)

Mgy - i{if)

(5.14b) : M?if) s a% | o (“5..ll.eA)4

A, = Xm

where the calculation in (2.15b) is used, and
. T ' | : (5.14c) Tfif)'s Taaey = T(a
- et e 0 funr

Miry = My

- - * . .‘ . i
A = 4 O+ =6 : o , | ‘

£ |
Mfif) - ;:@;-__@_: o (5.141)

. s _ £ - f where the calculation in (2.15a) is used: The second and third _
c% i t ° ) quantities in the last line of (5.14d) are defined by (5.1), (2.11c),

(2.13a), and the definition

£ T ;:E = - (Pt
RS- T~ = W
® "('1)Nb Fo(s = -) (5.14g)
e 3 T | | where is the humbervof (expli.citly appearing) bubbles in B
Tiaey* Tar) * Taey * Tig * D-P- (5.14d) N,

, and F’B(+ <> -) is the bubble diagram functicn for the bubble
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diagram B(+ <> -) obtained from ‘B by changing the sign inside
each bubble, box, and modified box.

. Each of the above eqﬁations can be converted to another oﬁe
by the aﬁplication of bars toeachterm. For example, from (5.144)

one obtains

! = - -
A 7 gT(if‘) *Taey * Teiey * Tip * D.P. . (5.14h)

Using (5.14), (4.13), (2.10), and (5.1a) one may wrife

(5.9a) and (5.10) in the form
T = T, + K- }_ K - ZAf'e ZAH +D.P. . - (5.15a)
R £ i,f . '
From (5.9b) one obtains
T - T, A- L A - Z Ap + ZAif+D.P.V . (5.05)
i t i f o -

For any G in E this equation can be written as

--ZAi- Z AL+ Z A = P _ - (5.16a)

ieG feG - ieG,feG
where
1eG feG ieG,f E;'
+ Y Ajp+ DR (5.16b)

~72-

The unrestricted sums over 1 or f are sums over all three values
of i or f. As mentioned‘earlier, the index 1 is always
restricted in this paper to the values 1,2, and 3, and tbe index f
is restricted to 4,5, and 6. A sum over ieG. is a sum over those
indices i = geG that label initial subenergy channels, and the

sum over 1ieG is the sum over the remaining indices in thevsef
(1,2,3). |

From (5.14b), the cluster expansion (2.9j), and (5.l4e)

i
ZE: T(if) Ty D.P. . : (5.17a)
r )

Under the substitution F + F this equation becomes

one obtains

<

K - -'LT(fi’f)fT‘i‘#D.P. ’ (5.170)
. r - :

where we have used (5.14e) and (5.14f). Similarly,

Af = z{: ?(if) + Tf + D.P. . ) (5.18a).
i
and.
_:_>-i — v
Af . T(if) +va + D.P. . (5.18b)

Substituting the right-hand sides of (5.17a), (5.18a), and
(5.14d) into the second, third, and fourth terms on the left-~hand

side of (5.16a), respectively, one obtains



e

Sof j;q
N ) - - )
- 4 Tunt L Tuny T R
il reG ieG,feG

The equation

“Tany T Tan T Tiar) - Tanye * Ticae)e

(5.19)

" (5.20)

was proved in seétion.II [See (2.21) and (2.22)). This equation

yields trivially

- L Tany T AL

1€G,1eG 16G,7eG, (if )G~

] - |
ieG, feG,(if)eG

[T(if)"_ Tycie) ~ Nie)e o

- (5.21)

- where the condition (ir)G or (if)eG under the summation -sign

means that there is a sum over the pairs (i,f), and that this sum

is to be restricted both by any other appeafing conditiohs_on i or

f, and also by the condition that (if) Ve an élemqnt_of G or

G, respectively. One also finds trivially from (5.14e) and (5.14f)

that

S .

\ i

[ tan
ieG,TeC

Y

1€G, 66

7~
i€G, G, (if )eG

Tiar)

L

ieG,féa,(if)éE

= EE:IAJ _ _{T(if) ;‘T(if)f]

'1€G, £eG, (if )eG

e zi: - Tun

" i€G, feG,(1if )G

obtains ;;
T+ F, = Py .
where »
B, o= - )T L N .- 7T,
2 P o L. CitT L. T(irf)
1eG ~feG - ieG,T€6G (if)eG
< -
+ Y T ¥ 2 T, ..
Lo i(if) P (if)f
ieG,(if )eG reG,(if )EG-
N
A i(if)f

ieG, feG, (if )eG

V»- (5.22)

S (5.23)

Substituting (5.21), (5.22), and (5.23) into (5.19) one

(5.24) !

(5.25a)



~75-

and

Fy = Fp - Z o Naey T z Tir)

1€G,feG, (if )eG” 1€G, feG, (if )eC

. Z T%i’f)lf Z '.T{if) . (5.25b)

1€G, feG,(if )eG 1€G,feG,(if )el

At this point it is convenient to consider separately two different
cases. »
Case 1 (teG)

Suppose G does not contain t. Then (5.24) becomes

Z ( 1)“(H) = ¢ - Fy . B (5.26)
HCG

Indeed, the terms.appearing on the 1eft-hand.side of (5.24) are
identical to those appearing on the left-hand side of (5.26), by
virtue of the fact that all the T MH for H <: G not exp11c1t1y
listed in (2. 10), (2.11), (2 13), or (2. 14) vanish. Thus the proof -

- for case 1 can be completed by showing that 'F -belongs to GEG

3
The cluster property (2.9§) and unitarity give
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DR+ CE

o
'
™~
-
=

fl

f
. OFE + O
= "'nl° -+ D P
(5.27)
Similarly, -

- Z Aip = °,"... ¢ * DR ' (5.28)

i

After substitutingAthe right-hand sides of (5.27) and (5.28) into

(5.16b), one'seesf‘that

Z_. Ayp (5.29)
1eG, feG

belongs to <Q,G. :

After replacing the plus bubbles in TZif) ‘and in T{

if)
by the left-hand sides of (2.9k) and (2.9%2) one sees' that the last

three_terms on the right-hand side of (5.25b) belong to 62 G.
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G .

Hence, F3 belongs to @¢ = if
Z“‘n“ Z "tir) " Z b
ieG, feG 1el, e, (1f )eG ieG,reC, (if)ef -

* Z Q’if‘-_T(if)) - (5.30)

iéa,féa,(if)eG

belongs to GZG. One seesT from (5.14d) that this is true for.thé
first term on the right-hand side of (5.30).

From (5.6) of [9] one obtains

¥ __f
Mo - Tapy RS~ [ TLRERGE

no

--
!IE .
- .

HE -
-
-b

(5.31)
The H-box is the expression given in (5.7) of (9). -It is a sum over

a set (E? of bubble diagrams B such that any Do ¢ Be ﬁ?
contains a path Gp from i to f that consists of lines Lj

with the following property: each line LJ with sign OT =+ or
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points in the direction of (;>, i.e., from i to f.b This
property is indicated by thé internal line in the box appearing in
the iast line of (5.31). This line precludes the existence of a
positivefa - {(if)-channel cut set in the A, - T(ig)- Thus one
seest.from (5.31) that the second term on the right-hand side of

(5.30) velongs to (ILG. This completes the proof for case 1.

Case 2 (teG)

Suppose G contains t. The equation
IR o YO P '
't Ty= 2 Tas Teg * Z Tiee (5.32)
i P

is now needed.

Proof of (5.32)

Equafions (5.15a) and (5.15b) give

- < S o
- o= - ) K- ZI;+-L,IH"Z Aok
o i r i,f i S
* Ay, +.D.P. . . (5.33)
i,f

' Using (5.1), (2.13b), {(2.122), (2.93i), (2.9k), (5.14), and

(2.11a) one obtains
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I
3
i

= T RGEE - 2GR

L - ; L:—Qﬂ:']"—é;

]
[
1]
()
£
H]
0
+
lo
i
3
|

N
- Z K,-% -T, +DP. . (5.34)
£ —
Similarly, (5.36)
STy, Z K, -T -1, +DpP. . (5.35) s0 that, by (5.14), (5.1), and (2.142),
i ) : ’ _
' ©T = oot - af .-;A -4, +D.P (5.37)
By virtue of (2.9¢), (5.6), (2.12a), (2.12b), (2.9k), and itf ) (if) if " 4. S -

(2.92) one has Combining (5.33), (5.34), (5.35), (5.37), and using (5.17a)

and (5.18a) one obtains (5.32).

By virtue of (5.34), (5.35), and (5.37) one may write (5.32)

in the form
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-Tt i —F4+ Z Aif_ZAi-ZT +Z lf
ieG, iel ieQ i, el
r\—‘b
LR )
-G feG

et

. 'Z+2— Z\(T?if)’T(fif)"Aif'if)

1€G,f 1,feG  1€G,feG/

+ D.P. _ : (5.38)
where
By S =Tt Tt ) T L Ty o 039
ieG feG ieG,feG
Consider the term z: Kﬁf appearing in (5.38). Equations
1€G, feG .

(5.14e,f, and h) allow it to be written as

N - N -

; = J A, .

/ Aif / if
i€G, feG i€G, FeG, (if )eG

-

(i £ o
i Z (T(if) ey T Tany T Tif)
fE—C}(if)EG » )

ieG,

+ D.P. . : » (5.40)
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The term - T&f can be decomposed into two parts:

;

= Cip* Dip . . ) (5.41)

The term C;. is the part of - T&f in which the two lines i and

£ tough a single minus bubble, and Dif is the part in which the

two lines 1 and f do not touch a single minus bubble.
Substituting (5.40) into (5.38) gives an expression for

- 7;7 ﬁhat can be introduced into the expression (5.16b) for Fl'

Substituting this new expression for F, into (5.255) and using

(5.17a), (5.17b), (5.18a), (5.18b), and (5.41) one finds that Eq.

(5.24) takes the form
T+F2+F4+F5 = F, (5.42)

where

F, = D., = D (5.43)
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and )
= 7 _ . o _ l‘- i
1€G feG £eG, (if )eG
+ \ Tf. - Z T
_L () - _un
1eG,(if )eG ieG,feG,(if JeG
< — .
. ) ,
21,' | A ) Cip
1eG, feG, (if )eC i€G, feG, (if JeG
+ D.P. . ’ (5.44)

[The function DG is defined by (5.43) only for the present case
teG. See (5.49).1

According to (5.1)

Teiry :WTi(ii‘)fc T Taoer T Tigines T Dir

A trivial’conséquence of (5.45) and (5.43) [for the present teG] is
that )

P —

G ‘_ \) \
s L0 Taew o 4L T
(if)eG 1€G, (1if)eG
T T
- Tames © 0 L Tigieer . (5.46)

feG, (if )eG ieG, feG,(if )eG

(5.’45)"
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If one uses the representation (5.46) of F5, then, for
G containing t,
] \n(H)
T + F2 + F4 + F5 = :E: (-1) TH . (5.47)

HCG

Thus, the proof ofpropos1tion5,2 for Case 2 can be completed by
showing that F6_ belongé to C;LG.

T of the bubble diagramé B that correspond to

Inspection
the bubble-diagram functions F° of Fy lsee (5.14), (2.11), and

(5.41)] shows that all terms belong to (Q_G except possibly

Z Kif . (5.48)

1€, £eT, (if )eG

The function Kif is defined in (5.14d,g).  Introducing the
expression (5.11), and making use of the argument of Case 4 of
Proposition-5.1, one sees that this term is also in QZ,G. This

completes the proof of Proposition 5.2.

Proposition 5.3
(5.49)

where DG is defined by (5.46) if G contains +t, and by DG =0

if G does not contain t. - The quantities T and D are

defined for all sets G by

el G
T - ()t (5.50a)
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and

5 -5t _ L (5.500)

Proof It is sufficient to prove (5.49) for the case in which G
contains t. For the application of hermitian conjugation and a

‘sign change to (5.49) gives,

© .50 - SR

which is (5.49) with G replaced by G.
Applying this same transformation to (5.20), and performing

a summation, one obtains

- Z T(1r)

1eG,feC,(if)eC

y ( (i) = Tigar) T Tare +Ti(if)f’> .

ieG, reG, 1f)eG
(5.51)

Applying this same transformation to (5.14e) and (5.14f) one obtains’

f

Tiry © T(if)_Ti(if) (5.52)

and

5 - . . L .
- Taey = iy T Yiye | | (5.53)
Consider the case in which G contains t. If on the right-

hand side of (5.44) one substitutes for A&,

if the right-hand side of

v
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(5.14h) and then uses (5.51), (5.52), (5.53), and (5.41), one finds

that
Te * Z Z T(if)* Z fir
(1f)sh i€G,feG
* Z Tigie) ” y T(ir)e
i€G,(if )G - £eG,(if )eG
. Z i)t 2 Dip
1€G,eG,(if )eG 1€G, G, (if )G
I - (5.54)

Inserting (5.54) into (5.42) and using (5.47) one obtains the

required (5.49).

The Functiions MG

The function TG was defined by (5.12) as
AN _
= L(‘-l)n(“) T, (5.55)
HCG
The function MG was defined by (2.5a) as

/_’ (_1)““{)1\/1K ) o (5.56)
KCG

Fd
=
[H)
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According to (5.1)" TH = Mﬁ‘ except when H contains, for some
(1,£), onme of the four sets {(if),t}, {1,(if),t}, ((if),t,£};
{i,(if),f,t}. Hence, by (5.55) and.(_5.56') 1° :_MG if G does not
include t. if -G‘ does include t, then (5.47) together With the
definitions of F2 [see (5.25a)], F, ['see (5.39)], and Fg '[éee

(5.43) and (5.46)] show that

Since DG =0 if G does not inciude t and is equal to F5 if
G does include t, the above result, can be summarized in the

equation

oo MY e pt . (5.57)

Then (5.49) gives, for all G,

YRR R (ME)T ;o A (5.58)

which is (2.17).

Remark Let the G in (5.58) be the complete set E. Then (5.58)

says that ME, the function evaluated below all the cuts, is

M- 7 o= W= -t - (5.59)

This result is callea the Hermitian.analyticity property of the
scattering function. The more general propérty (5.58) says that the
fu}mtion. MG that corresponds to M plus the discontinuities that
take the function to its‘value below the set of cuts g in G, is
equal to the functiop M plus the discontinuities that take ‘the

function to above the set-of cuts g in G. The énalogous result
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with T in place of ‘M does not hold in general, as is shown by
(5.49).
The funetion D° is defined to be zero if t lies in G.
For t in G. it can be expressed in the form (5.43).‘ Thus for the

set of 26,018 values of G defined by (2L25)_bne finds

i =% =0 .. . (5.60a)

In these cases one has, by virtue of (5.57) and (5.58),

W - & = 1 ~ (5.60b)

The analytic properties of these functions Mg are discussed in
section VI. It is already evident that these functions Mg satisfy

the properties (4),'(5), and (6) described in the introduction.

VI. ANALYTIC PROPERTIES OF THE MG

A. Geometric Representations of Landau Diagrams

The proofs of analyticity properties given in this section
are based on the existence of two different geometric representations

of Landau diagrams. These iwo representations are discussed in this

subsection.
Each internal line Lj of a Landau diagfam.has a well-
defined direction: Lj is directed from the vertex Vr with

= -1 to the vertex Vr with e, = +1. This direction is

€
Jr jr

the direction of flow of positive energy. An arrow is often placed
on Lj to indicate this direction, and Lj is said to point in
the direction of this arrow, i.e., from the vertex Vr with Ejr = -1

to the vertex Vf with Ejr = +1. The external lines L. are also

P ¢

directed: each incoming line is directed toward a vertex Vr with
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Ejr = +1; each outgoing line Lj is directed away from a vertex
v, with Sjr = -1. [One can introduce trivial two-line vertices

to take care of the:'trivial cases in Which a line goes straight
through the diagram without touching any nontrivial vertex. )’

A The first geometric representation of a Landau diagrém p°
is the space-time representation diécussed in section IV. Each
space-time representation of o’ ~ represents a particular solution.of
the Landau equations corresponding to DO, and corresponds to so@e
particular point p on L(DG). In this representation each'internal
line Lj of D0 is represented by a space-time four-vector
AJ = aj pj. The Landau‘equation pj0 >0 entails‘that Aj point
in the direction of increasing time if oj is plus, and in the
direction of decreasing time if oj is minus. That is, the vertex

.

V. with €. =+l 1lies later than the vertex V_ with €, = -1
r jr r r

if Gj = +, but lies earlier if oj = -
These conditions on the directions of the four-vectors A, -
impose a partial ordering requiremeﬁt on the vertices of the Landau
diagram p°. In particular, for any positive-o diagram D' with
nonempty L(D+) the vertices must satisfy fhe partial ordering
condition that the diagram cén be drawn so that each internal line
segment Lj points from left to right. Likewise, for any negative-a
diagram D~ with nonempty L(D”) the vertices must also 'satisfy the
partial ordering condition that the diagram can be drawn so that each
internal line segment Lj points from left to right. To see this,
one simply orders the vertices of the Landau diagram D+ from left

to right in accordance with the Increasing time of the vertices of

+ . -
the space-time representations of D , and orders the vertices of D
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from left to right in accordance with decreasing time of the vertices
of the space—fime representations of D .

' Consider now any bubble diagram B. By definition this
diagram can be drawn so that e&ery (expiicit) internal line runs from
the right-hand side of one bubble to the left-hand side of a bubble
that stands completely to the right of the first bubble. Thus each
liné of B can be drawn as a line that points from left to right.

Consider next any DG < B. If one orders the bubbles of
B in the way just described, so that all explicit lines of B

b b

o° C B as a small diagram 1lying completely inside the corresponding

point»frém left to right, and then draws each D' and D_ of

bubble b, with all of its internal lines pointing from left to
right, then all thellines of DOC: B will point from left to
right.. [See (4.7b)]

The representation of a ’’c B asa diagram in which
every line LJ points from left to right is called a flow diagram:
positive énergy flows always from left to right in a flow diagram.
This uniformiéy of directions of the lines of a flow diagram is to
be contrasted with the nonuniformity of directions in the space-time
representatioﬁs of DO. In the space-time representations the
vectors Aj . point in the direction of increasing @ime if o, is
plus, and in the direction of decreasing time if Oj is minusi For
any D0<: B it must be possible to draw both a flow-diagram
representation of DO and also a space-time representation of Do,
if L(DO) is nonempty.

The const?aints imposed on DO by the existence of the flow
diagram representation can be expressed in terms of the concept of a

flow line.
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~ Definition 6.1 A flow line is an ordered sequence of internal line

segments Lj of a landau diagram such thaﬂ the leading end point
(ejr = +1) of any Lj in the sequence except the last one is the
trailing end point (Ejr = —1)' of the next one in the sequence.
Thus positive energy flows always in the same direction along‘a flow A
‘line: it flows from thg trailing vertex of the first Lj of the
sequence to the leading end.point of the final Lj' vThesé two
vertices are called the initial and final vertices of the flow line.
In the flow diagram representation of DC the final vertex of any
flow line sténas to the right of the initial vertex of that flow line.
Definition 6.2 A flow line v, > Vs is a flow line with initial vertex
r

V_ and final vertex Vs'

Definition 6.3 A maximal flow line is a flow line that is not a

proper subsequence of any other flow line.

B. Space-time Ordering Theorem

vTheIproof of thé analytic properties of MG is based on a
theorem proved in this subsecfion. This theorem depends on two
lemmas.

Lemma 6.1 Let Vr and VS' be two distinct'verticeé of a connected
‘Landau'diagram D. Suppoée X 1is a set of lines of D such thaﬁ the
cutting précisely once of each line of X separates D into two
disjoint diagrams Dr and Ds’ where V? lies in Dr and .Vs lies
in DS. Then there is a subset X~ of X such that the cutting
precisely once of each line of X°© separates D 1into two diagrams

. Drc énd DSC such that‘ Drc is a connected diagram that contains

Vr’ and ch is a connected diagram that contains Vg, and the two

diagrams Drc and ch exhaust D.
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Proof The cutting of the lines of the set X separates D into a

. 1
number of connected parts. Let DSc be the connected part containing

V. Let X
S

s be the set consisting of the lines of X that lie

4

partly in DSc . Let X% be the subset of XS that consists of each

line . Lj such that the cut in I,, can be reached from Vr by a
J

path in D that is not cut by the set of cuts in the lines of XS.

" This set X° is the desired set: cutting precisely once each line

of x° separates D into the two connected parts Drc and DSC.

It is clear that cutting the lines of x® disconnects the
part of D that is connected to Vr from the part that is connected
to Vs. ror any path in D from Vr to VS would have to enter
Dsc' at the cut on somé line of XS. But the first such cut reached
by this path must be a cut on a line of Xc. Thus the cutting of the
lines of Xc definitely separates D into. at least two connected
parts Drc and Dsc. What must now be shown is that these two parts
exhaust D.

Consider the diagram D. cut on the lines of xC. Suppose
there is 1 point x that is not connected in this cut diagram to
eipher. Vr or Vs' This point x is connected in the original
connected diagram D .to the point Vr by some path P.. Since x
is, by azssumption, not connected to Vr ‘in the cut diagram the path
P must pass through the cut in at least one line of X%, Iet C be
the first cut in X° reached on the path P from x ' to Vr' Then
x must be connécted in the cut diagram to one side or the other of
the cut C. But each cut in the lines of X° 1is comnected in the
éut diagram on one side to VS,~since x° is a subset of XS and

on the other side to Vr’ since each cut of x¢ can be connected to
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Vr by a path not. cut by any cut in XS. Thus x must be connected in

the cut diagram to either Vr or Vs’ contrary to the original
assumption about x. Thus no such x canvexist. This means that the
two connected parts Drc and DSC of the cut diagram exhauét it.
Lemma 6.2 let V, > V. be a flow line of a flow diagram 0°. Let

X be the set of lines of D° that are cut by a plane T that lies
perpendicularvto the flow axis, that lies between Vr and Vs’ and
that téuches no vertices of D°. Then the subset X° of X of lemma
6.1 is such that each Lj- in X% has its leading endvpoint in DSc
and its traiiing end point in Drc.

Proof The plane T cuts D° into the parts D. and D_, where D_
lies to the 1left of T and DS lies to the right of T. The
construction in lemma 6.1 ensures that DSC' is a subset of DS.
Hence Dsc' also lies to the right of T. Moreover, X¢ is a subset
of the set XS of 1ihes of X +that touqh DSC,. Thus every line of
Xc touches DSC', and hence has its leading end point in Dsb', which
is contained in DSC. Thus the trailing end points of the LjeXc must
lie in Drc.

Definition 6.4 Let 'Vr and VS be two vertices of a Landau diagram
EP. "Let N be a plus or minus sign. A Vr'g VS cut set of Do

is a set of internal lines of D0 such that D’ is separated by

the cutting pregisely once of every line of this set into two
connected diagrams DO(Vr) and DO(VS), where 'V lies in DO(Vr)

and V_ lies in DO(VS), and such that each line L. of the cut

set points from Do(Vr) to DO(VG), and has a sign Oj =nor *

-9/ -

Theorem 6.1 Let B be any connecfed bubble diagram. Let D0 be
any Dgc:: B fhat has a flow line Vr * Vs' Let n be either plus
or minus. Suppose Do- has no Vr 3 VS . cut set. Then for every
space-time representation of D0 the vector§ w, and Wy to the
vertices Vr - and VS satisfy 7 7

wy - W, Sl s (6.1)

where v'ois the open forward light cone and V  is the open backward
light cone. '

Proof Suppose n° is plus. And suppose that the points Vr and Vs
both lie inside some single minus bubble b (i.e., they are vertices
of the D; that replaces b 1in the consﬁruction of DO<: B). In
this case the flow line Vr > Vs ~must consist wholly of line segments
Lj thgt also lievinside this minus bubble, and hence have signs

Oj = -, ‘This is because the condition that the bubblés of B be
partially ordered precludes the possiblity that a flow line Vr * Vs
begin and end in the same b, but pass outside b. But if the
lines Lj of ‘Vr b Vs— all carry minus signs then the Landau

equations that define the space-time representations of Do entail
tﬁat each of the cofresponding Aj point into the backward light-cone.
Thus, by virtue of the ordering conditions on the Lj that make up a
flow line, condition (6.1) will be satisfied.

. Suppose, on the other hand, that Vr and Vs do not lie in
tﬁe same minus bubble. Then one can construct a Vr 3 VS cut set of
D?. To do this, simply draw the flow diagram p° by first making all
the minus Bubbles b of B extremely tiny, and then replacing each

- +
tiny minus bubble b by a tiny Db' The Db are not made tiny.
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Since the minus bubbles are tiny; and Vr‘ and VS do not'lie' inside
the same minus bubble, one ean draw a plane T that lies pérpendicular
to.the flow axis, that lies between Vr and VS, and that does not
touch any vertex of D° or any line that lies inside any of the tiny
minus bubbles. The X® "of lemma 6.2 is then a Vr % Vs cut set of

a
"and (6.1) need not be prbved. This completes the proof for the case
n = +. For the case ﬁ = -1 the proof is cqmpletely analogous.

C. Skeleton Diagrams

Each flow diagram D has a unique skeleton diagram DS, which
is constructed as follon. Consider the set of maximal flow lines of
D. Regard as equivalent any two of them that fouch exactly the same
set of external vertices. (External vertices are vertices that touch
external lines.) Draw a diagram consisting of the external vertices
of D, the external lines of D, and one internal (flow) line . %
for each equivalence class of maximél flow lines of D. This line £
is drawn so that it touches precisely those external vertices that are
touched by each member of the corresponding equivalence class. Now
delete any line £ that touches a set of external vertices that is a
proper subset of the . set of external Verticés touched by any other |
line R&'. The resulting diagram DS called the skeleton of D.

Each flow diagram D having three incoming lines and three
outgoing lines has a unique skeleton diagram Dy that is one of the 76
skeleton diagrams shown in figi 6.1.

In constructing these diagrams use is made of the stability
requirements, which demand that each nontrivial vertex have at least

two incoming lines, and at least two outgoing lines. Each maximal

D”. Thus the assumption of the theorem is not satisfied in this case,
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Fig. 6.1. The 76 skeleton diagrams for 3 -+ 3 processes. The indices
i and f run over (1,2,3), and (4,5,6) respectively. The number in
square brackets below each figure is the number of skeleton diagrams

represented by that figure.
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flow line must therefore begin at a vertex that has at least two
incoming external lines, and must end at a vertex that has at least

two outgoing external lines.

D. Path of Continuation (Off-Mass-Shell)

The gim of the present subsectionvis to construct for each
cof the_26,018 boundafy values MG and for each possible singularity
surféce L(Do) of Mg a path of contiﬁuation that continues the
function .MG into itself around 'IKD&). H§Wever, the domplicafions
arising from the mass-shell constraints are ignored. When these
constraints are ignored the rule of continuation can be formﬁlated so
that it depends only'oﬁ G and on the skeleton of DO. And for a
given skeleton DS the.rule depends on G only through the question
of whether cértain critigal g;é associated:with DS lie in G
or 6. These critical g's are those that label the critical -
channe}s of DS, which are,how described.

For each skeleton Ds there isba unique set of critieal
charmels g. The critical channels g COrresponding to a given Dy

are the channels g such that DS can be separated, by cutting some

of its internal lines £, into two connected parts 'DS(Jg) and Ds(jé)’

whefe Ds(Jé) contaihs all the extefnal lines jng, and Ds(jé)
contains all the external lines jejé. Moreover, all the cut lines £
run from Dg(jé) to Dg(Jg). The critical channels corresponding

to several skeletoné DS are indicated in fig. 6.2. ‘[For each g the
sets Jg aqd Tg must be sglected so that Jé contains at.least two
indices f, and ﬁé contains at least two indices if Otherwise the

> conditions given above cannot be satisfied.|
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(c)

Fig. 6.2. The critical channels g of several skeleton diagrams D
: s

are indicated by lines g that separate DS into the two parts

Ds(jé) and DS(Jg).

For any given G a set of signs ng is defined as follows
[see (2.25)}: the sign Ng is plus if g 1lies in G and is minus

if g 1lies in G. Symbolically, ng can be defined by the set of

conditions
n . .

geGE& (for every g e E) “(6.2a)
where

., . .

G = G , , (6.2p)
and

G =G . : (6.2¢)

The rules of continuation to be constructed here apply only
to the 26,018 boundary values MG defined by (2.25). For these

functions one has, according to (5.60),

[
[@]
*—3{!j i

(6.3)



Thus MG ¢an, by virtue of propoéition 5.2 and eq. (4.14), be written

in two alternative forms:

Z P, | (6.4%)

G
Be@+

e z P, . (6.4-)

Be @Y

e

and

where the notation @E = @ G and {B S’ = éG is used. The
sets @ ? and 4’;? have the following properties: no Do < CBS'
has a positive-o g-channel cut set for any g in G; no D0 < 63 9
has a negative-a g-channel cut set for any g in G.

If one introduces the notation of (6.2) and writes .+o
for positive-a and -a for negative-a then the properties of 63 ?

and 63 G can be combined into the following statement:

For any G and g 1let n = ng: Then no D° [ 63 g has an no

g-channel cut set. '

The rule for continuing W past any (p%) will be derived by
combining this property of 'G? ? with theorem 6.1, and then using
the structure theorem described in section IV.

Consider any fixed -G. Let DS be the skeleton shown in
fig. 6.2(a). The rule for continuing MG(p) past all L(DO) that
correspond to p° having this skeleton Ds will now be derived.

The diagram Dy li.e., fig. 6.2(a)!l has only one critical

channel 'g, namely the channel g = t. Let n be the nt defined in
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(6.2). Let Me be representeﬁ by the formula (6.4n). Then according
to the statement jusi given of property (ANiZL no D° < QE g has
an no t-channel cut set.

This result implies that the suppositions of theorem 6.1 are
valid for every B é dzﬁ and every Dcc: B such that Dd " has the
skeleton D53 provided Vr- and Vé are identified as the initial and
and final vertices of D respeétively;

This is because any’

n . .
Vr - VS cut set of D0 is also an no t-channel cut set of D0

[ See (4.12)f Indeed, since p° has only the two .external vertices Vr

and Vs shown in fig. 6.2(a), any cutting of the internal lines of
DO that separates D’ into two parts DO(VT) and DO(VS) with v,
in Do(Vr) and V_ in 'DO(VS) must also separate 0° into two
parts Do(ﬁé) and DO(Jg) such that Do(jé). contains all the
external lines jejé and DO(Jg) 'contain; all the external lines
jng. In faect, Do(jé) would be identical‘t?. DO(Vr), and DO(Jg)
would be identical to EP(Vé).

Since the ‘suppositions of ﬂheorem 6.1 hold, the conclusion

holds: eq. (6.1) is true for all space-time representations of all

that have as skeleton the D_ of fig. 6.2(a), with v,

.and Vq identified in the manner described.

According to (4.6) and (6.4n), the singularities of e
are confined to the union of L(Do) over p° < d? g. Suppose p
lies on L(D°) for DY c;;ﬂgg only if p° has skeleton Ds'
[This supposition will be removed laterl Then, by virtue of the
conclusion stated in the preceeding paragraph, eq. (6.1) holds for

all w 1in the set

*
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p) Do) : . (6.5a)

G

' Be .
n

where Qg(p) is defined in (4.8). Thus if ¢(p) is defined by

o(p) = ﬂ o) | - (6.50)
o

Be 3

n

where CB(p) is defined in (4.9), then (6.1) and (4.9 ) show that

7

C(p) contains all points q that satisfy, with €p +1 and €4 = -1,

| -n
€.q, = = €.q, Vo, .
L.53% 41, i%° (6.6)
jed, . Jed,

But then, according to consequence (2) of the structure theorem, which
is described below (4.9), all of the (finite.number of ) bubble diagram
functions F° that occur in the expression (6.4n) are boundary values
of functions that éreanalytic at all mass-shell péints sufficiently near
p for which q satisfies (6.6). [Strictly speaking, the cone of
analyticity is not v itself but rather any cone that is contained with
~its closure, apart from the apex at q =.0, in ,V—n. This slighf
diminuation of all cénes of analyticity will always be taken as
understood in ‘the discussion that follows. )
This means that MG can be continued about all L(DO) »
that correspond to Dd having the skeleton DS of fig. 6.2(a) byv
-means of a small detour through the region (6.6).
Next let DS be fig. 6.2(b). The rule for continuing any

fixed MG past all L(DO) associatedeith this Dg is now derived.

s
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Consider first the critical channel i of Ds‘ let n be
n;, and use the répresentation of MG given by (6.4n). . Let the B
of Theorem 6.1 be any Be d}g, and let D° be any D°& Be 635
having SkelefOn Ds' Finally, let the vertices Vr and VS of Theoren
6.1 be the vertices.of fig. 6.2(b) that stand just to the left and
just to tﬁe right of the i-channel line of fig. 6.2(b), respectively.
[i.e., V, is the left-most vertex of fig. 6.2(b), and V, is the
vertex at which the external line terminates. ]

We know that no. o’ oy 63 hag an no i-channel cut set.

i
G
n
e s . . . (6] : G .
This immediately implies that no D 63 n having skeleton Ds
has a Vr 2 VS cut set in which the last two vertices of fig. 6.2(b)

) n
lie in DO(VS). And the possibility of any other V. =+ V_ cut set is’
ruled out by the existence of the flow lines represented by the two
right-most lines 2 ‘of fig. 6.2(b): these lines would run the wrong

way across any cut separating a Dc(Vr) containing Vr from DO(VS)

containing VS if either of the remaining two vertices were to lie

.in 'DO(VT). This is shown in fig. 6.3, which is explaihed in-the

text that follows.

The possible Vr 2 VS cut sets can be examined by plécihg
Vr and V; on the left- and right-hand sides of a vertical line, and
placing the other vertices on the two sides of this line in all
possible combinations. There can be a Vr 12 Vs with the parts
DO(Vr) and DO(VS) of D° containing the external vertices lying,
respectively, on the left- and right-hand side of the vertical line
only if all the lines of the skeleton diagram run from left to right
across the vertical line. Only figure (a) satisfies this condition.

However, this way [fig. 6.3(a)} of achieving a Vr 13 VS cut set of a



~103- : N ‘ ~104- ‘ : N

For each of the three critical chennels g associated with

fig. 6.2(b) define

AE

n

€
|

€
o

s T 2 _ i (6.7)

g g

where W and w.” are the four-vectors to the vertices ng and

Vrg “that lie just to the right and just to the left of the line g

in fig. 6.2(b) corresponding to channel g. (For example, W v and
wrt are the vectors to the vertices lying at end»points of the lines
f and i, respectively.) Then the property of d?ii for n=n_,

together with Theorem 6.1, shows that; for each critical channel g

of D,
S .

-Nn
ey &

(6.8)

.
(<) (d .

for every space-time representation of every o’ f CB g having as

n : : .
Fig. 6.3. Diagrams for examining possible Vr > Vs cut sets. g

skeleton the D, of fig. 6.2(b).

. ‘ (o]

. ‘ For any D  having as skeleton the D_ of fig. 6.2(b) the
Do e CB g having DS as skeleton is ruled out by the property of s g
@ G function occurring on the right-hand side of (4.9a) can be written
on°

. ' . in the form
Since the suppositions of Theorem 6.1 hold, the conclusion

) . g . oG .
holds: every space-time representation of every D & Q?n ~that Y:" )
. ' - Q. €. w,_ = qg 28 R (6.9)
has D_ [fig. 6.2(b)] as its skeleton is such that the vector . d Jrr [:ﬁ
5 ' ' jeExt g
A= Wy - W, lies in V. Here Wy and w, are the space-time - reVer

-

vectors to the leading and trailing vertices V_ and V_ of 4. . ) ) ]
s r where g runs over the critical channels associated with fig. 6.2(b),

and qg is the imaginary part of the momentum-energy that runs along

Essentially the same argumept can be made for. the pair of

vertices lying on either side of the t 1line in fig. 6.2(b), and also

. the line 2 of fig. 6.2(b) that is cut by the line g corresponding
for the pair of vertices lying on either side of the f 1line. The

to channel g. In particular,
results of the three similar arguments can be summarized in a

systematic way.

-
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Q" = QY * At~y (6.10a)

L

@ % 9 *tagtq = 9 ta,tay, (6.10b) -
and

P . .

T = 9 *ta5* -9 (6.10¢)

The various q° are indicated in fig. 6.4.

N g
“rg

TEN

Fig. 6.4. Each qg can be considered to be the imaginary energy

carried along an open path that contains only one internal line.

We shall now temporarily ignore the mass-shell constraints,
and suppose that our functions MG can be extended some small finite
distance offrmass-Sheil, and that the only singularity surfaces
encountered in some Sufficieﬁtly small néighborhobd of any real mass-

shell point p are thevsingularity surfaces obtained in the mass-

~ shell theory. If continuations through these off-mass-shell regions

>

are thus alloWed, then the rules of continuation can be stated in.a
simple way, which will be described next. The complications associated
with the restriction to the mass shell, and with the possible
conspiracies among singularities éorresponding to different skeleton

graphs will be consideredin the following subsection.

»
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The results (6.8) and (6.9) together with the 1g rule
stated below (4.9) show that if g 1labels any one of the three

. G
eritical channels of Ds and if p 1ies on L(DO) for D° 63 n
’ g

only if D0 has skeleton Ds’ then MG is the boundary value of a

function that is analytic near p in the q-space region satisfying

-N
Fev 8 (6.11a)

and

(6.11b)

where g' runs over the critical channels g' # g This equation gives
three different regions of analyticity, one for each critical channel
of Ds' 'The boundary values are all the same (distribution) MG

Thus the generalized edge of the wedgé theorem {19] implies that the
functions in theée three domains are parts of one single analytic
function that is analytic ﬁear p also in the q-space region restricted

only by

-n
€.y &

q all critical g

(6.12)

Equation (6.12) gives a domain through which MG can bé
continued (off-mass-shell) past all singularities surfaces L(IF)
of MG that correspond to DO having as skeleton the diagram DS'
shown in fig. 6.2(b). Essentially the same argument applies for any
skeleton diagram of fig. 6.1 that does not have clcsed loops

[i.e., the Ds of figs. 6.2(a)-(k)}. For any given one of these tree
diagréms DS thé qg associated with each eritical channel g of

D_ is a well-defined combination of external vectors, and the domain
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‘This completes the derivation of the off-mass-shell ie

rules associated with the various individual skeleton diaérams.

E. Path of Continuation (On-mass-shell)
- . - . - o

~ The rule obtained above for continuing MQ past L(D‘) is
simple because it prescribes a set.of allowed detours that.is indepen-

dent of the particular point p' on L(Do). However, the rule is
R

deficient because in many cases the set of allowed detours contalns

— -

\‘e
none that remain on the mass shell. Moreover p0351b1e conflicts

between the rules associated with dlfferent skeleton diagrams have'
not been cons1dered: it 1s conce1vable that a set of p01nts.1y1ng7

on surfaces (D°) associated with dlfferent skeleton dlagrams
. ‘ : . -
might conspire to block the contlnuatlon These two_deficiencies

. u -

_ can be remedied oy ) cons1der1ng paths oﬁ»contlnuatlon that depend:
on the real point-- p~ around Wthh the contlnuat1oa takes place
- i s
To derive this on—mass—shell contlnuatlon we shall need
one aosumptlon that goes beyond the usual general S—matelx.;r1n01ples
This asqumpt1on is roughly that dlfferent Landau surfaces do- ;ot

1 .o - ~.‘

coincide "by a001dent".

To formulate this- assumptlon pre01sely 1t is convenlent to

fa L.

~ introduce three deflnltlons

Two space—tlme representations r and r' are said to be

externally similar if and only if every eXﬁernal trajectory 1ipe AN
'of‘ r' can be brought into coincidence witﬂ the corresponding line
Qj. of r by means of a eingle (positive or negative) scale change
and a single overall space-time translation of r' relative to r.

The external tragectory line Zj is The space-time line that contains

The external trajectory associated w1th the external variable p € P-

- -112-

Two representationS‘can_oe externally similar only if they generate
the same point p = (pl,~--,pn),/since only then are the corresponding
lines &5 and 23 parallel.

Two sﬁaceftime representations r and r' are said to be

éxternally equivalent if and only if (1) the two representations are

externally similar, and (2) the transformation that brings every

pair of lines Rj a%d ‘23 into coincidence also brings the correspond- + .

ing pairs of external vertices vy and vj in coincidence.

-

o

A major part of an analyticvsubvariety‘ V 1is a subset of V
that lies in no analytic subfariety V' of dimension less than that

of V. [An analytic subvariety V .is a surface that can be defined

locally as-the zeros of‘a‘finite set of (locally) analytic funetions:

i.e., for each point p._ in ihe imbedding-space there is a neighborhood
U of p and a finite.set of functions fl(p),---,fr(p), analytic in
U, such that the subvariety V vcoincides in U with the simultaneous

zeros_of all of the functions,_fl(p),---,fr(p). If this set of

functions is, .for every U, the saﬁe-fixed set of polynomials then .V

is‘calleo an algebraic.subvariely.]:

_'SupboSe X is a major part of: some codimension-one analytic
subvariety .Z of the mass shell (restricted by momentumeenergy -
conservation) ﬂﬁ? ; i.e., X 1lies in an N-1 dimensional analytic

subvariety Z of CV?L but in no N~2 ‘dimensional analytic subvariety

. . : o Dy (0]
of i?ﬂ, where N = 3n - 4 is the dimension of '7Q(. let D° and w
DO' be two Landau diagrams. Suppose for each point peX there is a

- . . . gt
representation r(p) of p° andea representation r'(p 2 of D
such that r(p) and r'(p) are two externally similar representa-

tions that generate the same point p.
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Situations of this kind occur ofteni A simple example is one
in which Dovis a normal threshold diagram D+, and DO' is obtained
from D; by joining together at a third ﬁertex some of the internal
lines of D;. These two Landau diagrams p° and DO' generate the
same normal—threéhold singularity:surface sg = <:Z: ﬁi)z. A slightly
more complicated case is obtained by adding to o’ = D; another .

‘positive-a internal line, together with a negative-a internal line,
associated with the same mass, that runs in the opposite direction.
This diagram Dol also generates the same surface sg = (:2: mi)z.

There are'many other ways in which a major part X of some
codimension-one analytic suthriety Z» of f?7z can be generated by
two different sets of externally similar representations. But in all

* known cases the two representations r(p) and r'(p) that generate

the same point p are, for almost all peints " peX, not only externally

similar, but also externally equivalent. Thereason is that different
representationé that generate the same surface X can bé constructed
by making changes in the internal structﬁre that do not affect the
extefnal structure. But if the external structure is substantially
lchaﬁged then the equations are essentiélly different, and the surfaces
cannot be expected‘to coincide. -

It is probably impossible to prove that a major part of
codimension-one analytic subvériety of 972 can never be ‘generated by
two sets of externally similar representations r and r' that are
not externally equivalent. For glthougﬂ the. equations that must be

satisfied are highly overdetermined, there seems to be no way to rule

out the possibility that in'some case the extra equations are satisfied

- e -J‘r
purely by accident. However, we dopbelieve that such an accident ever
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actually happens, and shall assume that it does not. Specifically, we
shall assume the>following: Suppose D0 and DO' are two (possibly
identical) Landau‘diagrams and that for every point p in some set
Y < L(DO) fj L(DO') there is a pair of representations r(p) and
r'(p) such that (1) r(p) is a representation of 0° and rt(p)
is a representation of DOZ {2) r(p) and r'(p) both generate p,
(3) r(p) and r'(%) are externally similar, and (4) r(p) and
r'(p) are not externally equivalent. Then Y contains no major part
X of any codimension-one amalytic subvarf%ty Z of 7?2; i.e.,
Y () z is confined to an analytic subvafiety of ‘77] of codimension
two (dimension N-2).

This éssumption; called assumption A, is further.discussed
in appendix A, where it is used to derive the following result: Let
'49 be the set of all Landau diagrams D% such that for some G, n,

and B.C @g the condition D¢ B holds. That is,

i . ° c CB g for some G and n} . (6.17)

I

Yol

Then the-set_

[
"

U- uo°) v (6.18)
p’e B

iies.in a codimension-one analytic subvariety VL of %ﬁz. [For each
U thevdefining functions fl(p),---,fr(p) of V, are in fact,
polynoﬁials, but this result is not needed.] Furthermqre, it is shown
that there is a codimension-two analytic subvariety W of fKKL such

that each point p in L-W has the following three properties:
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.(a) There is a neighﬁorhood U of p sﬁch that L {)»U is a
real codimension-one analytic submanifold of %?Q. This means, in
partieular that the surface L' near p is a smooth codimension-one
surface wiﬁh a well-defined smoothly varying normal.

(b) 1If OQ is the set of all representationé Qf'all 0’ d),
then all of the .r(p) 3 62‘ that generate p are externally
equivalent.

. (¢) If r(p) e CEL generates p then the external trajectory
lines QJ of r(p) do notball pass through a common point; i.e.,
there is no space-time point v that lies on every external'

trajectory line lj of r(p).

The union of'all‘of the singularity surfaces of all of the
functions MG is confined to L. Hence the union of all the
singularity éurfaces of any individual MG is confined to L.
The set W is a codimension-two analytic sueVariety pf ??72, and
hencebit can not block the analytic continuation. Thus it is
sufficient to prove that each MG can bé continued past L-W.

Inspection of (4.9) shows that the 1g rule at any point

5

p is determined by the loeations of the external vertices of all of

the representations r(p) that genefate. p. It will be noted later
.thafnthe condition on fhe domain of analyticity C(p) ~that arisee
from any individual r{p) ¢ 62 that generates any peL-W defines
a full uéper—half plane of énalyticityvin appropriate mass—shell
variables. Thﬁs it ie sufficient to show that the

" conditions on. C(p) associated with all of. the different

representations that generate any p £ L-W . are identical.
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Property (b) ensures‘that, apart from positive or negative
scale changes and overall space-time translations, the location of
each individual external vertex Vj is the same in every represen-
tation r(p) € 62 that generates any fixed p € L-W. The positive
scale changes and the overall space-time translations do not effect
the ie rule. Thus, in view of (6.4), it need only be shown that -
for each point p é L—W, and each G, there is a sign n such that
if 02 g is the restriction of Ja to representations of diagrams
D0 < 63 g, fhen no two r(p) e 52 g that generate p are related by
a negative scale change, where a negative scale change is a scale

change that changes the signs of all of the difference vectors

Let 02 g(Ds) be the set of all representations of all
diagrams 0’ = 63 g that have skeleton Ds' It was shown in thé
preceding subsection that for each G and DS there is a pair of
external vertices Vr and VS and a éign n such that for all

representations r({p) = ozg(Ds) the following condition holds:
w -w_ e V" . (6.19)
s T _ :

This condition is not maintained by a negative scale change. Thus
for any G, DS, and pel-W no two of the externally equivalent

G, .s ) ' .
r(p) € GZ'H(D ) that generate p can be related by a negative
scale change. This result would complete the proof, were it not for .
the possibility of conspiracies among the singularities associated
with different skeletons Ds'

To complete the proof it will now be shown that for each

G and pel-W there is a pair of external vertices Vr and VS
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and a sign n such that (6.19) holds for all representations
r(p) € ng that géherate p. This condition precludes the
possibility that any two of the externally equivalent r(p) ¢ 62ﬁ
that generate p are related by a neéative scale change. Therefore
all of the representations r(p) € GQ g that generate p give
exactly the same constraint on the region C(p) of analyticity.

~ To obtain this result let p be any fixed point in L-W.
Considef all of the reﬁresentations r(p) € 62 that generate p.
' .The six external Qertiées Vi of any such representation lie on a
set of n' space-time points,vwhere n' = 2,3, or 4.. [The case
n' = 1 is ruled out by pfoperty (e).]

If n' =/ then each rebresentation r(p) e [ that

generates the fixed p must be a representation of a DO

e @
_ that has one of three possible skeletons. Apart from trivial
modifications these three skeletons are the three indicated in fig.

6.8. The different lines in this figure are identified by their

slopes. The vertical lines can be either initial or final.

Fig. 6.8. The thfee skeletons for the case n' = 4.
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Consider first the box diagram DS of fig. 6.8. It was shown

in section VI.D. that for each G the.skeleton diagram DS

has a preferred line Vr -+ VS. Let this préferred line be, for .
example, the upper left-hand internallline of Ds' Then the vertices
Vv, -and Vg are indicated by the heavy dot and little circle,
respectively. In the figure-the common signs ng of the two lines®
g that cross the preferred iine are‘shown as plus. Equation (6.14)
gives (6.19), with 1 . equal to_these two common signs ng. For
the second skeleton in fig. 6.8 this same condition (6.19) holds as
a consequence of (6.8), and the condition that the sign n be equal
to these two common signs ng. For the third skeleton the same
condition (6.19) holds for the same reasons, togethér with the fact
that the sum of two vectors in V' also lies in V ". Thus all of
the r(p) ¢ &Zﬁ that generate this arbitrary n' = 4 -point p
satisfy the same condition (6.19). Hence no two can be related by
a negative scale change.

| Consider next the case n' = 2. The possible skeletons are
shown in fig. 6.9.

Let bn be fixed to be the sign ng associated with the

channel g defined by the first of these diagrams. In the figure
n 1is shown as plus. The various signs ng of the lines g 1in

the second (i.e., box) diagram are then fixed by (2.25), together

'with the requirement that the line joining the two heavy dots cannot

be a preferred line, nor can the line joining the two little circles
be a preférred line. For with every preferred line there is a
light-cone condition (6.14), and such a condition would contradict
the n' = 2 condition that the two vertices represented by heavy

dots lie at the same space-time point, or the analogous condition
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4 £ F * \

Fig. 6.9. The skeletons for the case n' = 2.

on the little circles. The remainihg two lines of the box are then
the two preferred lines, and the condition (6.14) associated with
them gives the same condition (6.19) as was obtained from the first

skeleton.

For the next three diagrams of fig. 6.9 the condition (6.8)
immediately gives the same condition aé was obtained from the first
" two diagrams; For the final diagram the n' ; 2 condition that:the

two vertices represented by heaVy dots lie at the same space-time
point, and the similar condition for the little circles, togeﬁher
with (6.8), fequire that the signs associated with the lines g be

alternating, as shown. The upper case gives the desired condition
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(6.19). The lower case contradicts (2.25). Thus for all n' =2
points there 1s a common condition'(6.19), and a negative scale
change is again precluded.

For the n' = 3 points similar arguments work.‘ There-ére

essentially two cases. The first is shown in fig. 6.10.
. . » - .
+ + ' + é
) +

Fig. 6.10. The skeletons and signs for the first case -n' = 3.

In this first case the two signs in the first diagram are the same,
say plus. In this casé the Vr and Vs are‘chosen to be the heavy
dot- and little circle respectively. Then the remaining three

diagrams show;vby arguments essentially the same as those given above,
that the same condition (6.19) holds in all four cases.

The second n' = 3 case is shown in fig. 6.11.
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APPENDIX A. PROPERTIES OF LANDAU SURFACES
Several properties of Landau surfaces .are derived in this
appendix. A principal result is that each landau surface L(DO)

lies in a codimension-one algebraic subvariety of ?71, where CYYz is

the 3n - 4 = N dimensional mass shell restricted by momentum-energy

conservation. Assumption A of sectionVI.Eis used to obtain this

, v + -+ o+ - - ' result. v _
- >—}—4L—T_< 7 >—H—$_K ; , _ An earlier proof that Landau surfaces lie in algebraic

varieties has been given by Chandler [20] and Kershaw [21]. However,

: in those works the Landau surfaces were defined by the o-form of
Fig. 6.11. The skeletons and signs for the second case n' = 3.

the Landau equations [22). These a-form equations are not equivalent

) to the original Landau equations, for they have extra'solutions;
In this case the two signs in the first diagram are opposite, say

) which arise from points in o space where a certain discriminant
-plus and minus as shown. The signs in the box diagram are then

. C{a) vanishes. These extra solutions are called second-type
forced to be those shown by eq. (2.25) and the n' = 3 condition -

: singularities.tZB]. There are cases, for example the Landau surface
that the lower right-hand 1ine not be a preferred.line. The signs '

_ associated with the ice-cream-cone diagram, where these so-called
in the last diagram are forced to be those shown by-eq. (2.25) and

) , . second-type singularities cover the entire mass shell 301 (i.e., the
the n' = 3 condition that the last two signs be opposite.  These )

: resolvent is identically zero [241). Thus these earlier proofs do
diagrams show that the same condition (€.19) holds in all four cases.

. . ) not yield the result we need, namely that each Landau surface L(Do)
- The arguments just given show that for any fixed G and

is confined to a codimension-one algebraic subvariety of 971,

_fixed p € L-W there is a sign n such that all of the r(p) € 02$3

The singularities of the functions MG lie;, by virtue of the
that generate p give precisely the same condition on the cone of

. . structure theorem, on a union Landau surfaces L(DO). Each Landau
analyticity C(p). It remains to show that the corresponding domain '

‘ surface L(Dq) is defined by a corresponding set of equations
o of analyticity contains a path thatremains in the mass shell. - It was

(4.2 a-h). These equations are essentially the original Landau
shown in ref. [15] that each individual representation r(p) restricts v

equations. Hence the functions MG do not have second-type singu-
C(p) to a full half plane in appropriate mass-shell variables,

: - larities in their original real domain of definition.
"provided the external trajectory lines Qj of r(p) do not all

intersect at a common point. This condition is satisfied at each

point p e L-W, by virtue of property (c).
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Fach real Landau surface L(DO) lies in a corresponding
complex Landau surface L(D) defined by eqs; (4.2 a-d). It is
convenient to eliminate the coﬁservation—law equation (4.2b) by
>introducing loop momenta. Let qp be the momentumfenefgy associated
with closed loop & ana let ke be the momentuma?nergy associated

with the open loop e. Then the momentum—energy pjb of 1line j 1is

Py = 'pj(k,‘,q)' z anz q,ﬁane LI (A.1)

2 e

where the ?jl are as in (4.2¢), and the hje are the analogous
quantities for the open loops e. The (n-1) independent open loops
e enter and 1ea§e the diagram D via the n external iines of D.
For definiteness the open loop - e 1is assumed to leave D via
external line e and to enter D via external line n. Then ke
equals tp_ for e =1,.---,n-1. (The lower sign is fdr initial e.)
With the aid of‘(A.l) the Landau équations (4.2 a;d) can be

reduced to the equations

o, p.lk, .
Z 5 P;{ka) g

=0 (all g) , ) (a.2)
J
p20ga) -0l =0 (a1 ), (4.3)
»aéd @
Zajz -1 =0 (A.4)
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The coefficient njl is zero 1f j 1labels an external line.
Thus the aj needed in (A.2) include only those corresponding tg'
internal lines. However, parameters uj corresponding to.eXternal
lines can be introduced, and the external-lpop analog of (A.2)

considered:
Zaj pj(k,q) nje = 0 (all e). (A.5)

Equations (A.2-4) define the Landau surface L(D). Equations

" (A.2-5) define an associated subsurface X)) I(D).V FEquation (A.5)

is the requiremenf that all of the external trajectory lines pass
through some common:point. That is, each external line 1is assigned
a parameter aj, and hence also a space-time interval Aj = aj pj,
and all of the external loops are required’ to be closed loops. This
condition is prgperty_(c) of section VI.E.

Let 2z = (zl,---,zs) % (k,q,a) denote the set of components

of the vectors ke and q2 together with the uj for jelInt.

- Then the Landau equations, (A.2-4) are a set of algebraic (i.e.,

.polynomial ) equations

gj(z) =0 . : (A.6)

The set of pointé ze€®  that satisfy all of the equations (A.6) is

the algebraic subvariety V(g) =V of ¢®. The set VX defined by

v& = [zeV : (A.5) 1is solublel} (A.7)
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is the set of point ze€®  that satisfy both (A.6) and (A.5) for
some set of aj ,with JeEXt.
let k be the set of open loop momenta (kl,--~,kn-l), and

let gjex(k) be the functions

gjex(k) = pjz(k)-mj2 JeExt . (A.8)

By the mass shell 771 we mean now the algebraic‘subvariety of k

space

m = v(gj'ex) = {k : gjex(k)Qo all jeExt} .  (A.9)

The réstricted mass shell '39]' consists of all points ke YN

except those rare points for which each éxternal momenpum—énergy
vector pj(k) 'is parallel to every other one. The restricted mass
shell 9v}' 1is an N-dimensional analytic submanifold of k space
[15]. Thus for each point ke97' there is a mass-shell neighborhood
U & 9m' of k, and a set (Zl,---,ZN) copsiéting of N of the

components of the loop momenta ke such that the equation
g5 s o) ‘ ’ : )
rank | —t——— (x) = 4(n-1) , (A.10)

holds for all points k in U. These variables Zl,-- N

analytic coordinates of the mass shell in U. That is, U 1is

-, 2 are loecal

isomorphic [25] to its imege 2Z(U) < GN. The mapping

Cl’( n"l ) > CN

Z : is the projection of k space onto Z space.

Let ¢: CS > 04(n—1) dehote the projection of 2z space onto

k space. Then

¢(V) = D) , : (A.11)
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where V = V[D] is the subvariety of €° defined by the Landau
equations (4.2 a-d) associated with the Landau diagram D.

Some properties of Landau surfaces will now be developed in
a series of lemmas. »The quantities ¢, V, Zm’ gj, etc. occurring

in these lemmas are the quantities defined above. And in particular

U is an open subset at the restricted mass shell Fvy' that is

isomorphic to its image Z(U) in % space. Equation (A.10) holds

for all keU, and ¢ “U is the set of point z such that ¢(z) = k
lies in U. The function Z(z) = Z(k,q,0) is defined by

Z2(k,q,a) = 2(k).

" Lemma Al For any point za[V[j ¢—1U] there is a set of coefficients

aj(z) and a set of coefficients Bm(z) such that for all

he(1,---,s)
N .
. og . - 0%
Z aj(z)a—zi-(z) = Z Bm(z)ﬁ(z) } (a.12)

JjeInt (J Ext . m=1

The sﬁm'on.the left-hand side of (A.12) is restricted to the indices

CJeInt U Ekt, and for any such j

. s 2 2 i
Az = .k -.m, A.
gJ(7) P; (k,q) m; (A.13)
Furthermore, the a’j(z) for JjeInt are given by
dj(z) = aj jeInt . (A.14)

With these restrictions imposed the remaining n coefficients

aj(é), jeBxt, and N coefficients Bﬁ(z), m=1,---,N, are

uniquely defined functions of ze[V /\¢-1U}



~-127-

Proof The gj(z) in (A.13) do not dépend on the parameteré aj.
Neither do the Zm(z) = Znﬁk). Thus if 2z is any one of the
parameters uj then (A.12) holds trivially: . both sides vanish. If
» 2y is any component of one of the qy then the right-hand side of
(A.12) vanishes because the ZHSZ) depend only on the ke, not the
Qg+ and the left-hand side vanishes by virtue of (A.l),-(Ax2), and
(A.13). Thus (A.12) holds also for. these Zy - Finaily, consider

those cases in which the 2z, are components of the ke. In these

cases (A.12) can be written, in the form

ex, N :
g, (k) 9z (k) % .(z)
1 —_ B - J
) i B e TR )

JjeExt m=1 e Jelnt ake

(A.15)

where the z, of (A.12) are now the 4(@-1) components of the -n-1
vectors 'ke. For fixed 2z = (k,q,a) there are. 4(n-1) ‘unknowns,
namely the N = 3n - 4 coefficients Bm(z) together with the n
coefficients aj(z) for jeExt. Thus, for fixed 2z, (A.15) is a
set of 4(n-1) 1linear equations for 4(n-1) unknowns. These
equations have a unique solution provided

rank [ —3d T (k) = 4(n-1) (4.16)
This rank condition is just (A.10), which holds for all ZE¢_1U.
Thus (A.12—14) has a unique soiution for each ze[V (\¢-1U; QED.
Lemma A2 For any fixed ée[V’(}¢-1Uj the unique set of Bm(z)

defined in lemma Al satisfies the N equations
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B (z) =0 m=1,--,N ' (A.17)

if and only if zeV".

_Proof If gz lies in V /) ¢_1U then the unique set of Bm(z)

defined in lemma Al are defined by (A.lﬁ), and the points zéVx are
defined by (A47>. But, given (A.15), condition (A.7) is equivalent

to (A.17). | ,

Lemma A3 Let 0 ¢ V be any analytic submanifold of s ‘that lies
in V. Let Zlo : o~ ¢V be the restriction of the mapping Z(zj

to the submanifold o. Lef z be any point on o (N (V - Vx) e ¢—1U.

Then the rank of the mapping Z|0 at z is less than N:
rank Zlo < N . (A.18)

Efégﬁ let z be any point on o () (V - v¥) N ¢-1U. Equation
(A412) holds for all ke(1,+-+,s). Thus it holds also if* the z,
are replaced by a coordinate set [25] (zi,--',zé) such thgt the
coordinates (zi,---,z%) are local anélytic coordipates of the

(t-dimensional) analytic submanifold ¢ at z. Every function

gj(z‘) vanishes jdentically on o, near z' = z'{z), since o 1lies

in V = V(g). Thus, for every Jj,

for kx =1,...,t (4.19)

at 2z' = z'(z). Hence the left-hand side of (A.12), with the Zy,

replaced by the zﬁ, vanishes for h =1,---,t at z' = zt{z). Thus

the right-hand side also vanishes there:
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37 _
i -
zii B(z") 52; {(z') = 0 for h=1,--.,1 (A.20)
m=1 i
at z' = z'(z). Lemma A2 and the requirement of this lemma

(V- V) N ¢_1U ensure that the Bm(z') are not all zero at
" z' = z'(z). But (A.20) with some Bm(z') 0 at z' =32'(z) is
equivalent to the condition (A.18): each says that the rank of the

matrix (azm/azi) at z' = z'(z), where the zﬁ are local analytic

coordinates of 0 at 2z' = z2'(z); is less than N. QED.CHAny point -

on any analytic subvariety is either a manifold point or a nonmanifold
point. A manifold point of ananalytic subvariety is a point having a
ﬁeighborhéoa such that the restriction of the éubvariety to the
neighborhood is an analytic submanifold. The rémaining points of the
variety are ﬁhe nonmanifold points.
Almost every point of any analytic subvariety is é manifold
point. In fact, the nonmanifold points of any analytic subvariety
are confined to an analytic subvariety of lower dimenéion [26].
This latter subvariety can be éimilarly decomposed into manifold and
nonmaﬁifold points. By this process .any analytic subvariety of ¢t

can be decomposed into a finite set of disjoint analytic submanifolds

Co.

For algebraic subvarieties a similaribut.more detailed
result. holds:
Lemma A4 Let t bebany integer. Any algebraic subvariety of @t
can be decomposed into a finite set of disjoint analytic submanifolds
o each of the form Oij = Vi - Vj’ whefe Vi. is an irreducible

algebraic subvariety of Ct, Vj is a proper algebraic subvariety of
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Vi’ and the dimensions of Vi and Vj satisfy
dim Vj < dim Vi = dim Oij'
Proof Any algebraic subvariety of @t can be decompoéed into a
finite union of irreducible algebraic subvarieties Vi {27,28]. Each
irreducible algebraic subvariety Vi ofn Ct has a well-defined
dimension dim Vi’ which is.a non-negative integer d < t. The
dimension of any algebraié subvariety is the maximum of the dimensions
of its irreducible components, and the following property holds
[27,28]: if Vv, is irreducible’and Vj is a proper subvariety of
v; (e, V,CVy but ¥, # V), then dim V. < dim V.

Let Vi be any irredu?ible component o? any algebraic sub-
variety of Ct. The sét Vi is defined as the set of common zeros
of some set of polynomials F = (fl,-;-,fm). Let rankz F be the
rank of (f1,~-v,fr) at z. Let r, be the maximum of rankz F
over zeVi.- Let

Vj = {zeVy : rank F o< ri}

This set Vj is a proper subset of Vi and is defined by the zeros

.of certain determinants, which are polynomials.' Thus Vj is a

proper algebraic subvariety of Vj, and hence dim Vj < dim Vi'
Evidently ‘rankz F = r, on o550 and hence Oij isa (t - ri)—
dimensional analytic submanifold of Ct [29,25?. Examination of the
definitions shows that dim 0. = dim Vy.

The algebraic subvariety Vj can be decomposed intc its
irreducible components and the sameé procedure applied. The dimension
of Vj is the maximum of the dimensions of its irreducible components

Thus the dimension decreases at each step, and the process terminates
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afterlsome finite number of analytic submanifolds o of the required
form are obtained. QED.

Definition Iet the measure of a subset of €° be the real 2N-
dimensional measure of this set considered as a subset of R2N.

Lemma A5
meas Z[(V - V) N ¢7ul = o . ‘ ©(A.21)

Proof The set V is an algebraic Subvariety of ms. Thué, accordihg
to lemma A4, it can be decomposed into a finite set of analytic
submanifolds o.

Consider any one of these submanifolds o < V. Sard's

theorem [301, generalized to complex mappings [31], asserts that

meas Z[{zeo : rank Zlo < N1 = 0 (A.22)
Lemma A3 asserts that
e
rank, Zlo < N at all z € oWV - V')N¢ U
Thus meas z[o ) (V - V) N ¢—1U] = 0. But V is a finite union
of sets O. Thus measkZ[(V - v {\-¢—1U} = 0. QED. . -

Lemma A6 The set ¢(V - V¥) lies in a codimension-one algebraic
subvariety Vk of in?.
Proof Chevalley's theorem [32] ensures that the image under the

 algebraic mapping ¢ of a constructible set in €° is a construct=

4(n-1)

ible set in € For any t a constructible set in Gt is a

subset of Ct that can be constructed as a finite union of sets

Oij B Vi - Vi’ where Vi and V1 are algebraic subvarieties of Gt,

«

Vi is irreducible, and Vj is a proper subvariety of Vi‘ The set

1

V - V° is constructible in €. Thus ¢(V - V¥) is constructible
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in ¢4(n—1). Let Oi. =V, - Vj be any one of the finite number of

J i
sets from which ¢(V - V¥) is constructed. By repeated use of lemma

A4 one can arrange that oij is also an analytic submanifold of

GA(n-l) " of dimension dim Oij = dim V;. Since o5 lies in M2,

dimo,, < dim MM = N. If dimo., = N then o,. contains a set
ij . ij ij

that is isomorphic to an open set in CN [33]7 This set must intersect
9n', since m - 9% is a set of dimension less than N. Thus if

R - annt R v .
dim Oij N then Oij (1 /Q’ must contain a set o that 1s\
isomorphic to an open set in CN. let k¥ be a point in ¢', and
consider the local analytic coordinates Zl,---,ZN of 5”7' in a
neighborhocod U ¢ o' of k. The set U N o' is isomorphic to an
open set in CN, and hence must be mapped onto an open set in GN
by the mapping Z that maps U < 91" onto z(u) < CN. But this
contradicts the conclusion of lemma A5 that meas Z[(V - N ¢_1U]

is zero. Thus dim Oii = dim Vi < N. Hence the constructible set

o

ij i

dim o5 = dim'Vi < N. Each set %5 lies in the mass shell 972.

#(V - V*) 1is a finite union of sets 0., = V. - Vi of dimension

Hence the closure of each Oij lies in the closed set ?7?. But

oij is dense in V. and its closure is Vi' Thus ¢(V - V) 1ies
in a finite union of'irréducible algebraic varieties 'V, each of which
lies in %%} and has dimension dim Vi < N. Thus o(V - V) lies in

a single algebraic subvariety of ¥¥] of dimension less than N.

Any algebraic variety of dimension less than N 1is contained in an -
algebraic variety of dimension ﬁ—l [27]. QED.

Lemma A7 Let Vi be any irreducible component of V. Let

v.X = v, NV Then 6(V,) lies in the V¢ of lemma A6 unless

v, = v~
1 1
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Proof Suppose Vi 7 Vix. Then Vix is a proper subvariety of Vi’ .

and dim V.¥ < dim V.. But then V. - V.%
1 1 1 1

is dense in Vi’ and Vi
lies in the closure of v, - Vix. But then ¢(Vi) lies in the
closure of ¢(Vi - Vix), since the mapping ¢ is continucus. Thus
§(V;) 1lies in the closed set V° that contains ¢(V; - V;*). GQED.
Lemma A8 ¢(V) 1lies in a codimension—oﬁe algebraic .subvariety of
677_ unless for some 1 the set .V coincides with ViX in some
néighborhood U of some point EbVix, and, moreover, ¢(Vix) contains
almost all points of f??l.

Proof The image ¢(Vix) of any-‘Vix is constructible and hence
either lies in an algebraic subvariety of dimension less than N, or
confains almost all points of the mass shell. The former sets
¢(Vix) can be combined with Vk to give~aﬁ algebraic variety Vk‘
of dimension less than N. If any Vi remains then this Vi must
coincide with Vix, by lemma A7. Bu£ there are points on Vi that
lie on no other ifreduoible component of ‘V. Any such point

zeV; = ViX has a neighborhood U such that

VAU=v. 1T ='Vix ) u. QED.

The above lemma says.that (V). = L(D) 1lies in a codimension-
one algebraic subvariety of ﬁVVz unless the conditions (A.5) that
the external trajectory lines lj pass through a commén point are
redundant near some. point of V; i.e., the condiéionsA(A.5) are
implied by the.cohdition (A.6)..

The quahtities Bm(z) that occur in (A.12) have a simple
but important interpretation, which is now described. ILet the

PysttsPy be the external pj. The mass-shell constraints ensure that

at least one‘component of each pj is nonzero. Near real points the
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energy components p;) are nonzero. In the following discussion it
is assumed that these energy components do not vanish, but minor
changes would allow the other cases to be encompassed.

For each ppint ke ' the external pj(k) are not all
parallel. Thus for some j < n the vector pj is not parallel to
Py- Let the labelling be such that Po1 is not parallel to I

Then for some space component, which is taken to be the u-=>3

component ,
P3 b 3 -
n-1 n
- 7 =5 - (A.23)
Py " Pp

If the labels are arranged in this way then the set (Zl,---,ZN) can
be taken to be the set consisting of all of the space components of
3

all of the n-1 vectors ke except for kn—l' For with this choice

the quantity

a(g.e,zm) o 0 3 . , n-2 .

d g _ )

et S P 2 (Pn Pl -P P ) pj (A.24)
e le

is nonzero, by virtue of condition (A.23), and our convention about

0 . s : .
pj . This same condition also ensures that the projections onto

0
(x ,x3) space of the external trajectory lines £ and Qn of

n-1
the space-time representation of the point z of V must intersect

. =0 =
at some point (x ,x3). Let the origin of time be chosen so that

= . =0 s :
t = x7 = 0. Let the origin of space be the point at which the

trajectory line of particle n intersects the plane t = xO = 0.

Then for each index JjeExt 1let Xj be the three-vector from the
origin of space to the point at which the trajectory line Rj of

external particle j intersects the plane t+ = Q.
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In general, each of the three components xju (u=1,2,3)

of each vector xj is a complex number. However, the components

xhl, xnz, Xn3’ and xi_l all vgnish, by virtue of the choice of

i

origin. The remaining’ 3n-4 coordinates X, (p =1,2,3) are,

apart from a factor of two, the coefficients Bm(z). In particular,

if Zm=k2§$g =p2§$§ then
B(=) = 2y, ©(a.25)

where the argument z of xeu(z) signifies that xeu depends on the
point =zeV, since, of course, the space-time representation of D
depends on zeV. For each jeExt the parameter uj(z) is the complex
number such that Aj = aj pj is the space-time vector to the point
A(O,xj) from the point Vj on the external trajectory Jj where

this trajectory joins D. These determinations of the aj(z) and of
the Bm(z) ensure that (A.15), and hence (A.12), holds.

The iﬁentification (A.25) means that the N-vector B(z) with
components Bm(z), is determined in a simple way by the locations of
the external trajectories Zj of the space-time representation
corresponding to. zeV. This vector R(z) is-zero, as noted in lemma
A2, if and only if the external trajectory lines‘éll pass’ through a
common point.

The N-vector B(z) discussed above is aiso essentially the
normal to the Landau surface at the image of z:

Lemma A9 Suppose o 1is an analytic submanifold of ¢® that lies in
V. Suppose 2z is a point of o ) (V - V)N ¢_1U such that the
restriction Z%|o of the mapping 2(z) to o has rank N-1 at z.

{Rank > N-1 1is excluded by (A.18)!. Then there is a o-neighborhood
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of 1z, UZC[U NN ¢>‘1U], such that Z(U_ ) 1is an‘analytic
submanifold of mN of dimension N-1. Thié N-1 dimensional
analytic submanifold Z(UZ) lies in L(D). The normal to Z(UZ) at
Z(z) is well-defined and nonzero, and ii is equal to B(z), apart
from a nonzero scale factor. 4 ‘

Proof The rank of Z|o on o (v - VX) N ¢_1U is, by virtue of
Lemma A3, at most N-1. . Since the rank can decreése only on the gzeros
of certain determinants the rank must be N-1 in some g¢-neighborhood
of z. Thus there is a o-neighborhood of =z, -

U< Lo N (V-v)N 7', such that 2(U) isan N-1 dimen-
sional analytic submanifold of CN [29]. The normal to any
codimension-one analytié submanifold of $N is well definedvand
nonzero. ‘Let (z',---,zé) be a set of local analytic coordinates
{25] such that zi,-~-,z% are local coordinates of o near the
point 2. Theﬁ the set of ¢ N-vectors Th, with h =1,.-.,%,
whose cq?ponents are Tmh =IBZm/azh(z) span an N-1 dimensional
subspace of ¢V, since the rank of Zlo at z is N-1. This N-1
dimensional subspace of CN is the N-1 dimensional tangént space

to Z(Uz) at z. But then (A.20) is the condition that the N-vector

" B(z) be a nonzero multiple of the normal to Z(UZ) at z. QED.

This result that the positions of the external frajectory lines
zj determine the normal to the Landau surface was.derived earlier
[15) by another method, for positive-o surfaces. That earlier method
involves nonalgebraic functions that develop singularities when any
of the internal a; vanish. The present purely algebraic method

extends the earlier results to the points =z where one or more
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Definition Let ¢R be the restriction of ¢ +to real =zeV.

lemma A10 ILet D be any Landau diagram, and let V be the corre-
. . . s

sponding variety in C€~. Suppose ¢R(Vx) is confined to a

codimension—two algebraic subvariety of 74?. Then there is a

codimension-two algebraic subvariety W(D) of 941 with the following

‘four properties: )
@) M - M ties in wD).
(2)~ If 2z 1is a real point of V >that is mapped by ¢
into ‘L(Do)'~ W(D), and if r(z) is the space-time representation of
D that corresponds to. 2z, then the external lines lj of r(z) do
not all intersect at a common point; i.e., B(z) # O.
(3) The set L(DG) - W(D)  is either empty or a codimension-
one analytic subﬁanifold df QVf that is confined to a codimension- -
‘one algebraic subvariety of 792.
(4) 1f r and r' " are any two real representations of D
that correspond to the same point k ¢ L(DO)-W(D) then r and r'
are externally similaf, i.e., there is a positive or negative scale
change agd én overgll space-time translation that brings the external

~ trajectory 1ines 23. of r' into coincidence with the cofresponding

lines gj of r,

Proof The required W(D) is
WD) = wy(D) U (D) U wy(d) U w(d) , (4.26)

where W](D) is M- o WZ(D) is the codimension-two algebraic
subvariety of 972_ that by hypothesis contains ¢R(VX); WB(D) is

“the union of the algebraic subvarieties Vi and V., of dimension less
) . RED ] J :
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than N-1 that arise in the aecomposition, via the Chevalley theorem
and lemma A4, of the construciible set ¢(V - VX) into analytic
suﬁmanifolds Gij = Vi - Vj; and W4(D) is the closure of the image
in 97 of the set of points 2eV such that rank) ¢!0Z < N-1. Here

OZ is the analytic submanifold oij,c: Vi C. V that arises in the

decomposition of V by means of lemma A4, and that contains 1z,

‘and ¢|oz is the restriction of ¢ to OZ.

The set Wl(D) is an algebraic subvafiety of 9‘? of
dimension less than N-2. Its presence in W(D) ensures property (1).

The set WZ(D) is a codimenslon-two algebraic subﬁariety_of
€77? by hypothesis. Its presence in W ensures property (2),
because the conditions that 2z be real point 6f V and that the
external trajectories Qj of f(z) have a common point is precisely
the condition that 2z belong also to .

The set WB(D) is a finite union of algebraic subvarieties
of 302 of dimension less than N-1, and is thus an algebrailc
subvariety of- ﬁq? of dimension less than N-1. The remaining sets
Vi and oij in the decomposition of oV - ij have dimension N-1,
by virtue of lemma A6. And they include all points of L(0%) - w(D),
since V¢R(VX) lies in W(D).

The set W4(D) is
WA(D) = Closure ¢{zeV : rank ¢|0Z < N-1} . (A.27)

The set {zeV : rankz ¢|oZ < N-1} 1s a constructible set, and hence
50, by virtue of the Chevalley theorem {32}, is its image
¢l zeV : rank ¢foz < N-1} in 9”?. But arguments analogous to those

of lemma A5 show that the image under ¢ of the set
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{z : rank ¢|oz < N-1} eannbt confain any set Oij = Vi - Vj of
dimension N-1. Hence the closure of ¢{zeV : rankZ ¢|0z < N—l}
is a finite union of sets A ofi dim V, < N-1. Thus W4(D) is an
algebraic subvariety of 97Q_Aof dimension less than N-1.

| Each point k € L(DO)—W(D) is a point near which.‘L(DU) is
a codimension-one analytic submanifold of 30?, by property (3).
Hence the normal to L(DO) at any- point of L(DO) - W(D) is well
defined. On the other hand, every real point 2z that maps to any
point ¥ € L(DG)-W(D) is a point zeV - v where rank ¢]cz = N-1.
Thus, by virtue of lemma A9, the vector B8(z) associateé with any
real z that maps to any k € L(DU)—W(D)‘ is a multiple of the well-
defined normal to L(Do) at k. Therefore all of the vectors g(z) .
that are associated in this way -with any given k e L(D°)-W(D) are
nonzero multiples of each other. Since all of the representations
r(z) that generate any fixed point - keL(D°) have their corresponding
external trajectory lines parallel, this.equality (up to scale change)
of the N-vectors B(z) guarantees that these representations r(z)
are all externally similar. Thus property (4 ) holds. QED.

The results_obtaiﬁed above refer to a single Landau surface

(D). Let B be any bubble diagram and let FB(k) be the cbrref

sponding bubble diagram function [See eq. (3.4)]. Let 1L(B) be
‘ o
B) = L»j]XD) . (A.28)

The structure theorem says that the singularities of FB(k) (at real

k) are confined to L(B). [ See (4;6)]
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For any given B there is an infinite set of 0’ < B. One
trivial way in which this set becomes infinite is illustrated in

fig. A.1.

Poee
' 3 )K/

> <

Fig. A.1. A typical nonbasic diagram.

As n runs from 2 to infinity the diagram in this figure generates

an infinite set of diagrams. If the multiple loops in all these
diagrams are formed from a single fixed pair of particles, and if the
signs Oj are all plus, or are all minus, then each of these diagrams
gives the same surface L(DO). These- D’ are examples of nonbasic
diagrams, which can, as we shall see, be ignored.

A nonbasic diagram D° isa diagram that has a contractible

part. A contractible part of D’ is a part of D° that: (1) is

connected to the rest of D% at ekactly two vertices, vy and \PY

(2) contains more than two vertices; (3) contains no external line;

and (4 ) has one common fixed sign Oj’ either plus or minus, for each

" line contained in the part. Such a part is contractible in the sense

that the Landau equations asscciated with p® are either insoluéble,
in which case L(DO) is the empty set, or they can be replaced by

the Landau equations of an associated basic diagram D A basic

g
g
diagram is a diagram with no contractible part. If p” is nonbasic

then the assoclated basic diagram DBO is obtained from D’ by

contracting to the point 2 all of the lines of the contractible
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part that do not touch v This replacement does not alter the

1
conditions imposed by the part. In particular, for every representa-
tion r of D0 there will be a representation r' of DB0 that is
exactly the same as r, except for the in£ernal structure of the
contractible part. 1In particular, r' owill be externally equivalent
to r.

A contracfible part bf a _DU < B must be a part of the
diégram D; .or D; that rgplaces some plus or a minus bubble b of
B. Otherwise some sign would be a'"sign" Oj = #, hence not a well-
defined sign plus‘or minus. Thus the restriction of D° C B to
basic diagrams is equivalent to the restrietion of the constituent

' diagrams D; and D; to basic diagrams D;B, and D;B.

Since every representation r of a nonbasiec diagram D’

is externally equivalent to a representation r' of a basic diagram

D% one may write

8 - | |

L(B) - U L) (4.29)
DBG-::B »

where DB0 is a basic diagram.

Leﬁma A1l Let 62 be any bounded region in‘ k space. Then onlyva

finite set of basic Eg gi&e surfaces L(D;) that intersect 02 .

And only a finite set of basic Dé give -surfaces L(Dé) that inter-

sect R . |

Proof This was proved in ref. [35].

Remark Because of the mass-sheil and positive-energy (pjO > 0)

e . . . .
constraints a region ¥, in k space is bounded if and only if the

1 0 .
total energy of the process, E'Z:pj , 1s bounded. .

Proof The number of pairs (G,n) is finite.
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Lémma A12 Let oa be any bounded region in k space. Let B be
any fixed bubble diagram. Then only a finite number of basic

o .
DB < B give surfaces L(DBO) that intersect (&i.

Proof The flow-diagram ordering condition of section VI!A, together
with the conservation-law condition {4.2b), and the positivity-energy
condition (4.2g), ensures that the total energy entering any bubble
b of B. is no greater than the total energy entering B. That is,
a bound in k space implies a bound on the energy entering each
1nd1v1dual bubble. But the Landau equations corresponding to D o

]
€N
cannot be satisfied unless the LandauAfor each of the constituent

parts DbB and DbS can be satisfied. Thus the bound, menticned
above, on thé energy eﬁtering each bubble b, together with lemma All,
implies that for each b the corresponding D;B or D;B must be one

of a certain finite set of diagrams. However, only a finite set of
s o]
diagrams DB can be constructed from the finite sets of Db

inserted in all possible ways into the finite set of bubbles b of B.

Definitions

G . .0 G
b = 0’ cBe®®r | ' (4.30)

@.Ef Ip 6

/P - (4.31)

Let 62 be a region in k space and let NS(C;L) be the number of
. a o .
basic DB € 6} such that L(DB ) (} 62, 0.

Lemma A13 If /& is bounded then Ng({& ) is finite.

For each (G,n) the

. 63 G . "
set s constructed so that in any bounded region {X, only a
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finite set of B e dgnG sétisf& the conservation-law,positive-
energy, ‘and mass-shell condiﬁions associated with the‘explicit lines
of B. These conditions are included among the Landau equations
as;ociated with the diagrams DB0 & B. Thus only a finite set of
B e Q?nG can have Dscc: B that give surfaces L(DBO) that
intersect any bounded 62 . But then the finiteness of Ns(dz.)
follows from lemma Al2. QED. . |

Definition

[
1

kj ur’ (4.32)

DOE<I>

Lemma Al4 Let CEZ be any bounded region in k space. Suppose for
each DB0 e @ that LX(DBO) is confined to a corresponding

. codimension~two algebraic subvariety of 5)71. Then there is a
codimension-two algebraic subvariety W = W(OQ,)v of ‘772, such that

(1) P - 7’72_' lies in W. |

(2) if r is a representation of some D0 € G} and if r
corresponds to a point k € (L - W) r} 62‘ then the external trajec-
tory lines Qj of r do not all paess through a common point.

(3) The set (L - W) 62, is either empty or a codimension-
one analytic submanifold of CYY\' that is confined to a codimension-
one algebraic subvariety ofACYQ‘.

(4) if v 1is a representation of some Doc: é} and '
is a representation of some Do'c: Q) and if both r and r'
correspond to the same point ke (L-w)OV &, then r and 1

are externally similar.
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Proof It is sufficient to consider only the represenmtations of basic

R g . . . .
diagrams DB , 8ince every representation r of a nonbasic diagram

is externally equivalent to a representation of a basic diagram. Let

Ry = | | YD) . S (a33)
e @ | |
Lo )N R #o

This set,which coincides with L in 62 , 1s constructible, since
it is a finite union of constructible sets L(DBO). Thus the lemma
follows from essentially the same arguments that give lemma Al0, but
with L(& ) in place of L(DG). QED.

Assumption A of section VI.E is now invoked: for each pair
(DO,DO') of Landau diagrams it is assumed that there is a codimension-
two algebraic subvariety W(DO,DO') of QVYL_ such that if r and

1

r are éxternally inequivalent but externally similar representations

g .
of p° ana D° , respectively, then they must
t
correspond to a common point ¥ on W(DO,DO ).
Lemma Al4' Lemma Al can be modified in the following way:

(1) add assumption A,
o
)

y

(2) eliminate the assumption about LX(D6

(3) change the final word from "similar" to "equivalent".
Proof It is again sufficient to deal with the finite set of basic
diagrams DBO that give L(DBO) f] 02, # ¢. The set of pairs of

1
these DBO and DBO is also finite. Thus one can replace the W

of lemma Al4 by its union with the union of the finite set of sets

W(DBO,D o ), and then infer from assumption A that the externally

8
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similar r and r' of lemma Al are also externally equivalent.
To eliminate the assumption about LX(DBO) one may note that the
constructions of section V] ensures fhat for every representation of
every D’ e G) there are at least two vertices V} and Vé that -
do not coincide, because a reiation- ws -w, e‘v'” holds. But then
' for every representation r of any DB0 € G) such that the external
trajectory lines Qj all pass through a common point there is a
representation r' of a Do' # DB0 such that ' is>extérnally
similar to r, but not externally equivalent to it. This DU' has
its external vertices vj all 1ying at the common point of all of the
lj; To form DU' one must add to DB0 an internal line that connects
the original external vertex Vj' of DB0 to the corresponding
o' -

external vertex v! of D If the mass associated with this new

internal line equals the mass 'mj of the assqciated external line

Qj, then the validity of the Landau equations for p°? will be implied

«

by the validity of those for_.DBO. Thus the existence of f represen-
tatién r of _D-o '
but not externally equivalent, r'. Assumption A then asserts that
this coineidence of the external trajectory lines lj of r with the
corresponding external trajectory lines .Qj of the'extgrnally
inequivaleﬁt r' can be satisfied only over a codimension-two
algebraic subvariety W(DBO’DZ') of ?72. Augmenting the -W of
lemma Al also by the finite union of sets W(DBO,IP') one finds that
the assumption about Lx(Ebo) is now satisfied. QED.

This result, lemma Al4', gives the properties (a){ (v), and
(¢) listed in section VI.E.

Assumption A asserts that the conditions impesed on a set of

external trajectory lines Qj by the requirement that they

B will ensure the existence of the externally similar,
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be siﬁultaneously'compatible with two essentially different sclutions
of the Landau equations can hold only over a codimension-two algebraic
subvariety of 9“?. The statement of this assumption given in the
main text might appear tc be slightly weaker than the one given just
before lemma Al4', since the former requires only that the inter-
section of the set Y with any codimension-one analytic subvariety of
307 be confined to a codimension-two analytic subvariety. However,
the conditions on Y +that the representations r and r' be
externally similar but not eiternally equivalent define a constructible
set ip the composite (z,z') space corresponding to the pair
(IF,EF'), and hence, by the Chevalley theorem, also a constructible
set in k space. But for a constructible set Y +the condition that
its intersection with every codimension-one analytic subvariety be
confined to a codimension-two analytic subvariety implies that Y be
confined to a codimension-two algebraic subvariety. For, by virtue
of lemma A4, any constructiblé set Y can be confined to a codimensionf
two algebraic subvariety unless it contains a_codiménsion—one analytic
submanifold.

Assumption A plays twb roles in this work. The first role is
16 ensure that ¢R(Vx) is confined to a codimension-ﬁwo algebraic
subvariety of %k?. ‘The points of ?71, where some pair of four=
vectors pj £ p areparallel is a codimension-three subset of 5”7_
For the remaining points of 971, the conditions on V¥ include, in
addition to the conditions that define V, also at least the four
extra conditions that the (unique) initial vertex where two or more
initial lines meet lie at the same space-time points as the (unique)
yfihal vertex where two or more final lines meet. One would expect

these four or more extra conditons to reduce the corresponding region
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in 7?? by at least four, to a éet of codimension five or more.
Assumption A asserts that the reduction is, in any case, to a set of
codimension two.

The second role of assumption A is to ensure that externally
inequivalent representations of diagrams IF ¢ G) are externally
similar only over a codimension-two subset of 37?. Two different
Landau surfaces generally intersect on a codimension-two algebraic
subvariety. The extra condition that the externally inequivalent
representations be externally similar imposes at least three extra

conditions, and hence one would expect the corresponding region in

962 to be reduced to a set of codimension five or more. Assumption A

<
asserts that this region lies, in any case, in a subset of )72

of codimension two.
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" APPENDIX B. COMBINATORIC IDENTITIES

let H be any finite set. Suppose that

A, = ZE: (-1 p(ED) g’ (B.1)
BT

and

it

(B.2)

- ) T-q .
BH' Z‘ ( —1 )n(H ) CH"

H'CH'

where the sums run over all distinct subsets H' of H and H"

of H', respectively, and n{F) is the number of elements of F.

Substitution of (B.2) into (B.1) gives

AH = > XHH" CH" ’ ( B.B)

where

Xign = Z () (.4)

H'<H'«<H

Ciearly' X ='1l. Comparison of the ekpression for the remaining

HHII

(1 - 1)n(H)-n(H”)

quantities with the binomial expansion of

Kggm

shows that X is the unit matrix:

1 for H = H"
Xoow = 6 = (B.5)

0 for H # H"

i3
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This result implies (2.5). It also implies that the quantities . THG G Gk G ) _
. 3 T = 7T + T , (B9)
H H Hk
defined for every G and H Dby
which follows from (B.6), which is (4.17a), via the equation
G ‘)ﬂ n(G') (B.6) '
Ty = /L {(-1) Tyo! | .6) »
G'cG : Gk _ n(G) n(G)+1
, | _ Ty F Z (777 Ty v (-1) Treg:
o ' 1
satisfy _ : . ‘ G'cG ) G'cG
n(H") Hn
= -1 . B.7 _ G G
o (-1) Ty (. ) = Ty - Ty : (B.10)
H"cHl N

The substitution of (B.7), with H =¢, into (B.6) gives

1 v.‘ " "

o]
ja o]
1
—_
—
~

G'<cG H'"< HG'

.(;1)n(.cv) Z (_1)n(G") Z (_1)n(H') TG"H'

G'<G G'"c G H'CH

Z z (216 )n(6") Z (1 () (G
G" G'"<G'cG »H'C.H

i

T ?

H' GH' .
S CopED SR (.8)
H'< H ' ’ '
where (B.5) is used to get the last line. This result is (4.17b).

The result (4.17¢) follows from repeated application of the identity
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