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Abstract 

Dij 1(51
), the group of reparametrizations of the circle, is known as the 

Virasoro group in string theory. Reparametrizations keeping fixed a point of 

the circle form the quotient space Dijj(51)j51• The geometry of this space 

is relevant for string theory and string field theory. We describe this space as 

an infinite dimensional complex manifold with a Kahler metric and compute its 

Riemann tensor and its Ricci tensor . 

-Lectures presented at the Cargese 1987 Summer School on Particle Physics, Cargese, Corsica, 
August 3-21, 1987. 

This work was supported in part by the Director, Office of Energy Research, Office of High Ener~ and 
Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract 

DE-AC03-76SF00098 and in part by the National Science Foundation under grant PHY85-15857. 



• 

1. Introduction 

String theoryl has spurred some interesting recent developments in infinite di­

mensional geometry. On the one hand, the study of Riemann surfaces of arbitrary 

genus has led to the idea that the respective moduli spaces should be considered as 

embedded in an infinite dimensional Grassmassian. On the other hand the study of 

string field theory is naturally connected with that of loop spaces. As Bowick and 

Rajeev2 have emphasized, the geometry of the Virasoro group Dif f(S1) and more 

precisely of the infinite dimensional complex manifold Dif f(SI)/ SI, is especially rel­

evant for string field theory. The necessary mathematical tools were developed earlier 

by Dan Freed in his thesis.3 The basic notions of differential geometry can be found in 

Ref. 4. 

The purpose of these lectures is to describe the geometry of Dif f(S1)/ S1 in a 

way understandable to a physicist familiar with some string theory and with only the 

most basic tools of Riemannian geometry, as they are used in general relativity.' This 

seems useful because Refs. 2 and its super extension, Ref. 5, are not easy reading. 

Furthennore, in both references certain misprints complicate the understanding of the 

material. \Ve have simplified some of the derivations (e.g. the computation of the Ricci 

tensor) and hope to have achieved sufficient clarity to stimulate the reader to study the 

original literature. Our arguments are fonnally correct but not rigorous, in the sense 

that we have mostly ignored questions of convergence (this applies particularly to Sec. 

4). 

An 'important clarification was made to our subject by Pilch and Warner.6 A 

related earlier mathematical paper by Segal1 is also recommended reading. 

2. The difference operators 

Let g~v be the metric tensor of a Riemann manifold, whose points are labelled by 

coordinates x~. A vector field e of components e~(x) is a Killing vector (an isometry) 

if it leaves the metric invariant 

Here Ce denotes the Lie derivative with respect to the vector e and 0). - a~;... Let 

r A v ~ be the Christoffel connection 

rA v ~ = ~gVP (OAg~P + O~gAP - opg).~) = r ~ v A. (2.2) 

It is easy to see that, if e is a Killing vector, then 
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Consider the covariant derivative \i'1-' formed with r. For instance 

(2.4) 

As a consequence of (2.3) c'e commutes with V'I-' 

(2.5) 

and with the operation of covariant differentiation \i' = dxl-'\i'1-' 

(2.6) 

Let '11-' ( x) be another vector field and 

(2.7) 

be the covariant differentiation along the field TJ. It is easy to see that (2.5) or (2.6) 

are equivalent to 

(2.8) 

where we have used the usual bracket of two vectors 

(2.9) 

Note that in (2.8) e must be a Killing vector but '1 is an arbitrary vector field. 

The curvature of the connection r can be defined from the formula 

(2.10) 

In general, to compute the curvature, one needs the second derivatives of the metric 

tensor, or the first derivatives of r. However, if e and '1 are Killing vectors only r itself 

is needed, i.e. the first derivatives of the metric tensor. To show this we introduce the 

tensorial operators 

(2.11) 

In the difference the differentiation operators €1-'81-' cancel. Therefore 'Pe operates as a 

matrix on tensors, with no differentiation of the tensor. For instance on a vector vI-' 

(2.12) 

where 

(2.13) 
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vVe shall call derivations like 'Pe "difference operators" as a reminder for formula (2.11). 

Now let ~ and TJ be Killing vectors. We have 

['Pe, 'P1)] = [£e, £1)] + ['Ve, 'V 1)] 

- [£e, 'V 1)] + [£1)' 'Ve] . 

Using (2.8) and the identity 

one finds 

['Pe, 'P"] = £[e,ry] + ['Ve, 'V ry] - 2'V[e,ry] 

= 'P[e,ry] + ['Ve, 'V1)] - 'V[e,ry]· 

Comparing with (2.10) we see that the curvature is given by 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

We repeat: provided ~ and TJ are Killing vectors, the ~, TJ component of the curvature 

can be computed at a point of the manifold in terms of the connection at that point, 

i.e. the first derivatives of the metric at that point (and the first derivative of the 

Killing vectors). If there are enough Killing vectors, (2.17) will give the entire Riemann 

tensor at a point. The Riemann tensor is then 'determined everywhere by means of the 

isometries of the manifold. Notice that, for any vector e, 
'Ve9j.W = 0 (2.18) 

(metric compatability of the connection). For a Killing vector (2.1) is also valid and 

therefore 

'Pe 9j.W = -('Pe)P ~ 9pv - ('Pe)P v 9~p = o. (2.19) 

This also follows from the explicit form (2.13) since a Killing vector satisfies 

(2.20) 

Exercise. Verify (2.17) using directly the expression (2.13) and the identity 

(2.21 ) 

satisfied by a Killing vector. Observe that the Lie bracket (2.9) of two vectors can also 

be written as 
(2.22) 
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Consider now a complex manifold parametrized in some neighborhood by com­

plex coordinates Zn, zn and endowed with a hermitian metric gmfi.' Let e = (en, en) be 

a real Killing vector. Then 

(2.23) 

Therefore, using the inverse matrix gifm, 

In iii c n 
gml g = 9 gem = Um , (2.24) 

we find 

(2.25) 

If ~ is not a real vector, and its components are not related by complex conjugation, 

the linear combination 

(2.26) 

is a real vector, where Q is an arbitrary complex number. The components of e are 

by definition the complex conjugates of those of~. Applying (2.25) to TJ and using the 

linearity of 'P 

c.p~l +be~ = a 'Pel + b c.p6 (2.27) 

we can identify separately the coefficients of Q and of a to obtain 

(2.28) 

where 

(2.29) 

3. The quotient space G/ H. 

Consider the Virasoro algebra 

(3.1) 

where the indices a, b take all integer values ~O. 'vVe take a representation in which 

the generators are operators satisfying the reality conditions 

(3.2) 

By exponentiation this algebra generates the real Virasoro group G, a Lie group with 

infinitely many parameters whose elements can be represented, for instance, as 

9 = exp[ id~ Lal (3.3) 
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where the sum is over all integers a and the complex numbers aa satisfy 

aa = a-a. (3.4) 

'vVe are interested in studying the geometry of the homogeneous space G / H which is 

the quotient of the Virasoro group by its one parameter subgroup H generated by 

La = Lt· 

A standard way to parametrize the quotient space is known to physicists from 

the theory of nonlinear realizations. One writes a group element of G as the product 

of two exponentials 

(3.5) 

Every group element can be split uniquely in this way by factoring out an element of 

H on the right. The parameters ;3a, a =:I 0 can be used as coordinates for the quotient 

space G / H, at least in the neighborhood of the origin. Here;3 is real and 

(3.6) 

The action of an element 91 of G on G / H is obtained as follows. One multiplies 9 from 

the left by 91 and separates the result again as above: 

919 = exp [i L (3'a La] exp[i(3' La]. 
a¢O 

The new coordinates (a =:I 0) 
(3'a = (3,a((3b, 91) 

give the point of G/ H which is the transformed of (3b by 91. 

We shall use the notation 

v = exp b~i1·L.] 
where (3a satisfy (3.6). Then (3.7) can be abbreviated as 

91 V = V' exp[i(3'Lo]. 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

V is unitary and the exponent in (3.9) does not contain La. Now (sum over a ~O) 

(3.11) 

is an element of the Lie algebra of G. The separation of the various parts of (3.11) is 

defined by (sum over a >0) 

w+ =wQLQ 

w_ = w-aL_Q (3.12) 

wo = wOLa. 
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Since V is unitary, 

(3.13) 

which means 
- -(I - 0 wa = -w ,WO = -w . (3.14) 

These on~fonns are defined on G / H. They depend only on the coordinates of G / H 

and their differentials. 

Now, by exterior differentiation 

'Therefore (sum over a ~O) . 

Since on~forms anticommute, this implies 

dJ..;a La = _wawb LaLb = _~wawb[La, Lb], 

which gives, from (3.1) (sum over b, c~O) 

dJ..;a = -~(b - C)Ob+c a wbwc• 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

These are the Cartan-Maurer equations. The fonns wa satisfy these equations on G/ H. 

They are not quite invariant. From (3.10) we find 

which means 

V,-ldV' = eiO'LoV-19i"l d(91 Ve-iO'Lo) 

w~ = eiO'Low:e-iO'Lo 

w~ = Wo - idj3' Lo 

or, in terms of components, 

a' -;'" a a . 
W =eiJw 

wo' = Wo - idj3'. 

Clearly the two-fonns (no sum over a > 0) 

are invariant for each value of a. Therefore 

i '"' a -af() 1 '"' a -af( ) -W2 = L- w w a = - L- w w a 
2 a>O 2 a~O . . < 
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is an invariant two-form for any fuilction f(a) of the integer a,' which satisfies 

f( -a) = - f(a). (3.24) 

When is it closed? Using (3.18) we see that 

~dw2 = ~ L (b - c) 8a+b+c,o f(a) wa"iw
c

. 
a,b,c 

(3.25) 

This vanishes if 

(b - c)f(a) + (c - a)f(b) + (a - b)f(c) = 0 (3.26) 

for 

a + b+ c = O. (3.27) 

It is not difficult to see that the general solution of (3.26) and (3.27) is 

f(a) = Aa3 + Ba, (3.28) 

where A and B are constants. 

Exercise. Show this. Also show that, for f(a) = Ba, there exists WI such that W2 = dw1 . 

On the other hand, for f( a) = Aa3 there is no such WI, i.e. W2 is closed. but not exact. 

The closed two-form W2 given by (3.23) with f( a) given by (3.28) can be taken 

as Ka.h.ler form on G / H, since, as we shall explain in the next section, G / H is a complex 

manifold. 

4. Holomorphic coordinates for G / H 

The method described in the previous section is perfectly satisfactory in general, 

but in our particular application it fails to make explicitly the very important fact that 

G/ H is a complex manifold. The coordinates f3a and f3a (a > 0) are not good complex 

coordinates. It is easy to see that they mix under the action of a general element 91 of 

G. In order to render manifest the complex structure of G/ H we introduce a further 

decomposition of the group element and write 

v = exp [i ~ ,B" L. ] 

= exp [i L za La] exp [i L J.'a L-a] exp(pLo]. 
a>O a>O 

(4.1) 

This should be possible, at least in a formal sense, in a neighborhood of the identity. 

Observe that the La for a < 0 form a subalgebra and generate a "subgroup" F such 

that 

G:J F:J H. (4.2) 
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The product of the last two exponentials in (4.1) represents an element of F. Since we 

are considering the real Virasoro group we cannot take za, ,.,.a and p as independent 

complex parameter. The relations they satisfy can be obtained in our representation 

of the generators by requiring that (4.1) be satisfied, i.e. that the right hand side be 

unitary and expressible as the left hand side, (without Lo in the exponent). This gives 

,.,.a and p as functions of z and z. These functions can be computed as power series in 

z, z. It is easy to see that the first terms in the expansion are 

,.,.a(z,z) = za + ... 
p(z, z) = I: a Iza l2 + ., . 

a>O 

(4.3) 

(4.4) 

We can take za, za as coordinates on G / H .. The action of an element 91 of G is 

obtained by multiplying (4.1) from the left by 91 and splitting the result again as in 

( 4.1). This means that z'a is gi ven by 

91 exp [i I: za La] = 
a>O 

= exp [i I: z,a La] exp [i L p.a L-a] exp [icpLol . 
a>O a<O 

(4.5) 

The last two exponential factors in this formula can then be combined with the last 

two factors in (4.1), since all these factors are group elements of F. Formula (4.5) 

makes it clear that 
Ia. Ia.( ) 

Z = Z z,gl" (4.6) 

depend only on za. and not on za. The action of G on G / H is holomorphic and za, za 

are good complex coordinates for G / H. The transformation law of za" is obtained from 

(4.6) by complex conjugation . 

. The Lie derivatives corresponding to the infinitesimal generators iLa(a~O) are 

(on functions) 

(4.7) 

where the sum is over n > O. Here an = 8~n' ail = b, and 

(4.8) 

They can be split into a (1,0) part 

(4.9) 

and a (0,0 part 
(4.10) 
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which commute with each other: 

[~~l'O), ~!O'l)] = o. 

The (1, 0) parts and the (0, 1) parts satisfy the same algebra 

[e~l,O), e~l'O)] = -i(a - b) e~~~) 

[e~O'l),dO'l)] = -i(a - b) e~~!). 

(4.11) 

( 4.12) 

(4.13) 

Observe that the sign in (4.12) and (4.13) is opposite to that occurring in the algebra 

of iLo.. This is as it should be because we defined the action of the group by left 

multiplication. 

It is easy to compute the first few terms of the infinitesimal transformations in 

power series of z. One finds for the Killing vectors (no sum over indices; a > 0, z" = 0 

for n < 0) 

{

eo "(z) 

eO. "(z) 

e-o. "(z) 

= -inz" + ... 
= 60. " + ~(2a - n)z"-o. + ... 
= -i(2a + n)z"+o. + ... ) . 

(4.14) 

Note that, for z = 0, ~o" and e-o. " vanish, while eO. " = 60. ". Siinilarly, for z = 0, eo n 

and eO. n vanish, while e-o. n = 60. ". We shall need these facts later. 

Using {4.1} we can compute the differential forms given by {3.11}. We introduce 
the abbreviations. 

and write 

V-1dV = e-pLoe-i~.L-(e-i~.L+dei~.L+)ei~.L-ePLo 

+ e -pLo e -i~·L_ d( ei~.L- ePLo ). 

(4.15) 

( 4.16) 

(4.17) 

Clearly the last term is an element of the Lie algebra of F (generators La., a < 0) and 

contributes only to Wo and w_. Only the first term contributes to w+, which shows 

that w+ contains only the differentials dzm , and not dzm . So, from (3.12) and (3.13) 

a d m 0.(-) W = Z Wm Z,Z (4.18) 

w:-o. = -dzm Wm o.(z,z) (4.19) 

(a> 0, swn over m > 0), while wO contains both dzm and dzm • 
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5. The Toeplitz operators. 

vVe now wish to compute the difference operators corresponding to the Killing 

vectors ea. of Sec. 4. It is easy to work out their effect on the (1,0) part of the vectors 

6 themselves for b> ° at the origin z = z = 0. Let us denote by e the (1,0) part of a 

vector e. Thus, if the components of ea. are 

(5.1) 

those of ea. are 

(5.2) 

In the following all indices a, b· .. and l, m, n, r, ... take only positive values unless 

explicitly indicated otherwise. \Ve first observe that, at the origin, 

(5.3) 

This is immediate because, at the origin eo = ° and 

(5.4) 

At the origin e-a. m vanishes and in general eb is independent of z. As a consequence 

of (5.3) the difference operators (2.11) at the origin can be computed from the Lie 

derivatives alone. Thus 

and 

'Peo eb = c'eo eb = [eo, eb] 
= [eO,eb] =ibeb 

'Pe-o eb = c'e_o eb = [e -a., eb] 
= [e-a., eb] = i(a + b) eb-a. 

(5.5) 

(5.6) 

At the origin eb-a vanishes for b < a. The difference operators 'Peo and 'Pe-o operate 

within the space of vectors eb with positive b. For this reason, in the present applica­

tion, the difference operators are called Toeplitz operators, in analogy with operators 

occurring in the theory of Fourier series. 

To obtain <PeG for a > ° we shall make use of (2.28) and (2.29), which by (4.8) 

relates it to '-Pe-o. First we observe that the matrix elements of '-Pe-o at the origin are 

(5.7) 

This follows immediately" from (5.6) and the form of the Killing vectors at the origin 

(4.14). Our metric tensor is 

9lf = f(f.) 8l ,. (5.8) 
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with f(l.) given by (3.28). Therefore 

(<Pe..)m t = igtf' 6" a+r giim(2a + r) 

= if(m - ~) Ot m-a f(~) (a + m). (5.9) 

This fonnula can be rewritten as 
~ . f(b) ~ 

<Peo eb = l f(a + b) (2a + b) ea+b' (5.10) 

(5.7) and (5.9) are correct also for a = 0, in which case they agree. 

Exercise. Verify (5.7) and (5.9) by computing the Toeplitz operators at the origin 

from their definition (2.11) as difference operators on arbitrary tangent vectors of type 

(1,0). This requires computing the connection at the origin from (A.17), which in turn 

requires the metric to the appropriate order. Notice, in contrast, the simplicity of 

Freed's method, which we have employed above. 

In the following we shall simplify the notation and write <pa for 'Peo and Rab for 

Reo,eb for all a, b. We always work at the origin. It is (a, ~O) 

(5.11) 

Therefore (2.16) gives 

(5.12) 

It is easy to verify by matrix multiplication, using (5.7) and (5.9), that Rab vanishes 

except when a and b are both different from zero and have opposite sign. This is 

expected because in general 

(5.13) .. 

and for all other cases the components of the Killing vectors vanish at the origin by 

(4.14). The non vanishing components (a,b > 0) 

R-o,,, = [<p-o,<P"] - i(a + b)<Pb-o 

can be computed from (5.7) and (5.9). The result is 

[ 

f(m + r - i) 
Rrt, m a = - (2r + m)(m + r + i) f(m + r) 

+ (m + i)(2r + m - i) f7c::/) O(m - i) 

+(r + i) { 2r - ~(~ ~ l + r) ] 6m+r,t+a 

. (m+i-r) f(m) 

11 
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where 

O(m) = { ~ for rn > 0 

for rn < 0 

Exercise. Verify that the Riemann tensor satisfies the symmetry condition 

D m _ D m 
.1 "fi, a - .1 "fa, i (.5.16) 

valid for a Kahler manifold. Hint: use the identity (3.26), (3.27) satisfied by f(m). 

The expressions given in Refs. 2 and 5 are incomplete and do not satisfy (5.16). 

To compute the Ricci tensor we set e = m in (5.15) and sum over all positive 

values. For e = rn (no sum) 

[ 

fer) 
R:rm, m a = 8ra - (2r + m)(2rn + r) f(rn + r) 

+ (r + rn) { 2r - f (r) ] 
(2m - r) fern) 

(5.17) 

The sum over m is 

f. [-(2r + m)(2m + r) f(~(~ r) + (r + m)(2m - r) f<t.:!) 1 
,. fer) ,. -fl (r +m)(2m - r) f(m) + fl (r + m)(2r - m) . (5.18) 

For (3.28), with A =F 0, the infinite sum converges, dtie to cancellations between the 

first and second term. Separately the two sums diverge only logarithmically. Therefore 

one can shift the variable in the first term. Setting rn' = m + r -+ rn the infinite parts 

cancel and one is left with 

,. fer) 
fl(r + rn)(2rn - r) f(rn)' (5.19) 

This exactly cancels the term before the last in (5.18). Therefore (5.18) reduces to 

,. 13 1 L (r + rn)(2r - rn) = -. r3 - -r. 
m=l 6 6 

(5.20) 

In conclusion, the Ricci tensor is given by 

(5.21) 

The disappearance of the function fern) from the result is expected from the general 

structure of the Ricci tensor for a Kahler manifold. 
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Appendix. Basic formulas for Kibler manifolds. 

We consider a complex manifold whose points are parametrized in some neigh­

borhood by complex coordinates zm, zm. Let there be a hermitean metric tensor 

gnm = gmn = gnm, gmn = gmn = O. 

It is called a Kahler metric if it satisfies the vanishing curl conditions 

where 

ai gmn = am gin 

. at gmn' = an gml, 

(A.I) 

(A.2) 

a a 
ai = azi ' at = azi . (A.3) 

The conditions (A.2) imply at least locally the existence of a real function V(z, z) such 

that 

(A.4) 

V is called the Kahler potential and plays an important role in supersymmetry and 

supergravity theories. A change 

v ~ V' = V + k(x) + k(z) (A.5) 

is called a Kahler transformation. It leaves the metric invariant, because k(z) depends 

only on zm and k(z) only on zm. To the metric tensor (A.l) one associates a two-form 

(A.6) 

which is called the Kahler form of the manifold (we have omitted the wedge which 

indicates exterior product, but the differentials are understood to anticommute). The 

conditions (A.2) are equivalent to the statement that the Kahler form is closed 

while (A.4) gives 

where 

dw=O 

w= -2i8aV 

d = a+ 8, a = dzmom, 8 = dzmom 

Jl = fj'J = 8'J = 08 + 80 = 0 . 

(A.7) 

(A.B) 

(A.9) 

A vector of type (1,0) has components (v t , 0), a vector of type (0,1) has compo­

nents (0, tl), a general vector is the sum (vt , ul ). Covariant derivatives are constructed 

by means of the connection coefficients r t m n and their complex conjugates 

r· ri\ - r m I ft- t n' (A.lO) 
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These are the only non vanishing components of the connection coefficients, for instance 

re m n = o .. (A.l1) 

Thus the covariant derivatives of a vector of type (1,0) are 

(.4..12) 

• (A.13) 

The metric compatibility condition states, that 

(,.1.14) 

and 

'V'i gmn = oe gmn - r/" n gmii. = o. (A.15) 

These equations can be solved by using the inverse matrix gni 

fi.l in i 
gmii. 9 = 9 gnm = 8m ( A.16) 

and give 

(A.17) 

and 

r f' f'n::L 
1 '" = 9 Vi gn"'. (A.18) 

From (A.2) we see that 

(A.19) 

and 

(A.20) 

(absence of torsion). Notice the relative simplicity of (A.17), (A.18) as compared 

with the general formula (2.2) for the Christoffel connection. A Kahler manifold is a 

Riemann manifold having a very particular structure. 

One can write the above formulas in the notation of differential forms. Introduce 

. the matrix one form 

(A.21) 

and use matrix notation for the metric tensor as well. Then the metric compatibility 

condition can be written as 

dg - rT 9 - gf' ~ O. (A.22) 

This equation separates into two equations 

og - rTg = 0 (A.23) 
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(equivalent to (A.14)) and 

(A.24) 

(equivalent to (A.15)). Here rT is the transposed of the matrix r and f' the complex 

conjugate matrix. Finally (A.23) and (A.24) are solved by 

(A.25) 

which are equivalent to (A.17) and (A.18) respectively. 

To obtain the Riemann tensor, we first define the matrix valued Riemann two-

form 

From (A.25) we see that 

RT = dfT _ (rT)2 = d(8gg- 1) _ 8gg-18gg-1 

= 88gg-1 +8gg-1(8+8)gg-1 _ 8gg-18gg-1 

= 88gg-1 + 8gg-18gg-1 

= 8(8gg-1) = 8rT . 

This giveS the components 

Rln , r m = 8l( 8n gmi gir) = 8[ r n r m 

= (8l8n gmi - 8n gmt iu 8t gUi)gir. 

Lowering the index r we obtain 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

From the first line of (A.28) we see that the Kahler condition (A.2) implies the sym­

metry relation 

(A.30) 

Also, (A.29) shows that the hermiticity relation 

(A.31) 

IS ,.l.tisfied. The only other nonvanishing components of the Riemann tensor are ob­

tained by complex conjugation, e.g. 

Rtn,rm = Rrn,rm, (A.32) 

or using the antisymmetry condition 

Rlft,rffl. = - R,u,rffl. = - Rtft,ti'&r' (A.33) 
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vVe finally ~ome to the Ricci tensor. It is defined as usual 

Rim = IJ-in, n m ; (A.34) 

hmvever, for a Kahler manifold, we see from the symmetry condition (A.30) that it is 

also obtained by summing over the last two indices 

(.4..35) 

Using this formula and (A.28) one finds 

Rim = 8e( am gni In) 

= qam log det gni = .,.... Rmi' . (A.36) 

The other components of the Ricci tensor vanish 

Rem = Rim = O. (A.37) 

One also defines the Ricci two-form 

p = -2iRmidzmdzl 

= - 2iaa log det gni . (A.38) 

It is obvious that it has the very important property of being closed, 

dp= 0, (A.39) 

i. e. the Ricci tensor satisfies vanishing curl conditions analogous to those satisfied by 

the IGihler metric. 

Formulas (..\.36) and (A.38) show that the Ricci tensor of the manifold can 

be interpreted as the curvature of a line bundle, the metric for the line bundle being 

given by the determinant of the metric tensor of the manifold. This means that the 

transformation functions for the line bundle are the Jacobians of the coordinate trans­

formations. It is the bundle of scalar densities. Ref. 6 exploits this connection and uses 

directly vacuwn line bundles thereby avoiding the route through the Riemann tensor. 

\Ve note that in Refs. 2 and 5 the Ricci tenSor is computed from the Riemann tensor 

by using (A.35). Our computation in Sec. 5 using (A.34) appears somewhat simpler. 
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