
,
,1 ..

i
r

LBL-24334

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics Division

Mathematics Department

Presented at the UCLA Workshop on
V ortex Methods, Los Angeles, CA,
May 20-22, 1987, and to be
published in the Proceedings

Very Large Vortex Calculations
in Two Dimensions

S.B. Baden

November 1987

.. ...: t..J E I V E 0
LAWRENCE

~:~X.ELEY LABOR.4.TORY

FEB 1 9 1988

L!BRARY AND
D2C~!~' ~!'HS ~::CT!(,

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

~.~

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

..

VERY LARGE VORTEX CALCULATIONS
IN TWO DIMENSIONS!

Scott B. Baden

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

November 1987

LBL-24334

1 This work was supported in part by a California Fellowship in Microelectronics and in part by the
Applied Mathematical Sciences subprogram of the Office of Energy Research, u.s. Department of Energy,
under contract DE-AC03-76SF00098.

..

•

1

Very Large Vortex Calculations
in Two Dimensions

Scott B. Baden
Mathematics Department, Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720

Abstract

We describe an implementation of Anderson's Method of Local Corrections running
on the Cray X-MP multiprocessor with 4 CPUs. We will show how the code was vector
ized and parallelized, including dynamic load balancing. We present computational
results from very large runs of up to 25702 vortices .

... in the Vortex you are given just one momentary glimpse ... and some
where in it a tiny little marker, a microscopic dot on a microscopic dot,
which says 'you are here.'

-Douglas Adams, The Hitchhiker's Guide to the Universe

1. Introduction

Until recently, large vortex blob calculations involving tens of thousands of vortices

were considered intractable, even on the fastest computers. The problem was that an N -

body problem had to be solved directly, at a cost that was quadratic in the number of vor

tices. Today there exist techniques for approximating N -body interactions reasonably

well; they compute only a small fraction of the interactions directly and can run in a frac

tion of the time of the fully direct method. These algorithms work by exploiting the fact

that a vortex blob behaves like a point vortex outside the core. Most interactions, involv

ing distant length scales, can then be effectively lumped or averaged since the the induced

velocity field will be a harmonic function. We use one strategy that takes advantage of

that fact, known as Anderson's Method of Local Corrections (MLC) [2]. Another such

strategy, the multipole expansion method of Rokhlin and Greengard [11], appears else

where in this proceedings .

The MLC differs from the direct method in that it applies computational effort non

uniformly over the vortices. It uses special data structures to concentrate its effort where

the vortices are the densest. Such data structures are generally more complicated than the

arrays that are traditionally used in the direct method, and require special treatment on a

vector-type multiprocessor like the Cray X-MP. First, inner loops must be carefully coded

2

in order they may vectorize and execute with reasonably long vectors. Second, all proces

sors must be coerced to share the work evenly, and this must be done with a modest over

head.

The purpose of this paper is to consider the problem of implementing the MLC on the

Cray X-MP with 4 processors, though the ideas should carryover to other kinds of particle

methods and to other types of multiprocessors, too. The next section discusses the MLC

algorithm. Section 3 specifies a portable parallel algorithm that can run on diverse mul

tiprocessor architectures. Section 4 presents an implementation of the parallel computa

tion for the particular instance of the Cray X-MP, section 5 presents computational results,

and section 6 summarizes the paper.

2. Anderson's Method of Local Corrections

We will use the MLC to solve the vorticity-stream function formulation of Euler's

equations for incompressible flow confined to a square box n with boundary an. Let

u(x(t),t) be the velocity of the fluid at position x(t) at time t, with x and y components u

and v; u = (u ,v). Let 0) = ~; - ~: be the vorticity and", the stream function such that

u = curl",. The vorticity-stream function form of the Euler's equations is:

DO) = 0
Dt

0) = -~'" in n

(2.1)

(2.2)

.. D a a2 a2
where - = :\ + u.V is the material derivative and ~ = --2 + --2 is the two-

Dt ut ax ay
dimensional Laplacian operator. Finally, let the flow satisfy free-space boundary condi

tions:

u = 0 at x = 00. (2.3)

(Other kinds of boundary conditions, such as no-flow boundary conditions, can also be

handled.)
".;"

To discretize the above equations we initially place a collection of N vortex blobs on

a regular two-dimensional mesh and then compute the paths of the vortices over a

sequence of timesteps. The following system of ordinary differential equations describes

the motion of the vortices:

d N
-d Xj(t) = LXo(Xj(t)-Xj(t»O)j' i = 1, "', N ,i "# j,

t . 1 J=
(2.4)

where Xj (t) is the position of the jth vortex blob at time t, O)j is its strength, cr is the cutoff

..

•

3

radius, and Xa(r) is the influence function. Xa(r) gives the velocity induced at the point r

by a unit-strength vortex blob at the origin, and comes in many fOffi1s; see Hald [12] for a

discussion of different kinds of functions and of their effect on accuracy. Equations (2.4)

are an approximation to the Lagrangian form of (2.1-2); for a derivation see Anderson and

Greengard [1]. We will not discuss time integration, but focus on the velocity computa

tion on the R.H.S. of (2.4).

The equations of (2.4) imply that we must solve an N -body problem, an 0 (N 2) cal

culation that is prohibitively expensive when the vortices number ten thousand or more.

Computing the mutually induced velocities for a distribution of 12848 vortices, for exam

ple, consumes 56 seconds of CPU time on a single processor of a Cray X-MP, and a full

length run comprising 10000 velocity evaluations would consume over 150 hours. By

comparison, the MLC can complete the run in just under 21 hours. Unlike the direct N

body method, the MLC distinguishes between two kinds of vortex interactions: (1) long

range interactions approximated by solving a discrete Poisson equation on a finite

difference grid ("global" computation); (2) N -body interactions computed accurately for

vortices close enough to one another ("local" computation). When they number in the

thousands or more, the calculation spends most of its time computing local N -body

interactions between nearby vortices. Vortices that are not so close to one another interact

indirectly through the relatively inexpensive global finite difference computation. The

method is fast because it can effectively approximate most interaction inexpensively- typ

ically greater than 95% of the summands of (2.4). Unlike the direct method, the MLC is

not grid-free. It computes the velocity on a set of vortices in two steps:

(1) Solve Poisson's equation for an approximate velocity field on a

finite difference grid and interpolate to the centers of the vortices.

(2) Locally correct the velocity of each vortex by cancelling the portion

of the approximate velocity due to nearby vortices and substituting

in its place local direct interactions .

To simplify matters consider only the the x component of velocity, u; the y component, v,

is computed in a similar way .

Step 1 calculates Ii, an approximation to u on a grid, in three sub steps:

(1.a) Set up a right hand side for the discrete Poisson equation.

(1.b) Solve.

4

(I.c) Interpolate.

Assume a single vortex with unit vorticity centered at the origin; this simple case general

izes to arbitrary collections of vortices by superposition and linearity. Setting up the right

hand side entails first computing a "spread function" gD at a discrete set of grid points

surrounding the vortex. gD approximates the discrete Laplacian of the vortex's velocity

field by truncating to zero at sufficient distances from the vortex:

{

t1h u (ih ,jh)
gD(ih,jh) = 0

0< lihl and Ijhl ~D

otherwise.
(2.5)

Here h is the grid spacing, D is called the' 'spreading distance" and is chosen by the user,

t1 h is the discrete Laplacian, and u is the x component of the point vortex velocity func

tion:

u(x ,y) = (-y ,x)/21tr 2 (2.6)

For the boundary conditions we use the exact velocities induced by the vortex at the

discrete positions of the boundary of the grid, computing according to (2.6). The first step

finishes by inverting the right hand side with a Poisson solver, and then interpolating the

resultant far-field velocity field onto the center of the vortex. We used the Lagrange inter

polation formula for complex analytic functions used by Anderson [2].

For the ensuing discussion on the local corrections now consider an arbitrary distribu

tion of vortices. At the end of the first step each vortex will have accumulated point vortex

influences from all the others. This far-field approximation, however, is invalid wherever

the vortices are close enough that they behave as blobs rather than as point sources of vor

ticity. These interactions will have to be recomputed using the direct method, this time

using a vortex blob velocity formula. We cannot use the finite difference strategy to com

pute these interactions since only point vortices induce a harmonic velocity field. The

local interactions in the MLC are computed in much the same way as direct interactions

involving charged particles. The MLC requires that a "correction distance" C be chosen

by the method's user to distinguish nearby vortices (closer than C) from distant ones.

These nearby vortices are the ones that participate in the local interactions. To speed up

the search for nearby vortices, space is customarily subdivided into a few thousand fairly

small bins and then the vortices are sorted into the bins (Figure 1). Convenience dictates

setting the correction distance C to a multiple of the bin width. Let C now stand for that

multiple. Ctypically takes on values like 1 or 2. All the vortices influencing bin (i ,j) can

now be found in bins whose indices differ from i and j by integers no bigger than C.

This surrounding region of space is referred to as the "correction neighborhood."

.,

•

...

•

----_._-;--_._--------;-----_._-----;---------------------

5

,
,

---x-.------ .. -;.-----------t-----------r-----------

-·------------~----··-------I

----------T----------

Figure 1. Vortices, shown as x's, get sorted into bins,'demarcated here by hyphenated
lines. In practice the bins used in the MLC are much smaller than shown in the figure, so
the vortices interact directly only over short distances. Each shaded region designates the
correction neighborhood for a bin at the region's center, with C = 1. The region contains
all the vortices that influence those in the bin via local interactions, and includes the bin
itself.

6

The local corrections phase finishes by cancelling out the far-field influences from the

vortices in the correction neighborhood. This entails computing the exact point-vortex

velocities (using (2.6)) induced by the vortices in the correction neighborhood at the posi

tions of the interpolation stencil surrounding the bin, interpolating, and then subtracting

from what had already been accumulated on the vortices in step 1. In sum, the local

corrections divide into two parts:

(2.a) Locally cancel the far-field approximation for all the vortices in the

correction neighborhood.

(2.b) Compute local interactions with those same vortices.

The MLC concentrates most of its work in the local interactions phase, and its overall

running time can be reasonably estimated by summing the number of local interactions

computed against all the vortices. A work density mapping gives the number of local

interactions computed against the vortices in each bin. It is easy to compute and is the

product of two quantities; the number of vortices in the bin, and the number of vortices in

that bin and in the correction neighborhood:

workM ap (i ,j) = card(i ,j) [L card(i +k , j +1)1
Ikl,lll sc) (2.7)

where "card(i ,j)" is the number of vortices in bin i ,j.

Assuming that the influence function, the cutoff radius cr, and the vorticity mesh

spacing hv are fixed, two parameters affect the spread and accuracy of the MLC- the

spreading distance D and the correction distance C. D affects the accuracy of the far

field interactions and can be no smaller than cr. It cannot hurt to make D slightly too

large, although the cost to set up the right hand side for Poisson's equation increases

roughly as D 2. C can be no smaller than cr because the finite difference approximation to

u isn't accurate inside the core of the vortex (r < cr) and must be corrected there. The

answers get more accurate as C increases, but for a price: the cost to do the local correc

tions varies roughly as the square of C, depending on the local density of vortices. We

obtained good results by setting C = D =2h, where h = 11M is the finite difference mesh

spacing used by the Poisson solver.

3. A Parallel Implementation

We present a parallel implementation of the MLC. We suppress architecture-specific

details and focus on how to organize the computation for a generic multiprocessor. In the

next section we will flesh out the details of the implementation on a particular instance of

•

"w

"

,

7

multiprocessor architecture, the Cray X-MP. Our generic multiprocessor can be imple

mented by a layer of software on most any traditional multiprocessor system; see Baden

[3] for the details. It provides a set of subroutines that the MLC will invoke from time to

time and that we will refer to as "run-time utilities." The semantics of these utilities are

independent of the underlying architecture.

The MLC uses three major data structures. First, there are two finite difference

meshes with dimensions (M + l)x(M + 1) and spacing h = 11M. There is also a bin data

structure with dimensions M xM , called the workLattice. Each bin in the workLattice con

tains a collection of vortices and can be thought of as a pointer to a linked list of vortex

records. Each vortex record contains fields for the position and strength of a single vortex,

and some additional information used in time integration. The record also contains a

pointer field to string together all the vortices in a single bin into a linked list.

To parallelize the MLC, we subdivide the workLattice into subregions, assign each

such subproblem to a unique processor, and let each processor compute on its assigned

subproblem in parallel with the others. Ignoring roundoff, results will be independent of

the number of processors used. The computation begins with a distinguished task called

the "boss." The boss reads in the input data and spawns P additional "worker tasks,"

where P is chosen by the user. These worker tasks participate in the numerical part of the

computation. All execute the same program but each on a different set of data- a single

subregion of the workLattice. Each worker executes out of a private address space and

communicates with the others through a mechanism to be discussed. There is no shared

memory.

The boss plays a minor role and primarily sits idle. Its major purpose is to initiate

and terminate the parallel computation. Whether the boss task executes on its own proces

sor or shares a processor with a worker isn't said. The boss furnishes each worker with an

initial assignment of work, consisting of a description of the assigned region of the work

Lattice and the initial configuration of bins (and hence vortices) belonging there. Each

worker maintains a private copy of its assigned part of the workLattice and of the finite

difference meshes. It also maintains a copy of a surrounding collection of bins, called an

"external interaction region," which augments the task's assigned sublattice (see Figure

2). The task uses this external interaction region to maintain copies of vortices belonging

to other tasks that directly interact with its own; hence, the region is C bins thick.

Because our generic multiprocessor has no shared memory a task may directly modify

only the vortices in its private memory and it has no information about any vortices that lie

beyond the external interaction region. If a task modifies a copy of a vortex in the interac

tion region, then the owner of the "original" won't know that the change was made.

8

J

~ ! -.. --~---------,

Figure 2. Task i is assigned L i, a subregion of the workLattice, and an external interac
tion region Di. Di is a surrounding shell of bins C bins thick, where C = 2. Since Di and
Li do not intersect, subproblems L i and Li are independent during the local interactions
computation, i.e. they do not interact. But Di and L /c do intersect, and so subproblems Li
and L /care dependent during local interactions.

'.I

•

\1

II

9

Similarly, when a task modifies an original any tasks that possess copies will be unaware

of the changes. To ensure correctness tasks must periodically satisfy a synchronization

constraint such that all vortex copies will be consistent with the originals. Tasks synchron

ize by calling a run-time utility.

The computation begins with all tasks cooperating to set up a right hand side for the

Poisson solver. Each task computes only over its assigned bins (exclusive of the external

interaction region) and calls a run-time utility to determine the bounds of its assigned

region of the workLattice. When done, it passes the local right hand side it has computed

to the Poisson solver. The Poisson solver combines all the local contributions into a single

global right hand side and then inverts the global right hand side. Each task will generally

encounter the solver at a different time, according to the amount of work assigned to it.

All tasks leave the solver together, however, and upon return each will have a copy of the

result in its private memory. How the solver combines the local right hand sides and how

it distributes its result isn't said; we assume that the solver comes in an application library

and that its internal structure is hidden from the programmer. Once a task has obtained a

copy of the inverted right hand side, it is free to interpolate far-field velocities onto its vor

tices and then do the local corrections. This finishes the velocity evaluation.

The next velocity evaluation may commence after the time integration procedure has

been called. The evaluation begins by sorting the vortices into their correct bins, since

they moved since the last evaluation. (Assume for now that no vortex has moved into a

bin owned by another task.) At this point the private copies of vortices in the external

interaction region are inconsistent with the originals since these were changed by the

owner during time integration and sorting. To ensure correctness these copies must be

refreshed. Each task must synchronize at a "local barrier" by communicating with all

tasks that overlap its external interaction region. It does this by calling a run-time utility

called lBar. This utility shuffles vortices between processors and hides most of the

details. When a task encounters a call to lBar it will not return until it has finished syn

chronizing with all interacting tasks (the' 'local barrier' '), at which time it is free to con

tinue with the velocity evaluation. Thus, lBar specifies' 'Local BARrier synchroniza

tion points," and hence its name. A separate call to lBar may also be used to migrate

vortices that changed owners as a side-effect of the sorting procedure.

Because vortices will migrate among tasks over time, some tasks may eventually

become overloaded with work, while others become lightly loaded. As a result, the time

required to do a velocity evaluation will gradually increase with time, unless the work

assignments are readjusted (see Figure 3). To this end the workers must periodically

invoke a run-time utility called Partitioner, say every couple of velocity evaluations.

160

150

140

S
e 130
c
o
n
d 120
s

110

100

10

----r---l--rl--j-i---rrr--r-r--i--r--r---r-l-1
.. - ~ .. --~ -- -- --i- --- -- ~--- ----:- ------j .. ---- -- ~-- ... -. -:-.- ----: _.. .. --r---- .. -~- -- _. -~ -_ .. ---":,---- --:,-" -_ -~ .. ----- -: -_ ... ---r-- -- ~

I , , I I I I I I I I I I I , I I

i ! i ! ! ~ i : ~ l l 1 ! l i ! 1
I I I I I I' • It. I I I I I

1 ! i ! ! l! i! l i ! i l i l
I I I I I I I • I I I I I I • I

: : : : : :: :::::::::
~ ~ : : :: :::::::::
: : : : : : . . : : : : : : : : :
I I I I I I I I I I I I I I • I I -------r-----T----T----T----r----r--- r----r---T----T----T----T----r----r-----r-----T-----l
i ! i ! ~ : ! i ~ i ! iii ! i i
• • • •• ". I I • • • • • ,

: : : :: :::::::::::
: : : :: !::!!:!: 1 : :
: : : : I • : : : : : : : : : : :

--- ---or -------~------ i-- -----i- -- --- : ----- -- j-------j- -- ___ oj ----- --r------t--- ---i-------i-------j-------j-------j ----- --r-------I
: : : : : : : : : : : : : : : : :
I I I , I I I I I I t I I I I I I

: : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : -0
I I I I , I I I I I I , I I I •

: : : : : : : : : : : : : : : :
: : : I : : : : : : : : : : : :

! ! 1 • ~ \ i ! ! : : ! ! ! ! ! ! 1
-------~-------~------~----- ~--,-+-l-------i-------i-------~-------~------+------~-------l-------l-------i-------i-------~------· . . ·1 I' . . . , ,

l ! 1 !, ,,~ 1 : : : : : ! : : ! :
: : : : I : : : : : : : : : : :

: : : : I ~ : : : : : : : : : : :
:: : 1 : \ : : : : : : : : : : :
:: :::::::::::::
!! ! I i \ It i ~ i ! i ! iii i !
: : : :1 : 1\: A : : : : j : : : : :

-----,,~------ • -_____ .:.. ______ ~J ______ ~---~--.l!I-I--~-!f~-)-~-------~------.l.------.:..------~-------~-------!------_!-------~------~
i ! i Ail i t ,I It I I! i \ iii iii i i

':1 : : I ~ : : I : I " A: ~ , I: : : : : : : :
, ! I ! Ii' 1\ iii i ! \ lIil I, iii iii i i
,: :, A:,' I I. : : : : V , ~ l\ : : ~: : : : :

· \ i I I Ii ~ Iii i : : :' ! ! : ! \ ! ! !
:' I,:' v:' : : : : : :.: I \: A : 1\: : A I : A "i :
! II\!' ~ ! ! ! ! ! ! ! \/li/l Ai A , \i/'",\i/i/li/l/: i

-------~--IJ--#------+------~-------~-------i-------i-------i-------~------+--+--~-\~-.\l!.....,.--~------~--+--~---!---~------~
: I' : : : : : : : : ! I 1 : : : : :
: : : : : ~ : ! : : : : : : : : :
I • I • I • I t f • I I I I I I I

: : : : : : : : : : : : : : : : :
: : : ! : : 1 ! : : 1 1 ! i : l 1
: : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : :
I I I , , I I I • I I , I I I I I

: : ! : : : : : : 1 : : : ! : : :
90+-~~~~-r~-+-+-+-+-+~~~~~~

o 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

Velocity Evaluation

Figure 3. The cost of doing a velocity evaluation will steadily increase (top curve) unless
workloads are periodically rebalanced (bottom curve). We balanced workloads every
time step, or every other velocity evaluation. These measurements were obtained from
the Intel iPSC with 32 processors running with 3180 vortices. The top run was aborted
after 36 velocity evaluations; some of the iPSC's processors had accumulated sufficient
additional vortices to exceed the capacity of their local memory.

v

•

'w;

11

A worker obtains its new work assignments by computing a "work density mapping," in

the form of an array, and then passing that array to the partitioner. This work density map

ping estimates the cost of evaluating the velocities in each bin of the worker's assigned

region of the workLattice. It is computed according to equation (2.7) and tallies the

number of local interactions computed against each bin. This simple estimate gives a rea

sonable guess of the exact cost of the overall computation since the local interactions

account for a large fraction of the MLC's running time. The partitioner combines the local

mappings using a mechanism hidden from the programmer, and then uses this global map

ping to decide how to divide up the work. All tasks leave the partitioner together and upon

return each will be assigned a unique rectangular region of the workLattice, as shown in

Figure 4. These regions change with time as shown in Figure 5. A task determines the set

of indices for the bins assigned to it with the aid of querying functions provided as run

time utilities.

As a result of calling the Partitioner, some vortices may change owners, and

must therefore be transmitted to the correct task. As was the case with sorting, a call to the

lBar utility can handle the necessary exchanges of data. One detail that has been left out

about lBar is that the user must pass it two subroutines as arguments. These implement

gather and scatter operations that are familiar to users of vector architectures, and will not

be discussed. The interested reader is referred to [3] for the details. The complete parallel

MLC code appears in Figure 6.

4. Cray X-MP Implementation

4.1. The Cray X-MP Multiprocessing System

The Cray X-MP is a shared-memory multiprocessor with vector arithmetic capabili

ties. We used the largest model, known as the X-MP/416. The X-MP/416 has four pro

cessors and 16 million words of main memory (1 word = 64 bits) and is capable of com

puting at a sustained rate of more than 400 million floating point operations per second.

Each processor executes its own instruction stream and communicates with the others

through either the shared memory or through a special set of shared registers. The

definitive source of information about the X-MP is the hardware reference manual pub

lished by Cray Research, Inc. [10], although the pamphlet by S. Chen et al. [6] is a more

accessible document.

The key to using the X-MP effectively is to keep the processors busy doing useful

work most of the time. We must ensure that most arithmetic operations execute in .the fast

vector mode and that the vectors be reasonably long (40 elements or more). We must also

divide the work up fairly among the processors, ensuring that the cost of coordinating the

12

056

062
'm,006

~ -- 047

:.:; 049
047

~

001
~~ ·f

·~V,,",'"

1
004

'!II
062

056

000 000 000 000

000 000

000 187 000

000 000 000 000

T.12.500

Figure 4. To parallelize the MLC we Subdivide the domain into regions and have each processor
compute on just one region. We show two such partitionings on 16 processors. To compensate
for the uneven distribution of vortices over the domain we use an adaptive partitioning (a) that
generates somewhat irregularly sized subproblems that all complete in roughly the same time. If
we partitioned the domain uniformly (b), only 4 of 16 processors would be given much work to
do, and the computation would run four times more slowly than in (a). The labels give each
processor's share of the workload normalized to 1000 units of total work. If loads were perfectly
balanced, then each subproblem would get 062 units of work. The calculation began with 2 finite
area vortices consisting of 795 vortices, shown as dots, placed evenly on a mesh confined to a
disk. Some vortices have been omitted for the purpose of clarification. .

v

·~ 11. . . """ ~.
t;q: ~ t:q p

T = 0.00000 Eff = 0.752

T = 10.00000 Eff= 0.852

T = 2750000 Eff = 0.755

13

T = 250000 Eff= 0.794

T = 15.00000 Eff = 0.825

•
':
l

T= 3750000 Eff=0.823

T = 5.00000 Eff = 0.768

T = 20.00000 Eff = 0.773

, -
T = 50.00000 Eff = 0.872

Figure 5. The distribution of vortices changes with time, so the work must be periodically reparti
tioned. If this were not done, then some processors would become overloaded while others would
only stand and wait. Owing to a time step constraint, vortices jump by only small amounts
between time steps; repartitioning need therefore be done every few, say 2 or 4, timesteps. This
series of snapshots was taken from the same calculation used to produce Figure 4. Some vortices
have been omitted for the purpose of clarification.

14

sort the vortices
local synchronization barrier #1; handle vortex migration

if it's time, repartition to rebalance the work loads
local synchronization barrier #2; handle load shifting

local synchronization barrier #3; obtain copies of locally interacting vortices

compute velocities over this task's work assignment

set down right hand side
call the Poisson solver [global synchronization barrier]

interpolate and do local corrections

Figure 6. The parallel MLC code contains three local barrier synchronization points.

effort doesn't overwhelm the benefits. In this section we will show how we did this for the

MLC, though many of the ideas carryover to other kinds of computations, in particular, to

the Multipole Expansion Method discussed elsewhere in this proceedings. We will discuss

parallelization and vectorization separately, since the two may be handled independently

of one another in the case of the MLC.

All our software was written in Cray X-MP FORTRAN [8], a superset of FORTRAN

77 which Cray Research, Inc. has extended to improve the vectorizability of code and to

deal with certain aspects of concurrency. Several new Cray FORTRAN library routines

are provided in support of these activities and are described both in the FORTRAN manual

and in the Cray X-MP Multitasking User's Guide [9]. Cray made two major changes to

FORTRAN in support of parallel execution. First, code is now re-entrant and so local

variables no longer persist across subroutine calls. Second, a new kind of common block

was introduced called task common. Whereas ordinary common is storage shared

among all tasks, a task common block is private to a single task. Task common is

dynamically allocated and initially it is undefined. We used it to implement the local

memory of our generic multiprocessor.

15

4.2. Parallelization

In a parallel computation certain parts must run on just one processor to ensure

correctness, e.g. program initialization. Other parts may be executed concurrently to

reduce the running time of the program. Not all parallelizable parts need be parallelized,

however, but only those parts that consume a "noticeable" fraction of the code's running

time. Just what this noticeable fraction is depends on the number of processors in use, and

can be determined from Amdahl's law. This law tells us the best parallel speedup S we

can expect on P processors, given that only a fraction j of the code parallelizes is:

S(P ,f) = ((1-j)+(j IP))-l (4.1)

Ideally our speedup equals P (j = 1.0). Thus, our first task is to determine which parts of

the code, if parallelized, could substantially reduce the running time of the calculation. To

this end we used the Cray jlowtrace facility to profile the MLC code. We found, for exam

ple, that the MLC spent only 0.6% of its time in the Poisson solver with a calculation using

12848 vortices and a 64x64 solver mesh. Thus, Amdah1's law tells us that if we don't

parallelize the Poisson solver, then our speedup will only drop to 3.92 (out of a possible

4.0 if we did parallelize). We therefore chose not to parallelize the solver since doing so

would only speed up the overall computation by at most 2% (P IS -1). After all tasks have

contributed their local right hand sides to the solver, a conditional statement selects a dis

tinguished task to do the solver's computation. The others wait at a synchronization bar

rier until the solver returns. This barrier is a global one since all tasks must wait, and is

implemented by a run-time utility.

The next part of parallelizing the MLC is to implement the boss task. The boss calls

various Cray X-MP multitasking library routines to spawn the worker tasks. The calling

sequences for these routines are described in the X-MP Multitasking User's Guide and will

not be discussed.

The final part of the implementation is to set up the remaining calls to the generic

multiprocessor's run-time utilities to handle partitioning and local barrier synchronization.

We have already discussed this in §3 and will not go into detail here. The major point to

be made is that the programmer doesn't know how the utilities work though he will pass

them some subroutines as arguments. These routines accounted for roughly 700 out of

7000 lines of code in our implementation.

4.3. Vectorization

The desire to have do loops execute in vector mode had a major impact on the

design of the numerical portion of the MLC code. Owing to the high cost of following

pointers on the Cray, collections of vortices represented as linked lists should first be

16

gathered into contiguous vectors before they can be used within an innermost loop. Later,

the result of the computation will be scattered from the adjacent locations of the array into

the non-adjacent locations of the linked list. The effectiveness of gather and scatter opera

tions is contingent on their being done infrequently relative to numerical operations. We

implemented gather and scatter operations in software; the code is straightforward and will

not be shown.

Operation counts can be a misleading timing metric on the Cray since operation times

are sensitive to how well the Cray's pipelined functional units are kept filled. Even if they

execute more arithmetic operations, calculations that have been modified to utilize the

pipeline more effectively often run faster than the original computation that executed

fewer arithmetic operations. Decisions, for example, are often very expensive within tight

inner loops, since they can disrupt the flow of data through the arithmetic pipeline. Some

inner loops will have to be rewritten to avoid disturbing the pipeline; this entails evaluat

ing both branches of the loop and then using a Cray intrinsic vector merge function to

select the desired result. The strategy effectively converts a conditional statment that

doesn't vectorize into a conditional expression that does. In making the conversion how

ever, we have changed the semantics of the loop. We may have introduced spurious ille

gal operations, such as division by zero, whose results will never be used but which could

abort the program. Such erroneous operations must be somehow be avoided in software or

rendered harmless. We used a max function, for example, to protect against any spurious

divisions by zero.

4.4. Storage Utilization

The MLC program consumed a total of 3.6 megawords of memory when running on

4 processors. The boss executed as a fifth task in addition to the 4 worker tasks. The

shared code consumed only 43 kilobytes of storage, divided roughly equally among the

MLC code and the system libraries. Each of 5 tasks consumed 100 kilobytes of stack

space and all tasks shared 400 kilobytes of heap storage. The remainder of the storage was

consumed primarily by the major data structures which were duplicated for each task in

task common- the bins, finite difference grids, gather/scatter buffers (each 4096 ele

ments long), and vortex-records. The first three structures consumed roughly 138 kilo

bytes per task, the vortex-records 400 kilobytes per task. There were also 70 kilobytes of

global common grids shared by all tasks.

4.5. Summary

We took 4 steps to parallelize the MLC code:

17

(1) Determine which parts of the code, if parallelized, could substan

tially reduce the running time of the calculation, and which parts

can run serially. Set up serial sections with a conditional statment

and a call to a global barrier synchronization utility.

(2) Set up the boss task.

(3) Implement data partitioning. Modify loop bounds and generate the

work density mapping array. Insert a call to the Partitioner

utility.

(4) Handle local barrier synchronization. Write the gather and scatter

routines. Insert calls to the lBar utility.

Note that the utilities are provided by our generic multiprocessor's run-time library.

We took two steps to vectorize the code:

(1) Gather vortices stored as linked lists into long vectors prior to their

use within inner loops, and scatter the results to memory afterwards.

(2) Execute both branches of a conditional statement within tight inner

loops and then select the desired result with an intrinsic merge func

tion.

5. Computational Results

5.1. Accuracy

We used the Cray's default single precision arithmetic (64 bits). We used a second

order Runge-Kutta time integration scheme (Heun's method), that does two velocity

evaluations per time step, and Chorin's [7] second order cutoff function. All finite differ

ence calculations were accurate to fourth order.

We ran two test problems to determine the accuracy of the MLC. The first test prob

lem runs with a single vortex with strength 1t and cutoff 1/30 at the origin. The vortex

should remain stationary since there are no self-induced velocities. With the MLC, how

ever, there is some motion, and so we measure the error as the L2 norm of the position of

the vortex at the end of the run (the runs were 1000 timesteps long). Since this run com

putes no local interactions it measures the accuracy of the finite difference approximation

and cancellation procedures. We determined that a good value for the spreading distance

D is twice the finite difference mesh spacing. The results are summarized in Table 1.

18

We ran with another test problem with a known exact solution to determine the

interaction of D, C, and !:1t with hy, the initial spacing of the vortices. We set the cutoff

(J' = h!, where we chose q = 0.75 for all our runs. (See Beale and Majda [4,5] for a dis

cussion of the relationship between (J' and hy and accuracy.) We set C = D = 2h, where h

is the spacing of the finite difference mesh, and varied h. The initial vorticity distribution

for the test problem is radially symmetric and vanishes outside a circle of radius 0.25 cen

tered about the origin. The vortices are distributed on a uniform mesh of points, with the

strength of a vortex at x = (x,y) given by 41t(1-4(x2+y2»7. The vortices rotate about the

origin with an angular velocity that increases with decreasing distance from the origin.

See Perlman [14] for the details. The runs were stopped when the fastest moving vortices

had rotated one revolution. The L2 norm of the error was reported. This error is defined

as:

The results of the study are presented in Table 2, and tell us three things:

(1) !:1t Ihy must remain constant, i.e. the time step must decrease as the

vortices increase in number. The choice of appropriate time step

can be inferred by moving across a row and noting when decreasing

the timestep doesn't appreciably decrease the error.

D/h L2 Error

1 6.23324e-Ol
2 4.4194ge-03

4 1.36450e-07

8 8.40737e-ll

(5.1)

Table 1. The accuracy of the finite difference approximation improves as D , the support of
llu, increases .. D is measured in units of the mesh spacing h, with h fixed at 1/30. The er
ror is measured as the L2 norm of the position of the vortex at the end of 1000 timesteps.
The timestep llt = 0.05.

..

. ..

' ..

19

(2) The correction radius C scales roughly with hv (more precisely

with the cutoff 0'). Accuracy is insensitive to changes in C, so long

as C > 0'. This can be inferred by moving down a column and

keeping the number of vortices fixed.

(3) Accuracy improves significantly as the vortices are initially spaced

more closely (hv ~O), so long as an appropriate timestep has been

chosen.

The second result is significant since it tells us that the cost of the local interactions need

not necessarily grow as quickly as N 2 if C and hence h are decreased with hv' This is

indeed what has been observed in practice, as shown in Table 3.

hv !1t
h

(N) 0.1 0.05 0.025 0.0125 0.00625

0.014 1/30 9.090xlO-3 4.566x10-3 3.497xlO-3 3.243xlO-3 3. 175xlO-3

(1005) 1/60 9.082xlO-3 4.556xlO-3 3.488xlO-3 3.233xlO-3 3.165xlO-3

0.007 1/30 7.659xlO-3 3.648xlO-3 1.476xlO-3 1.216xlO-3 -
(4020) 1/60 7.661xlO-3 3.650xlO-3 1.478xlO-3 1.218xlO-3 -

direct 7.658xlO-3 3.646xlO-3 1.474xlO-3 1.214xlO-3 -
0.0035 1/30 7. 172x 10-3 1.971xlO-3 7.479xlO-4 4.828xlO-4 4.219xlO-4

(16043) 1/60 7.173xlO-3 1.974xlO-3 7.500x10-4 4.850xlO-4 4.241xlO-4

1/120 7.174xlO-3 1.974x10-3 7.506xlO-4 4.856xlO-4 4.247xlO-4

Table 2. Results from a three parameter study show the effect of varying the initial spac
ing of vortices hy , the correction and spreading distances C and D, and the timestep /),J on
the accuracy of the computed solution. The cutoff a was set to hyO.75• In all cases C and D
were set to 2h, where h was the finite difference mesh spacing. For comparison, a result
for the direct method is presented for the single case of 4020 vortices; accuracy is not
significantly better than it is with the MLC. N gives the number of vortices.

20

5.2. Merger Question of Two Finite Area Vortices

In the next test problem we repeated the experiments of Zabusky [15] involving the

question of merger of two Finite Area Vortices (FAVs). Contrary to what was observed by

Zabusky and his coworkers, we observe no merger, in agreement with known analytic

results. (For a discussion see Majda [13].) The initial vorticity distribution was set out on a

uniform mesh confined to two circular disks centered about the origin. The disks had a

radius of 0.1125, with centers separated by 0.3. This corresponded to a run done in Zabu

sky [15] in which the ratio of the diameter of the patches to their separation was set at

0.75. The vortices all had the same strength, equal to one-half the square of their initial

spacing. Figure 7 shows the result of a run with 12788 t~t~~ vortices at an advanced stage

of the computation.

We next evaluate the performance of the MLC. (We used the same test problem,

though we ran with slightly different parameters; the separation of the FAVs was 0.25 and

their radii was 0.12.) We measure floating point operation counts and uniprocessor and

multiple processor running times. We used Version 1.14 of the CFT compiler, dated

October 8, 1985, and Version 2.2 of the loader (segldr), dated December 1, 1986, and ran

under version 1.16BF1 of COS, the Cray Operating System. Since COS is a batch operat

ing system, and therefore non-interactive, jobs were submitted to the Cray mainframe

from an interactive front-end processor. Our results for the multiprocessor runs were

obtained during special dedicated blocks of time during which we had the entire machine

to ourselves and interference from operating system activities was minimal.

In the first experiment we ran on just one processor. We show that the Method of

Local Corrections is substantially faster than the fully direct method. With 25,702 vor

tices, for example, the MLC is 16 times faster than the direct method. It can do a velocity

evaluation in just under 15 seconds (see Table 3). To avoid a quadratic growth in the

MLC's running time we must scale the correction distance with the initial spacing of vor

tices. There is, however, a practical lower limit on the size of C, above that implied by the

3-parameter study. The trouble is that the finite mesh spacing h, and hence the bin size,

must be decreased along with C, and doing so decreases vector lengths. In addition, the

cost of setting up the boundary conditions increases, since the number of boundary points

where we must evaluate exact velocities increases. This is documented in Table 4. For

the run with 12848 vortices for instance, decreasing C from 1/30 to 1/60 didn't speed up

the calculation but actually slowed it down slightly. The reason why was that although the

total number of floating point operations was reduced roughly by a factor of two,. so was

the rate at which those operations got done; the average vector length decreased from 160

to 40 elements.

OJ

21

T = 28.46480 Ix 1.30J

Figure 7. We observed no merger of two finite area vonices after 28.4648 units of time. The vor
tices were spaced on 2.48625xlo-3 unit centers, the timestep was 8.84xIO-3, and the cutoff
cr = h.O.

75 = 1.1134193xlo-2. Color photographs available from the author can be used to observe the
result more closely than is possible in this plot.

22

We next consider how well the MLC can utilize the X-MP's processors when exe

cuted concurrently. We define l1p as the parallel efficiency on P processors:

T1/P
l1p = --:r;-' (5.1)

and use this as our figure of merit. Here T p is the time to complete on P processors and

T 1 is the time taken on a uniprocessor. For this special case of P = 1, various overheads

that would be incurred on a multiprocessor, such as communication, are non-existent. By

definition 111 = 1. To evaluate the efficiency, we ran with two different problem sizes -

12848 and 25702 vortices. To conserve scarce dedicated computer time, we started the

runs at an advanced stage of the simulation, using a snapshot file that had been generated

on another X-MP system. The snapshots were taken at 10.0 units of simulated time; this is

an interesting point in the simulation where the finite area vortices have begun to entrain.

Table 5 gives the timings and the parallel speedup and efficiency for the various runs.

Efficiency was never less than 89%; under ideal conditions of 100% efficiency the pro

grams would run only 12% faster. We were able to attribute most of the efficiency loss to

the load imbalance and to the fact that we chose to run the Poisson solver on just one pro

cessor. Had we parallelized the solver, then most of the efficiency loss would have been

due to load imbalance.

6. Summary

We have implemented a vortex code that is capable of handling tens of thousands of

vortices. It can do a velocity computation on 25702 vortices, for example, in about 4

seconds on a Cray X-MP with 4 processors. The computation is fast because it can

approximate N -body interactions without having to resort to a fully direct computation.

Furthermore, it vectorizes on the Cray - each processor computes at a rate of about 65

megaflops/sec - and it paraUelizes well - it utilizes the 4 processors with 90% efficiency

and can compute at an aggregate rate of 200 to 250 megaflops/sec. The algorithm appears

to strike a reasonable balance between speed and accuracy.

The major issue in parallelizing the Method of Local Corrections is to avoid exces

sive load imbalance. We were, however, able to mitigate load imbalance at a reasonable

cost with the aid of some run-time utilities. To a large extent, these utilities insulate task

partitioning and synchronization activities from a change of computer architecture and

their use therefore improved the portability of our software. These utilities do not, how

ever, apply to the Poisson solver, though the solver may be parallelized separately from

the rest of the calculation.

..

23

CPU time per timestep (min)

N C MLC Direct MLC
Speedup

12848 1/30 0.12 0.95 7.9

25702 1/60 0.24 3.8 16

51376 1/60 0.65 15 23

102822 1/120 1.6 61 38

Table 3. The MLC is substantially faster than the direct method. If we scale the correction
distance C with the initial spacing of the vortices hv then the cost of the MLC grows more
slowly than the square of the number of vortices. The italicized times for the direct
method, when N > 12848, were extrapolated from the running times for smaller N. Times
are reported for a single velocity evaluation and were measured on a single processor of a
Cray X-MP/416.

N C Local Interactions Finite Differences Overall

Time Mflops Time Mflops Time X 109

(sec) per sec (sec) per sec (sec) flops

12848 1/15 67.4 89 3.02 84 72.0 6.30

12848 1/30 28.2 69 5.37 68 36.1 2.33

12848 1/60 19.1 34 13.0 47 38.5 1.35

25702 1/60 95.1 78 8.85 79 108 8.19

25702 1/120 45.8 50 17.9 63 71.6 3.50

25702 1/240 36.9 23 49.8 42 112 3.50

Table 4. The optimal values used for the correction radius C have the property that in
creasing or decreasing them increases the overall running time of the computation. The
optimal values, shown in bold-face, are larger than the minimum allowable values, im
mediately below, owing to a decrease in vector length and in an increase in the number of
operations required to compute boundary conditions. We report on the running time and
the execution rate for the two dominant parts of the computation: local interactions and
finite difference computations (here finite difference computation doesn't include the Pois
son solver). We also report on the entire computation. Though these measurements were
taken from runs that lasted just two timesteps, we believe they are representative of much
longer runs since operation counts do not appear to fluctuate much.

24

N P Time (sec) Sp l1P

12848 1 5999 1.00 1.000

12848 2 3081 1.95 0.973

12848 4 1651 3.63 0.908

25702 1 7032 1.00 1.000

25702 4 1970 3.57 0.892

Table 5. Timings, parallel efficiency and speedup for the X-MP runs. Sp is the speedup;
by definition l1p = Sp/P. All runs began at 10.0 units of simulated time. For N = 12848,
the vortices were spaced at 2.6516xlO-3 unit intervals; the finite difference mesh spacing h
was 1/60, and the runs lasted 400 timesteps. For N = 25702 the vortices were spaced at
1.8750xlO-3 unit intervals; h = 11120, and the runs lasted 240 timesteps. The cutoff was
hvO.75 for all runs, the time step was 0.0125, and C = D = 2h. Loads were rebalanced every
timestep, i.e. every other velocity evaluation.

In the near future we believe that our code could handle as many as 105 vortices. A

multiprocessor with 8 or 16 processors, each somewhat faster than the Cray X-MP's,

would suffice and cannot be far off.

7. Acknowledgements

I gratefully acknowledge the advice of my thesis advisor, W. Kahan, and of Phil

Colella. I give thanks to Elbridge Gerry Puckett for reading the final draft of this paper.

This work was supported in part by the Applied Mathematical Sciences subprogram of the

Office of Energy Research, U.S. Department of Energy, under contract DE-AC03-

76SF00098, and in part by a California Fellowship in Microelectronics. Additional sup

port was provided by Cray Research, Inc., Intel Scientific Computers, the National Science

Foundation, and the Defense Advance Research Projects Agency.

8. References

1. C. Anderson and C. Greengard, "On Vortex Methods," SIAM J. Numer. Anal. 22,3

(June 1985), pp. 413-440.

2. C. R. Anderson, "A Method of Local Corrections for Computing the Velocity Field

Due to a Distribution of Vortex Blobs," J. Comput. Phys. 62(1986), pp. 111-123.

..

.'

25

3. S. B. Baden, "Run-Time Partitioning of Scientific Continuum Calculations Running

On Multiprocessors," LBL-23625, Mathematics Department, University of

California, Lawrence Berkeley Laboratory, Berkeley, California, June 1987. Ph. D.

Dissertation in the Computer Science Division, University of California, also

published there as a Tech. Report 87/366.

4. J. T. Beale and A. Majda, "The Design and Numerical Analysis of Vortex

Methods," PAM-48, Center for Pure and Applied Mathematics, University of

California, Berkeley, 1981.

5. J. T. Beale and A. Majda, "Vortex Methods. II: Higher Order Accuracy in 2 and 3

Dimensions," Math. Comput. 39,159 (July 1982), pp. 29-52.

6. S. S. Chen, C. C. Hsiung, J. L. Larson and E. R. Somdahl, ''CRAY X-MP: A

Multiprocessor Supercomputer," in Vector and Parallel Processors: Architecture,

Applications, and Performance Evaluation, M. Ginsberg (editor), North Holland.

To be published ..

7. A. J. Chorin, "Numerical Study of Slightly Viscous Flow," 1. Fluid Mech.

57(1973), pp. 785-796.

8. Cray-1 FORTRAN (CFT) Reference Manual (2240009), Cray Research, Inc.,

Mendota Heights, MN, 1978.

9. CRAY X-MP Multitasking Programmer's Manual, Cray Research, Inc., March 1986.

Order number SN-0222.

10. Cray X-MP Hardware Reference Manual, Cray Research, Inc., 1986. Order number

HR-0097.

11. L. Greengard and V. Rokhlin, "A Fast Algorithm for Particle Simulations,"

YALEU/DCS/RR-459, Yale Univ., Dept. of Computer Science, April 1986.

12. O. Hald, "Convergence of Vortex Methods, II," SIAM 1. Numer. Anal 16(1979), pp.

726-755.

13. A. Majda, "Vorticity and the Mathematical Theory of Incompressible Fluid Flow,"

Comm. of Pure and Applied Math. 39(1986), pp. SI87-S220. Special issue.

14. M. B. Perlman, "On the Accuracy of Vortex Methods," PAM-192, Center for Pure

and Applied Mathematics, University of California, Berkeley, December 1983. Ph.

D. Dissertation.

15. N. J. Zabusky, "Contour Dynamics for the Euler Equations in Two Dimensions," 1.

Comput. Phys. 30(1979), pp. 96.

:;,~

LA WRENCE BERKELEY LABORA TORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

•

