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Very Large Vortex Calculations 
in Two Dimensions 

Scott B. Baden 
Mathematics Department, Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 94720 

Abstract 

We describe an implementation of Anderson's Method of Local Corrections running 
on the Cray X-MP multiprocessor with 4 CPUs. We will show how the code was vector
ized and parallelized, including dynamic load balancing. We present computational 
results from very large runs of up to 25702 vortices . 

... in the Vortex you are given just one momentary glimpse ... and some
where in it a tiny little marker, a microscopic dot on a microscopic dot, 
which says 'you are here.' 

-Douglas Adams, The Hitchhiker's Guide to the Universe 

1. Introduction 

Until recently, large vortex blob calculations involving tens of thousands of vortices 

were considered intractable, even on the fastest computers. The problem was that an N -

body problem had to be solved directly, at a cost that was quadratic in the number of vor

tices. Today there exist techniques for approximating N -body interactions reasonably 

well; they compute only a small fraction of the interactions directly and can run in a frac

tion of the time of the fully direct method. These algorithms work by exploiting the fact 

that a vortex blob behaves like a point vortex outside the core. Most interactions, involv

ing distant length scales, can then be effectively lumped or averaged since the the induced 

velocity field will be a harmonic function. We use one strategy that takes advantage of 

that fact, known as Anderson's Method of Local Corrections (MLC) [2]. Another such 

strategy, the multipole expansion method of Rokhlin and Greengard [11], appears else

where in this proceedings . 

The MLC differs from the direct method in that it applies computational effort non

uniformly over the vortices. It uses special data structures to concentrate its effort where 

the vortices are the densest. Such data structures are generally more complicated than the 

arrays that are traditionally used in the direct method, and require special treatment on a 

vector-type multiprocessor like the Cray X-MP. First, inner loops must be carefully coded 
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in order they may vectorize and execute with reasonably long vectors. Second, all proces

sors must be coerced to share the work evenly, and this must be done with a modest over

head. 

The purpose of this paper is to consider the problem of implementing the MLC on the 

Cray X-MP with 4 processors, though the ideas should carryover to other kinds of particle 

methods and to other types of multiprocessors, too. The next section discusses the MLC 

algorithm. Section 3 specifies a portable parallel algorithm that can run on diverse mul

tiprocessor architectures. Section 4 presents an implementation of the parallel computa

tion for the particular instance of the Cray X-MP, section 5 presents computational results, 

and section 6 summarizes the paper. 

2. Anderson's Method of Local Corrections 

We will use the MLC to solve the vorticity-stream function formulation of Euler's 

equations for incompressible flow confined to a square box n with boundary an. Let 

u(x(t ),t) be the velocity of the fluid at position x(t) at time t, with x and y components u 

and v; u = (u ,v). Let 0) = ~; - ~: be the vorticity and", the stream function such that 

u = curl",. The vorticity-stream function form of the Euler's equations is: 

DO) = 0 
Dt 

0) = -~'" in n 

(2.1) 

(2.2) 

.. D a a2 a2 
where - = :\ + u.V is the material derivative and ~ = --2 + --2 is the two-

Dt ut ax ay 
dimensional Laplacian operator. Finally, let the flow satisfy free-space boundary condi

tions: 

u = 0 at x = 00. (2.3) 

(Other kinds of boundary conditions, such as no-flow boundary conditions, can also be 

handled.) 
".;" 

To discretize the above equations we initially place a collection of N vortex blobs on 

a regular two-dimensional mesh and then compute the paths of the vortices over a 

sequence of timesteps. The following system of ordinary differential equations describes 

the motion of the vortices: 

d N 
-d Xj(t) = LXo(Xj(t)-Xj(t»O)j' i = 1, "', N ,i "# j, 

t . 1 J= 
(2.4) 

where Xj (t) is the position of the jth vortex blob at time t, O)j is its strength, cr is the cutoff 
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radius, and Xa(r) is the influence function. Xa(r) gives the velocity induced at the point r 

by a unit-strength vortex blob at the origin, and comes in many fOffi1s; see Hald [12] for a 

discussion of different kinds of functions and of their effect on accuracy. Equations (2.4) 

are an approximation to the Lagrangian form of (2.1-2); for a derivation see Anderson and 

Greengard [1]. We will not discuss time integration, but focus on the velocity computa

tion on the R.H.S. of (2.4). 

The equations of (2.4) imply that we must solve an N -body problem, an 0 (N 2) cal

culation that is prohibitively expensive when the vortices number ten thousand or more. 

Computing the mutually induced velocities for a distribution of 12848 vortices, for exam

ple, consumes 56 seconds of CPU time on a single processor of a Cray X-MP, and a full 

length run comprising 10000 velocity evaluations would consume over 150 hours. By 

comparison, the MLC can complete the run in just under 21 hours. Unlike the direct N

body method, the MLC distinguishes between two kinds of vortex interactions: (1) long

range interactions approximated by solving a discrete Poisson equation on a finite

difference grid ("global" computation); (2) N -body interactions computed accurately for 

vortices close enough to one another ("local" computation). When they number in the 

thousands or more, the calculation spends most of its time computing local N -body 

interactions between nearby vortices. Vortices that are not so close to one another interact 

indirectly through the relatively inexpensive global finite difference computation. The 

method is fast because it can effectively approximate most interaction inexpensively- typ

ically greater than 95% of the summands of (2.4). Unlike the direct method, the MLC is 

not grid-free. It computes the velocity on a set of vortices in two steps: 

(1) Solve Poisson's equation for an approximate velocity field on a 

finite difference grid and interpolate to the centers of the vortices. 

(2) Locally correct the velocity of each vortex by cancelling the portion 

of the approximate velocity due to nearby vortices and substituting 

in its place local direct interactions . 

To simplify matters consider only the the x component of velocity, u; the y component, v, 

is computed in a similar way . 

Step 1 calculates Ii, an approximation to u on a grid, in three sub steps: 

(1.a) Set up a right hand side for the discrete Poisson equation. 

(1.b) Solve. 
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(I.c) Interpolate. 

Assume a single vortex with unit vorticity centered at the origin; this simple case general

izes to arbitrary collections of vortices by superposition and linearity. Setting up the right 

hand side entails first computing a "spread function" gD at a discrete set of grid points 

surrounding the vortex. gD approximates the discrete Laplacian of the vortex's velocity 

field by truncating to zero at sufficient distances from the vortex: 

{

t1h u (ih ,jh) 
gD(ih,jh) = 0 

0< lihl and Ijhl ~D 

otherwise. 
(2.5) 

Here h is the grid spacing, D is called the' 'spreading distance" and is chosen by the user, 

t1 h is the discrete Laplacian, and u is the x component of the point vortex velocity func

tion: 

u(x ,y) = (-y ,x )/21tr 2 (2.6) 

For the boundary conditions we use the exact velocities induced by the vortex at the 

discrete positions of the boundary of the grid, computing according to (2.6). The first step 

finishes by inverting the right hand side with a Poisson solver, and then interpolating the 

resultant far-field velocity field onto the center of the vortex. We used the Lagrange inter

polation formula for complex analytic functions used by Anderson [2]. 

For the ensuing discussion on the local corrections now consider an arbitrary distribu

tion of vortices. At the end of the first step each vortex will have accumulated point vortex 

influences from all the others. This far-field approximation, however, is invalid wherever 

the vortices are close enough that they behave as blobs rather than as point sources of vor

ticity. These interactions will have to be recomputed using the direct method, this time 

using a vortex blob velocity formula. We cannot use the finite difference strategy to com

pute these interactions since only point vortices induce a harmonic velocity field. The 

local interactions in the MLC are computed in much the same way as direct interactions 

involving charged particles. The MLC requires that a "correction distance" C be chosen 

by the method's user to distinguish nearby vortices (closer than C) from distant ones. 

These nearby vortices are the ones that participate in the local interactions. To speed up 

the search for nearby vortices, space is customarily subdivided into a few thousand fairly 

small bins and then the vortices are sorted into the bins (Figure 1). Convenience dictates 

setting the correction distance C to a multiple of the bin width. Let C now stand for that 

multiple. Ctypically takes on values like 1 or 2. All the vortices influencing bin (i ,j) can 

now be found in bins whose indices differ from i and j by integers no bigger than C. 

This surrounding region of space is referred to as the "correction neighborhood." 

., 

• 
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Figure 1. Vortices, shown as x's, get sorted into bins,'demarcated here by hyphenated 
lines. In practice the bins used in the MLC are much smaller than shown in the figure, so 
the vortices interact directly only over short distances. Each shaded region designates the 
correction neighborhood for a bin at the region's center, with C = 1. The region contains 
all the vortices that influence those in the bin via local interactions, and includes the bin 
itself. 
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The local corrections phase finishes by cancelling out the far-field influences from the 

vortices in the correction neighborhood. This entails computing the exact point-vortex 

velocities (using (2.6)) induced by the vortices in the correction neighborhood at the posi

tions of the interpolation stencil surrounding the bin, interpolating, and then subtracting 

from what had already been accumulated on the vortices in step 1. In sum, the local 

corrections divide into two parts: 

(2.a) Locally cancel the far-field approximation for all the vortices in the 

correction neighborhood. 

(2.b) Compute local interactions with those same vortices. 

The MLC concentrates most of its work in the local interactions phase, and its overall 

running time can be reasonably estimated by summing the number of local interactions 

computed against all the vortices. A work density mapping gives the number of local 

interactions computed against the vortices in each bin. It is easy to compute and is the 

product of two quantities; the number of vortices in the bin, and the number of vortices in 

that bin and in the correction neighborhood: 

workM ap (i ,j) = card(i ,j) [ L card(i +k , j +1 )1 
Ikl,lll sc ) (2.7) 

where "card(i ,j)" is the number of vortices in bin i ,j. 

Assuming that the influence function, the cutoff radius cr, and the vorticity mesh 

spacing hv are fixed, two parameters affect the spread and accuracy of the MLC- the 

spreading distance D and the correction distance C. D affects the accuracy of the far

field interactions and can be no smaller than cr. It cannot hurt to make D slightly too 

large, although the cost to set up the right hand side for Poisson's equation increases 

roughly as D 2. C can be no smaller than cr because the finite difference approximation to 

u isn't accurate inside the core of the vortex (r < cr) and must be corrected there. The 

answers get more accurate as C increases, but for a price: the cost to do the local correc

tions varies roughly as the square of C, depending on the local density of vortices. We 

obtained good results by setting C = D =2h, where h = 11M is the finite difference mesh 

spacing used by the Poisson solver. 

3. A Parallel Implementation 

We present a parallel implementation of the MLC. We suppress architecture-specific 

details and focus on how to organize the computation for a generic multiprocessor. In the 

next section we will flesh out the details of the implementation on a particular instance of 

• 
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multiprocessor architecture, the Cray X-MP. Our generic multiprocessor can be imple

mented by a layer of software on most any traditional multiprocessor system; see Baden 

[3] for the details. It provides a set of subroutines that the MLC will invoke from time to 

time and that we will refer to as "run-time utilities." The semantics of these utilities are 

independent of the underlying architecture. 

The MLC uses three major data structures. First, there are two finite difference 

meshes with dimensions (M + l)x(M + 1) and spacing h = 11M. There is also a bin data 

structure with dimensions M xM , called the workLattice. Each bin in the workLattice con

tains a collection of vortices and can be thought of as a pointer to a linked list of vortex 

records. Each vortex record contains fields for the position and strength of a single vortex, 

and some additional information used in time integration. The record also contains a 

pointer field to string together all the vortices in a single bin into a linked list. 

To parallelize the MLC, we subdivide the workLattice into subregions, assign each 

such subproblem to a unique processor, and let each processor compute on its assigned 

subproblem in parallel with the others. Ignoring roundoff, results will be independent of 

the number of processors used. The computation begins with a distinguished task called 

the "boss." The boss reads in the input data and spawns P additional "worker tasks," 

where P is chosen by the user. These worker tasks participate in the numerical part of the 

computation. All execute the same program but each on a different set of data- a single 

subregion of the workLattice. Each worker executes out of a private address space and 

communicates with the others through a mechanism to be discussed. There is no shared 

memory. 

The boss plays a minor role and primarily sits idle. Its major purpose is to initiate 

and terminate the parallel computation. Whether the boss task executes on its own proces

sor or shares a processor with a worker isn't said. The boss furnishes each worker with an 

initial assignment of work, consisting of a description of the assigned region of the work

Lattice and the initial configuration of bins (and hence vortices) belonging there. Each 

worker maintains a private copy of its assigned part of the workLattice and of the finite 

difference meshes. It also maintains a copy of a surrounding collection of bins, called an 

"external interaction region," which augments the task's assigned sublattice (see Figure 

2). The task uses this external interaction region to maintain copies of vortices belonging 

to other tasks that directly interact with its own; hence, the region is C bins thick. 

Because our generic multiprocessor has no shared memory a task may directly modify 

only the vortices in its private memory and it has no information about any vortices that lie 

beyond the external interaction region. If a task modifies a copy of a vortex in the interac

tion region, then the owner of the "original" won't know that the change was made. 
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Figure 2. Task i is assigned L i, a subregion of the workLattice, and an external interac
tion region Di. Di is a surrounding shell of bins C bins thick, where C = 2. Since Di and 
Li do not intersect, subproblems L i and Li are independent during the local interactions 
computation, i.e. they do not interact. But Di and L /c do intersect, and so subproblems Li 
and L /care dependent during local interactions. 
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Similarly, when a task modifies an original any tasks that possess copies will be unaware 

of the changes. To ensure correctness tasks must periodically satisfy a synchronization 

constraint such that all vortex copies will be consistent with the originals. Tasks synchron

ize by calling a run-time utility. 

The computation begins with all tasks cooperating to set up a right hand side for the 

Poisson solver. Each task computes only over its assigned bins (exclusive of the external 

interaction region) and calls a run-time utility to determine the bounds of its assigned 

region of the workLattice. When done, it passes the local right hand side it has computed 

to the Poisson solver. The Poisson solver combines all the local contributions into a single 

global right hand side and then inverts the global right hand side. Each task will generally 

encounter the solver at a different time, according to the amount of work assigned to it. 

All tasks leave the solver together, however, and upon return each will have a copy of the 

result in its private memory. How the solver combines the local right hand sides and how 

it distributes its result isn't said; we assume that the solver comes in an application library 

and that its internal structure is hidden from the programmer. Once a task has obtained a 

copy of the inverted right hand side, it is free to interpolate far-field velocities onto its vor

tices and then do the local corrections. This finishes the velocity evaluation. 

The next velocity evaluation may commence after the time integration procedure has 

been called. The evaluation begins by sorting the vortices into their correct bins, since 

they moved since the last evaluation. (Assume for now that no vortex has moved into a 

bin owned by another task.) At this point the private copies of vortices in the external 

interaction region are inconsistent with the originals since these were changed by the 

owner during time integration and sorting. To ensure correctness these copies must be 

refreshed. Each task must synchronize at a "local barrier" by communicating with all 

tasks that overlap its external interaction region. It does this by calling a run-time utility 

called lBar. This utility shuffles vortices between processors and hides most of the 

details. When a task encounters a call to lBar it will not return until it has finished syn

chronizing with all interacting tasks (the' 'local barrier' '), at which time it is free to con

tinue with the velocity evaluation. Thus, lBar specifies' 'Local BARrier synchroniza

tion points," and hence its name. A separate call to lBar may also be used to migrate 

vortices that changed owners as a side-effect of the sorting procedure. 

Because vortices will migrate among tasks over time, some tasks may eventually 

become overloaded with work, while others become lightly loaded. As a result, the time 

required to do a velocity evaluation will gradually increase with time, unless the work

assignments are readjusted (see Figure 3). To this end the workers must periodically 

invoke a run-time utility called Partitioner, say every couple of velocity evaluations. 
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Figure 3. The cost of doing a velocity evaluation will steadily increase (top curve) unless 
workloads are periodically rebalanced (bottom curve). We balanced workloads every 
time step, or every other velocity evaluation. These measurements were obtained from 
the Intel iPSC with 32 processors running with 3180 vortices. The top run was aborted 
after 36 velocity evaluations; some of the iPSC's processors had accumulated sufficient 
additional vortices to exceed the capacity of their local memory. 
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A worker obtains its new work assignments by computing a "work density mapping," in 

the form of an array, and then passing that array to the partitioner. This work density map

ping estimates the cost of evaluating the velocities in each bin of the worker's assigned 

region of the workLattice. It is computed according to equation (2.7) and tallies the 

number of local interactions computed against each bin. This simple estimate gives a rea

sonable guess of the exact cost of the overall computation since the local interactions 

account for a large fraction of the MLC's running time. The partitioner combines the local 

mappings using a mechanism hidden from the programmer, and then uses this global map

ping to decide how to divide up the work. All tasks leave the partitioner together and upon 

return each will be assigned a unique rectangular region of the workLattice, as shown in 

Figure 4. These regions change with time as shown in Figure 5. A task determines the set 

of indices for the bins assigned to it with the aid of querying functions provided as run

time utilities. 

As a result of calling the Partitioner, some vortices may change owners, and 

must therefore be transmitted to the correct task. As was the case with sorting, a call to the 

lBar utility can handle the necessary exchanges of data. One detail that has been left out 

about lBar is that the user must pass it two subroutines as arguments. These implement 

gather and scatter operations that are familiar to users of vector architectures, and will not 

be discussed. The interested reader is referred to [3] for the details. The complete parallel 

MLC code appears in Figure 6. 

4. Cray X-MP Implementation 

4.1. The Cray X-MP Multiprocessing System 

The Cray X-MP is a shared-memory multiprocessor with vector arithmetic capabili

ties. We used the largest model, known as the X-MP/416. The X-MP/416 has four pro

cessors and 16 million words of main memory (1 word = 64 bits) and is capable of com

puting at a sustained rate of more than 400 million floating point operations per second. 

Each processor executes its own instruction stream and communicates with the others 

through either the shared memory or through a special set of shared registers. The 

definitive source of information about the X-MP is the hardware reference manual pub

lished by Cray Research, Inc. [10], although the pamphlet by S. Chen et al. [6] is a more 

accessible document. 

The key to using the X-MP effectively is to keep the processors busy doing useful 

work most of the time. We must ensure that most arithmetic operations execute in .the fast 

vector mode and that the vectors be reasonably long (40 elements or more). We must also 

divide the work up fairly among the processors, ensuring that the cost of coordinating the 
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Figure 4. To parallelize the MLC we Subdivide the domain into regions and have each processor 
compute on just one region. We show two such partitionings on 16 processors. To compensate 
for the uneven distribution of vortices over the domain we use an adaptive partitioning (a) that 
generates somewhat irregularly sized subproblems that all complete in roughly the same time. If 
we partitioned the domain uniformly (b), only 4 of 16 processors would be given much work to 
do, and the computation would run four times more slowly than in (a). The labels give each 
processor's share of the workload normalized to 1000 units of total work. If loads were perfectly 
balanced, then each subproblem would get 062 units of work. The calculation began with 2 finite 
area vortices consisting of 795 vortices, shown as dots, placed evenly on a mesh confined to a 
disk. Some vortices have been omitted for the purpose of clarification. . 
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T = 250000 Eff= 0.794 

T = 15.00000 Eff = 0.825 
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T= 3750000 Eff=0.823 

T = 5.00000 Eff = 0.768 

T = 20.00000 Eff = 0.773 

, -
T = 50.00000 Eff = 0.872 

Figure 5. The distribution of vortices changes with time, so the work must be periodically reparti
tioned. If this were not done, then some processors would become overloaded while others would 
only stand and wait. Owing to a time step constraint, vortices jump by only small amounts 
between time steps; repartitioning need therefore be done every few, say 2 or 4, timesteps. This 
series of snapshots was taken from the same calculation used to produce Figure 4. Some vortices 
have been omitted for the purpose of clarification. 
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sort the vortices 
local synchronization barrier #1; handle vortex migration 

if it's time, repartition to rebalance the work loads 
local synchronization barrier #2; handle load shifting 

local synchronization barrier #3; obtain copies of locally interacting vortices 

compute velocities over this task's work assignment 

set down right hand side 
call the Poisson solver [global synchronization barrier] 

interpolate and do local corrections 

Figure 6. The parallel MLC code contains three local barrier synchronization points. 

effort doesn't overwhelm the benefits. In this section we will show how we did this for the 

MLC, though many of the ideas carryover to other kinds of computations, in particular, to 

the Multipole Expansion Method discussed elsewhere in this proceedings. We will discuss 

parallelization and vectorization separately, since the two may be handled independently 

of one another in the case of the MLC. 

All our software was written in Cray X-MP FORTRAN [8], a superset of FORTRAN 

77 which Cray Research, Inc. has extended to improve the vectorizability of code and to 

deal with certain aspects of concurrency. Several new Cray FORTRAN library routines 

are provided in support of these activities and are described both in the FORTRAN manual 

and in the Cray X-MP Multitasking User's Guide [9]. Cray made two major changes to 

FORTRAN in support of parallel execution. First, code is now re-entrant and so local 

variables no longer persist across subroutine calls. Second, a new kind of common block 

was introduced called task common. Whereas ordinary common is storage shared 

among all tasks, a task common block is private to a single task. Task common is 

dynamically allocated and initially it is undefined. We used it to implement the local 

memory of our generic multiprocessor. 
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4.2. Parallelization 

In a parallel computation certain parts must run on just one processor to ensure 

correctness, e.g. program initialization. Other parts may be executed concurrently to 

reduce the running time of the program. Not all parallelizable parts need be parallelized, 

however, but only those parts that consume a "noticeable" fraction of the code's running 

time. Just what this noticeable fraction is depends on the number of processors in use, and 

can be determined from Amdahl's law. This law tells us the best parallel speedup S we 

can expect on P processors, given that only a fraction j of the code parallelizes is: 

S(P ,f) = ((1-j)+(j IP))-l (4.1) 

Ideally our speedup equals P (j = 1.0). Thus, our first task is to determine which parts of 

the code, if parallelized, could substantially reduce the running time of the calculation. To 

this end we used the Cray jlowtrace facility to profile the MLC code. We found, for exam

ple, that the MLC spent only 0.6% of its time in the Poisson solver with a calculation using 

12848 vortices and a 64x64 solver mesh. Thus, Amdah1's law tells us that if we don't 

parallelize the Poisson solver, then our speedup will only drop to 3.92 (out of a possible 

4.0 if we did parallelize). We therefore chose not to parallelize the solver since doing so 

would only speed up the overall computation by at most 2% (P IS -1). After all tasks have 

contributed their local right hand sides to the solver, a conditional statement selects a dis

tinguished task to do the solver's computation. The others wait at a synchronization bar

rier until the solver returns. This barrier is a global one since all tasks must wait, and is 

implemented by a run-time utility. 

The next part of parallelizing the MLC is to implement the boss task. The boss calls 

various Cray X-MP multitasking library routines to spawn the worker tasks. The calling 

sequences for these routines are described in the X-MP Multitasking User's Guide and will 

not be discussed. 

The final part of the implementation is to set up the remaining calls to the generic 

multiprocessor's run-time utilities to handle partitioning and local barrier synchronization. 

We have already discussed this in §3 and will not go into detail here. The major point to 

be made is that the programmer doesn't know how the utilities work though he will pass 

them some subroutines as arguments. These routines accounted for roughly 700 out of 

7000 lines of code in our implementation. 

4.3. Vectorization 

The desire to have do loops execute in vector mode had a major impact on the 

design of the numerical portion of the MLC code. Owing to the high cost of following 

pointers on the Cray, collections of vortices represented as linked lists should first be 



16 

gathered into contiguous vectors before they can be used within an innermost loop. Later, 

the result of the computation will be scattered from the adjacent locations of the array into 

the non-adjacent locations of the linked list. The effectiveness of gather and scatter opera

tions is contingent on their being done infrequently relative to numerical operations. We 

implemented gather and scatter operations in software; the code is straightforward and will 

not be shown. 

Operation counts can be a misleading timing metric on the Cray since operation times 

are sensitive to how well the Cray's pipelined functional units are kept filled. Even if they 

execute more arithmetic operations, calculations that have been modified to utilize the 

pipeline more effectively often run faster than the original computation that executed 

fewer arithmetic operations. Decisions, for example, are often very expensive within tight 

inner loops, since they can disrupt the flow of data through the arithmetic pipeline. Some 

inner loops will have to be rewritten to avoid disturbing the pipeline; this entails evaluat

ing both branches of the loop and then using a Cray intrinsic vector merge function to 

select the desired result. The strategy effectively converts a conditional statment that 

doesn't vectorize into a conditional expression that does. In making the conversion how

ever, we have changed the semantics of the loop. We may have introduced spurious ille

gal operations, such as division by zero, whose results will never be used but which could 

abort the program. Such erroneous operations must be somehow be avoided in software or 

rendered harmless. We used a max function, for example, to protect against any spurious 

divisions by zero. 

4.4. Storage Utilization 

The MLC program consumed a total of 3.6 megawords of memory when running on 

4 processors. The boss executed as a fifth task in addition to the 4 worker tasks. The 

shared code consumed only 43 kilobytes of storage, divided roughly equally among the 

MLC code and the system libraries. Each of 5 tasks consumed 100 kilobytes of stack 

space and all tasks shared 400 kilobytes of heap storage. The remainder of the storage was 

consumed primarily by the major data structures which were duplicated for each task in 

task common- the bins, finite difference grids, gather/scatter buffers (each 4096 ele

ments long), and vortex-records. The first three structures consumed roughly 138 kilo

bytes per task, the vortex-records 400 kilobytes per task. There were also 70 kilobytes of 

global common grids shared by all tasks. 

4.5. Summary 

We took 4 steps to parallelize the MLC code: 
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(1) Determine which parts of the code, if parallelized, could substan

tially reduce the running time of the calculation, and which parts 

can run serially. Set up serial sections with a conditional statment 

and a call to a global barrier synchronization utility. 

(2) Set up the boss task. 

(3) Implement data partitioning. Modify loop bounds and generate the 

work density mapping array. Insert a call to the Partitioner 

utility. 

(4) Handle local barrier synchronization. Write the gather and scatter 

routines. Insert calls to the lBar utility. 

Note that the utilities are provided by our generic multiprocessor's run-time library. 

We took two steps to vectorize the code: 

(1) Gather vortices stored as linked lists into long vectors prior to their 

use within inner loops, and scatter the results to memory afterwards. 

(2) Execute both branches of a conditional statement within tight inner 

loops and then select the desired result with an intrinsic merge func

tion. 

5. Computational Results 

5.1. Accuracy 

We used the Cray's default single precision arithmetic (64 bits). We used a second 

order Runge-Kutta time integration scheme (Heun's method), that does two velocity 

evaluations per time step, and Chorin's [7] second order cutoff function. All finite differ

ence calculations were accurate to fourth order. 

We ran two test problems to determine the accuracy of the MLC. The first test prob

lem runs with a single vortex with strength 1t and cutoff 1/30 at the origin. The vortex 

should remain stationary since there are no self-induced velocities. With the MLC, how

ever, there is some motion, and so we measure the error as the L2 norm of the position of 

the vortex at the end of the run (the runs were 1000 timesteps long). Since this run com

putes no local interactions it measures the accuracy of the finite difference approximation 

and cancellation procedures. We determined that a good value for the spreading distance 

D is twice the finite difference mesh spacing. The results are summarized in Table 1. 
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We ran with another test problem with a known exact solution to determine the 

interaction of D, C, and !:1t with hy, the initial spacing of the vortices. We set the cutoff 

(J' = h!, where we chose q = 0.75 for all our runs. (See Beale and Majda [4,5] for a dis

cussion of the relationship between (J' and hy and accuracy.) We set C = D = 2h, where h 

is the spacing of the finite difference mesh, and varied h. The initial vorticity distribution 

for the test problem is radially symmetric and vanishes outside a circle of radius 0.25 cen

tered about the origin. The vortices are distributed on a uniform mesh of points, with the 

strength of a vortex at x = (x,y) given by 41t(1-4(x2+y2»7. The vortices rotate about the 

origin with an angular velocity that increases with decreasing distance from the origin. 

See Perlman [14] for the details. The runs were stopped when the fastest moving vortices 

had rotated one revolution. The L2 norm of the error was reported. This error is defined 

as: 

The results of the study are presented in Table 2, and tell us three things: 

(1) !:1t Ihy must remain constant, i.e. the time step must decrease as the 

vortices increase in number. The choice of appropriate time step 

can be inferred by moving across a row and noting when decreasing 

the timestep doesn't appreciably decrease the error. 

D/h L2 Error 

1 6.23324e-Ol 
2 4.4194ge-03 

4 1.36450e-07 

8 8.40737e-ll 

(5.1) 

Table 1. The accuracy of the finite difference approximation improves as D , the support of 
llu, increases .. D is measured in units of the mesh spacing h, with h fixed at 1/30. The er
ror is measured as the L2 norm of the position of the vortex at the end of 1000 timesteps. 
The timestep llt = 0.05. 

.. 

. .. 
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(2) The correction radius C scales roughly with hv (more precisely 

with the cutoff 0'). Accuracy is insensitive to changes in C, so long 

as C > 0'. This can be inferred by moving down a column and 

keeping the number of vortices fixed. 

(3) Accuracy improves significantly as the vortices are initially spaced 

more closely (hv ~O), so long as an appropriate timestep has been 

chosen. 

The second result is significant since it tells us that the cost of the local interactions need 

not necessarily grow as quickly as N 2 if C and hence h are decreased with hv' This is 

indeed what has been observed in practice, as shown in Table 3. 

hv !1t 
h 

(N) 0.1 0.05 0.025 0.0125 0.00625 

0.014 1/30 9.090xlO-3 4.566x10-3 3.497xlO-3 3.243xlO-3 3. 175xlO-3 

(1005) 1/60 9.082xlO-3 4.556xlO-3 3.488xlO-3 3.233xlO-3 3.165xlO-3 

0.007 1/30 7.659xlO-3 3.648xlO-3 1.476xlO-3 1.216xlO-3 -
(4020) 1/60 7.661xlO-3 3.650xlO-3 1.478xlO-3 1.218xlO-3 -

direct 7.658xlO-3 3.646xlO-3 1.474xlO-3 1.214xlO-3 -
0.0035 1/30 7. 172x 10-3 1.971xlO-3 7.479xlO-4 4.828xlO-4 4.219xlO-4 

(16043) 1/60 7.173xlO-3 1.974xlO-3 7.500x10-4 4.850xlO-4 4.241xlO-4 

1/120 7.174xlO-3 1.974x10-3 7.506xlO-4 4.856xlO-4 4.247xlO-4 

Table 2. Results from a three parameter study show the effect of varying the initial spac
ing of vortices hy , the correction and spreading distances C and D, and the timestep /),J on 
the accuracy of the computed solution. The cutoff a was set to hyO.75• In all cases C and D 
were set to 2h, where h was the finite difference mesh spacing. For comparison, a result 
for the direct method is presented for the single case of 4020 vortices; accuracy is not 
significantly better than it is with the MLC. N gives the number of vortices. 
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5.2. Merger Question of Two Finite Area Vortices 

In the next test problem we repeated the experiments of Zabusky [15] involving the 

question of merger of two Finite Area Vortices (FAVs). Contrary to what was observed by 

Zabusky and his coworkers, we observe no merger, in agreement with known analytic 

results. (For a discussion see Majda [13].) The initial vorticity distribution was set out on a 

uniform mesh confined to two circular disks centered about the origin. The disks had a 

radius of 0.1125, with centers separated by 0.3. This corresponded to a run done in Zabu

sky [15] in which the ratio of the diameter of the patches to their separation was set at 

0.75. The vortices all had the same strength, equal to one-half the square of their initial 

spacing. Figure 7 shows the result of a run with 12788 t~t~~ vortices at an advanced stage 

of the computation. 

We next evaluate the performance of the MLC. (We used the same test problem, 

though we ran with slightly different parameters; the separation of the FAVs was 0.25 and 

their radii was 0.12.) We measure floating point operation counts and uniprocessor and 

multiple processor running times. We used Version 1.14 of the CFT compiler, dated 

October 8, 1985, and Version 2.2 of the loader (segldr), dated December 1, 1986, and ran 

under version 1.16BF1 of COS, the Cray Operating System. Since COS is a batch operat

ing system, and therefore non-interactive, jobs were submitted to the Cray mainframe 

from an interactive front-end processor. Our results for the multiprocessor runs were 

obtained during special dedicated blocks of time during which we had the entire machine 

to ourselves and interference from operating system activities was minimal. 

In the first experiment we ran on just one processor. We show that the Method of 

Local Corrections is substantially faster than the fully direct method. With 25,702 vor

tices, for example, the MLC is 16 times faster than the direct method. It can do a velocity 

evaluation in just under 15 seconds (see Table 3). To avoid a quadratic growth in the 

MLC's running time we must scale the correction distance with the initial spacing of vor

tices. There is, however, a practical lower limit on the size of C, above that implied by the 

3-parameter study. The trouble is that the finite mesh spacing h, and hence the bin size, 

must be decreased along with C, and doing so decreases vector lengths. In addition, the 

cost of setting up the boundary conditions increases, since the number of boundary points 

where we must evaluate exact velocities increases. This is documented in Table 4. For 

the run with 12848 vortices for instance, decreasing C from 1/30 to 1/60 didn't speed up 

the calculation but actually slowed it down slightly. The reason why was that although the 

total number of floating point operations was reduced roughly by a factor of two,. so was 

the rate at which those operations got done; the average vector length decreased from 160 

to 40 elements. 

OJ 
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T = 28.46480 Ix 1.30J 

Figure 7. We observed no merger of two finite area vonices after 28.4648 units of time. The vor
tices were spaced on 2.48625xlo-3 unit centers, the timestep was 8.84xIO-3, and the cutoff 
cr = h.O.

75 = 1.1134193xlo-2. Color photographs available from the author can be used to observe the 
result more closely than is possible in this plot. 
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We next consider how well the MLC can utilize the X-MP's processors when exe

cuted concurrently. We define l1p as the parallel efficiency on P processors: 

T1/P 
l1p = --:r;-' (5.1) 

and use this as our figure of merit. Here T p is the time to complete on P processors and 

T 1 is the time taken on a uniprocessor. For this special case of P = 1, various overheads 

that would be incurred on a multiprocessor, such as communication, are non-existent. By 

definition 111 = 1. To evaluate the efficiency, we ran with two different problem sizes -

12848 and 25702 vortices. To conserve scarce dedicated computer time, we started the 

runs at an advanced stage of the simulation, using a snapshot file that had been generated 

on another X-MP system. The snapshots were taken at 10.0 units of simulated time; this is 

an interesting point in the simulation where the finite area vortices have begun to entrain. 

Table 5 gives the timings and the parallel speedup and efficiency for the various runs. 

Efficiency was never less than 89%; under ideal conditions of 100% efficiency the pro

grams would run only 12% faster. We were able to attribute most of the efficiency loss to 

the load imbalance and to the fact that we chose to run the Poisson solver on just one pro

cessor. Had we parallelized the solver, then most of the efficiency loss would have been 

due to load imbalance. 

6. Summary 

We have implemented a vortex code that is capable of handling tens of thousands of 

vortices. It can do a velocity computation on 25702 vortices, for example, in about 4 

seconds on a Cray X-MP with 4 processors. The computation is fast because it can 

approximate N -body interactions without having to resort to a fully direct computation. 

Furthermore, it vectorizes on the Cray - each processor computes at a rate of about 65 

megaflops/sec - and it paraUelizes well - it utilizes the 4 processors with 90% efficiency 

and can compute at an aggregate rate of 200 to 250 megaflops/sec. The algorithm appears 

to strike a reasonable balance between speed and accuracy. 

The major issue in parallelizing the Method of Local Corrections is to avoid exces

sive load imbalance. We were, however, able to mitigate load imbalance at a reasonable 

cost with the aid of some run-time utilities. To a large extent, these utilities insulate task 

partitioning and synchronization activities from a change of computer architecture and 

their use therefore improved the portability of our software. These utilities do not, how

ever, apply to the Poisson solver, though the solver may be parallelized separately from 

the rest of the calculation. 

.. 
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CPU time per timestep (min) 

N C MLC Direct MLC 
Speedup 

12848 1/30 0.12 0.95 7.9 

25702 1/60 0.24 3.8 16 

51376 1/60 0.65 15 23 

102822 1/120 1.6 61 38 

Table 3. The MLC is substantially faster than the direct method. If we scale the correction 
distance C with the initial spacing of the vortices hv then the cost of the MLC grows more 
slowly than the square of the number of vortices. The italicized times for the direct 
method, when N > 12848, were extrapolated from the running times for smaller N. Times 
are reported for a single velocity evaluation and were measured on a single processor of a 
Cray X-MP/416. 

N C Local Interactions Finite Differences Overall 

Time Mflops Time Mflops Time X 109 

(sec) per sec (sec) per sec (sec) flops 

12848 1/15 67.4 89 3.02 84 72.0 6.30 

12848 1/30 28.2 69 5.37 68 36.1 2.33 

12848 1/60 19.1 34 13.0 47 38.5 1.35 

25702 1/60 95.1 78 8.85 79 108 8.19 

25702 1/120 45.8 50 17.9 63 71.6 3.50 

25702 1/240 36.9 23 49.8 42 112 3.50 

Table 4. The optimal values used for the correction radius C have the property that in
creasing or decreasing them increases the overall running time of the computation. The 
optimal values, shown in bold-face, are larger than the minimum allowable values, im
mediately below, owing to a decrease in vector length and in an increase in the number of 
operations required to compute boundary conditions. We report on the running time and 
the execution rate for the two dominant parts of the computation: local interactions and 
finite difference computations (here finite difference computation doesn't include the Pois
son solver). We also report on the entire computation. Though these measurements were 
taken from runs that lasted just two timesteps, we believe they are representative of much 
longer runs since operation counts do not appear to fluctuate much. 
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N P Time (sec) Sp l1P 

12848 1 5999 1.00 1.000 

12848 2 3081 1.95 0.973 

12848 4 1651 3.63 0.908 

25702 1 7032 1.00 1.000 

25702 4 1970 3.57 0.892 

Table 5. Timings, parallel efficiency and speedup for the X-MP runs. Sp is the speedup; 
by definition l1p = Sp/P. All runs began at 10.0 units of simulated time. For N = 12848, 
the vortices were spaced at 2.6516xlO-3 unit intervals; the finite difference mesh spacing h 
was 1/60, and the runs lasted 400 timesteps. For N = 25702 the vortices were spaced at 
1.8750xlO-3 unit intervals; h = 11120, and the runs lasted 240 timesteps. The cutoff was 
hvO.75 for all runs, the time step was 0.0125, and C = D = 2h. Loads were rebalanced every 
timestep, i.e. every other velocity evaluation. 

In the near future we believe that our code could handle as many as 105 vortices. A 

multiprocessor with 8 or 16 processors, each somewhat faster than the Cray X-MP's, 

would suffice and cannot be far off. 
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