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ABSTRACT 

A new kind of reaction path model ror describing reactions in polyatomic 

molecular systems is presented, one which is based on the cartesian 

coordinates of the atoms. Not only does this lead to a simpler treatment of 

the interaction between the "system" (i.e., the reaction coordinate) and the 

"bath" (the other degrees or freedom) than earlier reaction path models based 

on the (curvilinear) steepest descent reaction path, but in many cases it also 

provides a more natural description of the dynamics. The resulting 

Hamiltonian has the standard form of a cartesian "system" linearly coupled to 

a harmonic "bath", the dynamics of which is treated in this paper by the basis 

set method of Makri and Miller [J. Chem. Phys. 86, 1~51 (1987)~. Application 

to a model of H-atom transfer in malonaldehyde shows that the overall approach 

- both the cartesian reaction path model and the basis set method treatment of 

the dynamics - is quite successful. 
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I. INTRODUCTION 

Over the past seven years or so our research group has developed (and 

applied) a theoretical description of dynamics in polyatomic molecular systems 

that is based on the minimum energy reaction path {i.e., the "intrinsic 

reaction coordinate"). l-3 This is the steepest descent path (in mass-weighted 

cartesian coordinates) from the transition state on a potential energy surface 

backwards to reactants and forward to products. The picture of the dynamics in 

this model is that of one-dimensional motion along the reaction path coupled 

to harmonic vibration about it (in 3N-7 directions, where N is the number of 

atoms). Although this model has been useful tor a variety of applications, 

and we believe will continue to be so, there are some aspects of it that are 

undesirable. The purpose or this paper is to describe a new class of models 

for describing dynamics in polyatomic systems that seems more advantageous in 

some respects than that based on the minimum energy reaction path. 

One type of process tor which the reaction path model has difficulty is 

hydrogen atom transfer as, tor example, in malonaldehyde, 11 

y 

..J-+ X 
z 

+ 

( 1 ) 

The reactive process is clearly the motion of essentially only one hydrogen 

atom, H1, with the other degrees of freedom playing a modest role. The 

problem with the reaction path description here is that the reaction path 

always arrives at the reactant and product wells along the normal mode of 
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lowest rreguenoy (of the appropriate symmetry); cr., Appendix I. For the 

above example (1) the lowest frequency is associated with some floppy skeletal 

vibrational motion that is quite unrelated to the motion of atom H1, while the 

relevant vibration is the O-H 1 stretch, which is the highest frequency or the 

reactant. This means that in going from the transition state to the reactant 

and product well.s the minimum energy path makes many sharp turns in the (3N-6) 

dimensional space, so that the reaction is in no sensible way well-described 

as one dimensional motion along this path. (The curvature coupling elements 

in the reaction path Hamiltonian1a are correspondingly large and difficult to 

deal with.) 

Another drawback of the reaction path model is that the reaction path is 

mass-dependent. Thus, if one wishes to treat isotopically related reactions, 

an entire re-calculation of the minimum.energy path (and force constant matrix 

along it) is required for each new isotopic species. One would clearly prefer 

a model for which the potential energy surface "input" to the dynamical 

treatment is independent of the nuclear masses. 

The new model that we describe in Section II is from the outset much 

simpler than our earlier reaction path models. Cartesian coordinates of the N 

atoms are used for all degrees of freedom, and one relies on "chemical 

intuition" to select which one (or ones) is treated for arbitrarily large 

displacements, as opposed to the other coordinates which move only slightly. 

For reaction (1 ), for example, one notes that it is only the x coordinate of 

hydrogen atom H1 that undergoes large displacement; although all the other 

atoms (and they and z coordinate of H1) move, they do not move very much. 

Thus, the potential energy surface in all these cartesian coordinates can be 

adequately approximated by a quadratic expansion about some reference 

configuration. Conservation of total angular momentum is accounted for 
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approximately (but adequately for H-atom transfer processes). 

The Hamiltonian which characterizes this new approach is totally 

cartesian in structure and thus much simpler to deal with than the reaction 

path Hamiltonian. In tact, it has the generic form of a "system" which is 

linearly coupled to a harmonic "bath", as has been so commonly assumed for 

many model studies. 4 It is much easier to describe the coupling between the 

"system" and "bath" here than it is in the reaction path Hamiltonian where the 

coupling arises from curvature coupling effects in the kinetic energy. 1a 

Finally, the potential energy surface information required for this cartesian 

model is simpler to generate than that for the reaction path Hamiltonian, and 

it is also mass-independent so that different isotopes of the same system do 

not require new potential energy surface calculations. 

The cartesian reaction path model is developed in Section II, and Section 

III describes the theoretical methods used to treat the dynamics. Application 

to a model of H-atom transfer in malonaldehyde is presented in Section IV. 



.. '. 

'•' 

.• 

-5-

II. A CARTESIAN MODEL FOR REACTION DYNAMICS 

a. Frozen Bath Version 

We start with the Hamiltonian for an N atom polyatomic system expressed 

in the full set of 3N cartesian coordinates • 

3N 
H • t 

i•1 

The first step in defining the model is to identify which cartesian 

(2) 

coordinate(s) one wishes to describe for arbitrarily large displacements. For 

reaction (1) one could choose only the x coordinate of hydrogen atom H1; a 

more accurate model would be to treat both the x and y coordinates of H1 for 

arbitrarily large displacement. Let ~ denote the one or two (or maybe three) 

cartesian coordinates to be described for arbitrary displacements; ~ denotes 

the remaining 3N-1 or 3N-2 cartesian coordinates that do not move very much 

during the reaction of interest. The ~-dependence of the potential energy V • 

v<r.~> is then expanded in a Taylor series to second order about a reference 

geometry ~0 : 

( 3) 

Equation (3) is the essence of the model, namely exploiting the fact that mtist 



-6-

of the coordinates (i.e., atoms) do not move very much during the reaction. 

With Eq. (3) the Hamiltonian takes the form 

- f(r) •(R-R ) , 
- - - -o 

(4) 

which one recognizes as essentially the generic Hamiltonian for a (low-

dimensional) "system" - the r degree(s) of freedom - coupled to a "bath" of 

harmonic oscillators, the ~ degrees or freedom. (The quantities in Eq. (4) 

are clearly recognizable: V (r) • V(r,R ), K(r) • a2v(r,R )/3R 3R , f(r) 
o - - -o - - - -o -o -o - -

3V(r,R )/3R , and m is the diagonal matrix of atomic masses.) The 
- -o -o -

coupling - the last term in Eq. (4) - is linear in the "bath" coordinates R. 

This describes "solvent reorganization" effects, i.e., the change in the 

"bath" coordinates' instantaneous equilibrium positions as the "system" 

dynamics takes place. There is also another coupling between the "system" and 

"bath" because the force constant matrix of the bath is a function of the 

"system" coordinate r; i.e., the instantaneous vibrational frequencies and 

normal mode eigenvectors change with the system dynamics. One familiar with 

the reaction path formalism will immediately recognize how much more readily 

one can deal with system-bath coupling with this new Hamiltonian, Eq. (4), 

than with that in the reaction path Hamiltonian. 1a 

The reader will also note that the required input from ab initio quantum 

I', 

'i 
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chemistry calculations is much easier to generate for the Hamiltonian in Eq. 

(~) than it is for the reaction path Hamiltonian. What is required for Eq. 

(~) is the energy, gradient, and force constant matrix of the potential energy 

surface for a frozen bath (~·~0 ), as a function of r. If!: is only one 

coordinate, for example, this means that one requires an energy, gradient, and 

force constant matrix at, say, ten predetermined geometries. Geometry 

optimization is not required. 

b. Conservation of Total Angular (and Linear) Momentum 

Our initial inclination was to ignore the fact that this model does not 

conserve total angular and linear momentum (due to the fact that the 

approximation to the potential surface, Eq. (3), destroys rotational and 

translational invariance). Earlier, for example, Jaquet and MillerS had used 

essentially this model to treat H-atom diffusion on a tungsten surface, and 

there, of course, one does not need to be concerned with rotation and 

translation of the (infinite) surface of tungsten atoms. In malonaldehyde, 

Eq. (1 ), however, the "substrate" is not infinite. It seemed to us that it 

was sufficiently more massive than the one H atom that tunnels and that one 

could thus ignore rotation and translation. Unfortunately, test calculations 

convinced us that this is not the case, at least for malonaldehyde; the low 

frequencies of the bath- the ones that should be zero, i.e., pure rotations 

and translations - mix in an unphysical way with the true low vibrational 

frequencies of the molecule. It was thus deemed necessary to project out six 

pure rotational and translational degrees of freedom. 

To separate off the rotational motion rigorously requires use of 

curvillriear coordinates (1.~ .• Euler angles),6 thus destroying the cartesian 

form of the Hamiltonian, Eq. (4). To avoid this, and also because we are 
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developing the present model for application to large molecular systems for 

which rotational motion is not of interest, we have chosen to eliminate 

rotation approximately by projecting out infinitesimal rotation and 

translation of the N-1 "substrate" atoms. 

To be specific, we refer to Eq. (1) with r • xH chosen as the (one) 
- . 1 

"system" coordinate. Indices i • 1,2,3 refer to the three cartesian 

coordinates of atom H1• The matrix 

i • 4, •• , 3N 

k • 4, ••• 3N-6 (5) 

denotes the matrix of eigenvectors of the projected, mass-weighted force 

constant matrix of the N-1 atom substrate, 

-'1. -Y. {1-P)•m 2 •K •m 2 •{1-P) 
- - - -o - - -

(6) 

0 here ~0·~<x 1 ), ~· and~ are (3N-3) x (3N-3) matrices for the (N-1) atom 

substrate, and x1° is some convenient intermediate value of the system 

coordinate x1• f is the projector onto the 6 degrees of freedom that are 

infinitesimal rotations and translations of the (N-1) atom substrate; its 

explicit form has been given befqre 1a and is a function only of the geometry 

of the substrate. The factor (!-~) in Eq. (6) insures that the projected, 

mass-weighted force constant matrix will have six zero eigenvalues, 

corresponding to infinitesimal rotations and translations, and 3{N-1)-6 non-

zero eigenvalues that describe vibration of the {N-1) substrate atoms about 

their reference positions. 

The final matrix U is now-augmented by the other cartesian coordinates of 



.. . ' 

·"· 

-9-

atom H1 that are not taken as system coordinates; e.g., with r chosen to be 

xH 1 • x,, the coordinates YH1 • x2 and zH1 • x3 are part or the bath, and the 

final U matrix is 

2 3 4 3N-6 

1 o. 0 
0 1 : 

(7) 

0 : ~ from Eq. (5) 

The (3N-1) cartesian bath coordinates~ are now expressed in terms or the 3N-7 

normal mode bath coordinates g which have the six rotations and translations 

or the substrate eliminated, 

-Y. 
R-R • !!! 2 •U_•g - -o 

with~ given by Eq. (7). The Hamiltonian of Eq. (4) thus becomes 

(with r !I x1) 

where ~eff and {eff are the (3N-7) matrix and vector 

(8) 

(9a) 
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(9b) 

(9c) 

and 

(9d) 

(Note that ~eff(x 1 > is not diagonal because~ was obtained by diagonalizing 

~(x 1 ) at the fixed value x1 • x1°.) This Hamiltonian, Eq. (9), is one for 3N-

6 degrees of freedom. It should be clear how Eqs. (5}-(9) are modified if the 

system coordinate(s) r is chosen to be x1 and X ii 
2 YH , say. 

1 
The transformations described by Eqs. (5}-(9) for eliminating overall 

translation and rotation of the substrate must be re-done for different 

isotopic species; i.e., the matrix ~eff(xl} and coupling vector reff(xl) in 

Eq. (9) depend on the atomic masses. It should be noted, however, that the 

mass dependence on the projected (3N-3) x (3N-3} substrate portion of 

~eff<x 1 } corresponds to secondary isotope effects. Primary isotopic 

substitutions are simply incorporated via the identity portion of the 

matrix U. Both of these mass variations are simple, though. The important 

matter is that the original ~and f of Eq. (4), which are obtained from ab 

initio quantum chemistry calculations, are mass-independent. Also important 

for treating the dynamics of the "system-bath" Hamiltonian Eq. (9} is that its 

cartesian and linear coupling form has been maintained by the (approximate} 

way that we have eliminated overall translation and rotation. 

c. Flexible Bath 

In some cases one may wish to allow the reference geometry of the "bath" 

to vary with the system coordinate r• e.g., so that the equilibrium geometries 

\1 

-, 
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or the reactants and products are accurately reproduced by the model. It is 

actually possible to generalize the above treatment in a simple way to 

incorporate this and still maintain the simple form of the resulting 

Hamil ton ian. 

Thus, let Bo<r> be the reference geometry of the bath as a function of 

the system coordinate(s) r· We envision, for example, that Bo<r> may be 

chosen simply to interpolate between the reactant and product geometries of 

the bath variables. A Taylor series expansion of B about Bo<r>. as in Eq. 

(3), is still possible. 

3V(r,R) 
( ~~- ) •(R-R (r)) 

R•R (r) - -o -
-o 

and this can be combined with the cartesian kinetic energy to form a 

Hamiltonian like that of Eq. (4). 

To maintain the simple form of the resulting Hamiltonian it is still 

( 10) 

necessary to project out rotations and translations of a frozen substrate. 

Therefore, the transformation matrix U is defined as above, Eq. (5)-(7), but 

where K -o 
0 0 0 

~(x 1 .~0 Cx 1 ), x1 being an intermediate value of the system 

coordinate x1• The projector Pis also defined at the frozen substrate 

geometry B0 Cx1°). The relation between the (3N-1) coordinates R (for 

r • x1) and the (3N-7) coordinates Q is thus 

( 1 1 ) 
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so that ~-~0(x 1 ) in Eq. (10) (with [ • x1) is given by 

0 -~ R-R (x1) • R (x1 ) - R (x1) + m_ 2 •U_•Q_ • 
- -o -o -o 

( 1 2) 

Using Eq. (12) in Eq. (10) then gives the same torm of Hamiltonian as before, 

Eq. (9a), here with 

f-err<x 1 > • [r_Cx1 > + (R (x)- R (x 0 ))·K(x >]·m-Yz·u -o 1 -o 1 - 1 . - -

where 

~(x1) • 
a2vcx

1 
,R) 

( 3R 3R- ) 
- - R • R ( x

1 
) -o 

3V(x1,R) 
f(x1) ·- ( 3R-) 

- R • Bo(x1) 

(9b') 

(9c') 

(9d') 

It is clear that these expressions revert to Eq. (9) in the rigid bath limit, 

To conclude this description of the model we summarize the advantages 

that it has over earlier reaction path models. (1) Most important is that it 
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contains the physically correct picture or the dynamics, clearly identifying 

the relevant coordinates of the process. The intrinsic reaction path for 

these heavy-light-heavy mass combinations leads to unphysical reaction 

paths.7 (2) It is considerably easier to treat the dynamics of the resulting 

Hamiltonian which has the coupling in the potential energy rather than that 

for the reaction path Hamiltonian that has the coupling in the kinetic 

energy. (3) It is relatively simple to do calculations for different 

isotopes. {4) It is much simpler to generate the ab initio quantum chemistry 

"input" for the model. 

Disadvantages of the model, on the other hand, are that we are able to 

separate off overall rotational motion only approximately if we wish (as we 

do) to maintain the simple form or the Hamiltonian; this seems to be a minor 

error, though, particularly so if the "substrate" is large. Finally, the 

model requires that one invoke "chemical intuition" to choose the cartesian 

coordinates that constitute the "system"; one may view this as an advantage or 

a disadvantage. 
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III. SYSTEM-BATH DYNAMICS 

Having defined the model Hamiltonian in the previous section, one is now 

ready to treat its dynamics. The most elegant and rigorous way to treat these 

system-harmonic batn Hamiltonians is via Feynman path integral methods. 8 This 

permits one to take into account the effect of the "bath" on the "system" 

exactly. There is currently a great deal of progress being made in this 

direction,5,9-14 but these approaches are at present not available for 

practical calculations with real chemical systems. In this paper, therefore, 

we utilize an approximate treatment due to Makri and Miller4 that has been 

shown to do an excellent job for including the effect of coupling to a bath on 

the tunneling in a double well system, as is the process in Eq. (1). We first 

summarize the basic ideas or this approach and then describe some necessary 

modifications for the present application. 

The basis set method or Makri and Miller chooses basis functions for the 

total system-bath Hamiltonian in the form 

( 13) 

where {xi (r)} is a set or localized functions in the "system" coordinate, and 

t~(g) is the eigenfunction or the "bath" Hamiltonian that results when the 

total Hamiltonian is averaged over basis function x1(r); t 1
(Q) is obtainable 

n -

analytically because the resulting "bath" Hamiltonian is that of linearly 

coupled harmonic oscillators. (We have taken the set {xi} as the distributed 

gaussians of Hamilton and Light, 15 as used by Makri and Miller.) The matrix 

of the total system-bath Hamiltonian, Hi' , . , is constructed in this basis, 
~ ,1~ 

and the zeroth order effective system Hamiltonian of ref. 4 is defined by 

taking the part of the Hamiltonian matrix that is diagonal in the "bath" 
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quantum numbers, i.e., by setting~·-~· This effective system Hamiltonian 

matrix has a dimension only or the number or "system" basis functions {xi} and 

is or the form 

n 
H • H i',i i'~,i~ 

n n 

• Fi',i )( hi',i' ( 14) 

n 
where F i, ,i is the Franck-Condon factor between the oscillator functions ti n 

i' 
and •n , 

( 15) 

n 
and hi' ,i is a one-dimensional-like Hamiltonian matrix. Host or the effect or 

the "bath" on the "system" dynamics is contained in the Franck-Condon ractor; 

i.e., it describes the "solvent relaxation", or polaronic errects or the 

"bath" on the "system". Hakri and Hiller round that this approximation, i.e., 

taking the bath quantum numbers to be diagonal, worked quite well provided 

that the basic functions {x 1J are localized. The reader should see rer. 4 ror 

discussion or the reasons for this as well as further aspects of the approach. 

Makri and Miller considered a system-bath Hamiltonian with a constant 

force constant matrix, ~. so their treatment must be generalized in order to 

apply it to the present Hamiltonian, Eq. (9a). Specifically, the Franck-

Condon factor of Eq. (15) in the present case is given more explicitly by 

( 16) 
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where +nk(qk) are ordinary one-dimensional harmonic oscillator wavefunctions, 

and the coordinates gi (and gi') are the linear combinations of g that 

diagonalize the oscillator potentials 

where 

Y. Q•K •Q - f •Q , 2 
- -i - -i -

( 17a) 

( 17b) 

( 17c) 

More specifically, if ki is the (3N-7) x (3N-7) matrix of eigenvectors of ~i' 

then 

( 18) 

are the diagonal frequencies of the bath modes associated with the gaussian Xi 

localized at ~i' and gi is given in terms of g by 

( 19) 

Because the matrices ki and ki• are different- which is due to the fact that 

the force constant matrices ~i and ~i' are different - the integrals in Eq. 

(16) do not factor into a product or one-dimensional integrals; they have the 

form of a multidimensional gaussian integral (times powers). There have, 

however, been a number of papers describing the efficient evaluation of these 

multidimensional harmonic Franck-Condon factors using generating function, 

recursion, and iterative methods; 16 we used a method similar to that of ref. 

.. 
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16a. 

With this more generalized Franck-Condon factor, the effective system 

Hamiltonian which results from the system-bath Hamiltonian of Eq. (9a) is 

given explicitly by 

(20a) 

where 

(20b) 

(20c) 

The last three terms in Eq. (20) are multidimensional gauss1ans times powers 

and are evaluated by methods similar to those used for the Franck-Condon 

factor • 
. · 
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IV. APPLICATION TO 3-ATOM MODEL OF MALONALDEHYDE 

Before applying the methodology or Sections II and III to an ab initio 

treatment ot malonaldehyde, Eq.(1), we consider here a simple 3-atom model of 

this reaction that can be treated exactly (because it is a triatomic 

system). It is important to test both the cartesian reaction path model 

described in Section II, and also the dynamical treatment summarized in 

Section III. 

The 3-atom model we consider is the 0-H-0 part or Eq.(1), 

.. (21 ) 

with a potential energy function that has the general form of Janoschek, 

Weideman, and Zundel's 17 double well potential, generalized to include bending 

motion: 

where Y is the angle between the two OH bonds. The coefficients have been 

chosen to approximate the energetics and geometry ot reaction (1): 

a1 • 0.01338 (a.u.) 

a2 ·-0.03603 

a3 - 0.02425 

a4 --0.02745 

a5 .. 0.03695 

a6 .. 0.07786' 

Ky "' 0.20000 

"· 



-19-

1 
Qa • 12 <r,-r2) 

1 
Qs • 12 (r1+r2) 

Y
0 

• 158° 

The "bare" barrier height (i.e. with no zero point energy corrections) 

for this potential is 6.88 kcal/mole, in qualitative agreement with what is 

thought be the correct value for malonaldehyde.t8,t9 Table I compares the 

equilibrium and transition state geometries tor this potential to the 

corresponding quantities for malonaldehyde. 

The cartesian reaction model of Section II was now applied, with the x-

coordinate of the H-atom as the "system" coordinate, i.e., the reaction 

coordinate. Both the "frozen" reference geometry tor the bath (Section IIa) 

and a flexible reference geometry (Section lie) were tried to test the 

sensitivity or the results to how well the bath is modeled. 

Table II gives the tunneling splitting for the ground vibrational state 

of this double well potential, as calculated by the basis set method described 

in Section III. Results in Table II are given tor the principal isotope, and 

also tor the deuterated system, each tor three different choices or the 

reference geometry of the bath: "Transition State" refers to a frozen 

reference geometry of the bath that is that or the transition state; 

"Equilibrium" also refers to a frozen reference geometry (but one that is the 

average or the two equilibrium geometries); and "Flexible" refers to the 

variable reference geometry (Section lie) that interpolates between the 

transition state and equilibrium geometries. The "exact" values given in 

Table II were calculated by the method ot Carter and Handy20 , which is readily 

applied to any triatomic system. Finally, the values given in parenthesis in 

Table II are the results obtained from the one-dimensional vibrationally 
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adiabatic approximation and are thus a measure ot how much coupling to the 

bath effects the reaction coordinate. 

From the results in Table II one sees that both an equilibrium and a 

flexible reference geometry tor the bath do a better job of describing the 

dynamics of H-atom transfer (i.e., the tunneling splitting) than does a frozen ~ 

transition state reference geometry; the former results are in quite good 

agreement with the exact values tor this model system. One also sees from 

Table II that the bath has a very significant effect on the tunneling 

dynamics; i.e., the values given by the one dimensional vibrationally 

adiabatic approximation (those in parenthesis) are in error by 50 to 100%. 

The error for the equilibrium geometry is the smallest while the transition 

state is the largest. It thus appears that a quadratic expansion of the 

potential in bath coordinates about a frozen reference geometry can be 

sufficient it the geometry ot the bath does not relax very much during the 

reaction. A flexible reference is necessary, however, if there is a lot of 

relaxation in the bath. Fortunately, the flexible bath model of Section lie 

is not any more difficult to apply than is the frozen bath treatment of 

Section Ua. 
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V. CONCLUDING REMARKS 

The cartesian reaction path model presented in Section II provides a much 

simpler description or the interaction between the "system" (i.e., the 

reaction coordinate) and the "bath" (the remaining degrees of freedom) than 

does a reaction path model based on the (curvilinear) minimum energy (i.e., 

~ steepest descent) path. As discussed, too, it is often a more physically 

correct picture of the dynamics (as, for example, in the case of H-atom 

transfer, where the minimum energy reaction path is very sharply curved). It 

is also gratifying that the kind of quantum chemistry calculations that are 

necessary to apply the model in its ab initio mode are simpler to generate 

than for the steepest descent path. 

The Hamiltonian that results r'rom this cartesian reaction path model has 

the generic form of a cartesian "system" linearly coupled to a harmonic 

"bath". The most powerful way for treating the dynamics of such a system is 

Feynman path integral methodology, but it is encouraging to see that the 

simpler basis set method summarized in Section III does quite a good job of 

describing how coupling to the bath affects the H-atom transfer dynamics. We 

thus believe that the overall approach described herein will be useful for 

treating a variety of polyatomic reactive processes. 
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Appendix A 

This is a short insert tor showing why the reaction coordinate always 

approaches a stationary point from the loweat frequency mode. 

Consider a potential V • V0 + ~ t wi2Xi2· For the path of steepest 
i 

descent 

where 

This implies that: 

and 

therefore 

a a • -av 1 I av 1 
x' 

as ax ax .FT 

X' • -av 
a! 

. 

• J wi 2 ~ dx (;-) x dx 
j j 

wi 2 
tn x • <--) tnxj • 

i wj 

+ along the path. 

(A. 1 ) 

(A.2) 

Examining two possible cases, (a) w1>wj and (b) w1<wj, one can see that 

the steepeat path approaches the stationary point from the mode of lowest 

frequency (a) xj and (b) xi. 

.· 



-23-

References 

1. (a) W. H. Miller, N. C. Handy, and J. E. Adams, J. Chem. Phys. 72, 99 

(1980); (b) W. H. Miller, in Potential Energy Surfaces and Dynamics 

Calculations, edited by D. G. Truhlar (Plenum, New York, 1981), p. 265; 

(c) C. J. Cerjan, S.-H. Shi, and W. H. Miller, J. Phys. Chem. 86, 2244 

(1982); (d) S. K. Gray, W. H. Miller, Y. Yamaguchi, and H. F. Schaefer, 

J. Chem. Phys. 73, 2733 (1980); (e) S. K. Gray, w. H. Miller, Y. 

Yamaguchi, and H. F. Schaefer, J. Am. Chem. Soc. 103, 1900 (1981); (f) Y. 

Osamura, H. F. Schaefer, s. K. Gray, and W. H. Miller,~· 103, 1094 

(1981); (g) B. A. Waite, S. K. Gray, and W. H. Miller, J. Chem. Phys. 78, 

259 (1983); (h) W. H. Miller, J. Phys. Chem. 87, 3811 (1983); (1) T. 

Carrington, Jr., L. M. Hubbard, H. F. Schaefer, and w. H. Miller, J. 

Chem. Phys. 80, 4347 (1984); (j) T. Carrington, Jr. and W. H. Miller, J. 

Chem. Phys. ~. 3573 (1984); (k) w. H. Hiller, in The Theory of Chemical 

Reaction Dynamics, edited by D. c. Clary (D. Reidel, Boston, 1986), p. 

27; (1) T. Carrington, Jr. and W. H. Hiller, J. Chem. Phys. 84, 4364 

(1986). 

2. For early work on reaction paths and reaction coordinates, see (a) S. 

Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, 

(McGraw-Hill, New York, 1941); (b) R. A. Marcus, J. Chem. Phys. 45, 4493, 

4500 (1966); 49, 2610 (1968); (c) G. L. Hofacker, z. Naturforsch. Teil A. 

~. 607 (1963); (d) S. F. Fischer, G. L. Hofacker, and R. Seiler, J. 

Chem. Phys. 2!• 3941 (1969); (e) K. Fukui, J. Phys. Chem. 74, 4161 

(1970). 



-24-

3. Some ot the recent papers by other workers on reaction path models are 

(a) s. F. Fischer and H. A. Ratner, J. Chem. Phys. 57, 2769 (1972); (b) 

P. Russegger and J. Brickman,~· 62, 1086 (1975); 60, 1 (1977); (c) H. 

V. Bas1levsk11, Chem. Phys. ~. 81 (1977); 67, 337 (1982); H. V. 

Basilevskii and A. G. Shamov, ~· 60, 349 (1981); (d) K. Fukui, s. 

Kato, and H. FUdimoto, J. Am. Chem. Soc. 97, 1 (1975); K. Yamashita, T. 

Yamabe, and K. Fukui, Chem. Phys. Lett.~. 123 (1981); A. K. Fukui, Ace. 

Chem. Res.~. 363 (1981); (e) K. Ishida, K. Horokuma, and A. Komornicki, 

J. Chem. Phys. 66, 2153 (1977); (f) A. Nauts and X. Chapuisat, Chern. 

Phys. Lett. 85, 212 (1982); X. Chapuisat, A. Nauts, and G. Durrand, Chem. 

Phys. 56, 91 (1981); (g) J. Pancir, Collect. Czech. Commun. ~. 1112 

(1975); 42, 16 (1977); (h) G. A. Natanson, Mol. Phys • .!!i• 481 (1982). 

4. N. Hakri and W. H. Hiller, J. Chem. Phys. 86, 1451 (1987). 

5. R. Jaquet and w. H. Hiller, J. Phys. Chem. 89, 2139 (1985). 

6. See, for example, E. B. Wilson, Jr., J. C. Decius, and P. c. Cross, 

Molecular Vibrations, McGraw-Hill, N.Y., 1955, pp. 273-279. 

1. See, for example, (a) J. Hanz and J. ROmelt, Chem. Phys. Lett.~. 179 

(1981); (b) J. A. Kaye and A. Kuppermann, ~· 77, _573 (1981); 78, 546 

(1981 ); (c) V. K. Babamov and R. A: Marcus, J. Chem. Phys. 74, 1790 

(1981 ); (d) c. Hiller, J. Hanz, w. H. Hiller, and J. R~elt, ibid. 78, 

3850 (1983); (e) B. C. Garrett, D. G. Truhlar, A. _F. Wagner, and T. H. 

Dunn! ng, Jr., ..!E.!!!. !!2_, 120 ( 1973). 

B. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, 

McGraw-Hill, N.Y. (1965). 



-25-

9. (a) W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys. 79, 

4889 (1983); (b) Y. Yamashita and W. H. Miller, J. Chem. Phys. 82, 5475 

(1985). 

10. (a) A. 0. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983); 

(b) s. Chakravarty and A. J. Leggett, Phys. Rev. Lett. 52, 5 (1984); (c) 

H. Grabert and U. Weiss, Phys. Rev. Lett. ~. 1605 (1985): (d) A. T. 

Dorsey, H. P. A. Fisher, and H. s. Wartak, Phys. Rev. A 11• 1117 (1986). 

11. (a) D. Thirumalai and B. J. Berne, J. Chem. Phys. 79, 5029 (1983): (b) D. 

Thirumalai, E. J. Bruskin, and B. J. Berne, ~· ]i. 5063 (1983); (c) D. 

Thirumalai and B. J. Berne,~·~. 2512 (1984). 

12. (a) J. D. Doll, J. Chem. Phys. it• 3536 (1984): (b) D. L. Freeman, R. D. 

Coalson, and J. D. Doll, J. Stat. Phys. ~. 931 (1986). 

13. (a) E. c. Behrmann, G. A. Jongeward, and P. G. Wolynes, J. Chem. Phys. 

79, 6277 (1983); (b) R. W. Hall and P. G. Wolynes, J. Stat. Phys. ~. 935 

(1986). 

14. (a) D. Chandler and P. Wolynes, J. Chem. Phys. li• 4078 (1981): (b) H. 

Sprik, H. L. Klein, and D. Chandler, J. Chem. Phys. 83, 3042 (1985); (c) 

H. Sprik, R. W. Impey, and H. L. Klein, J. Chem. Phys. 83, 5802 (1985); 

(d) c. D. Jonah, C. Romeo, and A. Rahman, Chem. Phys. Lett. 123, 209 

(1986); (e) P. J. Rossky, J. Schnitker, and R. A. Kuharskl, J. Stat. 

Phys. i1• 949 (1986); (f) A. Wallqulst, D. Thlrumalai, B. J. Berne, J. 

Chem. Phys. 85, 1583 (1986). 

15. I. P. Hamilton and J. c. Light, J. Chem. Phys. 84, 306 (1986). 

16. (a) D. Gruner and P. Brumer, Chem. Phys. Lett. 138, 310 (1987); (b) H. 

Kupka and P. H. Cribb, J. Chern. Phys. 85, 1303 (1986); (c) F. T. Chau, J. 

Mol. Spc. 103, 66 (1984); and references therein. 



-26-

17. R. Janoschek, E. G. Weidemann, and G. Zundel, J. Chem. Soc. Faraday 

Trans. ~. 505 ( 1973). 

18. (a) W. F. Rowe, R. W. Duerst, and E. B. Wilson, J. Am. Chem. Soc. 98, 

4021 (1976); (b) S. L. Baughcum, R. W. Duerst, w. F. Rowe, A. Smith, and 

E. B. Wilson, ibid. 103, 6296 (1981 ); (c) z. Smith, E. B. Wilson, and R. 

W. Duerst, Spectrochim. Acta Part A 39, 1117 (1983): (d) S. L. Baughcum, 

z. Smith, E. B. Wilson, and R. W. Duerst, J. Am. Chem. Soc. 106, 2260 

(1984): (e) P. Turner, S. L. Baughcum, s. L. Coy, and z. Smith, _ill!!. 

106, 2265 (1984). 

19. J. Bicerano, H. F. Schaefer, and W. H. Miller, J. Am. Chem. Soc. 1£2, 

2550 (1983); M. J. Frisch, A. C. Scheiner, and H. F. Schaefer, J. Chem. 

Phys. 82, 4194 (1985). 

20. s. Carter and N.C. Handy, Mol. Phys. 47, 1445 (1982); Mol. Phys. 57, 175 

(1986). 



... 

~ 

-27-

Table I. Comparison ot Geometries of the 3-Atom Model to Halonaldehyde. 

Equilibrium Transition State 
Internal 3-Atom 3-Atom 

Coordinatesa Model Malonaldehldeb Hodel Malonaldehldeb 

r1 0.82 A 0.99 1.20 1.20 

r2 1.46 1.69 1.20 1.20 

r3 2.23 1.22 2.36 2.36 

y 158° 155° 158° 158° 

ar1 and r2 are OH bond lengths; r 3 is the 0-Q bond length; Y is the angle 
between the two OH bonds 

bsee refs. 18 and 19. 
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Table- II. Tunneling Splitting (om-1) tor the 3-Atom Hodel of Malonaldehyde. 

Reference Geometry of Bath 

Isotope 

OHO 

000 

Transition Statea 

81 ( 156) d 

23 ( 30) 

Equilibriuma 

76 (63) 

9 ( 18) 

aFrozen reference geometry (Section IIa) 

bFlexible reference geometry (Section IIc) 

Flexibleb 

66 (95) 

7 (22) 

0 Exact values of the tunneling splitting (for this model) 

76 

9 

dvalues in parentheses are tunneling splittings given by the one-dimension 
vibrational adiabatic approximation. 

'" 
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