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NMR WITH GENERALIZED DYNAMICS OF

SPIN AND SPATIAL COORDINATES

.Chang Jae Lee

Abstract

This work is concerned with theoretical and experimental aspects

of the generalized dynamics of nuclear spin and spatial coordinates

under magnetic-field pulses and mechanical motions. Specific goals

include: a description of the interaction of spins .with a quantized

radiation field; the design of multiple-pulse sequences for the

averaging of all linear and bilinear spin operators; schemes for

heteronuclear decoupling of spins in multi-level systems; methods for

the removal of anisotropic spin interactions in orientationally

disordered solids.

The main text begins with an introduction to the concept of

"fictitious" interactions. A systematic method for construction of the

fictitious spin-I/2 operators is given. The interaction of spins with a

quantized-field is described using this formalism.

The concept of the fictitious interactions under the irradiation

of multiple pulses is utilized to design sequences for selectively

averaging linear and bilinear operators. Relations between the low­

field sequences and high-field iterative schemes are clarified. These

relations and the transformation properties of the spin operators are

exploited to develop schemes for heteronuclear decoupling of multi-
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level systems. The resulting schemes are evaluated for heteronuclear

decoupling of a dilute spin-l/2 from a spin-l in liquid crystal samples

and from a homonuclear spin-l/2 pair in liquids.

A relation between.the spin and the spatial variables is

discussed. The transformation properties of the spin operators are

applied to spatial coordinates and utilized to develop methods for

removing the orientational dependence responsible for line broadening

in a powder sample. Elimination of the second order quadrupole effects,

as well as the first order anisotropies is discussed. It is shown that

various sources of line broadening can effectively be eliminated by

spinning and/or hopping the sample about judiciously chosen axes along

with appropriate radio-frequency pulse sequences.
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CHAPTER I. Fundamental Phenomena and Tools

1.1. Introduction

What is remarkable about nuclear magnetism is that it continues

to be a fertile source of fundamental physical phenomena and at the

same time it has found an enormous number of applications in fields

such as physics, chemistry, biology, and medicine to name a few. A

reason for the versatility of NMR may be due to the fact that nuclear

spin dynamics can be described with relative ease, although accurately

with standard quantum mechanics: the difference between energy levels

is quite small even at high magnetic fields, so the high temperature

approximation is usually possible except for some extraordinary

circumstances; in addition, a semiclassical description for the spin­

radiation interaction is adequate under most experimental conditions.

The simplicity along with accurate predictions has made a great variety

of sophisticated experiments possible. In short, NMR is a field which

enjoys a happy marriage between the fundamentals and applications.

Accordingly, in this Dissertation an attempt has been made to

incorporate the duality: the fundamentals and applications. However,

because ~E·~t ~ h ~ 0, the focus will be paid only on limited aspects

of this vast field: in the following sections of this chapter some

basics on the nuclear spin itself and the spin Hamiltonian are

discussed. Then in Chapter II, a simple model for the interaction of a

spin with an electromagnetic field is described on a consistent full­

quantum mechanical footing. The rationale behind the inclusion of the
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chapter is not merely to provide a balanced exposition on the spin

dynamics with the fundamentals and applications to abide by the

principle of duality mentioned above, but also to be pragmatic:

Although the basic nature of this chapter may be considered to be on

the fundamental side, it is hoped that it will find some applications

in cases which require microscopic treatment. NMR, being a branch of

general spectroscopy, can be described on a universal dynamical footing

applicable to all branches of spectroscopy. Thus the full quantum

mechanical analysis of nuclear spin-electromagnetic radiation

interaction may find applications in, for example, optical

spectroscopy, or vice versa. Also it is hoped that some benefits will

result as by-products from the treatment itself.

Later chapters deal with more complicated systems: there are many

spins in the system, interacting with each other and suject to much

more complicated external perturbations. Most relevant to this

Dissertation is the removal of unwanted te~(s) from the Hamiltonian

while keeping the desired term(s) as intact 'as possible, by modulating

the spatial and/or the spin parts of the Hamiltonian with mechanical

motions, or radiofrequency pulses or with a combination of the two.

Chapter III deals with the design of multiple pulse sequences for

solids under general interactions: the sequences developed for high

field Hamiltonians have to deal with only the truncated part of the

Hamiltonian. Hence, it is necessary to devise a generalized scheme for

sequences to be used for averaging the Hamiltonian at low static

magnetic fields, because the Hamiltonian contains full untruncated

interactions. The sequences for these low (and zero) fields may also
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have important applications for high field experiments, where pulse

imperfections produce terms that appear in the low field Hamiltonian

which were absent in the original high field Hamiltonian. Also the

transformation properties· of these various terms may be useful for

designing some experiments, and this will be discussed in a later

chapter. Other possible applications include homo and heteronuclear

spin decoupling by applying multiple pulses.

Chapter IV discusses iterative schemes frequently used in NMR in

connection with the multiple-pulse sequences developed in Chapter III.

However, in this chapter the pulses will no longer be considered ideal:

the radiofrequency field srength is of the same order as the internal

error terms, and furthermore they may have amplitude imbalance and

phase shift errors as well. So a goal of this chapter is to show the

relationship between the schemes for the low field multiple pulse

sequence design and the iterative schemes especially developed for

modern decoupling experiments for a single-spin case. The similarities

as well as the differences between the two methods will be analyzed,

and the result of the analysis will be utilized to extend the

decoupling schemes to treat the two-spin case, where bilinear spin

operator terms as well as linear terms have to be dealt with.

The first discussion given in Chapter V is on the criteria of

the heteronuclear decoupling for multi-level systems. The decoupling

schemes developed in Chapter IV along with other schemes will be

evaluated by applying the criterion for liquid crystal samples. Then it

will be discussed in detail how to design composite pulses and put them

together in a sequence for the heteronuclear spin decoupling in liquids
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in the presence of homonuclear interactions. Various comparisons will

be made on these schemes using both simulation and experiment.

In the chapters thus far the modulation schemes are aimed at

affecting the nuclear spin coordinates. In Chapter VI, external

perturbations will be applied on the spatial degrees of the freedom of

the Hamiltonian. The major goal is to achieve highly resolved resonance

lines in powder samples. Although the pulsed NMR techniques are quite

versatile and powerful in many instances, they cannot be used for

extracting the isotropic chemical shifts; because in the presence of

high magnetic fields the spin part of the chemical shift Hamiltonian is

proportional to I z . Consequently, the radiofrequency pulses can not

distinguish the isotropic part from the anisotropic part. Therefore

carefully designed mechanical motions affecting the spatial part of the

Hamiltonian are used to deal with the problem. A theoretical background

for dealing with the various anisotropies which cause the broadening of

the resonance lines will be given and some experimental possibilities

will be discussed.

Finally some useful relationships and data too lenthy to include

in the main text are compiled in Appendices.

1.2. The Nuclear Spin and the Hamiltonian

I.2.A. The Nuclear Spin

A very fundamental property of a nucleus is its intrinsic spin

angular momentum. The concept of the intrinsic spin angular momentum
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(or simply the "spin") of the electron was proposed by Uhlenbeck and

Goudsmitl to explain the appearance of two closely spaced lines of the

D line in a sodium spectrum. The electron may be regarded as a charged

sphere spinning around one of its axis. Then by analogy to classical

electromagnetism the intrinsic angular momentum may arise from such

motion. Thus the name "spin" was given to the intrinsic angular

momentum. But the simple classical model turned out to be untenable.

Dynamical variables may be (first-)quantized by replacing the

corresponding classical mechanical quantities by appropriate operators.

In the classical limit ~ ~ 0 the spin reduces to zero. So the spin has

no classical analog of the classical mechanics, and thus there is no

explicit operator form for it. Dirac later showed in his relativistic

quantum mechanical treatment that the spin arises naturally.2 However,

the theory of Dirac does not hold for other elementary particles, and

the value of the spin of each particle has been experimentally

determined. The elementary particles of concern in this Dissertation

are nuclei.

I.2.B. The General Form of the Spin Hamiltonian

Since the spin Hamiltonian has been detailed many times in

standard texts,3,4 monographs,S and theses, no exhaustive discussion on

it will be given here. Only some points which will be utilized

extensively in later chapters are given.

The spin Hamiltonian of interest to this work consists of the

Zeeman (HZ)' radiofrequency (Hrf), chemical shift (HcS )' dipole (HD),
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quadrupole (HQ) , and indirect coupling (HJ ) interaction terms. Hz and

Hrf may be regarded as external Hamiltonians and the rest as the

internal Hamiltonians. The decomposition, however, is not unique. For

example, when transformed to the rotating frame, certain parts of HZ'

more specifically, the resonance offset (Hoff) term is considered as an

internal Hamiltonian. Conversely, when the second averaging6 condition

is met, the resonance offset term may be regarded as a new "Zeeman"

term and hence may be considered to be an external part of the spin

Hamiltonian. Therefore, the terms "internal" or "external" should be

used in accordance with the particular situation under consideration.

In the laboratory frame (LAB) each individual (internal)

interaction term in HZ' HCS ' HD, HQ and HJ may in general be written as

..

Here

A = Z,CS, D, Q, J. (1.1)

++
R --y 1 Z

++
-yo CS

,
++

--y-y Ii D D (1. 2)

eQ ++

61(21-1)
V Q

j
..

J

-y and -y' are the magnetogyric ratios, ~ the shielding tensor, ~ the

dipole coupling tensor, ~ the electric field gradient tensor.
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I'

z, CS

D, J (1. 3)

I Q.

Alternatively, the Hamiltonian can also be written as

Jl ... ft·"

where' is constructed from the direct product of I and A:

It and , represent the spatial and the spin part of the Hamiltonian

(1.4)

(1. 5)

respectively except for the cases of ~ ... Z and CS. These tensors can be

either Cartesian or spherical. Thus

(a,fJ ... x,y,z) (1. 6)

or

\' 2 \' 1 m
Jl = ~=O ~= -1 (-1) R1 _m T1m · (1.7)

The Cartesian tensor form provides some useful physical insights which

will be discussed in section I.2.C. The spherical tensor form is useful

when rotations or other unitary transformations are involved. It is the

form which has been used extensively by Haeber1en and Waugh7 for the
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description of the spin-lattice relaxation in periodically perturbed

systems.

I.2.C. The Analogy between the Spin and Spatial Parts of the

Hamiltonian

The Hamiltonian in Eq.(1.6) expressed in terms of Cartesian

tensors will now be used to point out an analogy between the spatial

and the spin parts. The analogy is general. However, it is most

striking for quadrupole and dipole interactions. HQ and HO have quite

similar structures and the quadrupole interaction is more general in

the sense that it has the asymmetry parameter(~). SO HQ will be

considered here as a representative case without the loss of

generality.

It can be shown (the proof is given in Appendix 1) that a second

rank Cartesian tensor Aap may be regarded as a direct product of two

vectors

(a,p= x,y, or z ) (1.8)

~ ~

where Po and qp are components of vectors p and q. Hence Rap can be

written as a product of components of two vectors iaip ', quite

analogous to the fact that Tap is expressed as a product of two angular

momentum operators IaIp '. Therefore, there is a one-to-one

correspondence between spin and spatial parts of the Hamiltonian.

The general analogy can be made more explicit for the simple case
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Figure 1.1 Laboratory coordinate system and polar angles 0 and ¢

of the axis of the symmetry of a axially symmetric quadrupole.

9
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of ~=O (this includes dipole interactions). In this case because of

axial symmetry only the principal axis of symmetry is important and the

Hamiltonian may be expressed in terms of the two polar angles 0 and ¢

shown in Fig.l.l. Thus (apart from a constant factor)

(1. 9)

The two vectors 1 and l' making up the tensor tt are now identical to

each other and are parallel to the symmetry axis of the quadrupole. The

unit vector along this direction has the following components

x - sinO cos¢

y = sinO sin¢

z = cosO

Then HQ may be written as

(1.10)

H - -!2 (3z
2 -1)(3Iz

2-I2) -3zx(I I +1 I ) -3yz(I I +1 I )Q zx xz yz zy

3 2 2 2 2
-3xy(I I +1 I ) --2(x -y )(Ix·Iy ).x y y x

(1.11)

Thus we can now clearly see the close analogy between spin and spatial

parts, and it will be fully exploited in designing the experiments to

be discussed in Chapter VI.
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1.2.D. Some Useful Properties of the Spherical Tensors

An irreducible tensor operator Xl of rank 1 has (21+1)

components, which under a coordinate rotation R, satisfy

b (1)
- , An , D, (R)

~m m m

1 - 0, 1, 2, ...

m = 1, 1-1, ... , -1

(1.12 )

where n(l) are Wigner rotation matrices.mm'

Some useful commutation relationships between A1m and the angular

momentum operators are:

For 1 - 1 and A1m - 1m Eqs.(1.13) and(1.14) reduce to

Principle axis system (PAS)

(1.13)

(1.14)

(1.15 )

(1.16 )
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The relationship between the spatial part ~ of the Hamiltonian in

the LAB and p in the PAS can be expressed using Eq.(l.12)

(1.17) ..

where 0' is the solid angle relating the two frames. P2m = 0 (m F ±2)

for A = D,Q. p85 = -J31Uiso and m = 1 term corresponds to the

antisymmetry component, which has no effect on the first order spectra

and thus is usually ignored.

1.3. Remarks

It should be remembered that these internal Hamiltonian terms are

scalar quantities as evidenced by Eq.(l.l) or Eq.(l.4). Thus they have

the isotropic symmetry, and this is the property which the zero-field

NMR methods capitalize on. In zero field the Hamiltonian is orientation

independent, so a single-crystal-like spectrum is obtained from a

powder sample. Once an external field is applied, the spin components

orthogonal to the applied field undergo rapid motion, and the isotropic

symmetry under rotation is broken. (However, the symmetry broken this

way is different from the "broken symmetry" occurring in the condensed

phases such as ferromagnets. In such cases there exist intrinsic

alignments of spins even if there is no external field present. If the

external field is present, even spins in a normal phase (paramagnet)

line up parallel to the field and this is not an intrinsic property of

the spin system.)
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Line broadening is removed by isotropic motion of the molecules

in liquids provided by the nature. However, in solids the motion must

be provided by the experimenter either by pulses to affect the spin

part, by mechanical moti~ns to affect the spatial part, or a

combination of the two.
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CHAPTER II. Full Quantum Mechanical Treatment of the Spin­

Radiation Interaction.

11.1. Introduction.

Chapter I focused on the nuclear spin and general form of the

internal Hamiltonian. This chapter will concentrate on the dynamics of

the interaction of spins with electromagnetic radiation. The second

quantization methodl ,2 is highly useful for those systems in which the

number of particles in a given state changes, and the production and

disappearance of particles of a given species occurs. Thus for

describing the spin-radiation interaction the second quantization method

is frequently employed. One feature that arises in the method of second

quantization is the concept of "fictitious" particles. 3 The concept is

found in many branches of physics dealing with many-particle systems.

The idea behind the concept is to transform the "coupled" or complicated

real system to some "uncoupled" (or at least less strongly coupled)

"fictitious" system, so that they may become amenable to calculation.

Some familiar examples include: the separation of an otherwise

unsolvable two-body system into a non-interacting center of mass system

and a reduced mass system, the transformation of a coupled harmonic

oscillator into uncoupled normal coordinates, the Hartree-Fock method

for calculating electronic energy, and phonons for describing vibrations

in crystal lattice. The replacement of a time-dependent Hamiltonian with

a fictitious time-independent "average" Hamiltonian has been a powerful

tool for multiple-pulse techniques in NMR. 4 ,S The concept of fictitious

•
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XBL 8711-5975

Fig .2.1 Two processes of a spin-1/2 and electromagneicfield

interaction. The spin is excited or de-excited by

absorbing or emitting a photon respectively.
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spin-1/2 has been used with eminent success in dealing with multip1e­

quantum transitions. 6 ,7,8

In this section a few simple model cases of interaction of a spin

with radiation will be gi~en, following closely the discussion given by

Pines. 9

11.2. The Second Quantization Treatment of a Spin-l/2 (Fermion)

Interacting with a Quantized-Field.

A. The Hamiltonian

Consider first a two-level system generated by placing a spin-l/2

in a large static magnetic field. Next the spin is made to interact with

a field oscillating with a single mode such that only the two processes

depicted in Fig. 2.1 occur, that is non-linear couplings are ignored.

The energy level 12> is assumed to be higher than 11> with a difference

in frequency given by wI - w2 = w00 Finally introduce creation and

annihilation operators Cjt and Cj (j-l,2) for the spin, and at and a for

the radiation respectively. Then the total Hamiltonian may be written as

.,

(2.1)

..

where A is a spin-radiation coupling constant and the zero point energy

is ignored.



Table 2.1 Complete set of orthogonal basis functions

in the occupation number formalism.
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N

o

1

2

I n1'n2'·····,,~ >

I 0, 0 , 0, ' , ,> E I 0>

11,0,0,' '>, 10,1,0, ">, 10,0,1 .. >, ....

1 1 1 0"> 11 0 1 "> I 0 1 1"> ".," , '" , " ,
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B. Is a Single Particle too many?

A question arises, however, whether HSR given in Eq.(2.l) is equal

to

(2.2)

In other words, whether operators satisfy commutation rules

(2.3)

and

[ cl ' C2 ] "" O. (2.4)

It is perfectly clear that when there is a system consisting of many

identical particles, the following commutation or anticommutation rules

must apply:

C. , Ck } "" { ct t "" 0
J j

, Ck }

(fermions)

C. ct } c5 jkJ k

and

a. , ak ] "" [ a! , at ]"" 0
J J

(bosons)

(2.5)

(2.6)

However, what if there is only one particle in the system to begin with?

Is there any commutation rule at all for this case? To answer the

question, the complete set of basis functions in the occupation number

formalism is given in Table 2.1. The number of states M depends on the

system. For example M~ ~ for a hydrogen atom or a harmonic



19

oscillator, but there are only two energy levels for a spin-1/2. The

number N varies depending on the processes occurring in the system. For

example,

(N = 1)

(N -= 2)

(N -= 3)

(N -= 2)

(N 1)

= I 0 0 0 ...>, , , (N == 0)

where the signs involved in the process are temporarily ignored. It can

be clearly seen that the number of particles varies from zero to three.

Now return to the problem of a spin-1/2, a two-level system. The

complete set of basis functions in the occupation number space and the

number of particles associated with each function is given in Table 2.2.

It can easily be seen from the table that the number of particles (in

this case fermions) varies as 0 ~ N ~ 2. It is clear that these are not

the real particles but fictitious particles. Furthermore in the second

quantization formalism even though we started with one real fermion,

there can be a variable number of fictitious particles during the

process, depending on the number of states and the type of interactions

involved. In the above case of interaction where the total number of

particles is conserved, the variation of the number of fictitious

particles may be likened to injecting test particles to facilitate the



Table 2.2 Complete basis set for the two-level system of

a spin-l/2.
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No. of
particles

o
1

2

basis

~ 0> : the vacuum state

I 1,0>, I 0, 1>

11,1>

...
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calculation and removing them at the end of the calculation. In some

sense, the above method is reminescent of the method of Lagrangian

multipliers. To be more specific, consider the variational equation as

an examp1e;10

where C[p] denotes an energy functional of electron density, and

N[p] - Jp(~) d3~

(2.7)

(2.8)

is the total number of electrons in the system. Here, the electron

density is varied even though the total number of particles is a

constant. Back to the case of the spin-1/2 interacting with the

radiation, the conservation of the number of particle should be relaxed

during the calculation. Otherwise, operators ctc2 and C~Cl appearing in

Eq.(2.2) would be meaningless: If N - 1 is rigidly required throughout

the calculation, then

C~C~ 1,0> - C~ 0,1> - O. (2.9)

The first equality holds because of the conservation of particle number

and the second equality is due to the fact that no more than one

particle (fermion) may occupy a state. Similarly,

(2.10)

However, if the condition is relaxed during the calculation,
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cIC2' 0,1> 0= cliO, 0> 0= I 1,0>

N 0= 1 ------> N 0= 0 ---> N 0= 1

c~c111,0> 0= c~1 0,0> "" I 0,1>

N = 1 ----> N - 0 ---> N= 1

c2cII 0,1> ... c211,1> -11,0>

N = 1 ----> N 0= 2 ----> N - 1

c1c~1 1,0> 0= c11 1,1> - I 0,1>

N = 1 ----> N "" 2 ----> N "" 1

So, one can see that the operators cause the transitions between states

I 1> and I 2>. It is also confirmed that the number of fictitious

particles changes as 0 ~ N ~ 2 during the process, and that it is

conserved at the end of the calculation.

The spin-1/2 just discussed is not an isolated example where there

are a number of fictitious particles even if there is only one real

particle. Another example easily found is a harmonic oscillator in the

mode k with the energy given by

(2.11)

..

Eq.(2.11) can either be interpreted as the energy level associated with

quantum number nk of a real harmonic oscillator or as the energy of a

system of nk fictitious particles in the k-th state, all excited by

~~/2, thus given the name "elementary excitations".ll The fictitious

..
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particles satisfy either the anticommutation rules or the commutation

rules depending on whether the real particles are fermions or bosons.

C. Connection to the Spin Angular Momentum Operators

The Hamiltonian in Eq.(2.1) will now be transcribed into a more

familiar form by transforming it back to the coordinate representation

from the occupation number representation. To do this it first should be

noted that the matrix element should be identical in both

representations:

(2.12)

Here 0 is an one-particle operator. Since there is only one spin-1/2 in

the system, operators representing many-particle interactions need not

be considered. {~k} are one-particle wave functions. Oocc is the

corresponding operator in the occupation number representation. Then it

. can be shown that

~,n
o CtC

mn m n' (2.13)

where 0mn represents the matrix element of the operator in the

coordinate representation. As an application, consider the following

operator given in the occupation number representation

Oocc _ 1 (Ct CtC )2 1C2 + 2 1 . (2.14)
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With Eq.(2.13) the corresponding matrix 0 can be found as

which is identical to the matrix representation of Ix for a spin-1/2.

With the same procedure the following set of identities for spin-1/2

operators is found

I 1 t t
x == i (C1C2 + C2C1)

I i t t (2.15)
Y

== -i(C1C2 - C2C1)

I 1 t t
z ... i (C1C1 - C2C2)·

Note that because of the anticommutation rules for fermions

... ! (CtC + C
1

C
2
t )

2 1 2
... ! ( ctc
212 (2.16)

With the above operators it is possible to recast the Hamiltonian

given by Eq.(2.1) as

(2.17)

where I+ - I ± ily ' Eq.(2.17) then is the full quantum mechanical_ x

Hamiltonian for the spin-radiation interaction, and one can recognize it

to be identical to the Jaynes-Cummings model12 (JCM) in which rotating
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wave approximation is made. The JCM has been one of the most examined

models in quantum optics. 13 ,14,15

11.3. Spin-l Operators in the Second Quantization Method

Spin-l operators can also be expressed in terms of particle

creation and annihilation operators applying the method discussed above.

It suffices here to state that in this case because the spin-l is a

boson, C and ct operators satisfy boson commutation rules and to give a

representative example:

The corresponding matrix representation for 0 is then

(2.18)

o
~

1
o
o

= )2(11- 2 + 12- 3) - Ix x x' (spin-I) (2.19)

where the definition of fictitious spin-l/2 operators6 ,7 has been used.

For concreteness, a set of basis operators for the spin-l expressed in

terms of C and ct operators is listed in Table 2.3.

11.4. Average Hamiltonian Treatment of the Spin-Quantized

Radiation Interaction.



Table 2.3 Basis operators for a spin-l

Ix = 2_
1

/
2

(CtC2 + C~CI + C~Cs + CAC2)
,

I y - i 2_
1

/
2(-CtC2 + C~CI - C~Cs +:CAC2)

I z - ctc l - CACs

Qx - i 2_ 1
/

2(-CtC2 + ctc l + ctcs - ctc2 )

Qy - 2- 1
/

2
(CtC2 + C~CI - ctcs - CAC2)

Qz = 3-
I

(ctC I - 2C~C2 + CACs )

~2 - ctcs

Q. 2 = Cstc l •

26
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A. The Time-Independent Fictitious Hamiltonian

The Schrodinger equation for the simple model Hamiltonian given by

Eq.(2.17) can be solved exactly and the solution is provided by Jaynes

and Cummings. 12

with

and

l1w-w-wo

¢n- .., (AJn+1 cos On - I1w sinon)1 n+1,->

- (AJn+1 sinOn + ~w cosOn)1 n,+>,

(2.20)

(2.21)

(2.22)

(2.23)

where I n,+> is the state with n quanta in the field with the spin "up"

and I n+1, -> is the state with n+1 quanta with the spin "down". Thus

(2.24)

and

On satisfies

(2.25)

tan °n

and En is given by

~w + E
n

(2.26)
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(2.27)

Eigenfunctions ~n± are mixtures of eigenfunctions of the unperturbed

Hamiltonian

(2.28)

and the perturbation due to the interaction of the spin and the

radiation causes the transition between the two states I n+l, -> and

n,+>.

Although there exists the exact solution for this simple model

Hamiltonian, in general one is forced to resort to approximate

solutions. With the anticipation of extending the treatment to general

cases, an approximate solution based on the Average Hamiltonian Theory

(ART) will be presented. ART, a variant of the time-dependent

perturbation theory, has been quite successful for dealing with many

dynamical phenomena encountered in NMRl6 and recently in quantum optics

as well. l7 The basic idea of ART is to replace a time-dependent

Hamiltonian by a fictitious time-independent "average" Hamiltonian.

We first transform the system into a rotating frame defined by

(2.29)

Then the Hamiltonian given by Eq.(2.l7) becomes
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(2.30)

where I:1w "" w - w00 Now suppose IIHSRII»IIHoff II , where Hoff is the offset

Hamiltonian and the "size" of a Hamiltonian is defined by16 , 18

(2.31)

Then the offset Hamiltonian transformed into a second interaction frame

may be written as

(2.32)

where

(2.33)

Our goal is then to find the time-independent Average Hamiltonian

H such that

i- ( i Jt -, ')Urf exp(-~Ht) "" Urf ~ exp -~ 0 H(t )dt , (2.34)

where ~ is the Dyson time-ordering operator. 19 His usually expanded as

a power series, in which the first two terms are given by



30

(2.35)

However, explicit calculation of Hoff with Urf given by Eq.(2.33) shows

that it does not yield functions having closed forms, so the average

Hamiltonian terms become difficult to calculate.It therefore is

necessary to find a picture in which the exponential of Eq.(2.33)

becomes a single term, to which the next section is devoted.

B. The Fictitious-Spin Operators

With a slight rearrangement one gets

and may be tempted to find some function ~(a,at) such that

(a+at)I + i(a-at)I - D(I cos~ + I sin~)x y x y

(2.36)

(2.37)

where D is a constant. The quantity in the parenthesis on the right-hand

side is

i~Ize - I cos~ + I sin~,x y
(2.38)

and the constant D may be obtained from
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Then ¢(a,at ) has the following form

or

t . -1 i(a - at)
¢(a,a ) - Sl.n

2Jn + ~

(2.39)

(2.40)

(2.41)

Thus in a frame transformed by exp(-i¢Iz ) the exponent in Eq.(2.33)

becomes a single term:

------:> (2.42)

where the prime denotes the new frame.

However one can easily verify that a and at resulting from

.. Eqs. (2.40) and (2.41) are

a - In+1/2 i¢e

and they satisfy

(2.43)

(2.44)

instead of satisfying the usual boson commutation relations. In the next

section the reason for this inconsistency will be discussed and a

correct transformation will be given.
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C. The Phase of the Quantized Radiation

The definition of the phase of the quantized radiation is not

unique. The requirements the quantum phase of the radiation must satisfy

are:

1) The quantum phase and the number of photons in the radiation field

must satisfy the uncertainty rule

2) It must correspond to the classical phase in the classical limit.

A definition of a and at operators including the quantum phase is

given by1,20

a -= J n+1 i~e

a t
= J - i~ - i~ J!i+ln e -= e n+1 (2.45)

The exponential operators satisfy

i~ -i~
= [~)-laat[~ )-1-= 1 (2.46)e e

and

-i~ i~e e a t_ 1_ a
n + 1 . (2.47)

The righthand side of Eq.(2.47) can be simplified as follows: If

Eq.(2.46) is true,



-i~ i~e e.
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(2.48)

With a slight rearrangement the above equation becomes

-i~ i~( -i~ i~e e e e - 1) -= O. (2.49)

Since the operators on the left-hand side of the parenthesis cannot be

zero, the quantity within the parenthesis must be zero, in contrast to a

claim in the 1iterature. 21 As a matter of fact, for any photon state

In cJ 0>,

atn ~ 1 a Iu cn I 0> -= Iu cn I 0>.

It follow that exp(±i~) is rigorously an exponential function.

(2.50)

After some algebra it can be shown that the following uncertainty

rule between the phase and the number of photons in the field holds:

(2.51)

as is given in standard texts on quantum mechanics. 22

The reason for the inconsistency of the definitions given by

Eq.(2.43) can now be explained. To show this first rearrange Eq.(45),

the correct quantum mechanical definition of a and at:

and

a + at = (In+1 + rn )cos ~ + i (rn -In+1 )sin ~ (2.52)

(2.53)

The above equations show that the two quantities are orthogonal to each

other. However, it is not possible to assign a definite phase and the
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number of photons simultaneously because of the uncertainty principle.

By contrast, the definitions for a and at operators given by Eq.(2.43)

demands a definite knowlege of the phase and the photon number. As a

result, the number of pho~ons in the field < j(n+I/2) ) is incorrect.

The correct number of photons can be shown to be (n+l), with the one

extra photon being responsible for the spontaneous emission. In the

classical limit n»l, the difference between the number (n+I/2) and the

quantum mechanical number (n+l) is immaterial. The next section will

show how to find a correct quantum mechanical transformation.

D. The Fictitious Spin-1/2 Operators for the Spin-

Radiation Interaction

By analogy to the procedure given in Sec.B, ~ n,+>,1 n+1,->} will

be chosen as the complete basis set for the coupled two-level system.

Fictitious spin-1/2 operators for the coupled system of the spin and

radiation may be constructed by utilizing the identity

Of

i = b,m I i >Tim< mi·

Then there results a new set of operators ix, i y , and i z

i ... 1/2</ n,+xn+1, -/ + /n+1, -Xn,+ I),x

i =-i/2(/ n,+xn+l,-I - I n+1,-xn,+ 1>,y

i = 1/2(/ n,+Xn,+ I - I n+1, -xn+1, -/ ).z

(2.54)

(2.55)
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which can esily be shown to satisfy the commutation rules for the

angular momentum operators:

Furthermore,

1; = t(In,+xn,-tj + In+l, -Xn+l, -I )

where the closure relation

I n,+Xn,+ I + 1 n+l, -Xn+l, - I - 1

. is used for the second equality. Similarly,

1
4'

(2.56)

(2.57)

(2.58)

(2.59)

It follows that the operators can be regarded as fictitious spin-1/2

operators. Finally, we can relate these operators to a, at and the

original spin-1/2 operators, by using Eq.(2.54) and the matrix elements

<n+l,-I aIJ n,+> = 0

<n,-tj aI+ 1n+l, -> - J(n+l)



<n+1, -I atI_ I n,+> - j(n+1)

<n+1, -lIz I n+1, -> -~

1
<n,~ I I n,+> c= 2-z .

Thus the following set of fictitious spin-1/2 operators results

36

(2.60)

1
1 atI )2)(n+1) (aI+ +x

1 -i - atI ) (2.61)
Y ... 2)(n+1)(aI+

1 c= I
z z

and it is easy to verify that these are the correct set of fictitious

spin-1/2 operators. Implicit in Eq.(2.61) is that the total excitation

number operator23

(2.62)

is a constant for the spin-radiation interaction Hamiltonian given by
A A

Eq.(2.30), because both aI+ and a t !_ conserve N. Consequently, N must

commute with both the unperturbed Hamiltonian and HSR ' The commutation

can easily be shown. Furthermore, it can be shown that the numerical
A

value of N is equal to (n+1/2) as follows:

(i) Spin "up"

The corresponding state must be I n,+>. Thus

<+ I I z I +> ... 1/2



37

and

<n I at a I n> - n.
1\

Therefore, the expectation number of N is equal to n+1/2.

(ii) Spin "down"

The state is I n+1, ->, so

<- I I z I -> ... -1/2,

<n+~ at a I n+1> ... n+1

and thus

<N> ... 1/2.

E. The Transition Probability

With the fictitious spin-1/2 operators la (a ... x,y,z) the

"switched" Hamiltonian given by Eq.(2.32) can easily be calculated. From

now on fi will be set equal to 1 and the subscript "off" will be

suppressed for convenience. Thus

~ itAJ(n+1)lx A n -itAJ(n+1)lx
n ... e llW~Z e

The first two terms in the average Hamiltonian then becomes

(2.63)



2
1l(1).. (~w) 1 (1 _sin>.j(n+1)rJ

2>.j(n+1) x >.j(n+1)r·
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(2.64)

Suppose the spin is continuously irradiated and measurements are made at

time t such that '.

>.j(n+1)t .. 2m~ (m" 0.1.2 •... ).

then the average Hamiltonian terms become

1l(0)"" 0

and
2-(1) (~w)

H "" 2>.j(n+1)lx .

(2.65)

(2.66)

(2.67)

The evolution operator in the interaction picture may thus be

approximated as

U(t)

{
(~w)2 }

.. e- it >.j(n+1) + 2>.j(n+1) l x .
(2.68)

We also assume the initial state is / n.+>. The state at time t is then

!ir(t» -= U(t)/ n.+>



"

where

at I . at I- cos~ n,+> - i s1n~ n+l,->,

(6w)2
a - Aj(n+l) + 2Aj(n+l)'

The transition probability is thus

2

I I 12. 2 t ( j (6W»)P - <n+l,- ~(t» - S1n 2 A (n+l) + 2Aj(n+l) ,

39

(2.69)

(2.70)

(2.71)

while upon using Eqs.(2.20)-(2.27) the exact solution is found to be

When Aj(n+l»>6w, which is implicit in the transformation given by

Eq.(2.34), to a good approximation

(2.72)

and

{ 2 2 }l/2 {l(6W )2}A (n+l)+(6w) =: Aj(n+l) 1 + 2 Aj(n+l) .

Then Eq.(2.72) reduces to

. 2 t( j 1 (6W/)P =: S1n 2 A (n+l) + 2 Aj(n+l) ,

(2.73)

(2.74)

(2.75)
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which is identical to the approximate solution, Eq.(2.71).

A comparison between the semiclassical and quantum mechanical

transition probabi1ities23 ,24 establishes the correspondence

.xJ(n+1) <--> w1 .

In the next section the theory will be extended to include doub1e­

quantum transitions.

F. The Double-Quantum Transition

A simple three-level system is generated by placing a spin-1 in

the static field. The energy scheme is depicted in Fig. 2.2. The

Hamiltonian can be shown to be9 with a slight modification

(2.76)

where the basis operators for the spin-1 in Table 2.3 have been used,

along with w12 + w23 - 2wO and w23 - w12 - 2wQ'

In the frame defined by Eq.(2.29) the Hamiltonian becomes
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/3>
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~~

12>

" l' 11>

XBL 8711-5974

Fig. 2.2 Three-level diagram for a spin I - 1. The original energy

levels are determined by the Larmor frequency wo' and

they are perturbed by the quadrupole interaction. wQ is

the quadrupole coupling constant.
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(2.77)

Supposing that wQ » Aj(n+l). we may transform to a second interaction

frame. where the switched-Hamiltonian is given by

1£ iw tQ { A t u t } -iw tQ
- e Q Z j2(a+a )Ix + ]2(a-a )I

y
e Q z (2.78)

With WQT - 2m~ (m - 1.2 •... ) and after some algebra using the

commutation relations among the basis operators for the spin-l given in

Table 2.3 one can show that

and

-1£(1) __ A
2

(a2Q t 2Q )
w
Q

+2 - a -2'

(2.79)

(2.80)

where terms leading to non-conservation of the total number of particles

are ignored. The identical result can also be obtained by an operator

perturbation method. 9 One thus can see that the double-quantum

transition is associated with the application of a2 and a t2 operators.

11.5. Remarks

In this chapter it was shown that simple cases of a spin
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interacting with the electromagnetic field can be treated on a

consistent full-quantum mechanical footing, by employing the second

quantization method and a correct transformation which yields

fictitious-spin operators., The ART, a tool widely used in treating many

complex dynamical phenomena in NMR, is also employed to deal with the

fully-quantum mechanical cases with, to a good approximation, identical

results. As a result, it is possible to make a connection between

semiclassical and quantum mechanical quantities such as the field

strength and the number of photons in the field.

The direct appearance of photon creation and annihilation

operators in the expressions may allow one to "see" the spectroscopic

dynamics microscopically. The treatment, hopefully, will cast some light

on schemes that require such a microscopic observation. Especially, it

may be of help to clarify the relation of NMR to quantum optics, in

which the use of quantized radiation field is a common practice. In fact

much of the development of optical spectroscopy has capitalized on the

close analogy to NMR, and some sophisticated NMR techniques have

benefited from developments in quantum optics. A possible application of

the above treatment may be to analyze the spin dynamics during multiple

pulse and multiple quantum experiments.

In most routine NMR experimental conditions it is possible to

create enormous number of photons in a unit frequency range with low

power due to the smallness of the frequencies involved in these

transitions and high accuracy of frequency generated. Thus in these

conditions the classical limit n ~ ~ is applicable with virtually no

errors. Consequently, in the discussions to follow the spontaneous



44

emission will be neglected and the magnitude wl and the phase ~ of the

radiation will simultaneously be assigned.

The convention for the direction of pulses adopted in this

Dissertation is as follows: According to classical mechanics the

equation of motion of a spin magnetic dipole moment is given by

-+
dJ.'
dt

-+ -+
'Y J.' x B (2.81)

The moment is related to angular momentum by

and the Hamiltonian for the interaction of the spin and Bis

If

then

(2.82)

(2.83)

(2.84)

(2.85)

Consequently, when the term "x pulse" is used it means that the pulse is

applied in such a way that the direction of.the pulse field is along the

positive x axis. Thus the pulse is associated with the rotation operator

(2.86)

and the rotation is clockwise if 'Y is positive.
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CHAPTER III. Orchestration of Multiple-Pulses in lS-Dimensional Spin

Space in Solids.

111.1 Introduction

This and later chapters will concentrate on more complicated

systems: the system consists of many interacting spins, and they are

under much more complicated external perturbations. Nearly all modern

NMR experiments are performed in the time-domain; that is the external

perturbations are applied such that the (internal) spin Hamiltonian is

made appear time dependent. Provided that the time-dependence is fast

enough, the modulated internal Hamiltonian can be time-averaged. With

variety of external perturbations the experimenter can in principle

make the spin Hamiltonian into any form he desires. This chapter

concentrates on the multiple-pulse technique for the selective removal

of various terms in the Hamiltonian. External perturbations are thus in

the form of radio-frequency pulses and are applied on the spin

coordinates, which are then time-averaged. The pulses can be either

"hard" or "soft", the former nearly approximating the o-funtion and the

latter being windowless.

Magnetic-field pulses cause the spin to nutate about the

direction of the axes along which the pulses are applied. From the

transformation properties of various spin operators under these

rotations some useful informations can be extracted. Especially, one of

the goals of the high-field iterative schemes is the removal of various

spin operators with low-power rf fields. In such condition the
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resonance offset can cause the pulse to deviate strongly from the ideal

pulse, and as a result variety of linear and bilinear terms are

created. Same spin opertors appear in the low static field and

multiple-pulse sequences for the removal of these spin operators can

thus shed some light on the design of the high-field iterative schemes.

In Chapter VI discussed is the averaging of various anisotropies by

mechanical motions. It will be shown in the chapter that the

transformation properties of the spin operators are also useful for the

design of schemes for the averaging of these anisotropies.

111.2 The Spin Hamiltonian

One of the simplest multiple-pulse sequences is the WHH-4

sequencel designed to remove the homonuclear dipolar Hamiltonian in

high field. The secular dipolar Hamiltonian may be written as

(3I
i

I.'z 1 Z
(3.1)

where

D•• '
11

(3.2)

is a dipole coupling constant. The dipole Hamiltonian can be averaged

to zero utilizing
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zz - 0,

49

(3.3)

and the WHH-4 sequence satisfies Eq.(3.3). Of course, the WHH-4

sequence is not the shortest sequence that satisfies Eq.(3.3), since

the three-pulse sequence (xyX) also satisfies Eq.(3.3). At any rate,

these sequences all generate the same configurations

{(X,Y,Z),(Y,Z,X),(Z,X,Y)} ignoring the sign, which is immaterial for

quadratic terms. But what if there are more terms than those given in

Eq.(3.1)? How many and which configurations are needed to remove all

these terms? To answer these questions let us first write down the

Hamiltonian that includes all possible linear and bilinear spin

operators. The Hamiltonian can be obtained by placing a system of spins

I in a static magnetic field which is too low to truncate dipole-dipole

or quadrupole interactions. Thus it may be written as

1£ = 1£1 + 1£2 + 1£p (t)

= 1£. t + 1£ (t).
~n p

Here

(3.4)

(3.5)

contains terms linear in spin vaiab1e with u denoting the chemical

shift tensor. In contrast, the terms in

(3.6)
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are bilinear in spin variable for which j~k corresponds to the dipole

interaction with a coupling tensor Cjk and j=k corresponds to

quadrupole interaction with a coupling tensor Cjj . Finally,

denotes the pulsed magnetic field. For convenience, the coordinate

system chosen is the laboratory system.

The evolution operator given by

It' ')U(t) = ~exp(-i odt H(t )

may be separated into two parts

U(t) = U (t)U. t(t)
P l.n

as discussed in Appendix 2. The "switched" Hamiltonian is

(3.7)

(3.8)

(3.9)

(3.10)

Assuming the cyclicity of Up(t) at time t - t c ' the cycle time, one can

now calculate the average Hamiltonian j - j(O) + j(l) + ... For

simplicity, only the zeroth-order term will be considered. It is worth

noting here that the density matrix p can be expanded in terms of
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N (21+1)2 basic operators. For example,

p(t) - 2a=X,y,Z a (t)1 + a01
Q Q

(3.11)

for 1=1/2. For I = 1 there are eight basic hermitian operators,

traceless and independent of each other. One such set of commonly

encountered basis operators is given in Table 2.3. Also from the form

of internal Hamiltonian given by Eq.(3.4), it can be noted that the

same basic operators can be used to expand the internal Hamiltonian.

Thus, with the following shorthand notations

-+ -+
AA = 1jQ1ka - 1/3 1j 'lk ,

AB = 1jQ1k~ + 1j~lka'

(A#B, A,B=X,Y, or Z; Q~~, Q,~=x,y, or z)

the internal Hamiltonian may be written as

(3.12)

(3.13)

The time-dependent switched Hamiltonian given by Eq.(3.l0),

corresponding to the form for p, is then

(3.14)
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Another way of writing Eq.(3.l0) is to consider Hp(t) causing the time­

dependence of the spin operators. The latter viewpoint is adopted for

this chapter. The reason is that in the latter viewpoint the trajectory

of the spin operators ca~ easily be visualized, and this is of great

use in designing certain experiments. In Chapter V these transformation

properties will be fully exploited. However, the feasibility of

monitoring the trajectory is due to the fact that there is no big

offset term in the Hamiltonian. If there is an offset Hamiltonian with

a size comparable to that of Hp ' it becomes very difficult to follow

the trajectories and the form given by Eq.(3.l4) is highly useful. This

viewpoint will be exploited in the section on spin-decoup1ing problem

in liquids. Thus, the form of Hint to be used in this chapter is

with

A(t) = Ut(t) AU (t), etc.
p p

111.3 Transformation Properties of the Spin Opertors

(3.15)

(3.16)

In general, in the three-dimensional space spins can be rotated

through any angle around any axis through the origin. These rotations

then constitute a three-dimensional rotation group.2 Here, though, only

o
90 rotations generated by pulses along three orthogonal axes x, y, and

z are considered so that they constitute the octahedral group O. The

group ,0 has the axes of sYmmetry of a cube: three axes of the fourth



Table 3.1 24 configurations accessible in a right-handed

coordinate system and operatons to reach them.
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Configuration
x y z
y z x
z x y
X z y
y x z
z y X
Y x z
z y x
x z y
Z y x
xzy
y x z
xyz
Z x y
y z x
yzx
x y Z
z x y
zxy
y z X
x y z
x z y
y x z
zyx

*Operation
1
xz
z x
X z z, z z x
Z
y
z
x z x, X Z x, z x z, Z x z
x
y
x
x x z, z X X
x x
z X
x z
x z
x z
zx
zx
x z
z z
x z z, z z X
x x z, Z x x
x Z x, X z x, z x z, z x z

*Operations are given in chronological order with the following

notation: Q = (~/2)Q'
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XBL 8711-5968

Fig.3.l Schematic diagram showing the nth piecewise-constant

Hamiltoniari in the rotating frame.
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order, four axes of the third order, and six axes of the second order.

There are 24 elements which are divided into five classes: E, eight

rotations Cs and ci, six rotations C. and C:, three rotations C~, and

six rotations C2 • The switched Hamiltonian tranforms subject to these

operations in the group. Table 3.1 lists all these 24 configurations

accessible in the right-handed coordinate system.

When rotations are made using pulses having finite widths, it is

no longer possible to use the interaction frame Hamiltonian sandwiched

between pulses. Thus it is necessary to consider the transformation of

each operator during each pulse. To this end, first consider the

rotating frame Hamiltonian consisting of the internal part (Hint) and

H =H (t)+H (3.17)
n rf,n int'

during a pulse as is drawn schemetically in Fig.3.l. n represents the

n-th section of the sequence. The evolution operator for an n

piecewise-constant pulse sequence is given by Eq.(3.9), and as usual

may be approximated as

-if"
e

(3.18)

with

"jj(O)= II"
" 0

(3.19)

Eq.(3.l9) can be decomposed into n integrals

t .
"jj(0) _ 1\ n Jk ut (t) H U (t)dt.

,,~=l ~-l rf int rf
(3.20)
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Table 3.2 Zeroth order average of linear and blinear operators

during a ~/2 pulse.

Pulse Linear operators

Ix Iy Iz

± x Ix (2/~) (Iy=Flz ) (2/~) (Iz=Fly )

±y (2/~)(Ix±Iz) Iy (2/~)(Iz=Flx)

± z (2/~)(Ix=Fly) (2/~)(IY±Ix) I z

Bilinear Operators

YZ ZX xx YY. ZZ

YZ=FZX ±(ZZ-XX) (XX+ZZ)/2±2ZX YY.

± x XY+ZX

± Y XY±YZ

±(YY.-ZZ) (zx±xY) xx (YY.+ZZ)/2=F2YZ (YY.+ZZ)/2±2YZ

(ZZ+XX)/2=F2ZX

± z ±(XX-yy')/2 YZ±ZX ZX+YZ (XX+YY.)/2=F2XY (XX+yy')/2±2XY ZZ

*The following notations are used:

XY = (Ixly,+Iylx,)2/~, XX E lxIx" and cyclic permutations.
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It may further be rewritten as

where Tk = t k - t k _l and Urf k(t) denotes kth pulse. Eq.(3.21) dictates,

that the integration over the trajectory during the pulse must be

performed, while transformations due to pulses up to the (k-l)th

segment in the sequence can be considered to occur instantaneously.

If the configuration Q for a linear term transforms into Q'

(QFQ'), it is said that the "transition,,3 from Q to Q' has occurred and

the average of the linear term during the transition is (2/~)(Q+Q'). If

the rotation axis is along the direction Q, Q stays invariant and

during the pulse one has a "stationary" point. In table 3.2 are listed

otime averages of various operators during a 90 pulse.

In NMR (although it is equally applicable to other spectroscopic

methods)4 the rotations of a spin has frequently been described via a

vector representation on the unit sphere. The trajectory of the

magnetization vector in particular has been extensively used to model

coherent and incoherent processes. Here an extension will be made to

include all nine basic operators, and it will be utilized to describe

the transformational behavior of all operators subject to sequences of

pulses. It is particularly useful for discussing windowless sequences

where averaging over trajectories is performed. Fig.3.2 is a vector

representation of nine basis operators and the trajectories they travel

under rotations around coordinate axes. Linear operators have a direct

correspondence to unit vectors pointing at respective "vertices", where

the coordinate axes and the unit sphere intersect. Bilinear quadratic
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(a)

y

zz

(b)

XBL 872·9572
Fig.3.2 Vector representation of the (a)linear and (b)bilinear

spin operators. Curves denote the trajectories the

operators follow under rotations about the coordinate axes.
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terms XX. YY. and ZZ have the same correspondence to the vectors except

that two opposite points on the sphere are identical. Bilinear cross

terms point at the midway between two adjacent coordinate axes. Again

points on the opposite sides of the sphere are equivalent.

If the rotations are made about the coordinate axes. the

trajectories of the linear terms and bilinear quadratic terms would be

certain segments of the great circles. The trajectories of the bilinear

cross terms would be confined to circles with a radius 1//2. when only

one component changes during the rotation. while they will be segments

of great circles when the rotation axes are orthogonal to the direction

of the operators.

With these tools is now possible to achieve various objectives

such as averaging out the ZZ term.

(i) Z term

In high field. because of magnetic field inhomogeneity the spin

isochromats undergo rapid dephasing. The irihomogeneity, which is

proportional to Z. can be removed by pulse sequences such as the Carr­

Purcell sequence. By a series of w pulses (or equivalently. two

juxtaposed two w/2 pulses). the Z term in the interaction frame is

periodically inverted: Z. Z. Z. Z..... Thus the average is zero. Note

that the ideal Carr-Purcell sequence generates the "perfect echo". It

is obtained whenever

_ ... - Jj(n) _ ... _ 0 (3.22)
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because then

(3.23)

It is also possible to generate the perfect echo with a condition less

stringent than Eq.(3.22), namely if either

[ H. t ' p(O) ] -= 01n

or

[ ~. t ' p(O) ] - 0,1n

because then

p(r) = U(r)p(O)Uf(r) -= p(O)UUf(r) = p(O).

For the Carr-Purcell case, the initial density operator and the

internal Hamiltonian are

p(O) -= I z

and

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

The switched internal Hamiltonian resulting from the Carr-Purcell

sequence is

I. t(t) -= ± SwI1n z
(3.29)

with the sign depending on time. In this case Eqs.(3.24) and (3.25) as

well as Eq.(3.22) is satisfied since

- -'[ H(t),H(t ) ] -= O. (3.30)
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The hetel.:onu~lear i'i':te:l:t.ction, after truncation, is proportional

to IzSz . As long as 11 and 1~ are sufficiently different for the pulses

to affect only one spin species, the heteronuc1ear interaction can be

removed by the same sequence. The removal of the Z term requires two

configurations if 6 pulses are employed.

With windowless sequences, any stationary point a is to be

removed by adding another stationary point -a. As given in Table 3.2 a

transition gives an average (2/~)(a+a') which is incommensurate with a

and a', so it must be treated separately from stationary points. The

number of times that a appears in transitions must be equal to the

number of times -a appears. A minimum number of four ~/2 rotations (or

two ~ rotations) is required to remove the Z term.

(ii) All three linear terms

In zero-field experiments, it is difficult to attain the perfect

zero-field because of a residual field and in general it has all three

components. So the spin-residual field interaction term may be written

as

H - a I + a I + a I .res x x y y z z (3.31)

It therefore is necessary to remove all three linear terms to obtain

the true zero-magnetic field. With 6 pulses a minimum of four

configurations, for example {(x,y,z),(x,y,z),(x,y,z),(x,y,z)) is

required. These configurations are reached by the sequence of ~

rotations with equal delays between pU1ses:(-~x-~y-~x-~y-)n'The

sequence then is an zero-field analog of the Carr-Purcell sequence.

However, in this case the perfect echo cannot be obtained because the
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Fig. 3.3 Trajectories of the three linear spin operators under

the l6-pulse sequence (x x y y x x y y x x y y x x y y).

The operators are eliminated by the sequence

simultaneously. Small circles are stationary points.
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Hamiltonians at different times do not commute with each other or with

the initial density operator. For example, the Hamiltonian after the

first pulse is axIx - ~Iy - azIz an it in general does not commute

with axIx + ayIy + azI z ..

The removal of all three terms with a windowless pulse sequence

is much more complicated. It involves both stationary points and

transitions. A minimum of 16 ~/2 rotations (or eight ~ rotations) is

required. An example of such a sequence is (x x Y Y x x y y x x y y x x

y y). In Fig.3.3 the trajectories of three linear terms under the above

sequence is shown.

(iii) ZZ term

As discussed at the beginning of this chapter, with 6 pulses a

minimum of three configurations, ego {(x,y,z),(y,z,x),(z,x,y)}, is

required to make the ZZ term vanish via the isotropic average

XX + yy + ZZ - 0, (3.32)

since they cannot be inverted. The WHH-4 sequence is an example which

satisfies Eq.(3.32). Incidentally, these three configurations also

remove other quadratic terms YY and XX via Eq.(3.32). Therefore, in

general, for any sequence to average the quadratic terms to zero it

must average them over a multiple of three configurations.

A windowless anlog of the WHH-4 is the BLEW-6 sequence. 3 For

quadratic terms aa, a transition aa ~ pp has the average Hamiltonian

(aa+pp)/2 + (l/~)ap if a~p and aa if a - p. For the ZZ term the

transition ZZ ~ aa has the average Hamiltonian

i(O) _ [a,Z]2/2 + aZ/~ (a -x,y) (3.33)
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Fig. 3.4 A trajectory over which the ZZ term is averaged out.
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whereas for aa ... ?Z

1£(0) ... zz
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(3.34)

If pulses are to be applied only along the x, y, X, and y directions

Eq.(3.34) is irrelevant. ,The first term in Eq.(3.33) is a quadratic

term and therefore must be averaged to zero via Eq.(3.32), whereas the

second one is a cross term and must be balanced by a term proportional

to -aZ. These two averaging requirements are independent of each

other, so a multiple of six steps is required to make 1£(0) to vanish.

One such a trajectory is shown in Fig. 3.4.

It is observed that:

(a) To ensure the isotropic averaging, Eq.(3.32), a trajectory

must traverse x, y, and z ... ±l equal number of times, and

(b) Each quarter segment of a great circle must be balanced by an

adjacent segment of the same circle.

There are eight trajectories equivalent to the one shown in Fig.3.4,

associated with eight octants. There are six different ways of covering

the trajectory in Fig.3.4. In terms of the notation of Burum et.al. 3

these are

(ZX)(XY)(YX)(XZ)(ZY)(YZ)

(ZX) (XY) (YZ) (ZX) (XY) (YZ)

(ZX)(XY)(YX)(XZ) (ZY) (YZ)

(Zx) (XY) (YZ) (ZX) (XY) (YZ)

(ZY) (YX)(XZ) (ZX) (XY) (YZ)

(ZY) (YX) (XZ) (ZX) (XY)(YZ)

all with a scaling factor equal to 2J5/3", identical to BLEW-6

sequences. Overall there are 8x6 ... 48 sequences that are equivalent to
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BLEW-6 sequences.

(iv) Other bilinear terms

Other quadratic terms XX and YY are also removed via the

isotropic average if 6 pulses are used. The configurations

«X,Y,Z),(Y,Z,X),(Z,X,Y)} can be reached either by pairs of 90°

rotations around the coordinate axes or by 120° rotations around the

cube body axes.

Terms XX and YY are simply obtained from ZZ by 90° rotations

around x or y axes respectively. Thus to average XX, for example, with

windowless sequence one notes

1j(0)= 0
zz J~ut ~t) ZZ u ~t)dtp, p,

ptJT p Ut (t)pt XX p U (t)pt dt p
y 0 y p,Z Y Y p,z Y y'

(3.35)

where Py is a 90° rotation around y axis. Therefore, the trajectory of

XX(t) that satisfies

u t (t) XX U (t) dt - 0p,x p,x (3.36)

may be obtained from

U - p U pt.
p,x y p,z y (3.37)

Thus the removal of anyone of the three quadratic terms is simply

related to the others and basically involves the same procedure. The

removal of all three quadratic terms involves two stationary points
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xx , yy , zz

XBL 872-9569

Fig. 3.5 Trajectory the three bilinear operators XX, YY, and ZZ

traverse under the windowless sequence (x y z)2.
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Fig. 3.6 Trajectories of the three linear spin operators under

the 12 pulse sequences (a) (y x y X)3 and (b) (x y x y)3.

The average of I z under the first sequence is along the

(1 1 1) axis, while it vanishes under the second

sequence.
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even though the same number of six steps are needed and Fig.3.5 shows

one such trajectory, resulting from the sequence (xyz)2.

A cross term is to be removed by adding an inverse. In any

configuration (Q,P,l) the number of negative cross terms is either zero

or two. In other words, it is an even number. Thus a multiple of four

configurations is required to remove all three cross terms. The removal

of all six bilinear operators requires therefore at least 12

configurations. The corresponding l2-pulse sequence is a zero-field

analog of the WHH-4 sequence. If a windowless sequence is employed, 24

90° pulses are needed to remove all six bilinear terms, corresponding

to BLEW-6 sequence for high field.

The use of l2-pulse sequences will be discussed in connection to

decoupling experiments in a later chapter, and they deserve some more

discussion which is given in the next section.

111.4 The 12-pulse seguences

There are three types of 12 90°-pulse sequences which are zero­

field analogs of the high-field WHH-4 sequence. The first group

contains z and z pulses as well as pulses along x and y axes. A few

examples are

(x y z x Y z)2,

(z y x z y x)2,

(y z x y z x)2.

and

The remaining two types of sequences have a common structure of



Table 3.3 Averaging of linear and bilinear operators under

(y x y x)s sequence.

x y Z XY '¥Z ZX XX-YY YY-ZZ ZZ-XX

y -Z Y X -YZ XY -zx ZZ-XX YY-XX XX-ZZ

x -Z -X Y ZX -XY -YZ ZZ-XX XX-YY YY-ZZ

Y Y -X Z -XY -ZX YZ YY-XX XX-ZZ ZZ-YY

x Y Z X YZ ZX YX YY-ZZ ZZ-XX XX-YY

Y -X Z Y -ZX YZ -XY XX-ZZ ZZ-YY YY-XX

x -X -Y Z XY -YZ -ZX XX-YY YY-ZZ ZZ-XX

Y Z -Y X -YZ -XY ZX ZZ-YY YY-XX XX-ZZ

x Z X Y ZX XY YZ ZZ-XX XX-YY YY-ZZ

Y -Y X Z -XY ZX -YZ YY-XX XX-ZZ ZZ-YY

x -Y -Z X YZ -ZX -XY YY-ZZ ZZ-XX XX-YY

Y X -Z Y -ZX -YZ XY XX-ZZ ZZ-YY YY-XX

x X Y Z XY YZ ZX XX-YY Y'l-zz ZZ-XX
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o 0 SIll1 0 o o o o o

S "" 1/j3

1111 "" (Ix+Iy+Iz )/j3



Table 3.4 Summary of averaging of operators for windowless

sequences

*Sequence X Y Z XY YZ zx XX-yy YY-ZZ ZZ-xx

74

(xyxy) 3 o 111-1 0 0 0 0 # 2All _l 2All _l-4All _l

(XYxy) 3 1- 111 0 0 0 0 0 4A_ 111 -2A_ 111 -2A_ 111 Group

(xyxy) 3 o 11-11 0 0 0 0 -4A1_11 2A1_11 2AI _11 (a)

(xyxy) 3 1111 0 0 0 0 0 4A111 -2A111 -2A111

.............................................................................................................................................

(xyxy) 3 0 o 11-11 0 0 0 0 -6AI _ll 6A1_11

(xyxy) 3 0 0 111 -1 0 0 0 0 -6All _1 6All _1 Group

(xyxy) 3 0 o 1111 0 0 0 0 -6All1 6Alli (b)

(xyxy) 3 0 o I-Ill 0 0 0 0 -6A_ ll1 6A_ ll1

*Only representative sequences in each group are given.

*111-1 E (Ix + Iy + I z )/3, etc.

# AII - I e (Ixly + Iylz + IzIx)/12, etc.



It can easily be seen that for the sequence (y x y x)3,
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(a fi a' fi,)3, with a and fi being orthogonal and applied along ±X or ±y

axes. a mayor may not be equal to a'. 80 is with fi and fi'. These have

intimate connection to the broadband decoup1ing sequences to be

discussed in the next chapter. Two representative pulse sequences, one

from each group, are (y x y x)3 and (x y x y)3, and corresponding

trajectories for linear terms are given in Fig.3.6.

I = Ix y

= 0 and I z = 8 1111 . The scaling factor 8 is 1/J3 for the 6 pulse case

and 4/(~J3) for the windowless case. The averaging for this sequence is

shown in Table 3.3. For the sequence (x y x y)3, Ix - I y = 0 and I y = S

1- 11-1 , with 8 - 1/J3 and 1/J3(2/~+1/2) for 6 and windowless cases

respectively. Table 3.3 also lists configurations reached during the

sequence. The average values of various terms resulting from windowless

sequences are summarized in Table 3.4.

It is interesting to note that the average value of quadratic

terms aa - fifi (a,fi = x, y, or z) all have the same form (afi + fi1 + 1a)

if the trajectory of the nonvanishing linear term is in an octant

spanned by (a fi 1). It is also seen that even though each 12-pu1se

windowless sequence does not remove the bilinear terms, it is possible

to do so by combining two suitably chosen sequences such as (x y x

y)3(x y x y)3, thus creating the desired 24 configurations as discussed

in the previous section. However, no two sequences from group (b) can

make all the bilinear term vanish. However, it can be shown that 36-

pulse sequences such as

can make all bilinear terms vanish. For clarity, a few examples of



Table 3.5 Average values of operators resulting for group (b)

sequences
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x y z XY YZ zx XX~yy yy-ZZ zz-xx

()TxyX) 3 0 0 1111 0 0 0 0 -6* 6

(xzxz) 3
0 1111 0 0 0 0 -6 6 0

(zyzy) 3 1111 0 0 0 0 0 6 0 -6

..................................................
(yxyx) 3

0 0 I -1-11 0 0 0 0 -6 6

(XZXZ)3 0 -1_
1

_11 0 0 0 0 -6 6 0

(zyzy)3 -1- 1 - 11 0 0 0 0 0 6 0 -6

*Same as in Table 3.4.

*AaP7 is suppressed for simplicity.
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sequences with average values of operators are listed in Table 3.5.

In order to see the relationship between l2-pulse sequences and

high-field iterative pulse schemes, it is necessary to have a brief

review on the latter, which is the subject of the next chapter.
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CHAPTER IV. Iterative Schemes in NMR

IV.I. Introduction

In NMR iterative schemes have been widely used ranging from the

design of error compensated pulses for broadband excitation to selective

multiple-quantum excitation. There are several extensive reviews

available. 1- 6 Consequently this chapter will focus on only some limited

aspects of the iterative schemes: basic ideas behind broadband

decoupling schemes such as the MLEV,7 and the Waugh schemes8 for single­

spin cases. Then an extension will be made to take the homonuclear spin­

spin coupling into consideration.

In previous chapters the assumption has been made that the pulses

are much stronger than internal Hamiltonian terms. Mathematically, it

corresponds to

(4.1)

where t c is the cycle time of the sequence. Even for windowless

sequences experimental results on high field dipole-coupled systems9

show that the 90° pulses with widths up to 6 ~sec were successful before

the quality of the experimental results degraded. That corresponds to

approximately 40 kHz for proton decoupling field strength. However,

there are many samples which are polar or ionic so that the "lattice" of

the sample absorbs the energy from the decoupling field. The heat thus

generated in the sample not only damages the sample but also causes

decoupling field inhomogeneity via thermal expansion of the decoupler

coil. The temperature effect will be discussed in more detail later in a
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section on spin-decoupling in liquids.

In order to achieve better resolution spectrometers with higher

fields are being used. This means that the spread of chemical shifts to

be decoupled is bigger. Consequently, the goal of modern decoupling

schemes is to decouple broader bandwiths with minimal expenditure of

decoupler power.

As the lower decoupler level is used, the magnitude of the

resonance offset term becomes comparable to that of the decoupling

field. Using ART with the offset term included in the internal

Hamiltonian would quickly become inaccurate as ~W/w2 gets bigger. For

this reason, it is desirable to consider the offset term as an

additional external field. In the next section a closer look at this

external Hamiltonian is given.

IV.2. Offset-incorporated Pulses

When there exists an offset with a size comparable to that of

Hrf , the total Hamiltonian for the perturbing field may be written as

(4.2)

'J

where the decoupling field B2 is assumed to be applied along the

rotating frame x-direction and w2 - lIB2' The actual rotation due to the

effective Hamiltonian Hl is

*n'I f3 *w
2

t
p

n'I

.. t ( ~wI
P z

) , (4.3)

where t p is the pulse width. The magnitude and the direction of the
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Fig. 4.1 The direction and the magnitude of the effective field

resulting from the rf pulse and the resonance offset.
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field is shown in Fig.4.1. Eq.(4.3) may be rewritten as

" *n·I fJ ... t JA 2 2- p uW + w2
+

where

Eq.(4.4) can further be reduced to

"n·I fJ* -= w2t p seeD eXP(iOly) Ix eXP(-iOly)

... fJ seeD eXP(iOly) Ix eXP(-iOly).

Hence, if Hrf is applied along x-direction such that

fJ ... w2 t p'

the net rotation angle is

fJ* ... w* t ... fJ seeD
2 p

and the rotation axis is

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

n -= i cosO + k sinO." " " (4.9)

More generally, when the pulse is applied along an axis rotated by a

phase angle ~, the evolution operator for describing the net rotation is

*"
U(fJ;~) ... exp(ifJ n·!l

iDly i~Iz -ifJlx -i~Iz e-i01y.... e e e e (4.10)

°In practice w2 is not equal to the nominal decoupler level w2 • In terms

of nominal quantities labeled with the superscript "0", the actual

rotation angle can be written as



where

*p o[ 6W2]= p 1 + w~ secO,

82

(4.11)

IV.3. Iterative Schemes for Linear Operators

(4.12)

Because the *effective angle p is different from the nominal

value pO and the net rotation axis is not along the direction of the

original pulse, it becomes very difficult to visualize the net effect of

the sequence of such pulses. This is largely due to the 8w term and also

partly due to pulse imperfections such as 6w2 • Thus it is important to

design a scheme to offset the effect of these causes of pulse

imperfection, and this is the main goal of designing composite pulses.

Now suppose a composite pulse R is designed such that the net

effect of R is an approximate inversion of z-magnetization over a wide

range of 8w:

Rt I R z Iz - z·

Then RR( E c) is an approximate cycle in the sense that

(4.13)

(4.14)

Two common operations for constructing more highly compensated cycles

are phase shift and cyclic permutation of a certain segment of the

sequence to the either ends of the sequence. The phase shift by 180° is

an operation which inverts the phases of all constituent pulses, and is

denoted as C. It can be shown3 ,8 that C leaves the net rotation angle
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and the z-component of the rotation of the rotation axis unchanged but

reverts x- and y-components of the rotation axis. Thus, provided that

the z-component is very small, C is nearly the opposite rotation of C. A

sequence cP generated by cyclically permuting R, an approximate 180°,

nearly inverts the z-component of the rotation axis provided that it is

predominantly bigger than x- and y- components.

Linear spin operators can be averaged out by using these

operations, and Fig.4.2 shows a systematic cancellation scheme. In

Fig.4.2.(a), the big resonance offset term is shown. The effect is

oapproximately removed by the composite 180 pulse R. In (b), RR is thus

a cycle with rotation axis almost in the x-y plane. Then RR is combined

with RR in (c) to give the rotation axis along z (MLEV-4). Then RRRR,

which is obtained by cyclically permuting a R and which approximately

inverts the z-components, is added to give a net rotation axis

predominantly in the x-y plane (MLEV-8), part (d). Finally, a phase

inverted 8-pu1se cycle is added to cancel x-y components, leaving only a

small z-component (MLEV-16). MLEV-4 is the first member of the family of

the MLEV sequences which has vanishingly small rotations. Hence it makes

the linear I z operator in

(4.15)

vanish, thereby leading to heteronuc1ear decoup1ing.

IV.4 Connection to the Average Hamiltonian Theory

The switched Hamiltonian Hint resulting from the irradiation on

the I spin with the composite pulse R in general has all three
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(a)
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(b)
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x

..... - y
- I --- ------------~.-

XBL 8711·5951

Fig. 4.2 Diagrams showing cancellation of errors by systematic

concatenation of sequences related to each other by phase

shifts and permutation of parts of the sequence. In (c)

o denotes a very small angle.
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components

- JS {a(t)I + b(t)I + c(t)I },z x y z (4.16)

where a(t), b(t), and c(t) are constants. The average Hamiltonian is

= JS (aI + bI + cI),z x Y z
(4.17)

where a, b, and c are time-independent constants and are not in general

time-averages of a(t), b(t), and c(t)~ The quantity in the parenthesis

in Eq.(4.17) has the same form as the residual field appearing in zero-

field experiments. As discussed in Chapter III, it can be removed with a

minimum of four configurations such as those obtained by applying the

zero-field analog of the Carr-Purcell sequence, (-~x-~z-~x-~z-)n'

For the case of MLEV-4 sequence RRRR, the total average

Hamiltonian is

+ ei~IzRt - -i~Iz}H. tRe .
1n

with Hint given by Eq.(4.17).

oIn general the composite 180 pulse can be written as

,
R -iOlz -i~Ix iO Iz::=e e e ,

(4.18)

(4.19)

where 0 and 0' are offset dependent. In other words, the rotation axis

is on the x-y plane and the phase may vary depending upon the offset.

With the assumption that Eq.(4.19) holds exactly, Table 4.1 is drawn up

to show the cancellation of terms. a' and b' are in general different

from a and b due to Eq.(4.19).

the corresponding average of the Hamiltonian is



Table 4.1 Cancellation of linear terms with R R R R
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Pulse

R

R

R

R

a b

a' b'

-a -b

-a' -b'

c

-c

c

-c
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(a)

1tx 1tz 1tx 1tz

I

~ ~ ~ ~
\

I \, / \ ,
\ H ) t t H \

,
1tx 1tz 1tz 1tx I

\ I

1t1 H 1tx 1t1 H1tz

(b)

1tx 1tz 1tx 1tz 1tz . 1tx 1tz 1tx

j ~ ~ ~ ~ ~ ~ ~
XBL 8711-5969

Fig. 4.3 Pulse sequences for the removal of linear terms. (a) A

four pulse sequence to remove the terms to zeroth order.

(b) Expanded sequence to remove the terms to first order.
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(4.20)

Because ~z~x - ~x~z and with the third and fourth term switched,

Eq.(4.20) can be reduced to

-1+ ~ 1l~z z
+ ~ -1~ -11l~ ~ ) ,

z x x z (4.21)

which is equivalent to Eq.(4.18), since in zero-field the phase does not

enter and thus ~x is equivalent to R.

Making Hf~f - 0 can be achieved by symmetrizing the sequence,

which is shown in Fig.4.3(b). As is discussed previously, R is

equivalent to zero-field ~x' Then the second half of the eight-pulse

sequence, (-~z-~x-~z-~x-) can be obtained from the original four-pulse

sequence by permuting a ~x to the right end of the sequence, i.e.

-1
~ (~~ ~ ~)~ - ~ ~ w w .x x z x z x z x z x

In the high-field language, Eq.(4.22) can be shown to reduce to

(4.22)

(4.23)

Hence the eight-pulse sequence is equivalent to the MLEV-B sequence. The

procedure can be carried out further to show that 16 steps are needed to

average out the second order average Hamiltonian term which contains

coefficients such as a 2b, ab2 , b2c, etc. Showing the cancellation is

straightforward, but will not be discussed in more detail.

While some connections have been made between high-field

iterative schemes and zero-field multiple-pulse methods, the difference

should also be noted. Firstly, the generalized Hamiltonian with the form

given by Eq.(4.17) is a result of the pulse sequence rather than the

original Hamiltonian. The original high-field Hamiltonian commutes with

I z ' and thus is invariant to phase shifts. By contrast, the original
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low-field Hamiltonian originationg from the residual field does not

commute with I z . This remark is true also for the Hamiltonian including

bilinear terms.

Secondly, the connection was possible only for the 6-function

pulse cases. It should be reminded that for the case of windowless

sequences, a minimum of 16 configurations is needed to average out the

linear terms to zeroth order, rather than four configurations. Hence it

is difficult to make a connection between the high-field iterative

schemes and the zero-field multiple pulse sequences. The most important

difference arises, however, from the fact that the time-averaging of the

coefficients of Eq.(3.l4) is in general different from that of the

switched spin operators given by Eq.(3.15). Except for some special

cases such as discussed in the last few paragraphs the sequences for

averaging the the basis spin operators are not the same as those for the

coefficients of the spin operators. Furthermore, the sequences designed

for decoup1ing spins in liquids and liquid crystals use low decoup1er

power to avoid excessive sample heating, so the arguments for the 6­

function pulses are not suitable for these cases.

Finally, the design of multiple pulse sequences requires detailed

calculation of terms appearing in the Magnus expansion,10 whereas the

modern decoup1ing schemes use certain machinary which guarantees better

averaging, without detailed calculations as the sequences are expanded

iteratively.

The iterative schemes for heteronuclear spin-decoup1ing developed

to date are aimed at removing an isolated I-S spin pair. However, in

decoup1ing heteronuc1ear spins there are cases when interactions between
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homonuc1ear spins need to be removed as well. Schemes for the single

spin cases are found to be inefficient in decoupling when there are

homonuclear couplings. Therefore, the development of schemes for

averaging linear and and bilinear operators is necessary, and it is the

subject of the next section.

IV.5. Schemes for Removing Linear and Bilinear Operators

A. The construction of basic sequences

When there are bilinear terms, operations such as phase shift and

cyclic permutation commonly employed in single-spin decoupling do not

behave as simple rotations. Detailed average Hamiltonian calculation may

be employed to design a highly compensated sequences. However,the

calculation, considering that low rf-field is used, can quickly become

unwieldy as one goes to higher order calculations.

A method to obviate these complicated calculations and obtain a

scheme for averaging both linear and bilinear operators is to decompose

the total propagator into rf part and the perturbation:

U(t) - U f(t)U (t).r v

The discussion on the specific form of Urf is deferred to a later

section. Here it suffices to state that Urf is a some broadband

(4.24)

composite pulse without phase gradient. To be more explicit, Eq.(4.24)

can be written as

(4.25)

The exact form of Uv(t) given by the second exponential in Eq.(4.25) may
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not be known, but in general it can be expressed as a single exponential

with the exponent expanded in terms of basis operators. If Hint contains

a homonuclear coupling term between two spins 11 and 12 as well as the

offset and heteronuclear coupling terms, the basis operators span a 15-

dimensional space: six associated with linear operators and nine

bilinear operators.

Now suppose the total evolution operator is composed of a product

of n evolution operators having a same duration r:

U(nr) - U f (r)U (r)······U f l(r)U l(r).r ,n v,n r , v, (4.26)

Also suppose that the evolution operator for a composite pulse with an

overall phase ~ = 0 can be written as

U (r) - U f O(r)U O(r).r , v,

Then with the notation

(4.27)

(4.28)

the evolution operator associated with a pulse having a phase ~ becomes

U~(r) - Urf,~(r) Uv,O(r)

Urf,~(r) ~exP(-iJ~ U~f,~(t) Hint Urf,~(t) dt)

- ~t U (r) ~ X
'Pz rf,O 'Pz

Since Hint is a high field Hamiltonian,

(4.30)

and Eq.(4.29) reduces to
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(4.31)

t.

In passing, it is worth nqting that Eq.(4.30) does not hold for the

zero-field Hamiltonian. So the present approach can not be used for

zero-field multiple-pulse calculations.

At any rate, each element of Eq.(4.26) is simply related to Uo by

the phase shift ~z' The evolution operator U(nT) can now be rearranged

such that the total evolution operator due to the rf-field Hamiltonian

appears on the left

U -= U U ... 'U
~n ~n-l ~l

-= a u(n)TT n {u(P-l)}fu {u(P-l)}
rf p=l rf v,~ rf

p

= a u(n) TT n ij
rf p=l v,~ ,

p

where a is the time-ordering operator,

u(n) -= U .... U
rf rf'~n rf'~l

and

ij -= {u(P-l)}f u {u(P-l)}
v,~ rf v,~ rf

p p

with

u(O) - 1.
rf

(4.32)

(4.33)

(4.34)

(4.35)

Since Uv are assumed to be small perturbations, the time-ordered product
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in Eq.(4.32) can be expressed as a simple exponential using the Baker­

Campbell-Hausdorff formu1a: 11

(4.36)

Thus to first order the condition for the heteronuc1ear-decoup1ing

reduces to finding phases ¢k such that

(4.37)

for single-spin systems. However it may not be necessary to satisfy

Eq.(4.37) for two-spin systems (systems of two coupled homonuc1ear spins

each of which is also coupled to a nuclear spin with a different

gyromagnetic ratio). It has been argued12 that a non-vanishing offset-

independent Hamiltonian, having large components orthogonal to the

residual offset term, could quench the offset term, making a more

favorable situation for decoup1ing. Hence, a natural choice for the

offset-independent Hamiltonian for systems having both linear and

bilinear terms, for example, in liquids is

(4.38)

It would be instructive to discuss first the cancellation of

linear terms only, since it would make a connection to the methods of

iterative schemes discussed in the previous chapter. Consider the

sequence UUUU, where U is a composite 1800 pulse along the x-direction

without phase distortion. The "imperfection" term Uv during the

composite pulse U may in general be written as

U - exp (f I + f I + f I ).v xx yy zz (4.39)

The cancellation of these linear error terms during the sequence is

shown in Table 4.2.



Table 4.2

Cancellation of Linear Spin Operators by the Sequence U U UU
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State Operator

1 lOX lOy lO Z

2 lOX -lo -lo ZY

3 -lOX -lo lo ZY

4 -lOX lOy -lo Z
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It may appear that the current method is equivalent to the

methods discussed in the previous section. However, the current method

has the following advantages:

1) Any compososite pulse can be substituted into Urf .

2) The evolution operators with phase ~ are simply related by

Eq.(4.3l).

3) No calculation is needed for Uv and sequences satisfying Eq.(4.37)

can be found rather easily, and

4) sequences can be improved mechanically by some iterative schemes.

The advantage labeled 1) will fully be exploited in finding

practical sequences, and 4) will be discussed later on. Due to

advantages labeled 2) and 3) sequences for removing linear and bilinear

operators, except the scalar operator given by Eq.(4.38) have been

easily found employing integer arithmatic on the computer.

oIf only 90 pulses along the four quadrature channels ±X and ±y

are employed, there are 64 l2-pulse sequences found that satisfy

Eq.(4.38). No sequences with less than 12 pulses are found, agreeing

with the ealier discussion that a minimum of 12 pulses is required to

average all linear and bilinear operators except the scalar. If the

pulse sequence begins with an x pulse, there are 16 sequences and these

are listed in Table 4.3. The first four sequences consist of three

oidentical subunits of four 90 pulses and the rest consist of two

identical subunits of six 90 0 pulses. If there are no pulse

imperfections present, the six pulse subunit consists of 1800 rotations

around the x, y, or z axis, while the four pulse subunit is equivalent

oto 120 rotations around one of the "magic" axes. It can be shown that
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Table 4.3 Windowless Sequences of 90° Pulses Producing a Scalar

Operator

(1) XYXYXYXYXYXY

(2) XYXYXYXYXYXY

(3) XYXYXYXYXYXY

(4) XYXYXYXYXYXY

(5) XYXYXYXYXYXY

(6) XYXYXYXYXYXY

(7) XYXYXYXYXYXY

(8) XYXYXYXYXYXY

(9) XYXYXYXYXYXY

(10) XYXYXYXYXYXY

(11) XYXYXYXYXYXY

(12) XYXYXYXYXYXY

(13) XYXYXYXYXYXY

(14) XYXYXYXYXYXY

(15) XYXYXYXYXYXY

(16) XYXYXYXYXYXY
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the sequences (1)-(4) are simply related to each other by phase shifts

and cyclic permutations. If these operations are assumed to be fairly

accurate, the sequences (1)-(4) would give identical performance. The

same is true with sequences (5)-(10) and (11)-(16). Consequently, there

are three distinct representative sequences

To see how these sequences work, take an example of (xyXy)s.

Table 4.4 shows the systematic cancellation of linear and bilinear cross

terms while preserving the scalar during the sequence.

Eq.(4.38), however, cannot be satisfied with 1800 rotations and

1800 phase shifts because 110120 are invariant to these operations, and

with 1800 shifts £xx is always tied to I lxI 2x throughout the sequence.

So far no assumptions have been made about the size or the relationship

oamong coefficients £. If the composite 180 pulse has the property of

making the coefficients associated with the quadratic terms 110120

nearly equal, or there are some relationships among coefficients that

are favorable for averaging these quadratic terms, one may as well use

these sequences with 1800 operations. Detailed discussion on these and

other practical aspects are deferred to a later section.

B. Expansion Procedure

B.l. Single spin case

It was shown that C2 • U U ij ij removes errors of order £, but

errors of order £2 remain originating from the commutator in Eq.(4.36).



Table 4.4 Systematic cancellation of Spin Operators by the

l2-Pulse Sequence (X Y XY X Y XY X Y XY)

Operator
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x y z xy xz yz yx zx zy xx yy zz

f X f y f Z f xy f XZ f yz fyx f ZX f zy f XX fyy f ZZ

-f -f Z f X f yz -f -f ZX f zy -fxy -fXZ fyy f
ZZ f XXY yx

f Z -fX -f -f ZX -fzy f xy -fXZ -fyz fyx f ZZ f XX fyyY

-fX -f f Z f xy -fXZ -fyz fyx -f ZX -f zy f XX fyy f ZZY

-fy f Z -fX -fyz fyx -f ZX -fzy f xy -fXZ fyy f ZZ f XX

f Z f X f y f ZX f zy f xy f XZ f yz fyx f ZZ f XX f yy

f X -f -f Z -fxy -fXZ f yz -f -f ZX f zy f XX fyy f ZZY yx

f y f Z f X f yz fyx f ZX f zy f xy f XZ fyy f ZZ f XX

-f Z -fX f y f ZX -fzy -fxy f XZ -fyz -f f ZZ f XX fyyyx

-fX f y -f Z -fxy f XZ -fyz -f f ZX -fzy f XX fyy f ZZyx

f y -f Z -fX -fyz -f f ZX
-fzy -fxy f XZ fyy f ZZ f XXyx

-f Z f X -f -f ZX f zy -fxy -fXZ f yz -f f ZZ f XX fyyY yx
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The next step of the expansion procedure is the cyclic permutation of U

and concatenation with the original sequence to give

C3 E U U UUUU U U. (4.40)

It is easily verified that if the errors of O(f3) are neglected, the

last four pulses are obtained from the original sequence of four pulses

by 1800 rotation around the x axis. Thus they should also cancel the

linear terms. It is straightforward but tedious to calculate the

2commutator in Eq.(4.36). These are error terms of order f originating

from the cross product of f
Q

and it can be shown that they vanish for

S
the sequence Cs , leaving errors of O(f ).

The analysis can in principle carried out further to show

systematic cancellation of higher order terms. However, the procedure

quickly becomes intractable: if sYmmetry of the commutator is not taken

into account, there would be 360 commutators to calculate in the next

stage of the expansion, i.e. the l6-pu1se sequence.

A much more manageable and mechanical way of achieving

cancellation is once again to group the residual errors in one

exponential:

UUUU = U fU U fU U fU U fUr v r v r v r v

where

- U U U U U(2) -= U(2)
rf rf rf rf v v'

(4.41)

U (4.42)

with f(2) denoting the error of size IIf(2)1I -= O(f 2). Eq.(4.40) can be

considered as the first configuration in the Table 4.2. One problem in

generating other configurations with the above method is that the
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product of 1800 rotations Urf does not generate a fixed point4 ,S,13 of

next stage 1800 rotation but generates an approximate unity operator

instead. Thus the 1800 rotation must be generated in some other way. One

such a method is to appro~imate the 180 0 rotation by cyclically

permuting 11:

_ U U U(2)-U- 1 U-- 1
rf v v v rf

- (2) --1
- U f U U f'r v r (4.43)

where the errors of 0(£3) have been ignored. Eq.(4.43) corresponds to

the second configuration in Table 4.2. However, £(2) are not arbitrary

but have certain sYmmetry originating from the commutator in Eq.(4.36),

which has been fully exploited in removing errors of 0(£2) as discussed

in the paragraph following Eq.(4.40). This point may also be argued from

the observation that the sequence 11 11 U U can be derived from U U 11 11 by

either a 180 0 phase shift or a cyclic permutation of 11 11. Consequently,

(4.44)

neglecting errors of 0(£3). For Eq.(4.44) to hold £(2) and £(2) must bex y

much smaller than f~2). In other words, £~2) and £~2) are of 0(£3) and

f~2) is of 0(£2). Also, the eight pulse U U 11 11 11 U U 11 cancels f~2),

3leaving an error of 0(£ ).

The above arguments imply faster convergence of the present

scheme. Namely, the third and fourth configurations in Table 4.2 are

easily generated by an exact phase inversion and a cyclic permutation

3accompanied by a phase inversion (accurate to 0(£ » respectively. The

resulting sequence is
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- U U U U U u u U U U u u u U U U,
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(4.45)

the MLEV-16 sequence. The product of Urf is again a unity operator. It

can be proved1 ,3 that the residual error is of O(e 4
). Therefore, the

present expansion scheme C2 -->C4 --> C6 (a 64 pulse sequence) --> .. ,

246makes the error term converge as rapidly as O(e ) --> O(e ) --.> O(e )

--> ... O(e 2n) after n-th iteration. The convergence is much more

favorable than O(en+1) which would result by combining various subcyc1es

in an arbitrary order.

B.2. Two-spin case

If an expansion procedure for the two-spin case is built upon the

apparent analogy to the single-spin case, it would be a 12-fo1d one.

However, it can be shown that the two operations of cyclic permutation

and phase shift do not generate all 12 necessary states. More

specifically, Eq.(4.44) does not hold. Even if the next stage of the

expansion with 144 pulses is found, there will be of little practical

use of it because other effects such as relaxation would become

important for such a long sequence. It thus is desirable to find schemes

to generate shorter sequences. Fortunately, analogous to the discussion

following Eq.(4.40) for a single spin, there also exist relationships

among coefficients e for the two-spin case.

With cyclic permutations and phase shifts 64 12-pu1se sequences

are generated from the three representative sequences mentioned

previously. Hence, for example, following constraints can be found for

(x y X y)3 sequence:
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(2) (2) (2)£ £ - £
X Y z

(2) (2) (2)£ £ -exy yz zx

(2) (2) (2)£ £ -e
yx zy xz

(2) (2) (2)£ £ - £zz'xx yy

8where errors of 0(£ ) are neglected. The relationship among the

coefficients for the sequence (x y x y X y)2 is:

(4.46)

(2)
£ -x

(2)
£
z o. (4.47)

This then implies the possibility of adding certain 12-pu1se sequences

in a spirit quite similar to the construction of MLEV-8. An example of

a 24-pu1se sequence constructed this way to satisfy Eq.(4.38) is

(x Y x y X y)2 (x Y X Y X y)2. There are other 24-pu1se sequences which

do not fit the category described above, but still satisfy Eq.(4.38).

With a phase shift confined to 90° between each element, there are 511

sequences which are not related to each other by either cyclic

permutations or phase shifts. They are listed in Appendix 3. Some

examples are:

xyxyxyxyxyxyxyxyxyxyxyxy

which does not have an obvious structure, and

(x y x y x y X y)8

(x YX y X y)2(X Y X Y X y)2

(x y)8(X y)8(X y)8(X y)8,

which have definite subunit structures.

(4.48)

(4.49)

(4.50)

(4.51)

The iterative schemes discussed in this chapter and the sequences

given above will be utilized in the next chapter, where heteronuc1ear
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decoupling in liquids and liquid crystals are treated.
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CHAPTER V. Broadband Heteronuclear Decoupling in the Presence of

Homonuclear Interactions

V.l General Theory of Heteronuclear Decoup1ing

The iterative schemes in the previous chapter have been discussed

with a view to heteronuc1ear decoup1ing of a spin I from an S spin. S

denotes the spin under observation and a typical example is a carbon-13,

while I denotes the spin which is irradiated with a decoup1ing field and

a typical example is a proton.

According to Waugh,l decoup1ing of an isolated I-S pair can be

completely analyzed by observing the behavior of the I spin under the

irradiation without the necessity of considering the S spin. The

criterion for the efficiency of decoup1ing of I from S (I = S = 1/2)

over a certain bandwidth is that the net rotation angle (¢) the spin I

undergoes should be insensitive to the offset (6) within the bandwidth.

Mathematically, the residual splitting of the S spin spectrum is given

by

(5.1)

where J IS is a coupling constant between spins I and S, t r the net time

of the periodic sequence, and 0 the average frequency during t r .

If there are interactions between two I spins-1/2 or if there is a

quadrupole interaction for the spin I ~ 1, it is no longer possible to

treat the behavior of the system of I spin(s) as a three-dimensional
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rotation. Since the average frequency 0 is equal to the energy times

1/~, the most general decoup1ing criterion should be expressed in terms

of the effective ener~y or equivalently of the average Hamiltonian over
/~:

the irradiation period tr~

In the past few years some of the important developments in

heteronuc1ear decoup1ing for multi-level systems have been made. The

following is a general theory of heteronuclear decoupling in a form

somewhat different than the treatments of references 2 and 3.

First consider the Hamiltonian in a rotating frame on resonance

for the S spin given by

1£ = 1l +
I

1l 1l llrIf( t) .II + IS + (5.2)

Now suppose the initial density operator for the S spin is given by

p(O) "" Sx' (5.3)

then the signal of the S spin S- suitable for the quadrature detection

is given by

(5.4)

Since the terms depending only on the I spin commute with the S spin

operators, these can be factored out of Eq.(5.4) by using the

transformation



U(t) - UI(t)U1S(t),

where

is the pure I spin propagator and

Eq.(5.4) now reduces to
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(5.5)

(5.6)

(5.7)

S-(ntr ) = Tr{Csx - i SyJ U~(tr) U~s(tr) Sx Ui~(tr) Uin(tr )}

= Tr{Csx - i SyJ U~s(tr) SxUi~(tr)}·

Perfect decoupling is achieved when

This in turn means

(5.8)

(5.9)

[ UIS ' Sx ] - 0, (5.10)

which can be satisfied only when UIS - 1. This is because HIS in the
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high field Hamiltonian in Eq.(5.7) may be written in the form

(5.11)

and the evolution operator in terms of an average Hamiltonian defined by

.(5.12)

satisfies Eq.(5.10) only when hI - 0, and then the Fourier transform of

S- will consist of a single peak.

To facilitate the calculation of the spectrum under a less perfect

decoup1ing condition, it is desirable to divide the average Hamiltonian

Hrs into two commuting parts:

where

1 ± 2S
P± .. --=-2-_

z

is the S spin projection operator, and

Then, with the properties

it can be shown that

(5.13)

(5.14)

(5.15)

(5.16)
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Eq.(5.8) now becomes

S- (nt ) 0= Tr{Cs - i S J (p Un + p unJs (p Utn+ p utnJ},
r x y ++ --x++ --

where

is used. With some algebra it can be shown that

(5.17)

(5.18)

(5.19)

(5.20)

Thus S- is known once hr is calculated in the basis set which

diagonalizes hI' or calculated perturbatively in the eigenbasis set of

the Hamiltonian generating the evolution operator Ur . The result is (in

fz units)

(5.21)

where N is the total number of states and Ck± are eigenvalues of h± in

the k-th state. Thus the spectrum consists of maximum Npeaks positioned

Suppose for simplicity all J j are equal and equal to J IS in

Eq.(5.11), and approximate Urs to first order, i.e.

(5.22)



110

The righthand side of Eq.(5.22) is in fact the first order correction4

to the (fictitious) I spin Hamiltonian defined by

(5.23)

The total I spin Hamiltonian may be written in terms of this fictitious

Hamiltonian as

(5.24)

From the Rayleigh-Schrodinger perturbation theory5 the energy for HI in

k-th state wk may be expanded as a power series of J IS :

Similar to Eq.(5.l3). Eq.(5.24) may be rewritten as

IH = p+H++ p_H_.

where

with corresponding energies in k-th state

(5.25)

(5.26)

(5.27)

) . (5.28)

Here 61 is a shorthand notation for offsets {6 1 • 62 ••••• 6j .···}. The

total energy may be expanded as
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From Eqs.(5.22), (5.25), and (5.29) it follows that

The generalized scaling factor Ak may be defined as 2

(5.29)

(5.30)

A ­k [
aEk]
a8 .

I
(5.31)

In view of Eq.(5.2l), the expectation value <~~O)I hie) I ~~O» in

Eq.(5.30), although approximate, determines the position of the peaks.

Consequently, once again the scaling factor Ak is the measure of the

splitting in the S spin spectrum. Within the validity of the A-

approximation, perfect decoupling requires Ak - 0 for all offsets 81 =

(8 1 , 82 , ... , 8j ,···). In other words, the decoupling sequence must

create a fictitious Hamiltonian which is offset-independent.

Furthermore, as discussed in section IV.5 the offset-independent

fictitious Hamiltonian does not have to vanish.

Theoretically speaking, Eq.(5.3l) requires a multi-dimensional

calculation. However, any decoupling sequence which performs well within
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its decoup1ing bandwidth should create offset-independent fictitious

Hamiltonian. Therefore, only the slice

(5.32)

needs to be investigated. For a single-spin case there is only one index

in Eq.(S.32), and consequently there are two eigenvalues originating

from a (2 x 2) matrix. With the identity Ek - Ok for this case, it is

straightforward to show that

k - 1,2 (5.33)

so there are two scaling factors, whereas there is only one Waugh

scaling factor resulting from Eq.(5.1):

(5.34)

The difference stems from the fact that the generalized scaling factor

gives the actual line positions while the Waugh scaling factor gives the

frequency difference between two parent lines.

V.2. Applications to Heteronuc1ear Decoup1ing for a I - 1 and

S - 1/2 System in Liquid Crystal Samples.

Fung et. a1. 6 have made an extensive comparison among various

decoup1ing sequences developed for liquids by applying them to liquid

crystal samples. They also suggested some decoup1ing sequences of their

own, called ALPHA sequences. All sequences for the single-spin

decoup1ing tested failed, and their sequences along with a few Waugh

sequences l ,7 showed performance somewhat better than that of the sing1e-

spin decoup1ing sequences. Nonthe1ess, the whole experimental results
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are far from satisfactory and their sequences are not backed by theory.

Proper decoup1ing sequences for the above mentioned case can be

developed by applying the principles founded in the previous sections.

For concreteness, consider the Hamiltonian for a system consisting of an

I =1 and a S = 1/2:

(5.35)

where 6 is the offset, wQ the quadrupole coupling constant, and DIS the

heteronuc1ear dipole-coupling constant. Indirect coupling is neglected.

In principle, the Hamiltonian in Eq.(5.35) can be removed with the

sequences developed in section IV.5. In practical applications, however,

some questions arise. First, is it better to design a short, relatively

o
crude 90 pulse and improve decoup1ing performance by expanding the

sequence from a l2-pulse sequence to a 24-pulse sequence to a longer

sequence, or is it best to design a relatively long 90 0 pulse and

substitute it into the 12-pu1se sequence? Second, how can a composite

pulse best be optimized?

The answer to these questions should depend upon the particular

system under consideration. Inspection of Table 4.4 reveals that the 12-

pulse sequence is not efficient for eliminating the linear terms,

requiring all 12 steps. Hence, when resonance offset is a predominant

term, schemes based on the 12-pu1ses may not be suitable. Conversely, if

the chemical shift range is small, as in the case of deuterium, and a

relatively strong field has to be applied to overcome the quadrupo1ar

interactions, schemes using a 12-pu1se sequence may be appropriate.
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Suppose the system of interest belongs to the latter category.

This is typical for liquid crystal samples with parameters w2 = 10 kHz,

wQ - 10 kHz, DIS - 1 kHz, 61 -500 Hz, and the linewidth - 2 Hz. Then a

scheme that is more effici~nt in reducing the big bilinear terms at the

cost of reduced bandwidth should be the choice. In other words, a

shorter composite pulse with a longer sequence is favorable as long as

the overall cycling rate is not unacceptably small. The composite pulse

should create less offset-dependent Hamiltonian within its bandwidth.

The procedure for optimizing the composite pulse would require the

construction of the surface with continuous variables 6 and wQ' and the

details will not be discussed here.

Shenker et. al. S came up with sequences called COMARO-n given by

COMARO-2

COMARO-4

(y X)8(y X)8

(y X)8(X y)8(y X)8(X y)8.

For the COMARO-2 sequence a calculation similar to the one given in

Table 4.4 results

1
-3 € Ixx !3 (€ I I + € 1 I ) +yz y z zy z y

€ + € + €
xx yy zz 1(1+1)

3

(5.36)

and shows quick averaging for the quadratic terms. The presence of the

isotropically averaged term 1(1+1) is common to all l2-pulse sequences

explored in the previous chapter. For COMARO-2, however, still there are

terms remaining after averaging unlike those l2-pulse sequences. COMARO-

4 is, incidentally, indistinguishable to Eq.(4.50).and therefore should

average all linear and bilinear terms to higher order than the 12-pulse

sequences or the COMARO-2 sequence. Nontheless, COMARO-2 reportedly

performs as well for wQ - 0.5 WI as COMARO-4 sequence, and outperforms
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COMARO-4 for wQ ~ w1' Perhaps the superior performance of COMARO-2 over

COMARO-4 is due to the remaining terms in the fictitious Hamiltonian,

which are made insensitive to offset by the composite pu1se9 ,12

partially aided by the scaling by 1/3. Or it may be due to the composite

o
90 pulse given above, which is optimized without including the

quadrupole Hamiltonian, therby renders irregular performance. Thus the

direct comparison between the two members of the COMARO family may not

be legitimate. It would be interesting to optimize the composite pulse

with the quadrupole Hamiltonian included in the total Hamiltonian and

compare various 12- and 24-pu1se sequences.

In the next section it will be shown how to optimize the composite

pulse for isotropic liquids and how to remove various error terms by

systematic expansions.

V.3. Heteronuc1ear Decoup1ing in Liquids for Scalar-Coupled Spins.

V.3.A. Introduction

Current broadband heteronuc1ear decoupling methods1 ,10 assume that

homonuc1ear interactions among I spins-1/2 as well as among S spins-1/2

are negligible. Under this assumption, the decoup1ing of an isolated 1-5

spin pair can be examined by looking at the behavior of the I spin alone

under the decoupling field. A good decoup1ing sequence should create

small net rotation angles p(+) and p(-) corresponding to states

Sz ~ ± 1/2, which the I spin undergoes under the decoup1ing sequence.
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There are cases, however, where these neglected homonuclear scalar

interactions cause visible residual splitting or broadening. The

interaction would be important when very high resolution is required

with low decoupler power, or when the coupling between abundant

nonequivalent I spins are rather strong. For a system consisting of an S

spin-l/2 and two homonuclear-coupled nonequivalent I spins-l/2 the

dependence of the magnitude of the splitting on the various parameters

is emperically given by3

l1S :;;; (5.37)

where J II and J IS are homo- and heteronuclear coupling constants.

f(l1w 1 , l1w2 ) is a complicated function of chemical shifts and differs

from one decoupling sequence to another. Later in this chapter the

functional form of l1S will be derived in a rigorous manner. Thus, given.

that the coupling constants and B2 are the same, the residual splitting

depends solely upon the decoupling sequence used.

In the previous section it was shown that the decoupling sequence

creates a fictitious Hamiltinian and in liquids the fictitious

Hamiltonian is given by Eq.(4.38). A less offset sensitive fictitious

Hamiltonian means better decoupling performance of the sequence used.

Table 4.4 shows, however, that the sequence itself largely contributes

to making the fictitious Hamiltinian assume the scalar form, Eq.(4.38).

In other words, the sequence does not alter the size of the coefficients

but averages them. Consequently, it is the composite pulse that largely

determines the coefficients and hence determines the offset dependence

of the whole decoupling scheme. It therefore is important to design
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composite pulses which make the fictitious Hamiltonian offset

independent within their respective decoupling bandwidths to ensure good

decoupling.

V.3.B. The design of composite pulses for two scalar-coupled spins

- phase alternating composite pUlses l ,7,ll.

The approach taken for designing composite pulses is the use of

the Average Hamiltonian Theory (ART). While there are numerous

approaches to the design of composite pulses for the single-spin cases,

the design for the coupled-spin case lacks the diversity of approaches

largely because the propagators manipulated with pulses can no longer be

regarded as rotations in three-dimensional space. The ART approach is a

suitable tool for dealing with situations such as the one described

above. Even though the calculation gets complicated, the calculation of

higher order average Hamiltonian terms provides insights by showing

explicit offset-dependent terms, thereby guiding the design of the

composite pulses.

The relevant Hamiltonian for two coupled-spins II and 12 , both

spins-l/2, should in general be expressed in terms of two offsets 61 and

62 , However, as argued in section V.l examination of the surface 62 = 0

is sufficient to evaluate performance of a decoupling scheme. Thus it

can safely be assumed that the second spin is on resonance and the first

spin is off resonance by 61 , Then in the rotating frame the k-th

piecewise-constant Hamiltinian during Tk over which the decoupling rf­

field is applied may be written as
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(5.38)

and

(5.39)

(5.40)

Eq.(5.39) indicates that the phases of the pulses with constant

amplitude alternate between x or -x axis of the rotating frame. The

phase alternating composite pulse, in the absence of J, has some useful

properties1l (a): This class of pulses produces a propagator at r = ~rk

which approximates an ideal rf pulse, i.e.

ialx
~ e (5.41)

within the bandwidth of a composite pulse, thus having no phase

gradient. a can be selected at will. Pulses without phase distortions as

a function of offset have many important app1ications. l2

The transformation

(5.42)

along with application of the ART yields

v(O) - J 11 .12 + ~~ ~:1 (_1)(j+1) {12z(SlnAj-SlnAj_1) +

+ 12 (cosa. 1-cosa.)}. (5.43)
y J- J

Here an is defined by
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(5.44)

with ak being the k-th nominal flip angle in the phase-alternating

sequence of m pulses a1Q2aS···. The intial angle a o is assumed to be

zero. To zeroth order all ,intense coherent irradiation will remove the

terms under the summation, leaving the scalar interaction alone, thus

achieving the goal. However, for the decoupler level w2 of about 2 kHz

the zeroth order approximation is highly inaccurate. Hence higher order

terms need to be considered. After some laborious calculations the first

order correction is obtained as:

°1 J
(IlyI2x-I2yIlx) (~ b. + 2l~jblj )+--2 Jw

2
l'

°1 J
(IlxI 2z - I lzI 2x) (~ + 2l>J clj)+-- c.

2 Jw
2

l'

where the coefficients are

a. ... (-l)j(a. - sina.)
J J J

(5.45)

(5.46)

~j ... (_l)k+j (5.47)

(5.48)

(5.50)

'+1 k
bkj ... (_l)J ak(si~j - si~j_l) + (-1) aj(si~ -si~_l) (5.49)

j+1
cj ... 2 si~. 1 - 2 si~j + (-1) a.(cost..- cosll. 1)

J- J J J-
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It is observed that the linear cross terms are created by the sequences

which were absent in the original Hamiltonian. Eqs.(5.44) and (5.46)-

(5.51) are the primary equations used for designing composite pulses so

that the offset dependent terms may be minimized.

Since in general the Hamiltonian resulting from a sequence of

pulses contains all linear and bilinear terms, it would be instructive

to consider the next order correction term at least qualitatively to

see how offset dependence enters for various spin operators. To

facilitate the calculation some useful commutation rules are given in

Appendix 4. The operators that appear in V(2) are: 11z and 11y with

S s
coefficients proportional to 61 /w 2 ; the operators 11x12x' 11y12y'

2 S
11z12z, 11y12z' and 11z12y with coefficients varying as 61J/w2 and the

2 S
operators 11y' 12y' 11z' and 12z varying as 61J /w 2 • Here the quadratic

terms begin to deviate from scalar and linear spin operators for the

second spin, which were absent in the original Hamiltonian, are

produced. Theses linear terms can be regarded as arising from the

interaction of the first spin with the small field produced by the rf

field. In the previous section the criterion for good decoupling was

discussed; the sequence should produce an offset-insensitive average

Hamiltonian, and a natural choice for liquids is J 1 1 '1 2 as the

remaining Hamiltonian. Now the average Hamiltonian calcultion dictates

that for a composite pulse to render a perfect decoupling, which

corresponds to making all 61-dependent terms vanish, it is inevitable to
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have JI 1 'I2 remaining. It therefore appears that achieving homonuc1ear

decoupling and heteronuclear decoupling simultaneously is an

unrealistic goal.

Contrary to the liquid crystal case, in the decoupling of liquids

the most dominant terms are the linear terms with Sl of 0(10 3
) Hz first

appearing in Eq.(5.43) whereas J is of 0(10 1
) Hz. Thus the composite

pulse should be optimized to remove the (offset-dependent) linear terms

first. Incidentally, the minimization of offset dependence should also

render a reasonably good scalar with J having a slow offset dependence.

The strategy for designing composite pulses is to select

reasonably good candidates using Eqs.(5.44)-(5.5l) and then optimize

these initial candidates to achieve larger bandwidths by direct

computation of the propagator U(r) given by Eq.(5.42). The method is

analogous to the single-spin case.ll(a) It was discussed at the end of

Section V.3.A that the offset dependence of the coefficient of the

scalar interaction term is largely due to the composite pulse, rather

than the schemes for expanding the sequences. The reason for this can be

explained clearly in terms of the average Hamiltonian calculations. A

composite pulse which accomplishes perfect decoupling would have to

satisfy V(O) = JI
1
'I2 , and V(l) - V(2) - ... = O. Thus the slope

8J(Sl)/8S 1 would be zero. However, it is questionable that any solution

which satisfies all these constraints exists. Numerical optimization, on

the other hand, is performed such that the figure-of-merit function is

minimal. Inevitably then the optimal pulses found may not remove all

offset dependent terms from Eqs.(5.44)-(5.5l), but minimize overall

offset dependence. As a result, for a composite pulse with a given
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number of constituent pulses there seems to exist a "natural" offset-

dependence associated with the minimal value of the merit function. This

is quite similar to the "natural" bandwidth one may find for a sing1e­

spin case. ll (a)

V.3.e. The evolution of spin operators under scalar interaction.

Suppose a decoup1ing sequence managed to make all linear and

bilinear cross terms vanishingly small and a good scalar term was

obtained. Also suppose because of the nonideality of the composite pulse

sequence that the scalar coupling constant obtained is slightly offset-

dependent. Then the evolution operator under these conditions may be

written as

(5.52)

The resulting S-spin spectrum under this evolution operator can be

predicted by calculating the scaling factor given by Eq.(5.3l). For the
I

two-spin case with a Hamiltonian given by Eq.(5.52) the position of the

spectral lines can be calculated to give

j - 1," ,4. (5.53)

The matrix (I 1 'I 2 )jj can be obtained by diagonalizing the 4 x 4 matrix

with the product basis (QQ, Qfi, fia, fifi):
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1
1

.1
2 aa ap pa ~

1 0 0 0aa
4

ap 0 1 1 0-4 2

pa 0 1 1 02 -4
pp 0 0 0 1

4

Diagonalization of the submatrix gives four eigenvalues

(k -2,3,4). (5.54)

Therefore, the S-spin spectrum consists of four lines at the frequencies

af(Sl)
wj - J 1SJ 8S

l
a j , j-l,2,3,4 . (5.55)

If the derivative af/aS l is zero, corresponding to the perfect

decoupling, the four lines collapse into a single line. On the other

hand, if the derivative is sufficiently small so that the splitting

between any pair of lines within the triplet manifold is smaller than

the natural line width, then the three lines in this manifold collapse

into a single peak, giving a spectrum consisting of two peaks with an

intensity ratio 3:1. This situation is illustrated in Fig.5.l.

As a third type of situation, suppose the composite pulse produces

a fictitious Hamiltonian, which contains small but non-trivial linear

and bilinear cross terms and a reasonably good scalar interaction term.

Under these conditions the effective Hamiltonian has the sYmmetry

approaching closer to spherical symmetry than the cylindrical sYmmetry,



124

Offset-Independent Scalar

Offset-Dependent Scalar

XBL 876-2673

Figure 5.1 The expected form of the S-spin spectrum under a

decoup1ing sequence that produces an underlying Hamiltonian that is a

pure scalar operator 2~J1l .12 , If the effective coupling constant is

offset-independent then a sharp singlet is observed. When the coupling

constant is offset-dependent a 3:1 pattern emerges, in which the S spin

experiences the local field of the triplet or singlet states,

respectively.
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which the original unmodu1ated Hamiltonian possesses. Therefore, it

becomes more convenient to use operators expressed in the spherical

basis than in the Cartesian basis. The spherical basis for the bilinear

operators are listed in Table 5.1 and for linear operators the ±

combination

"

is convenient.

Q=x,y,z (5.56)

With the commutation rules in Appendix 4, it can be shown that

for bilinear opeators

[Aoo , A1k] po! 0 k- O,±l

[Aoo A2k] 0 k .. 0,±1,±2

and for linear terms

[Aoo 1Q +] 0

[Aoo 1
Q

_ ] O.

(5.57)

(5.58)

(5.59)

(5.60)

The significance of these commutation relations becomes apparent when

the sequence is to be improved by expansion using the cyclic permutation

and phase shifts. To be more specific, first separate the scalar part

from the rest (denoted as H' in the following) in the fictitious

Hamiltonian such that

U( 1")
-i1" Jf(6l) 11"12

e e
-iT" H'

IE (5.61)

Secondly, expand the sequence by combining various evolution operators

and collecting UJ on the left:



Table 5.1 Spherical Basis Set of Bilinear Spin Operators
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(5.62)

The operators 0+ in U~ which commute with UJ can be made vanish to

zeroth order in the BCH expansion by phase shifts and cyclic

permutations:

(5.63)

In contrast, operators 0- which do not commute with UJ evolve under UJ ,

making cyclic permutation and phase shifts ineffective in removing these

terms. Thus they may pose problems as nT increases. However, because the

operators do not commute with 11 .1 2 , to first order they do not shift

the energy levels produced by 11 .1 2 • The effect of 0- and the deviation

from scalar on the spectrum may be shown by performing the degenerate-

perturbation calculation. To be more specific, consider the 3x3 matrix

which determines the first order energy correction to the triplet

manifold. The singlet state has no dynamics, and thus can be

ignored. Eigenfunctions to be used are:

A. A. _~
~l .. QQ, ~2-j2 '

and the secular determinant is

tP
3

.. f3f3 (5.64)
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0: . .. 0 i,j .. 1,2,3. .'~

1.J

x1x2 4>1 4>2 4>3
! :~ij

4>1 0 0
1
4

4>2 0
1

04"

4>3
1 0 04"

Y1Y2 4>1 4>2 4>3

4>1 0 0
1. 4"

4>2 0
i 0- 4"

4>3
1

0 04"

ZlZ2 4>1 4>2 4>3

4>1
1

0 0
4

4>2 0
1 0- 4" ..

4>3 0 0
1
4



<tP110 !<Pl > • ,\

<tP21 0 ItP l >

<tP31 0 !<Pl>

<tPll 0 ItP 2>

<tP21 0 ItP2> - ,\

<tP31 0 !<P2>

<tPll 0 !<P 3>

<tP21 0 ItP3>

<tP 31 0 ItP 3> - ,\

o.
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(5.65)

Table 5.2 lists matrix elements of O· and quadratic terms which are

not removed by Eq.(5.63).

Since all matrix elements are zero for 0- operators it can be

concluded that they do not affect the first order spectrum. The presence

of the scalar interaction of O(J), therefore, quenches the samll terms

and the decoupling performance is little affected. This is another

situation where the offset-dependent small terms are stabilized by a

larger offset-insensitive residual term, as discussed in a previous

chapter.

Because I 1aI 2a (a-l,2,3) do have matrix elements, the deviation

from the scalar may be problematical. However, as long as the composite

pulse produces a good scalar, the deviation from the scalar should be

small, and further refinements in making a better scalar can be achieved

by expanding the sequence with phase shifts and cyclic permutations.

V.3.D. Evaluation of decoupling schemes

Schemes using 90 degree pulses

With Sections V.3.B and V.3.e as a guideline, various composite

pulses are found: Using V(O) and V(l) we find the initial candidates,

then these candidates are optimized by numerically calculating the
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oPhase-Alternating Composite 90 Pulses for Two Coupled

Spins-1/2.

Label Sequence Bandwidtha Lengthb

395 330 25

40 290 380 40

55 280 310 65 305 285 50

20 100 335 170 300 35 140 335 170 315 80

±0.15

±0.2

±0.3

±0.6

750

750

1350

2000

a Given in terms of the parameter ~wlw2.

b Total rotation of the composite pulse in degrees.
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underlying Hamiltonian around °1 - O. A criterion is to reduce the

deviation from the scalar as a function of offset. Then they are further

optimized by the method suggested by Waughl ,7 which has been much used

for improving composite pulses for decoupling,13 which allows bandwidth

extension without making the Hamiltonian deviate much from the scalar.

Table 5.3 lists pulses with 90° flip angle along x axis and they are

labeled P1- P4' The lengh of each pulse is given in degrees, with

°overbars denoting a 180 phase shift, and the bandwidths are given as a

fraction of w2 • All bandwidths are smaller than those of the single-spin

case. This may be attributed to having more constraints Eqs.(5.44)-

(5.51) in optimization.

This restricted bandwidth in principle may be expanded by using

the l2-pulse based schemes. However, the schemes, as discussed in a

previous chapter, are not efficient in removing the linear terms,

although they are highly efficient in averaging the quadratic terms.

Also from the experience in the single-spin case, it is well known that

the use of nominally orthogonal channels are highly susceptible to the

f h hif MLEV . h 90° 1800 900
exact radio- requency p ase s ts. sequences W1t x y x

composite pulse are a good example.

Fig.5.2 shows the Waugh scaling factors for the (x y x y)s

sequence with the composite pulse Ps . A 5% reduction in w2 from the

onominal value w2 /2w - 2 kHz significantly degrades the decoupling

performance, showing that the sequence does not have sufficient

compensation for the linear terms. Interestingly, however, the phase

shift errors up to 10 do not have a perceptible effect on the decoupling
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Figure 5.2 Sensitivity of (X Y Xy)3 to rf inhomogeneity or phase

shift errors using the composite pulse Ps . The top plot shows the Waugh

scaling factor for the correctly adjusted sequence. Directly

underneath, the effect of a 5% reduction in W2/2~ (to 1900 Hz) is shown.

There is a significant degradation in performance. Phase shift errors

as large as 1° on either Y (next trace) or X (bottom trace) channels are

harmless, as a comparison with the correctly adjusted sequence shows.
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Fig. 5.3 Scaling factors for the indicated composite 90° pulses

of Table 5.3 when used in the simple sequence (X Y Xy)3. The scaling

factors are shown as a function of 61 , the offset of the directly

coupled I spin, for the case 62 - 0, and assuming a homonuclear coupling

of 10 Hz and a 2 kHz rf field. For small 61 the signature in each case

is that of a pure scalar operator, but the effective bandwidth of the

more elaborate composite pulses Pa and p. is larger. Near the edge of

the bandwidth the compensation fails and the "triplet" states are no

longer degenerate.
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performance. These behaviors are common to all composite 900 pulses in

Tab1e.5.2. Consequently, these may be considered the properties of the

sequence itself.

Figure 5.3 shows the scaling factors given by Eq.(5.31) for the

case of J - 10 Hz, w2 /2w - 2 kHz, values typical to broadband proton

decoup1ing in liquids. It is obvious from Table 5.3 and these Figures

that the bandwidth is largely determined by the composite pulse and

within their respective bandwidths the averaging of I 1QI 2Q is

excellent.

If the (x y x y X y)2(X Y X Y X y)2 sequence is used instead,

there is a small improvement as Fig.5.4 shows. The sequence is also

quite sensitive to the rf inhomogeneity. However, the sequence is

oinsensitive to phase shift errors upto 1 unlike MLEV sequences.

oFig. 5.5 shows the scaling factors with 1 phase shift error in y

and x channels for the above sequences when the composite pulse P4 is

used. Same wI and J values are used.

In principle, a longer composite pulse with a 36- or 48-pulse

sequence obtained by the expansion procedure developed in an earlier

section can be used to get an improved result. However, at the low

cycling rates of these longer sequences other imperfections due to, for

example, sample spinning and relaxation would degrade the calculated

decoupling performance.
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Figure 5.4 Scaling factors for the 24-pulse sequence

(X y X YX y)2 (X Y X Y X y)2 under the same conditions as Fig.5.3.

There is a slight improvement compared with the (X Y Xy)3 sequence.
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Figure 5.5(a) Scaling factors of the sequence (xy x y)s with 1
0

phase

shift error in x or y channel. The composite pulse used is P4'
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Fig. 5.5(b) Same as Fig. 5.5(a), except that the sequence

(x y x y x y)2(x Y x Y x y)2 is used instead.
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Seguences using 180 degree pulses and 180 degree phase shifts

Table 5.4. lists phase alternating 180
0

composite pulses found

ousing the same method as the one employed for the 90 pulses. These

pulses then are assembled to have the form UUUU, which again reduces the

linear and bilinear cross terms further. These are termed DIPSI

("Decoupling In the Presence of Scalar Interactions") sequences, and

they are labeled by the index n, the same one used to label the

composite pulses.

Waugh scaling factors for the DIPSI sequences are shown in Fig.

5.6. Also shown in the figure is the one for the WALTZ-16 sequence for

comparison. WALTZ-16 sequence has the biggest bandwidth, reflecting that

the less constraints were needed to design it. Within their respective

bandwidths the DIPSI sequences are predicted to offer very good

decoupling for the single-spin case, since A are kept well below 10- 3
•

The cycling rate with w2/2~ = 2 kHz is 130.4 Hz for DIPSI-1, so it has a

length and complexity comparable to WALTZ-B. DIPSI-2 and -3 are

comparable to WALTZ-16 and -32 respectively in cycling rate.

Fig.5.7 shows scaling factors for DIPSI-1, -2 and -3 sequences.

The scaling factor for WALTZ-16 is also included for comparison. WALTZ-

16 shows the largest deviation from the scalar for the most of its

bandwidth. Thus it would give a spectrum consisting of four lines. DIPSI

sequences, on the other hand, render very good scalars. Thus the

spectrum would consist of a nearly degenerate "trip1et" state and a

singlet. Here again, it is possible to improve the degeneracy of the
I

scalar by averaging the coefficients of I 1QI 2Q . For example, Fig. 5.8
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oPhase-Alternating Composite 180 Pulses for Two

Coulped Spins-1/2

Label Sequence Bandwidtha Lengthb

365 295 65 305 350

320 410 290 285 30 245 375 265 370

245 395 250 275 30 230 360 245 370 340 350

260 270 30 225 365 255 395

a Given in terms of the parameter aw/w2 •

b Total rotation in degrees.

± 0.4

± 0.6

± 0.8

1380

2590

4890
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Figure 5.6 Single-spin scaling factors for DIPSI-l, -2, -3 and

WALTZ-l6. All the sequences ~ffer excellent single-spin performance

over their bandwidths, but WALTZ-l6 gives the largest bandwidth.
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Figure 5.7 Scaling factors for DIPSI-1, -2 , -3 and WALTZ-16,

using the same conditions as in Fig. 5.3. Even though the DIPSI

osequences use only 180 phase shifts, a pure scalar propagator is

approached quite closely. By contrast, WALTZ-16 gives a different

signature, showing non-scalar behavior and resulting in four different

transitions.
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Fig. 5.8 Scaling factors for the expanded sequence CxCy with the

composite pulses Rl , R2 • and R3. It is seen that very good scalar

operators result. However, the slopes of the scalars as a function of

the offset do not change appreciably.

t
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shows the averaging of the coefficients for the sequence Cxcy ' where Ca
- 0denote RRRR with a composite 180 pulse R applied along a axis in the

rotating frame. For most practical applications, however, small

deviations from the scalar as in DIPSI sequences go unnoticed and the

numerical value of the scalar does not change as the sequence is

expanded. Furthermore, the sequence expanded using orthogonal phases may

be very sesitive to imperfections such as phase shift errors and rf

field inhomogeneity as well as other imperfections such as relaxation

effects. Hence, in the experiments to be discussed in a later section,

the regular DIPSI sequences are employed.

V.4. The Offset-Dependence of the Scalar Interaction.

The splitting (~S) given by Eq.(5.37) was first discovered

emperically3. For a simple case of coherent-decoupling,7,lO,14,15 it is

possible to derive a qualitative dependence of ~S on parameters J IS ' J,

w2 ' SI' and S2' First consider the Hamiltonian given by Eqs.(5.38)-

(5.40). For coherent-decoupling the subscript k is immaterial. The

evolution operator may be separated as

(5.66)

where
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Since w2/2~ is about 2 kHz and J is about 10 Hz, it is well to

approximate U(t) such that

(5.68)

The calculation of Eq.(5.67) gives terms I 1QI 2Q as well as cross terms

I 1QI 2p (Q~P). Because only the qualitative offset-dependence of the

scalar part is of interest, it may be well to consider terms I 1QI 2Q .

With Eqs.(4.4)-(4.7), the relevant part becomes

(5.69)

Furthermore, to see only the qualitative behavior it suffices to

consider only the coefficient of anyone of these operators. If the

coefficient of I 1XI 2X ' for example, is chosen with the understanding

2 2that W 2 T - 2~ and in the limit w2»6 1 , it reduces to r(3/2)(6 1 /w 2 ).

Thus the splitting AS behaves as

(5.70)

correctly showing the dependence on parameters J IS ' J, w2 ' and 6 1 as in

Eq.(5.37). For this simple case f(6) - 6.

In Section V.3.B the "natural" slope of f(6 1 ) for each composite

pulse was discussed. Furthermore, an inspection of Figures 5.3, 5.4,
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5.7, and 5.8 shows an interesting feature; the slopes are nearly the

same. The calculation based on the ART is once again a good tool to

assess the slopes. In the limit w2»Sl' a calculation up to V(2) is

sufficient to show the offset-dependence of the scalar part, because

V(2) is the first term in which deviations from the scalar operator

appear. If the decoupling sequence makes linear and bilinear cross terms

vanishingly small, or if consideration is confined only to the scalar

part because linear and bilinear cross terms are not relevant to

determining the slope, the evolution operator to second order becomes

(5.71)

where the following notations are used:

kw
k

EO (-1) w2 ,

(k)
= -4 + 6

slk
- 2 c1kc --x wktk

(5.72)

(k) 3 3 s2k 3s1k c2kc 2 -4 wktk
+--+--y wktk 4

(k) 5 3 s2k 3s 1k c2k - 2 clkc -2 + --- + --- 4z 4 wktk wktk

with
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(5.73)

Since 1 1 .1 2 commutes with the rest of the operators in Eq.(5.7l), the

evolution operator may be rewritten as

(5.74)

where

(5.75)

With the definition

p(k) E P ... P
k 1

(5.76)

the transformation of Uk by p(k-l) becomes

( (k-l»)-l (k-l)
p UkP

[

2
. J 61 (k)

- exp -1t -- [c
6 2 xw

2

cos

(5.77)

Now the product of operators in Eq.(5.74) can be expressed in a single

exponential form by using the BCH formula, once again ignoring the cross



153

terms. Then U(r) reduces to

U(r) - U (r) p(k) eXP[_i
Jsi \ t { c(k)'

J 62J}. k xw
2

where

(k) ,
II 12 + c II 12x x y y y

+ c~k)' I1zIJ

(5.78)

(k) , (k)c = cx x

(k) , (k) . 2 (k-l) + c(k) . 2 (k-l)c = c cos a s~n ay y z

(k)' (k) 2 (k-l) (k) . 2 (k-l) (5.79)c - c cos a + c s~n a .z z y

If the sequence is to make a scalar,

(5.80)

must hold. The numerical value of the coefficient for the scalar

interaction is given by

C E5 .-1:\ t {c (k) ,
3rJ}. k x

(k)'+ c
y

(k) ,
+ cz }. (5.81)

Then Eq.(5.78) becomes
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(5.82)

Eq.(5.82) is the basis to estimate the "natural" offset dependence of

the residual Hamiltonian associated with the composite pulses listed in

Tables 5.3 and 5.4.

For the simple sequence (360x)(360x), the residual Hamiltonian

becomes

..

(5.83)

So the splitting is

(5.84)

For more complicated pulses, Eq.(5.82) is calculated using the computer.

The result is listed in Table 5.5. It can be shown that all pulses

listed give very similar but not identical slopes, confirming the

earlier observation. The second order average Hamiltonian calculation

predicts that the offset dependence of the splitting is linear:

(5.85)

so that

(5.86)

as in the case of the simple coherent decoupling. The next term in the

Magnus expansion which contains I 1aI 2a term should be V(4), admixing

terms proportional to 6:. Thus in general, f(6) can be expressed as a

polynomial of odd powers of 6:



Table 5.5 Slopes* of the composite pulses Pl-PC and Rl-Ra

Pl -1. 2128733

P2 -1.1255166

Pa -1.1414866

Pc -0.9625433

Rl -1. 2724800

R2 -1.1944533

Ra -1.1579233

*The slope is defined as the proportionality constant in

Eq. (5.85).
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V.5. Experimental Details.

, (6 2- 0, on resonance).

156

(5.87)

The sample used for decoupling experiments consists of a mixture

of CHsI and CHs CH2 I in acetone-de. The acetone-de is used as an internal

lock. The protons in the methyl iodide, being equivalent, are used to

test the single-spin bandwidths for the decoupling sequences. The

linewidth of the carbon-13 of the molecule was used as an internal

standard. A Brucker AM-400 with a 10 mm broadband probe was used for

this search test under routine operating conditions. The effect of

homonuclear coupling was examined by looking at the carbon-13 resonance

of the methyl group in the ethyl iodide molecule. To observe fine

structure in the carbon-13 spectra due to the homonuclear interaction a

5 mm broadband probe was used and the experiments were carried out on a

Brucker AM-500. The AM-500 spectrometer turns out to have much better B2

homogeneity than the AM-400.

A method for checking the spatial inhomogeneity of the B2 field

has been discussed in the literature. 13 Fig.5.9(a) shows an experimental

spectrum of lSC of the methyl iodide on the AM-400 with l80x180x pulse

sequence irradiating the proton spins in the molecule. A decoupler

resonance offset of 200 Hz resulted 11.80 Hz splitting between peaks.

With the measured value of J CH - 151 Hz, the B2 field was calibrated to

give 2551.50 Hz. The distorted lineshape in the Figure results from the

B2 inhomogeneity. In Figure 5.9(b) a portion in Fig. 5.9(a) marked by an
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(a)
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0.85 -0.67
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XBL 8711·5957

Fig. 5.9 18(a) C spectrum of the methyl iodide with proton

decoup1ing. The splitting 11.80 Hz between two adjacent peaks results

from a 200 Hz decoupler offset. (b) The expanded view of the peak marked

by an arrow in (a). The B2 field distribution at half of the maximum

height around the nominal value 2551.50 Hz is 1.52 Hz. The small peaks

at ± 15 Hz are spinning sidebands.
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arrow is expanded to clearly show the distortion and to facilitate the

extraction of the distribution of B2 field from the line shape. A 1.52

Hz deviation from the nominal value at half of the maximum intensity is

found.

For all decoup1ing experiments, care was taken to ensure a

constant temperature around the sample. One reason is that the

temperature change may cause a shift of resonance frequencies. 16 The

temperature dependence of the C-13 peak of the methyl iodide in the

sample is shown in Fig. 5.10. In the Figure, the peak at the far left

corresponds to the reference peak with the decoup1er level at 2551.50 Hz

. h h 1 301°. Th h d 1 . dWlt t e samp e at en t e temperature was su den y ralse

°307 K. The signals were sampled at the interval of 5 minutes. The

to

temperature change not only caused the shift of the resonance frequency,

but also broadened the resonance 1inewidth. It is observed that about 15

minutes are required for the sample to reach the normal state. Another

reason to keep the temperature constant is to prevent thermal expansion

or contraction of the decoup1er coil, which would lead to the

fluctuation of the decoup1er level. Irradiation of the decoup1ing field

will invariably cause a temperature rise in the sample; a method for

keeping the temperature stable is setting the temperature at a level

higher than the room temperature by turning up the temperature control

knob, so that the preheated N2 gas may pass around the sample. Another

advantage of turning up the temperature is that at higher temperatures

the viscosity of the sample tends to decrease, a favorable condition for

line narrowing. However, if the temperature is too high, the sample can

°evaporate. It was found that at 307 K the temperature was most stable
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Fig. 5.10 The temperature dependence of the C-13 peak of the
XBL 8711-5956

methyl iodide. The peak at the far left is the one before the

temperature change, and after the temperature was changed signals were

obtained at 5 minute intervals.
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while the decoupler was on, and the sample did not evaporate. After the

pulsing with decoup1ing sequences the cw decoup1ing field was turned on,

because otherwise the temperature of the sample dropped under these

conditions. Magnet shimming was also done at the same temperature. It

was possible to shim the magnet to obtain a l8C 1inewidth as narrow as

0.12 Hz with on-resonance proton decoup1ing.

Figure 5.11 shows the experimentally observed resonance of carbon­

13 in methyl iodide (JCH - 151 Hz) on the AM-400 as a function of proton

decoup1er offset for various decoup1ing sequences. The 10 mm sample tube

was spun constantly at 6 Hz, because at high spinning rates the surface

of the sample (in the bigger 10 mm tube) may be vortexing, which would

introduce more inhomogeneity than what the spinning is intended to

eliminate. Most of the time during the experiments the magnet was

shimmed so that the on-resonance coherent decoup1ing gave 1inewidths

within 0.2 Hz. To enhance the sensitivity, a line broadening of 0.5 Hz

was added, giving a final 1inewidth of 0.25 Hz. The same setting was

used for all the decoup1ing sequences. The decoup1er level was

calibrated using the method suggested by Ernst. 17 The decoup1er level at

1480 Hz was used to perform a stringent test for each sequence. The

decoup1er offset was incremented in 200 Hz steps over the range ±1400 Hz

about the exact resonance.

WALTZ-16, which was designed primarily for single-spin cases,

gives the biggest bandwidth as expected. Bandwidths for WALTZ-16 and

DIPSI-2 agree well with the theoretically predicted bandwidths. However,

the bandwidth for the DIPSI-3 is less than the theoretical one. A cause

for this discrepancy may be attributed to the low cycling rate of 27.2
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Figure 5.11 Carbon-13 resonance of methyl iodide showing the

offset dependence of DIPSI-2, DIPSI-3,WALTZ-16, a 12 and a 24 pulse

sequence, and COMARO. The decoup1er offset has been stepped in 200 Hz

increments over a ± 1400 Hz range about exact resonance. Sequences (a)­

(c) give narrow resonances over their bandwidths, but WALTZ-16 decoup1es

over the largest range. The variations in peak height are attributable

to poor w2 homogeneity over the sample volume. Sequences (d)-(f) have

very limited single-spin bandwidths, and are not suitable for

decoup1ing in liquids.
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Hz of DIPSI-3. Nonetheless, DIPSI-3 gives more uniform and higher peak

heights, an evidence of enhanced tolerance to B2 inhomogeneity.

Single-spin bandwidths for schemes using 90° pulses with

orthogonal channels are very small as Figs. 5.11(d)-(f) show. In Figs.

5.11(d) and (e) the seven-pulse composite 90° is plugged into the

sequences (x y X y)3 and (x y)3(x y)3(X y)3(X y)3 (Eq.(4.50)). There is

a very small improvement in bandwith of the 24-pu1se sequence over that

of the 12-pu1se sequence, except at resonance. In Fig. 5.11(f), the

performance of COMARO-4 is shown. The sequence does not even work at

resonance. The only difference between COMARO-4 and the above 24-pu1se

sequence is the composite 90° pulses used. It follows that the composite

pulse should be used carefully depending on the situation at hand. A

similar discussion can be found in the literature in connection to

multiple-quantum NMR. 18 Common to all these composite 90° pulses are

very restricted bandwidths and intolerance to B2 field inhomogeneity.

Consequently, these sequences are not suitable for liquid decoup1ing

experiments.

Now consider the case where there is a homonuc1ear coupling

between two inequivalent protons, as in the case of most molecules of

interest. In order to observe the fine structure due to homonuc1ear

coupling the AM-SOO spectrometer with a S mm probe was used. Once

again, a sample consisting of methyl and ethyl iodide in acetone-de is

used. Fig. 5.12 shows the resonance peak of a methyl carbon-13 in ethyl

iodide. The coupling constant J HH between methyl protons and methylene

protons is measured as 7 Hz. The magnet was once again shimmed until the

1inewidth resulting from coherent decoup1ing would gave 0.2 Hz.
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Figure 5.12 Carbon-13 methyl resonance of ethyl iodide using

three different values of w2 • Due to the effect of scalar coupling

between the protons, distorted lineshapes are obtained with WALTZ-16

(left-hand spectra). DIPSI-2 gives better results, as shown on the

right.

166
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No line broadening was added. Decoup1er offset was set on resonance at

the methyl protons, then the methylene protons are 690 Hz off resonance.

Decoup1er levels used were 1100, 1460, and 1930 Hz and sample was spun

at 15 Hz, faster than the rate for the 10 rom tube. The number of scans

is 64 for each spectrum.

WALTZ-16 at w2/2~ - 1100 Hz gives a very broad multiplet. As B2

field increases from 1100 Hz to 1460 Hz to 1930 Hz, a slight narrowing

is achieved. However, even at the highest decoup1er level there still

exists distinct multiplet structure with a 1inewidth of 1.0 Hz.

Furthermore, at all decoup1er levels tested the "wing" at the base of

each of the peak is seen to persist, but decreases as the B2 field is

increased. The wing is due to the "quartet effect,,19,20 of the C-13

quartet: The outer lines of the methyl quartet experience an effective

decoup1ing three times as large as the inner lines, and they are three

times more sensitive to the spatial inhomogeneity of the proton

decoup1ing field B2 .

The right-hand series of spectra are the results of the DIPSI-2

sequence on the same sample with the same experimental settings. The

result of DIPSI-2, with its similar cycling rate and complexity, is

directly comparable to the result of WALTZ-16. At the decoup1er level of

1100 Hz a slight trace of the wing is observed and splitting between the

singlet state and the "triplet" state is seen. However, the performance

is already better than that of WALTZ-16 at the highest decoup1er level.

As the B2 level increased the 1ineshape approaches more closely the 3:1

pattern with the splitting unresolved, and at 1930 Hz the peak is

essentially a singlet. Intensity enhancement of DIPSI-2 over WALTZ-16
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trans - Cinnamic Acid Structure
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Fig. 5.13 The trans-cinnamic acid structure. The protons labeled

1 and 2 are a good approximation to an isolated pair of homonuclear-

coupled spins, which are also coupled to the carbon-13 labeled with an

asterisk.
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is about 25 %. The 1inewidth of the peak obtained with DIPSI-2 at

1930 Hz is about 0.62 Hz as compared with 1 Hz 1inewidth obtained with

WALTZ-16. One reason for the high intensity of the peak resulting from

WALTZ-16, despite the breadth of the line may be inferred from Fig. 5.7.

It can be seen that although the WALTZ-16 fails to make a scalar for the

most part of the bandwidth, two scaling factors belonging to the

"triplet" manifold stay quite close together and in fact closer than the

overall spread of the three scaling factors for the DIPSI-2 sequence.

Thus the two closely located scaling factors for the WALTZ-16 sequence

accounts for the sharp center peak in Fig. 5.12. While DIPSI sequences

manage to make the overall scalar better, the resultant scaling factors

are separated slightly more than the two scaling factors for the WALTZ·

16 sequence. In theory, therefore, the intensity of the spectrum for the

DIPSI sequence can be enhanced by lengthening the sequence to CxCy ' of

which scaling factors lie much closer to each other as can be seen in

Fig. 5.8. However, because sequences employing orthogonal channels are

quite sensitive to instrumental imperfections, the possibility of

improvement in performance of the lengthened sequence is questionable.

To compare the performances of the sequences in more complicated

molecules, trans-cinnamic acid was chosen as the sample. The structure

of the trans-cinnamic acid is shown in Fig. 5.13. In the Figure C*

denotes the C-13. Because of the small homonuc1ear coupling between

methylene protons and ring protons, and the proton in the acid part of

the molecule, the methylene protonf. can hoe C011sldered to form a nearly

isolated two-spin system. The coupling CCiClst'ir.t between the two
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Figure 5.14 Low-field ethylene resonance of trans-cinnamic acid

under conditions of broadband decoupling. WALTZ-16 gives broad

multip1ets, and at the lowest decoupler level all four lines are

resolved. DIPSI-2 narrows the resonance considerably, resulting in

better sensitivity and resolution.
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Figure 5.15 Comparison between simulation and experiment for

trans-cinnamic acid using WALTZ-16 (left) and DIPSI-2 (right). The

parameters used in the simulation are w2/2~ - 1100 Hz, 61 - 0 Hz, 62

584 Hz, 1JCH - 150 Hz, 2JCH - 0 Hz and J HH - 16 Hz. The simulations

assume a completely homogeneous w2 field, and have been artificially

line broadened to match the 1inewidths of the experimental spectra. No

attempt has been made to fit the experimental spectra.
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methylene protons is 16 Hz. The molecule has previously been used to see

the effect of homonuc1ear interaction on the broadband heteronuc1ear

decoup1ing experiment. 3 Decoup1er offset was set at the resonance

*frequency of the proton (labeled as HI) directly attached to C , and the

resonance offset of the indirectly coupled proton (H2 ) is -584 Hz. Fig.

5.14 compares the spectra resulting from the decoup1ing sequences DIPSI-

2 and WALTZ-16 at the decoupler levels 1100 Hz and 1930 Hz. At 1100 Hz

WALTZ-16 gives a spectrum showing four broad lines, while DIPSI-2 gives

a much narrower 1inewidth and an intensity twice as big. Even at the

higher decoup1er level of 1930 Hz WALTZ-16 still does not give a 3:1

pattern comparable to those of the spectrum obtained with DIPSI-2 at

the lowest decoupler level of 1100 Hz. By contrast, DIPSI-2 results in

almost a singlet at 1930 Hz with an intensity 50 % higher than that of

the corresponding spectrum resulting from WALTZ-16. Fig. 5.15 shows the

good agreement between the simulated and the experimental spectra for

WALTZ-16 and DIPSI-2 at 1100 Hz.
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CHAPTER VI. The Modulation of the Spatial Coordinates of the

Sample

VI.1. Introduction

As discussed in chapter I, the Hamiltonian for a system of nuclear

spins is composed of coordinate and spin parts. If there were no

external magneic field present, the Hamiltonian retains the full

isotropic sYmmetry. In other words, the Hamiltonian becomes a scalar,

and consequently there is no preferred orientation. The use of no

magnetic field has been devised in the early days of NMRl and the

recently introduced method of time-domain zero-field NMR2 has been

quite successful in structure determination in randomly distributed

spins in solids. Without the external magnetic field however, valuable

information is lost; namely the chemical shift cannot be recovered with

the zero-field NMR technique. Thus the vast majority of NMR experiments

are performed in high magnetic fields. Furthermore, the trend is to use

higher magnetic fields to achieve better resolution.

In the presence of the high magnetic field only the terms which

commute with the Zeeman term survive, and other terms are "truncated".

Unfortunately, this makes the Hamiltonian assume cylindrical sYmmetry,

and preferred orientation of nuclear interactions sets in. In liquids,

the orientation dependence is averaged away naturally by molecular

motions faster than the Larmor frequency. Nuclear spins in solids, in

contrast, are locked in a rigid lattice and do not enjoy this benefit.
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Hence the NMR spectra of powdered solids exhibit broad, and in many

instances featureless, signatures reflecting the effects of the

anisotropies of the spin interactions.

One way to overcome line broadening is the application of

multiple pulses,3 and this is one of the main goals of chapter III. If

transformed into an appropriate frame, the spins acquire time

dependence. Because of technological limitations on the amplitude and

phases of pulses, it is futile to imitate nature and apply the pulses

randomly. Thus most pulsed NMR techniques use carefully designed

sequences of pulses, with the exception of stochastic excitation. 4

(Recently, Tycko et.al5 introduced highly efficient iterative schemes,

in which at high iterations the pulse sequences behave stochastically.

However, this method is different than the random modulations such as

"white noise".) Unfortunately, the chemical shift anisotropy cannot be

removed with the multiple-pulse method without removing the isotropic

chemical shift at the same time.

On the other hand, because of the duality of the spin Hamiltonian

it is equally possible to achieve line narrowing by mechanical

modulation on the spatial coordinates. The rotation of samples was

introduced almost three decades ago6- IO and has been used ever since.

Provided that the rotation speed exceeds the coupling constant of the

spin interaction under consideration, the rotation of the sample

"truncates" the coordinate part of the Hamiltonian along the spinner

axis much like the magnetic field truncates the spin part. In

particular, if the spinner axis is tilted by the "magic" angle, 8m =

o
54.7 , the truncated value of the (first order) anisotropy is equal to
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zero. The magic angle spinning (MAS) methodll has been the major method

for obtaining isotropic chemical shifts. However, for abundant spins-

1/2 or for nuclei with spin angular momenta greater than 1/2, the

rotational speed has to exceed dipole or quadrupole coupling constants.

Considering that currently the highest spinning speed rarely exceeds 20

kHz, the application of MAS to systems other than dilute spins-l/2

seems to be unfeasible.

A method to get around this problem is the use of multiple pulses

to remove dipolar (or possibly quadrupolar) interactions while using

MAS to remove the chemical shift anisotropy (CSA). The method was

suggested by Haeber1en and Waugh12 and experimentally implemented by

Gerstein et.al. 13 Unfortunately, the application of multiple pulses

scales the chemical shift range, and thus degrades the resolution. The

use of higher magnetic fields may be a solution. However, this again is

limited by the technically achievable spinning speed.

Recently, Maciel et. a1. 14 showed how to recover the isotropic

chemical shift without spinning the sample. Instead, the sample is

discretely hopped by 1200 around an axis tilted by the magic angle from

the laboratory z axis along with appropriate sequences of pulses to

initiate and terminate the evolution of the density operator. This

obviates the necessity for rapid spinning, and thus constitutes a

significant development in high resolution NMR of powdered solids.

However, the application of the hopping technique is still confined to

18
the case of dilute spins-1/2 such as C. The reason is that for

abundant spins-1/2 or for spins with angular momenta greater than 1/2,

dipole or quadrupole interactions have to be considered. The hopping
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technique may be generalized to treat these problems. However, the

evolution under these interactions as well as the chemical shift, can

no longer be regarded as rotations. Thus it is very difficult to

express the resulting density matrix in terms of functions with closed

form. In fact for spins I ~ 3/2 the basis operators, (21 + 1)2 in

number, have yet to be developed.

For these cases a solution may be once again the application of

multiple pulses. But the scaling of the chemical shift range is

unavoidable. Furthermore, because the resulting quantization axis would

be different from z axis, the evolution of the density matrix under

this effective Hamiltonian would be very complicated. Consequently, the

design of schemes for removing CSA would be quite difficult. Another

setback of this technique is that even for the removal of CSA four

experiments are required for quadrature detection. The requirement

stems from the inherent method of "storing" only half of the

information about the evolution as a Zeeman order. In addition, the

hopping time t h must be T2 < t h < Tl , so that the unwanted information

may dephase completely. Although the condition is easily met, half of

the information is wasted (which is recovered only after doing. three

other experiments) and decay of the signal occurs because of the spin-

lattice relaxation during tho This may be particularly serious for a

system for which Tl is not substantially longer than T2 . A superior

approach then should be one which does not have the lower limit on tho

In this chapter, the magic-angle hopping technique will be

generalized to be applicable to abundant spins-1/2 and, in principle,

spins I ~ 1 as well as dilute spins-1/2. Basically, the extension
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consists of the application of multiple pulses at appropriate times in

addition to hopping of the sample. Also it will be shown that with this

approach only one experiment is necessary for full quadrature

detection. Furthermore, if more than one angle is allowed to be used,

other anisotropies such as the second order quadrupole effects can also

be removed.

VI.2. The Hamiltonian

As dicussed in Chapter I, in the laboratory frame (LAB) a general

form of the internal spin Hamiltonian consisting of chemical shifts

(CS), dipole (D), and quadrupole (Q) terms may be written as

(>' ... es, D, Q) (6.1)

where the sphrerical tensors ~ and ~ denote spatial and spin parts

respectively. Tlm ... 0 unless l ... 2 for>. ... D, Q. For>. ... es, the term

corresponding to l ... 1 (the antisymmetry part) does not contribute to

the spectra to first order and thus will be ignored. Then Eq.(6.l) may

be rewritten as

+ 1b=-~ (6.2)
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Since H1 has a common structure for all A, it suffices to consider a

representative case and suppress the summation over A. R2-m in H1 can

be expressed in terms of tensors ill the principal axis system (PAS) as

is given by Eq.(1.17). Thus

(6.3)

2Once again Dmm , denotes the Wigner rotation matrix connecting the LAB

and PAS. Now consider a tilted space frame, related to the LAB by

D~(O). With the notation D:b(O) E Dab and D:b(O') = D~b' Eq.(6.3) in

the tilted frame becomes

In NMR, measurements are usually made in the rotating (spin) frame,

which is defined by the transformation

(6.5)

Then from Eq.(1.12) the Hamiltonian becomes (henceforth the subscript

"I" will be dropped)

(6.6)

Because of the rotational sYmmetry around the z axis ~ can be set to
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zero. 8 - 0 because the axis of the rotation is along the z direction.

Then

where ¢(t) = wot is used. The Hamiltonian thus becomes

where

r?:3 D' +!l (D' D')P2-M = J3 -MO 3 -M2 + -M-2'

H(t) vanishes over a cycle WOT = 2~ unless m = O. Thus

and this corresponds to the usual truncation.

VI.3. The Removal of the First Order Anisotropies

Magic angle experiments

(6.7)

(6.8)

(6.9)

(6.10)

It is well known that T20 in dipole and quadrupole Hamiltonians

can be removed by either continuous coherent averaging with the
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radiofrequency field tilted by the magic angle as in the Lee-Go1dburg

experiment15 or the discrete isotropic average resulting from mu1tip1e-

pulse sequences such as the WHH-4 sequence

x y z .. 0, (6.11)T20 + T20 + T20
f

where

o 1 ' -+ -+'
T20 .. ]6(31

0
1

0
- 1'1 ). o .. X, y, z (6.12)

Thus three configurations such as X, y, and z are needed. In view of

the analogy discussed in Chapter I, it is clear that the same

continuous averaging around the magic an~le and the three

configurations can also be used to remove the spatial part of the spin

Hamiltonian. Note that the configurations can be reached by 120
0

rotations around the (111) axis. The removal of the spatial part will

now be shown by detailed calculation. The principal equation to be used

is Eq.(6.10), where the Wigner rotation matrix DO_M is a function of

two angles p and 1, namely 0 (0, p, 1). P is the tilt angle of the

symmetry axis from the LAB z axis, and 1 is the azimuthal angle of the

symmetry axis.

(i) Sample Spinning Experiments

These correspond to the continuous coherent averaging method. In

this case Eq.(6.10) becomes



-iMwr te ,

183

(6.13)

of which average vanishes over the cycle WrT - 2w unless M - O. Thus

once again H is truncated along the direction of the spinner axis:

Note that

2
DOO(O) - 12 (cosP) - 1/2 (3 cos P -1).

(6.14)

(6.15)

Thence H - 0 if P - em (the magic angle), and this is the origin of the

magic angle spinning (MAS) experiments.

It is interesting to note that in principle there is an

infinite number of angles Pk which make 12(cosP) vanish in the sense

that

(6.16)

N is the number of degrees of freedom for choosing angles. For N - 1

there is only one angle which satisfies the above equation and this is

the magic angle. For n - 2 there is an infinite number of sets of such

angles. It will be shown in a later section that the increased number

of degrees of freedom opens up possibilities of doing unusual

experiments.
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As discussed in the introduction to this chapter, it is

difficult to achieve spinning speeds greater than the dipole (and of

course the quadrupole) interactions. Thus, the MAS is mostly confined

to dilute spins-l/2 such as lSC, whose spectra is broadened

predominantly by the CSA. Foe dipole coupled spins-l/2, the dipole

interactions can be removed by the application of multiple pulses,

while the CSA is removed by the MAS. This method is termed "CRAMPS"

(the Combined Rotational And Multiple Pulse Spectroscopy)l3,l6 CRAMPS

is currently the most widely used method for extracting the isotropic

chemical shifts of the abundant spins-l/2. However, the disadvantage of

the method is, as pointed out earlier, that the the chemical shift

range is scaled by the multiple pulses applied, degrading the

resolution. This may be problematical for a system of spins with a wide

range of closely spaced chemical shifts. The application of higher

static magnetic field to separate these resonance lines are hampered by

the limitation of the spinning speed available.

(ii) Sample Hopping Experiments

The spatial analog of the coherent averaging with discrete

piecewise-constant configurations is the sample hopping experiment.

The solid angles corresponding to the configurations x, y, and z are

01 - (0, 0, 0),°2 - (0, ~/2, 0), and Os - (0, ~/2, ~/2). For

simplicity the following notation will be used:
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At those three solid angles A(O) becomes

(6.18)

It follows that

(6.19)

showing that indeed the three configurations remove all (first order)

anisotropies. It can easily be proved that if the sample is not spun,

the first order anisotropies cannot be removed with angles fewer than

three. Thus the minimum number of degrees of freedom for this case is

three.

Implementation

A question arises immediately: How can one implement Eq.(6.19)

experimentally? Of course, Eq.(6.19) cannot be satisfied in the sense

of time-averaging, because the time scale for manipulation of the
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spatial coordinates is much bigger than that of the spin coordinates.

For dilute spins-l/2 the experimental implementation of Eq.(6.l9) can

be done with the hopping technique developed by Maciel et. al. l4 :

Consider the Hamiltonian for spins-1/2 in powdered solids consisting of

the Zeeman(Hz ) and the chemical shift(Hcs ) terms. For simplicity only a

representative crystallite will be considered. However, the result

holds for a system with an arbitrary number of crystallites as well.

The Hamiltonian in the rotating spin, tilted space frame may be

written as

(6.20)

where the index M runs from -2 to 2, and 0iso is the isotropic

shielding tensor.

First position the sample axis at 01 and apply a ~/2 pulse along

the (-y) direction. Then the initial density operator is allowed to

evolve under the Hamiltonian corresponding to the angle for the

duration of T13. The density operator at T- TI3 is thus

(6.21)

where

(6.22)



187

The x component is stored by applying a second ~/2 pulse along the y

axis and the sample axis is hopped to the next angle 02' A ~/2 pulse

along (-y) allows the magnetization to evolve, and after another period

T/3 the density operator becomes

(6.23)

The procedure is continued until the angle dependence of the

magnetization becomes

(6.24)

Three other experiments to store various components result

(6.25)

It follows that
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[; L Hop Hop

j Hz (01) IHz = 0I Hz{Q2} IHz = 0 I Hz<Q3}

t ... , ..... ~.. ..
p(O) = I th t1x -

3

XBL 8711·5970

Fig. 6.l(a) Schematic diagram of the experiment for removal of

the first order anisotropies. The initial density operator created by a

o
90 pulse along -y axis evolves under Hz(~)' See text for the

definition of the Hamiltonian. The Hamiltonian is made to vanish during

tho the individual hopping period. Overall evolution time is t l .
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Fig. 6.1(b) The three orientations of the sample ~ to be used

for the experiment given in Fig. 6.1(a). The sample is hopped about an

axis tilted by the magic angle, em with respect to the z axis.
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Here

(6.26)

Thus the isotropic chemical shift is recovered. However, a disadvantage

of the method is that four experiments are required for quadrature

detection. A superior method is to recover the isotropic chemical shift

in one experiment. The key is not to discard half of the information

while storing the remainder. To achieve this, consider the experiment

shown in Fig.6.1.

The evolution operator for the scheme at time t = t 1 + 2th is

(6.28)

where Rz(~) denotes the high field truncated Hamiltonian with the

sample oriented along Ok' The second equality in Eq.(6.28) follows from

the fact that

i,j = 1,2,3 (6.29)

From Eqs.(6.2), (6.20) and (6.28) it follows that
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(6.30)

where uiso k is the isotropic shi1ding tensor for the kth spin.,

Consequently the spectrum should show sharp lines at their respective

chemical shift values.

The procedure also holds when there are dipole and/or quadrupole

interactions present as well as the chemical shift term in the

Hamiltonian. If the hopping procedure of Maciel et. al. is followed, it

is extremely difficult to express the density matrix evolved under the

Hamiltonian. Furthermore, for spins I ~ 3/2, it is not even known

whether one can write down the density operator at all, let alone

decipher the information and design schemes to remove unwanted terms. A

straightforward method analogous to CRAMPS is to apply multiple pulses

to remove the dipole (and quadrupole interactions), while the hopping

technique is used to remove the CSA. However, once again the chemical

shift range would be scaled and the resulting quantization axis would

be different from I z ' which makes the design of the schemes very

difficult. Thus the present method may be the most versatile one. The

crucial point is to make Hz

the next section is devoted.

o during the hopping periods, to which

VI.4. The Design of Dead Time for Evolution

The general approach adopted here to make U(th ) - 1 during hopping
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periods is the Average Hamiltonian Theory (AHT). Of course other

approaches such as iterative schemes can be incorporated.

First consider a Hamiltonian containing only the chemical shift

term. As usual, the density operator starts evolution by a ~/2 pulse

along the -y direction. Instead of terminating the evolution by another

~/2 pulse, apply 2~ pulses continuously while the sample is hopped.

Then the density operator at t - T/3 + t h becomes

p(i +~) - aexP(-iJ~dt'{~(i + t')Iz + Wily}) exp(-i~lIz) Ix

X exp(i~lIz) a-lexP(iJ~ dt'{~(i +t')Iz + Wily})

= exp(-1~WIly) aexP(-iJ~dtJ~dt'{~(i + t') Iz(t)}) U1lx

x ut a-lexP(1J~ dtJ~ dt'{~(i + t') iz(t)})exP(i~WIly) (6.31)

Here a is the time-ordering operator,

(6.32)

(6.33)

(6.34)
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~ ~ 1.0

~ - 0.5

~ - 0.0

Fig. 6.2 Simulated spectra of a powder sample of dilute spins-1/2

with asymmetry parameters ~ - 1.0, 0.5, and 0.0. The three spectra on

the left are for the static sample, while those on the right are

spectra predicted to result from the experiment.



194

Supposing that w1 » I ~ I. one may approximate the time-ordered

integration of the "switched" operator Iz(t) in Eq.(6.31) by the zeroth

order average over the duration

1(0)= ! J~ I (t) dt.
z ~ 0 z

(6.35)

which vanishes if w1th = 2m~. m = 1.2.···. Furthermore. because the 2~

pulse imparts cyclicity to the switched Hamiltonian. all odd order

correction terms vanish. Similarly. the Hamiltonian is made zero with

the 2~ pulses during the second hopping period. Hence. to this degree

of approximation. at t - r + th the density operator becomes

p(t) (6.36)

Therefore. once again the isotropic chemical shift is recovered.

However. it is achieved in one experiment. The continuous irradiation

of 2~ pulses may be somewhat demanding. A better way may be to apply ~

pulses at appropriate times to create a spin-echo while the sample is

hopped.

Fig.6.2 shows the simulated spectra of a powdered sample of dilute

spins-l/2 with ~ values O. 0.5. and 1.0. Fig.6.2(a) is for a static

sample and displays full powder pattern. Fig.6.2(b) shows a sharp

single line which is predicted to result from the experiment proposed

in Fig. 6.1.

For a dipolar or a quadrupolar system it is easy to create an
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z

y

XBL 8711-5960

Fig. 6.3 Trajectory of I z for the sequence (x y)8. Note that the

trajectory traverses all six points, where the three coordinate axes

intersect the unit sphere.
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echo by applying (~/2)x(~/2)y pulse sequence. 17 However, if the

Hamiltonian contains the chemical shift term in addition to dipole and

quadrupole terms, there are no time-reversal sequences for creating the

echo. Consequently, sequences to get rid of all these terms must be

designed. For a general discussion of methods to average various terms

the reader is referred to Chapter III. As discussed earlier, it

requires three configurations to remove the T20 terms in the dipole

(and quadrupole) Hamiltonian to zeroth order. In addition, two

CS CSconfigurations are are required to remove I z terms (Too and T20 ). Since

these two averaging processes are independent of each other, at least

six configurations (or six pulses) are required.

3Two examples of such sequences are (x y) and (y x 2x x y), where

x, y, X, and yare 900 pulses with four quadrature phases. The

trajectory of Iz(t) resulting from the sequence (x y)3 is shown in

Fig.6.3. It is well known that for sYmmetric cycles all odd order terms

vanish. 18 As shown in Appendix 5, such a sequence can be constructed by

concatenating an inverse sequence with an original sequence .. Examples

are given in Figure 6.4.

VI.5. The Second-Order Quadrupole Effect

VI.5.l. The problem19 -2l

For a powder sample of spins I ~ 1 the biggest broadening is due

to the anisotropic quadrupole effects. The first order quadrupole

effect was treated in the last few sections. It will be shown in this
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(a)

y x x y 2y Y x x y, \
I ,
I I
I ,,

Z X 2Y X Z Z X 2Y X Z I
I ,

(b)

y x 2x x y

x y Y X 2Z

y

x

x

y

2x

y

x

x

y
\
I
I,,
I

XBL 8711-5971

Fig. 6.4 Two sequences which produce symmetric evolution

operators, and thus make all odd order correction terms in the Magnus

expansion vanish.
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section that the geometrical arguments associated with the magic angle

are no longer tenable for the higher order anisotropies. Nonetheless,

there are some interesting symmetries for these higher order

anisotropies, which will be exploited to design experiments for the

removal of the anisotropy associated with the second order quadrupole.

The second order quadrupole effect is most prominent for nuclei

with half-integer spins. Especially, for these spins the first order

effect does not manifest itself in the central transition m = -1/2 ~

m = 1/2 of the spectrum. Figure 6.5 shows this situation schematically.

To see this mathematically, consider the signal resulting from the

secular quadrupo1ar Hamiltonian H4°) qiven by Eq.(6.10) with w~ = wQ:

(6.37)

where

(6.38)

Now consider only the subspace connected by the transition between

m ~ -1/2 and m - 1/2, which is relevant to the discussion. Then
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1- ---2
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"3 ""-
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XBi.. 8711·5976

Fig. 6.5 Central portion of the energy levels of a nucleus with a

half-integer spin. The Zeeman energy levels are perturbed by the first

order quadrupole interaction. However, the energy level difference

between m = 1/2 and m = -1/2 remains unchanged.
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Since

<1/21 T20 11/2> = <-1/21 T20 1-1/2>,

(6.39)

(6.40)

(6.41)

Thus the broadening in the central transition is due to the second

order quadrupole interaction.

VI.5.2. Mathematical Formulation for the Removal of the

Second Order Effect

In a tilted space, rotating spin frame the first order correction

term is given by

(6.42)

where



(6.44)

•
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Among the various cross terms only the terms A - A' - Q and i ~ i' ~ 2

are responsible for the second order quadrupole effect. After some

algebra it can be shown that the part of the Hamiltonian which gives

rise to the second order quadrupole effect reduces to

2

H~l) ~~O ~O; (_l)m { 2 V2_m V20 [ T2m , T20 ]

- V2_m V2m [ T2m , T2_m ]},

where the label Q is suppressed for simplicity except for wQ in the

expression.

Table 6.1 lists commutation re1atioships among various operators

Tim' In the basis of the Zeeman interaction only [ T2m , T2-m ] (m ~

1,2) are nonzero, and thus these are the terms which contribute to the

first order energy shifts to the energy levels determined by the Zeeman

and H~O) term. Therefore, these are ultimately responsible for the

second order quadrupole effects.

It is easy to show that

<-1/21 [T2m , T2-m ] 1-1/2> - <1/21 [T2m , T2-m ] 11/2> - 16

m - 1,2.

Thus the second order freguency shift is given by

(6.45)



Table 6.1 Commutation Relations for Various Spin Operators

Expressed in Terms of Spherical Tensors

[ T2±l' T20 ]
3

(1
2
1 + I 1+1 + I 12)

-2 .16 z ± z _ z ± z

[ T2±2,T20 ]
3

(1
2
1 + 2 1+1 1+ + I I~)- ±--

2.16 ± z _ z _ z _

[ T T ] (171z - 41
Z

3
)2+1' 2-1 -

Here
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."
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(6.46)

" Eq.(6.46) is the principal expression to be utilized for the design of

the schemes for the removal of the second order quadrupole effects.

Spinning Experiments

Now consider the case in which the sample is spun around a tilted

axis. With the definition of V2M given by Eq.(6.43) and the following

property of the Wigner rotation matrix

D .., (_l)M-m D*
-m-M mM (6.47)

the second order shift reduces after some lengthy calculations to

2

"'
(2) _ 16"'n ~ 2 I' R(,-~ DMO + -3 DM2Q 3"'0 ..,-2

'1\' ) 12+ u
M

_
2

More explicit expression of Eq.(6.48) is prohibitively complicated. The

geometry of the scheme for the removal of ",~2) can be found as follows:

The line broadening is due to the distribution of the orientations

O'(O,P' ,~') of the spins in the powder sample. The orientation

dependence can be expanded in terms of independent basis functions of
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/J' and -y'. Thus

Explicit calculation of Eq.(6.49) shows that

(2) = ~ C (0) cos(2m/J') COS( 2nl').wQ mn
,n-0,1,2

(6.49)

(6.50)

Here m = n = 0 correponds to the orientation-independent terms, which

give rise to the isotropic shift. The isotropic shift can be calculated

to give

(6.51)

where

f - 3 2 2 3 4
1 s c "8 s

f 2
-1 ( 4 + 6

2 - 7) (6.52)- 16 9 c c

1 ( 4 - 6
2

+ 1)f - - 9 c c3 4

with



..

[s) [Sin fJ)
c ... cos fJ ,
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(6.53)

fJ being the tilt angle of the spinner axis from the LAB z axis. It is

interesting that the sum of the coefficients of f k in each parenthesis

is equal to 1.

The coefficients Cmn in Eq.(6.50) are determined by the orienta-

tion of the spinner axis. The removal of the second order quadrupole

effect thus reduces to making

(m,n -= 0,1,2), (6.54)

except the coefficient of the isotropic shift COO' Cmn can also be ex-

panded in terms of f k , and it can be shown that Eq.(6.54) is achieved

when

(6.55)

Note that

(6.56)

where



1

-0.5

XBL 8711·5959

Fig. 6.6 The second and fourth order Legendre polynomials.

ck & cosPk (k - 1,2) where Pl and P2 are angles which make the

polynomials vanish simultaneously.
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(6.57)

is the fourth order Legendre polynomial and once again

(6.58)

The second and fourth order Legendre polynomials are shown in Fig.6.6.

Thus it may be conjectured that the removal of an nth order anisotropy

by mechanical sample spinning is associated with a function ~ having

iliefum

g = \ n
l

b 1
2

(cos P).
n ~= ~ m

(6.59)

However, the rigorous proof of Eq.(6.59) for n ~ 3 requires more work

and is of no further interest here.

In view of Eq.(6.56), the angles which satisfy Eq.(6.55) must be

the roots of the simultaneous equations

(6.60)

and

(6.61)



Fig. 6.7 Simulated spectra for a powder sample which is spun

around an axis tilted from the z axis by PI and P2 respectively. The

line broadening is due to the CSA and the second order quadrupole

interaction.
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In this case the minimum number of degrees of freedom, N, is two.

Unlike the case of the first order anisotropies, there is only one set

of two angles which satisfy Eqs.(6.60) and (6.61).

Recently the variable-angle sample spinning (VASS) method has

been introduced22 - 27 to deal with the line broadening due to the CSA

and the second order quadrupole effect. The VASS studies show that

there is no "magic" angle which satisfies Eqs.(6.60) and (6.61) sim-

ultaneously, although there are angles at which the overall

anisotropies are minimum. The optimal angles sould be different for

different samples. Another interesting feature observed in the VASS

studies is that at certain two angles the resulting powder patterns are

exactly opposite to each other. This behavior is shown in Fig.6.7.

These angles are the roots PI o 0
37.377365 and P2 - 79.187691 of the

above simultaneous equations. It follows that the two angles also

remove the first order anisotropies, which are proportional to

VI.5.3. Implementation

In principle Eqs.(6.60) and (6.61) may be achieved by hopping the

sample between P1 and P2 as shown schematically in Fig.6.8(a). Because

27
many nuclei of interest such as Al (1- 5/2) have the quadrupole

coupling constants of 0(106
) Hz, it is impractical to apply multiple-

pulse sequences to make the Hamiltonian vanish during hopping periods.

Another possibility is shown in Fig.6.8(b). Instead of hopping, the

sample axis is rapidly rotated about an axis orthogonal to the sample



(a)

(b)

z

z
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XBL 8711-5972

Fig. 6.8 Two experiments for the removal of the CSA and the

second order quadrupole interaction. In (a), the spinner axis is hopped

between two angles PI and P2. In (b), the spinner is quickly rotated

from P3 to P4.
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spinning axis. In this case the angles (denoted as P3 and P4) must be

found from the integral equations

(6.62)

and

(6.63)

rather than the discrete summation Eqs.(6.60) and (6.61). They are:

P3 = 19° and P4 = 99°. The summation or the integration is possible

because the portions of the Hamiltonian responsible for the first order

anisotropies and the second order quadrupole effect commute with

themselves at all times during the experimental methods proposed above.

The rotation of the sample axis requires time of 0(10. 2
) seconds with

current technology. Consequently, many sidebands may clutter the

spectrum. However, in principle, these side bands can be suppressed

with the techniques developed for the MAS experiments or the extensions

thereof. 28 - 37

VI.6 Remarks

A technique used throughout this Dissertation is the ART. The

connection between the zeroth order term in the ART and the first order
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perturbation theo~y has been discussed by Haeberlen. 38 It was shown in

Chapter II that the first order correction term in the ART gives a

result identical to the first order correction term in the Taylor

series expansion of the exact theory of the interaction of a spin-l/2

with the quantized-electromagnetic theory. It can be shown that the

second-order quadrupole effects as calculated in this chapter by using

the first-order correction term in the ART results in an expression

identical to the second-order perturbation theory. An advantage of the

ART over perturbation theory is the explicit appearance of the

operators in the expressions, allowing a quick decision on which

operator terms are important for the situation under consideration.

The increased number of degrees of freedom in selecting angles

will undoubtly shed light on the design of schemes for the removal of

various anisotropies. Although the large magnitude of the quadrupole

coupling constants prevents the modulation of the spin degrees of

freedom by the application of pulses, in general the complementary

modulation of spin and spatial coordinates will be the most versatile

tool for the high-resolution NMR spectroscopy. In fact, a combined

approach of multiple pulses and mechanical motion has been proposed39

for achieving one of the ultimate goals of NMR ---- reducing the

Hamiltonian to a scalar.
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Appendix 1

To prove that a second rank tensor may be regarded as a direct

product of two vectors, first note the following transformation

properties of a second rank tensor and a vector:

(ALl)

(AI. 2)

Let

(AI.3)

where Po and qp are components of vectors p and q respectively. Then

P 'q'
o P

Iron aom apn Tmn

T~p'

Appendix 2 '

(Q.E.D.) (AI. 4)

Consider the total Hamiltonian consisting of an internal(~) and

a time-dependent external(H1) parts:

(A2.1)



The evolution operator for the Hamiltonian satisfies

dU/dt - -i 1fU.

Now suppose U can be separated into two parts:

with UI satisfying

Then Eq.(A2.2) becomes

dU/dt - (dUI/dt)Uv + UI(dUv/dt)

- -i HIU + UI(dUv/dt)

- -i(H1 + ~)U.

It follows that

Therefore

218

(A2.2)

(A2.3)

(A2.4)

(A2.5)

(A2.6)
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Appendix 3

(A2.7)

List of 24 pulse sequences which removes all linear and bilinear

cross terms. The definition of phases is: 0 E x, lEy, 2 E X, and

3 E y.

032123210323210301032101
030103232123210323032101
032101210323210323032101
012101230323030121232101
012101232303230121232101
012103010123230121232101
012301030123230121232101
012303010323230121232101
012101230301212321232101
030103010323212321232101
030103010301030103010301
012101210121030103010301
032123212321230103010301
012321232123230103010301
012123212301012103010301
012321232301012103010301
012323010121012103010301
032303012123212303010301
03012123212321230301030l.
032303012321232303010301
032303012323010123010301
012123212301210123010301
012321232301210123010301
012303230121232123010301
030123030121230101210301
012323012321230101210301
012303230123230101210301
012323032123230101210301
030121232123012101230301
030123230123212301012301
030123032301232301012301
012303230123230121012301



012101012101012101012101
030103010301012101012101
03e301030301012101012101
012101210121012101012101
030103030103012101012101
0323032303230121010121~1

032323032323012101012101
030323032303212101012101
032303232303212101012101
012321232123212101012101
030323230323212101012101
012303230323032101012101
012323032323032101012101
012123212321232101012101
032121030321010301012101
012103010303010301012101
012123032303230301012101
012123230323230301012101
030101230301212301012101
012103230323032301012101
012123032323032301012101
030103010301210121012101
030103030103210121012101
032303230323210121012101
030323032101030121012101
032303232101030121012101
032321010301030121012101
032321030103030121012101
830323032103010321012101
832303232103010321012101
832321010303010321012101
830323032301030321012101
832303232301030321012101
030323230321030321012101
812321210303230321012101
832123210303230321012101
012103032303230321012101
012103230323230321012101
012101232123212321012101
032321032303210103012101
012321210323210103012101
032123210323210103012101
032321230323210103012101
032321232101030103012101
032121030321030103012101
032121032303210303012101
032121230323210303012i01
012101230323032303012101
012123032303012123012101
012123230323012123012101
012301012323012123012101
012123030121232123012101
012101212321232123012101
012101230323230323012101
012123030123212323012101
012103232123210303212101
012103212103032303212101
012103212103232101032101
032321030323010301032101
032321032303210301032101

030321232123210323210101
030323212323210323210101
032101032323210323210101
030323032323030323210101
032303012121230323210101
030121232121230323210101
030123212321230323210101
03032123232123032321~101
03~123232123230323210101
030123232301012323210101
012323012121012323210101
012103030123212323210101
030101032323212323210101
030101030101030101030101
012101012101030101030101
030103010301030101030101
030301030301030101030101
012101210121030101030101
012121012121030101030101
030103030103030101030101
030323030323030101030101
032303230323030101030101
032323032323030101030101
012101212101230101030101
032121232121230101030101
012321212321230101030101
032123212321230101030101
032321232321230101030101
030323032303230101030101
032303232303230101030101
012123212123230101030101
012321232123230101030101
032123232123230101030101
030323230323230101030101
012323212323230101030101
032303030101012101030101
012121232101012101030101
012123212301012101030101

'012321232301012101030101
032123232301012101030101
012323010121012101030101
030101210121012101030101
030121012121012101030101
012323012101212101030101
030123212123212101030101
030321232123212101030101
030323212323212101030101
030323032323032101030101
032303012121232101030101
030121232121232101030101
030123212321232101030101
030321232321232101030101
012121230301010301030101
012101012103010301030101
030103010303010301030101
01210121012301030103~101

012121012123010301030101
012101012301030301030101
030103230303230301030101
030123032303230301030101

220



03~1~103~10101~101010101

01~103~1~1~3012101~10101

030101030301010301010101
012101012301010301010101
030123030323010301010101
0103012303032103~101~101

03~103230303210301010101

030123032303~10301010101

030123230323210301010101
030301012323210301010101
030123232101030301010101
030303212123030301010101
030303212101010121010101
030101030121010121010101
012101012121010121010101
030103010321010121010101
030301030321010121010101
030101032101210121010101
012103212123210121010101
012101232121230121010101
012103212321230121010101
012103232123230121010101
012121010323230121010101
012103232301012121010101
030101032121012121010101
030321212103212121010101
030101010303212121010101
012121230303212121010101
030303232323212121010101
030303210303032121010101
030101010301010103010101
012121230301010103010101
030303232321010103010101
030101030103010103010101
012101012103010103010101
030103010303010103010101
030301030303010103010101
012101210123010103010101
~12121012123010103010101

030101030301030103010101
012101012301030103010101
030123030323030103010101
030103230303230103010101
030123032303230103010101
030123230323230103010101
030301012323230103010101
030323030301212103010101
032303230301212103010101
032323032301212103010101
030301010121212103010101
032323230321212103010101
030121212321212103010101
032303012123212103010101
030121232123212103010101
030123212323212103010101
030321232323212103010101
030321210303032103010101
030103032303032103010101
0301032303~3032103010101

03012303232303210301~101

032J~3012321232103010101

03012123232123210301~1~1

030103232303232103010101
0323030321232321030101~1

032323230101010303010101
030121212101010303010101
03010323232]~10303010101

03010103030301030301~1~1

0121010123030103030101~1

012123030301230303010101
012101010121230303~10101

932323212121230303010101
032321010103230303010101
03010101232323~303010101

012121232323230303010101
030123030301212303010101
012121230121212303010101
032303012323212303010101
030121232323212303010101
030121232323212303010101
030121210303~32303010101

03232101012303230301~101

032303012121030323010101
030121232121030323010101
030123212321030323010101
030321232321030323010101
030123232123030323010101
030121210303230323010101
032321010123230323010101
030303230101012323010101
030323032101012323010101
032303232101012323010101
032321010301012323010101
032321030103012323010101
032323010303012323010101
032321030301032323010101
030121210323032323010101
030303212121232323010101
032323230303232323010101
030121212303232323010101
012101010121010101210101
032323212121010101210101
032321010103010101210101
030101012323010101210101
012121232323010101210101
030101030101210101210101
012101012101210101210101
030103010301210101210101
030301030301210101210101
~12101210121~10101210101
030103030103210101210101
032303032303210101210101
030323030323210101210101
032303230323210101210101
032323032323210101210101
030303230101030101210101
030323032101030101210101
032303232101030101210101
032321010301030101210101
032321030103030101210101
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032121012121032121210101
030103010103032121210101
030301030103032121210101
012103212121030321210101
032323212103030321210101
032321030323~3~321210101

032321032303230321210101
01232121~323230321210101

032123210323230321210101
032321230323230321210101
012103032323230321210101
012103030121212321210101
030101032321212321210101
012323010103212321210101
030101210103212321210101
030121012103212321210101
032101212103212321210101
03012121012~212321210101

032321212323212321210101
032321032323032321210101
030121210321232321210101
032101010321010103210101
032321032323210103210101
030323032103030103210101
032303232103030103210101
030123232103230303210101
032303012121032303210101
030121232121032303210101
030123212321032303210101
030321232321032303210101
030123232123032303210101
030121210303232303210101
032321010123232303210101
012321210303012123210101
032123210303012123210101
032321230303012123210101
012103032303012123210101
012103230323012123210101
012123032323012123210101
032321010101212123210101
012103232303212123210101
030101032123212123210101
012103030121232123210101
030101032321232123210101
012323010103232123210101
030101210103232123210101
030121012103232123210101
032101212103232123210101
030121210123232123210101
012123212301010323210101
012321232301010323210101
032123232301010323210101
012323010121010323210101
030101210121010323210101
030121012121010323210101
012323012101210323210101
030101212101210323210101
012323210121210323210101
030321212321210323210101
030123212123210323210181

032323010303~3GI012101~1

030303212101012101210101
030101030121012101210101
012101012121012101210101
030103010321012101210101
030301030321012101210101
0301010321012121012101~1

012103212123212101210101
012103212123212101210101
012101232121232101210101
~12103212321232101210101

012103232123232101210101
012121010323232101210101
030303210301010301210101
030303230103010301210101
030323032103010301210101
032303232103010301210101
032321010303010301210101
030303230301030301210101
030323032301030301210101
032303232301030301210101
012321232121030301210101
032123232121030301210101
030323230321030301210101
012323212321030301210101
012121010103030301210101
030303012123030301210101
012103030323030301210101
012321210303230301210101
032123210303230301210101
032321230303230301210101
012103032303230301210101
012103230323230301210101
012123032323230301210101
012123030121212301210101
012101212321212301210101
012101232123212301210101
012103212323212301210101
032321032303032301210101
012321210323032301210101
032123210323032301210101
032321230323032301210101
012103032323032301210101
012101232321232301210101
032121232103232301210101
012321212303232301210101
032123212303232301210101
032321232303232301210101
032323010123232301210101
012103030301010121210101
030303210121010121210101
012101232323010121210101
030303212101210121210101
030101030121210121210101
030103010321210121210101
030301030321210121210101
032101012101032121210101
030301010301032121210101
030121010121032121210101
032101210121032121210101
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030301012323012123030101
030301030101212123030101
012323230301212123030101
030123232303212123030101
012323012123212123030101
030101212123212123030101
030123030121232123030101
01232301~321232123030101

030101212321232123030101
012303230123232123030101
012101030101230323030101
012103010301230323030101
012301030301230323030101
012103030103230323030101
030101230323230323030101
030123030123212323030101
012323012323212323030101

'030101212323212323030101
012103030123032323030101
012301010123010101230101
030123030123230101230101
012323012323230101230101
030123030301012101230101
032303012323012101230101
012321232301212101230101
032303012323210121230101
032321010123030121230101
012103232301232121230101
012321210303012321230101
032123210303012321230101
032321230303012321230101
012103032303012321230101
012103230323012321230101
012123032323012321230101
012103232303212321230101
030103212321210303230101
030103212321210303230101
030103232123210303230101
030121010323210303230101
032101210323210303230101
032121012323210303230101
030103212103032303230101
012101012323032303230101
012101030101232303230101
012103010301232303230101
012301030301232303230101
012103030103232303230101
032121030321010123230101
012101030103010123230101
012103010303010123230101
012101030301030123230101
012123030323030123230101
012123032303230123230101
012123230323230123230101
012301012323230123230101
012103230323032123230101
012123032323032123230101
012103232303~32123230101

030103212103230323230101
012101012323230323230101

03~123230323230301030101

030301012323230301030101
032303230301212301030101
032323032301212301030101
030301010121212301030101
030121212321212301030101
032303012123212301030101
03012123212321230103~101

030123212323212301030101
030103230323032301030101
030123032323032301030101
032303012321232301030101
030121232321232301030101
030103232303232301030101
032303032123232301030101
030123030301010121030101
012121230121010121030101
032303012323010121030101
030121232323010121030101
032303030101210121030101
012121232101210121030101
012123212301210121030101
012321232301210121030101
032123232301210121030101
012323010121210121030101
012303232303012121030101
012123232123012121030101
012303230121232121030101
012323032121232121030101
030101232121232121030101
030103212321232121030101
030321232121030321030101
030323212321030321030101
032101032321030321030101
030321210303230321030101
030103032303230321030101
030103230323230321030101
030123030121212321030101
012323012321212321030101
030101212321212321030101
012303230123212321030101
012323032123212321030101
030101232123212321030101
030103212323212321030101
030321210323032321030101
030103032323032321030101
012303032301232321030101
030321210323210103030101
012121230301030103030101
012101012103030103030101
012101210123030103030101
012121012123030103030101
012301010301012303030101
012121010121012303030101
012301030103012303030101
012303010303012303030101
012101210101212303030101
012121012101212303030101
030123032303012123030101
030123230323012123030101
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Appendix 4. Some useful commutation rules.
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[ 11 '12 ' QR ] - ± i Pl- (+ sign for k - 1, - sign for k = 2)

where

Q,P,l = x,y,z and cyclic permutations.

+Q- = Q1 ± Q2

+
Pl- - P1l2 ± l1P2'

With the above commutation rules it is easy to show that

= Q- cosJt + 2Pl- sinJt.

Appendix 5
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In this Appendix it will be shown that any sequence of pulses of

the type (P1"'Pn)(P1"'Pn)-l makes the switched Hamiltonian cyclic, if

(AS.I)

(pf.) Consider the following evolution operator with n piecewise-

constant Hamiltonians

(AS.2)

where ~ is the time-ordering opertor. Eq.(A.2) can be rewritten as

i~Iz -In ( ) -i~IzU = e ~ k exp -iT(wII~ + H) e
k

(AS.3)

Now separate the rf part from the internal Hamiltonian:
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(AS.4)

In general, the exact form of Vk cannot be calculated, but it may be

expressed in terms of (21 + 1)2 basis operators Om'

(AS.S)

It follows that

(AS.6)

Thus Eq.(AS.3) may be rewritten ask

.. (:711 p vt) t
k,m m k

where

and

-1 11 - t.. :7 k VkP,,m m
(AS. 7)

(AS.8)
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(AS.9)

Therefore, for a sequence of the type (Pl ... Pn)(Pl ... Pn)-l, the total

evolution operator becomes

U
t

t .. (a-ITTk vkpt) (aTT
k

, ,P ,vk ,)o ,m m ,m m

(AS.IO)
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