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Abstract. I will discuss a set of software abstractions for implementing various math-physics cal
culations on a team of processors. I tried out the abstractions on Anderson's Method of Local Corrections, 
a type of vortex method for computational fluid dynamics. I ran experiments on 32 processors of the Intel 
iPSC- a message-passing hypercube architecture- and on 4 processors of a Cray X-MP- a shared
memory vector architecture - and achieved good parallel speedups of 24 and 3.6, respectively. The 
abstractions should apply to diverse applications, including finite difference methods, and to diverse archi
tectures without requiring that the application be reprogrammed extensively for each new architecture. 

1. Introduction 

A major application for multiprocessors is in obtaining solutions to partial differential equations 
arising out of various areas of science and engineering. A major outstanding difficulty in using them is 
how to construct robust software that can run efficiently on diverse systems without having to go through 
major changes in programming. This is particularly troublesome for calculations that apply computational 
effort non-uniformly over space according to time-dependent phenomena, and which must therefore be 
dynamically partitioned. I will discuss a set of abstractions that can hide many of the details entailed in 
dynamically partitioning and coordinating a computation among a team of processors and that can 
improve the robustness of software with respect to those activities. 

The abstractions apply to the important class of calculations that spend most of their time in spa
tially localized computation in which two data points communicate far more information with respect to 
the computation done on them when they are close together than when they are far apart. Consider, for 
example, the particle-particle particle-mesh solution to the N-body problem. Such a calculation arises in 
problems in computational fluid dynamics, plasma physics, and particle physics; it entails following a set 
of particles that move under mutual interaction, congregating and dispersing unpredictably with time (see 
Figure 2). The particles move under the influence of a logarithmic potential, which computation divides 
into two parts: a local part that does roughly 90% of the computational work when the problem is large, 
and a relatively inexpensive global part whose data dependencies are not localized. The cost of comput
ing the local part of the potential is a position- and time-dependent function of the local density of parti
cles. 

*This wmk was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. 
Department of Energy, under contract DE-AC03-76SF00098; a California Fellowship in Microelectronics; Intel Scientific Comput
ers; and Cray Research Inc. 
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A simple way of applying a team of processors to spatially localized particle methods is to partition 
the domain into rectangular regions and assign the computation and data associated with each region to a 
processor. There are many ways to partition the domain, two of which are shown in Figure 1. A uniform 
partitioning, in which all partitions have the same area, is the most straightforward. Such a partitioning, 
however, utilizes only a small fraction of the total power of the processing team because work is distri
buted non-uniformly in space, as shown in Figure la. A better way is to partition adaptively into some
what irregularly-sized regions that all complete in roughly the same time, as shown in Figure lb. Such a 
strategy compensates for the uneven distribution of work, and can substantially accelerate the computa
tion. Of course, the partitioning must be periodically recomputed, as shown in Figure 2, or otherwise the 
workloads would gradually drift out of balance as the particles redistribute themselves. Some processors 
would become overloaded, while others would sit idle waiting; the cost of the computation would steadily 
increase with time, as shown in Figure 3. 

The decision to change the work assignments dynamically, rather than to assign work statically, can 
substantially complicate the user's software. The trouble is that the best way to handle the communication 
and the bookeeping that come as a side effect of shuffling work among the processors can depend on vari
ous overhead costs - such as memory latency or message startup time - that generally vary from system to 
system. Thus, the code required to effectively parallelize a calculation on a shared-memory multiproces
sor differs substantially from that required to run on a message-passing architecture, and code can vary 
even among members of one family of architecture. To facilitate in the construction of robust software, I 
propose that the user program a generic multiprocessor whose partitioning and coordinating operations 
have the same semantics regardless of where implemented. I will discuss a particular generic multiproces
sor called "genMP." GenMP can help desensitize substantial portions of the user's software from a 
change in various system parameters such as communication or memory latency, numbers of processors, 
processor interconnection structure, and the semantics of system library calls that handle various aspects 
of concurrency. GenMP isn't universal, however, and applies to localized computation only; the user will 
have to parallelize any non-localized computation himself - though separately from the local part -
according to the particular architecture in use. The question of how best to parallelize non-localized~ com
putation is beyond the scope of this paper, and I consider only spatially localized computation. 

2. The GenMP Abstractions 

GenMP can be implemented by a layer of software on most any traditional multiprocessor system. 
It provides a set of run-time utilities that the user will invoke from his code. GenMP assumes a particular 
style of localized computation, a lattice model computation, in which the calculation maps onto a regular 
lattice of boxes, the work lattice, subdividing the domain. The computation updates the state of each box 
as a function of the previous state of only those bins within a given distance C, the local interaction dis
tance. (In contrast, the data dependencies for the updates done in the global part of the computation are 
not constrained to be localized.) The cost of updating a bin generally depends on the state of the surround
ing bins and can be reasonably estimated with an inexpensive auxiliary computation. 

The lattice model of computation assumed by genMP is a reasonable one for a variety of computa
tions in science and engineering, and for this reason I believe that it will prove useful for a diversity of 
applications such as: 

o Finite difference calculations that use a fixed rectangular mesh trivially 
fit the model, as do methods such as Adaptive Mesh Refinement 
(AMR) [3] that employ dynamic grids. 

0 

0 

Localizable Particle methods such as Particle-Particle Particle-Mesh 
(PPPM) [11], and Rokhlin and Greengard's fast multipole method [10] 
are naturally organized around a lattice, and they spend the majority of 
their time computing direct interactions between nearby particles or 
doing other localized computation. 

Finite element methods may also be mapped onto a lattice [14], and 
divide naturally into localized and non-localized computation. 

o Ray tracing for computer graphics may also be organized around a lat
tice, and has a localized communication structure (see Swensen and 
Dippe [9]). 
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In the interest of brevity I will consider the abstract problem of hpw to parallelize a lattice model 
computation using genMP. The interested reader should consult Baden [2] for the details regarding a 
specific application. To parallelize a lattice model computation, we subdivide the work lattice into subre
gions, assign each such subproblem to a unique processor, and let each processor compute on its assigned 
subproblem in parallel with the others. Ignoring roundoff, results will be independent of the number of 
processors used. The computation begins with a distinguished task called the "boss." The boss reads in 
the input data and spawns P additional "worker tasks," where P is chosen by the user. These worker 
tasks participate in the numerical part of the computation. All execute the same program but each on a 
different set of data - a single subregion of the work lattice. Each worker executes out of a private 
address space and communicates with the others through a mechanism to be. discussed. There is no shared 
memory. 

Each worker maintains a private copy of its assigned part of the work lattice. It also maintains a 
copy of a surrounding collection of bins, called an "external interaction region," which augments the 
task's assigned sublattice (see Figure 4). The task uses this external interaction region to maintain copies 
of data belonging to other tasks that directly interact with its own; hence, the region is C bins thick, 
where C is local interaction distance previously discussed. As a consequence of using this distributed 
storage strategy, no task may access any bins beyond its external interaction region. Furthermore, a task 
may only indirectly access bins, owned by other tasks, that overlap its external interaction region. For 
example, when a task modifies a copy of a bin in the external interaction region, then the owner of the 
"original" won't know that the change was made. Similarly, when a task modifies an original any tasks 
that possess copies will be unaware of the changes. These changes must eventually be propagated, how
ever, to ensure correctness; at certain points in the calculation each task must suspend computation and 
communicate with the other tasks in such a way that all bin-copies be consistent with the originals. To 
this end, all tasks periodically invoke a run-time utility called !Bar. When a task encounters a call to 
!Bar it communicates with all tasks overlapping its external interaction region and returns when it has 
finished communicating with all of them. This set of interacting tasks acts as a local barrier synchroniza
tion mechanism. Each task will generally encounter and leave the local barrier at a different time, accord
ing to the amount of work assigned to it. We refer to the barrier as being a local one because generally it 
involves only a local subset of tasks, rather than the entire set of tasks as in traditional (global) barrier syn
chronization; the name !Bar stands for "Local BARrier synchronization." LBar is passed it two sub
routines as arguments. These perform gather and scatter operations on the local user data structures. For 
details see [2]. 

To ensure they share the work evenly, the workers must periodically invoke a run-time utility called 
Partitioner. Partitioner readjusts each worker's assignment of bins according to a time
varying "work density mapping," supplied by the user. This mapping comes in the form of an array; 
each entry estimates the cost of updating one bin of the work lattice. All tasks leave Partitioner 
together and upon return each will be assigned a unique rectangular region of the work lattice. A task 
determines the set of indices for the bins assigned to it with the aid of querying functions provided as run
time utilities. As a result of calling Partitioner, some bins may change owners, and must therefore 
be transmitted to the correct task. A call to the !Bar utility can handle the necessary exchanges of data. 
I chose to implement Partitioner with a recursive bisection algorithm similar to that used by Berger 
and Bokhari [4]. The user, however, is unaware of how Partitioner works, and any strategy that 
was fast and that rendered partitionings with a low surface area to volume ratio would suffice. 

3. Computational Results 

I evaluate genMP on the Intel Personal Scientific Computer (iPSC), manufactured by Intel Scientific 
Computers, and on the Cray X-MP, manufactured by Cray Research Inc .. I will show that the perfor
mance of either of these systems running genMP can scale reasonably well with the number of processors 
in use. A detailed description of the iPSC and the Cray X-MP is beyond the scope of this paper; see 
Baden for a summary of the relevant details, or the manufacturer's manuals [8, 12]. {The pamphlet by S. 
Chen et al. [5] on the Cray X-MP is a more accessible document than the manufacturer's Hardware 
Reference Manual.) Table 1 summarizes the relevant characteristics of the two machines. 

The application I used as a test problem was a vortex dynamics calculation chosen from fluid 
dynamics known. This calculation solves the vorticity-stream function formulation of Euler's equations 
for incompressible flow in two dimensions in an infinite domain: 

Dro = 0 
Dt 

(3.1) 
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u=O at x=oo, 

(3.2) 

(3.3) 

where u(x(t),t) is the velocity of the fluid at position x(t) at timet; ro is the vortic~, defined as the curl 

of u; "' is the stream function; !2_ = aa + u.V is the material derivative and ~ = --2 + ~2 is the two-
Dt t ax ay 

dimensional Laplacian operator. (For an explanation of these equations consult Chorin and Marsden's 
introductory text on fluid mechanics [7]. Also see Chorin's original paper on the vortex blob method [6], 
or Leonard's survey of vortex methods [13].) The above equations were solved for an initial vorticity dis
tribution that was constant inside two disks centered about the origin, and zero elsewhere. These disks are 
referred to as Finite Area Vortices. To discretize the above equations we place a collection of N marker 
particles, called vortices, on a regular mesh of points, and then compute the path of the vortices over a 
sequence of timesteps. The following system of ordinary differential equations describes the motion of 
the vortices: 

!!_x·(t) = U·(t) i = 1 .. · N dt I I ' ' ' 
(3.4) 

where xi (t) is the position of the ith vortex at timet, ui (t) the velocity, and roi is its strength, which is like 
a charge. A PPPM-type algorithm, Anderson's Method of Local Corrections [1], was used to compute the 
mutually-induced velocities on the RHS of (3.4). When the vortices number in the thousands this method 
typically spends less than 5% in a Poisson solver- global computation - and most of the remaining time 
in localized computation. The positions of the vortices were evolved by discretizing (3.4) in time with a 
second order Runge-Kutta time integration scheme. All software was written in FORTRAN 77. On the 
iPSC, the code was compiled with F1N286 and run under release 2.1 of the node operating system. On 
the Cray, the code was compiled with CFT (version 1.14), and run under COS (version 1.16). All arith
metic was done using 8-byte floating point numbers (double precision on the iPSC, single precision on the 
Cray). Experiments were run with various number of vortices N and processors P. Owing to the differ
ences in processor speed, numbers of processors, and memory capacity, the values of N on the Cray were 
different from those used on the iPSC. 

I use parallel efficiency as the figure-of-merit Define TlP as the parallel efficiency on P processors: 

T1/P 
1lP = r;-• (3.5) 

where Tp is the time to complete on P processors. T 1 is the time taken on a uniprocessor. For this special 
case of P = 1, various overheads that would be incurred on a multiprocessor, such as communication, are 
non-existent. By definition 11 1 = 1. Table 2 gives the efficiency and speedup measurements obtained from 
the iPSC runs, and Table 3, the measurements obtained from the Cray. Efficiency was quite good on both 
machines. On the iPSC, TlP ranged from 90% with 4 processors to 74% with 32. The efficiency on the 
Cray was about 90% on 4 processors. Thus, if efficiency were somehow increased to 100%, that would 
speed up the iPSC computations by at most 35% ((1-Tli1)x100%) and by 12% on the Cray. 

Overall, genMP's overhead seems reasonable; it never exceeded 2.4% on the iPSC, and I estimate 
that it never exceeded 5% on the Cray (overheads on the Cray could not be measured directly). The com
putations vectorized on the Cray as well as they did in the uniprocessor version of the code, and ran at 
roughly 250 megaflops/sec. on 4 processors. Surprisingly, the iPSC's high message startup time- roughly 
5 msec. - appeared to have very little impact on the running time of the calculation. GenMP incurred a 
low communication overhead during local barrier synchronization, for example, because it can transmit 
data in bulk rather than an element at a time, and this was facilitated by restricting the partitions to have 
simple shapes. 

4. Summary 

I have outlined a simple approach to parallelizing numerical software for multiprocessors that insu
lates the programmer from many of the machine-dependent and low-level details. Application-dependent 
code and system-dependent code need not become heavily intertwined; when code is transported to a new 
machine, the parts that would have to change to accommodate a different communication model are res
tricted mostly to code the programmer never sees. I tried out my ideas on a realistic application, and 
obtained good parallel speedups on architectures that represent two extremes in multiprocessor design phi
losophy. 



t"'· I 

·~ 

-5-

My approach is to have the user program a generic multiprocessor, called "genMP," with abstrac
tions for hiding the details of task decomposition and coordination activities from the user. GenMP 
employs domain partitioning to subdivide workly fairly among a team of processors, and local barrier syn
chronization to ensure correctness. The user must divide the data and computation for the local part of the 
problem into bins of a regular rectangular mesh, must supply work estimates for the computation in each 
bin, and must supply routines for converting these data to and from byte streams. GenMP will assign bins 
to tasks in order to even the workload and will allow each task to access and communicate the necessary 
boundary data. GenMP is intended for a diversity of calculations, previously identified, that fit a simple 
model of spatial locality. It is neither universal nor complete, however, and leaves some programming 
details up to the discretion of the user. 

In order to explore its generality, I have begun to apply genMP to other kinds of applications; a 
boundary layer calculation that solves the incompressible Navier-Stokes equations in two dimensions (in 
collaboration with E. G. Puckett), an adaptive grid method for hyperbolic partial differential equations (in 
collaboration with M. J. Berger and P. Colella), and a three-dimensional vortex calculation (in collabora
tion with T. Buttke and P. Colella). 

The research described here was part of my Ph. D. dissertation research [2] done in the Computer 
Science Division at the University of California at Berkeley. I gratefully acknowledge the encouragement 
and moral support of my thesis advisor, W. Kahan; Phillip Colella also helped to supervise the work. 
Many thanks go to Erling Wold for reading the final draft of this paper. 
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Figure 1. Partitioning of a particle calculation for vortex dynamics on 16 processors. A simple way to 
divide up the work is (a) to partition the domain uniformly into a regular pattern of box-like subproblems. 
This strategy, however, would underutilize the processors; only 4 of 16 would be given much work to do. 
The trouble is that the particles distribute themselves unevenly so that the completion time for a subprob
lem may not be proportional to its area. A better way (b) compensates for the uneven distribution of par
ticles over the domain. This adaptive decomposition generates somewhat irregularly sized subproblems 
that all complete in roughly the same time, and it diminishes the running time of the computation by a 
factor of four. At the depicted time each processor's share of the workload is shown in the subdomain 
assigned to it, normalized to 1000 units of total work. A perfectly balanced workload would correspond 
to 062 units of work for each subproblem. 

( .... 
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T = 0.00000 Eft= 0.752 T= 5.00000 Eft=0.768 

T = 20.00000 Eft= 0.773 T = 27.50000 Eft= 0.755 

T = 10.00000 Eft= 0.852 

···-

T = 50.00000 Eft= 0.872 

Figure 2. The distribution of particles changes with time, so the work must be periodically repartitioned. 
This series of snapshots was taken from the same calculation used to produce Figure 1. 
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Figure 3. A comparison of static and dynamic load balancing on 32 processors of the Intel iPSC. If the 
workloads are partitioned only at the beginning of the calculation (static load balancing), the loads will 
drift gradually out of balance, and the time required to perform a velocity evaluation will steadily increase 
with time. In contrast, a dynamic load balancing strategy periodically rebalances the workloads and is 
able to maintain an almost steady running time. Here loads were rebalanced every fourth velocity evalua
tion. 
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Figure 4. Task i is assigned L i, a subregion of the work lattice, and an external interaction region D i. 
Di is a surrounding shell of bins and is C bins thick, where we have chosen C =.2. Since Di and Li do 
not intersect, subproblems L i and Li are locally independent. But Di and L k do intersect, and so subprob
lems L i and L k are locally dependent. 
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Tables and Figures 

Crll}'_X-MP Intel iPSC 
Communication Model Shared MemO!Y_ Message-Passin_g_ 
#Processors used [Max] 4 [4] 32 [128] 
Megaflops/sec/cpu 100 0.035 
Max Memory (megal:>y!_es) 128 total 0.5/~u 

Table 1. Design parameters for the Intel iPSC and the Cray X-MP. We used the iPSC model d5, with 32 
processors, and the largest-model Cray, the X-MP/416, with 4 processors 16 megawords of main 
memory. The megaflop execution rates are typical sustainable rates for just one processor. 

N p 'flp Sp %Lbar %Part 
(Efficien9')_ _(fu>_eedllJ>l 

386 4 90 3.6 0.3 1.2 
796 8 85 6.8 0.8 1.2 

1586 16 79 13 1.4 1.0 
3180 32 74 24 1.6 0.8 

Table 2. iPSC results, where the number of vortices N varies linearly with the number of processors P. 
The parallel efficiency 'flp (reported as a percentage) and parallel speedup Sp decrease with P. By 
definition the 'flp = Sp IP. Overhead costs are reported as %Lbar, the fraction of the total time spent in 
local barrier synchronization, and %Part, the fraction spent partitioning, including the cost of producing 
the work density mapping. All runs lasted 64 timesteps, two velocity evaluations were done per timestep, 
and loads were rebalanced every other timestep. Since the larger problems couldn't fit into the memory 
of a single processor, T1 could not be measured directly, and the efficiency and speedup figures are 
pseudo-measurements. 

N p Sp _.!le_ _npax 
12848 1 1.00 1.000 1.000 
12848 2 1.95 0.973 0.994 
12848 4 3.63 0.908 0.982 
25702 1 1.00 1.000 1.000 
25702 4 3.57 0.892 0.957 

Table 3. Parallel efficiency and speedup for the X-MP runs. Tlft'ax is the maximum theoretical efficiency 
that could be achieved under ideal conditions, given we chose not to parallelize the global computation 
done by a Poisson solver. The runs with 12848 vortices ran for 400 timesteps, the larger runs for 240. 
Loads were balanced every timestep. 
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