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In hadronic reactions, the usual space-time interpretation of pion interferome
try often breaks down due to strong correlations between spatial and momen
tum coordinates. We derive a general interferometry formula based on the 

Wigner density formalism that allows for arbitrary phase space and multipar
ticle correlations. Correction terms due to intermediate state pion cascading 
are derived using semiclassical hadronic transport theory. Finite wavepackets 

are used t'o reveal the sensitivity of pion interference effects on the details of 
the production dynamics. The covariant generalization of the formula is shown 
to be equivalent to the formula derived via an alternate current ensemble for
malism for minimal wavepackets and reduces in the nonrelativistic limit to a 

formula derived by Pratt. The final expression is ideally suited for pion interfer
ometric tests of Monte Carlo transport models. Examples involving Gaussian 

and Inside-Outside phase space distributions are considered. 

1 Introduction and Summary 

Pion interferometry has been used for a long time[1]-[19] to probe the space-time ge
ometry of high energy hadronic reactions (for a comprehensive review, see (20]). It 
is based on exploiting the constructive interference between identical bosons when 
their relative momenta are small compared to the inverse of the typical spatial 

*This work was supported by the Director, Office of Energy Research, Division of Nuclear 
Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under 
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dimensions of the reaction volume. Experimentally, the interference pattern is de
duced by measuring like pion correlation functions, 

n 

Cn(kl, · · ·, kn) = NnPn(k~, · · ·, kn)/ II Pl(ki) , (1) 
i=l 

where Pn denotes then (identical) pion inclusive distributions, and Nn is the inverse 
of the normalized nth factorial moment of the multiplicity distribution. 

Unfortunately, the simple geometrical interpretation of the interference pattern 
is only valid in the semi-classical limit and in the absence of correlations between 
the spatial and momentum coordinates[6, 7). In such idealized cases, C2(k~, k 2 ) is 
directly related to the space-time density, p( x ), of pion emission points through 

(2) 

with p( q) = f d4 xeiqx p( x) and with the incoherence or chaoticity parameter ,\ = 1. 
In many interesting cases, dynamical effects can lead, however, to strong correlations 
between x and k which can distort the interference pattern and obscure the space
time interpretation of C(k~, k2 ). In such cases the analysis of correlation functions 
necessarily becomes model dependent! Nevertheless, the study of small relative 
momentum pion correlations is still useful as a unique and complementary test 
of specific dynamical models since identical pion correlations are sensitive to the 
phase space correlations predicted by transport models, which are otherwise not 
tested in other inclusive measurements. However, as we show below it is essential 
in that case to use a more refined formalism to connect transport calculations with 
interferometry data. 

A characteristic symptom of the breakdown of the ideal picture is that C2(k1 , k 2 ) 

is found to depend on the mean pion momentum, K = (k1 + k 2)/2, as well as on 
the relative momentum~ q = k 1 - k 2 even in the case K · q = 0 (see e.g. [7,8,10,14]) 
(A dependence on the component of K parallel to q always occurs if there is time 
dependence of p(x, t).) A second symptom of the breakdown of the ideal picture 
is a fitted value of ,\ < 1, also found often experimentally. "While in principle 
partially coherent fields could be produced[5), the most likely cause of an apparent 
,\ < 1 is an overly simplified analysis of the complex six-dimensional dependence of 
C2(k1 , k 2 ) involving integrations over four or five of the momentum variables and/or 
neglecting additional important dynamical degrees of freedom such as resonances. 
These points have been emphasized for example in refs.[14,19). 

Present interest in this problem stems from new data on pion interferometry 
of nuclear collisions at CERN[15) and the development of Monte Carlo transport 
models[18,24) for high energy reactions. At high energies, Lorentz boost invariance 
along the beam direction leads to a strong (so called lnside-Outside[23]) correlation 
between the production points, xf.L, and final momenta, pf.L. The modifications of C2 

due to such phase space correlations have been studied in Refs.[11,12,14,17) using 
a variety of simplifying assumptions and techniques. There has also been recent 
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progress toward more realistic calculations, taking into account additional dynam
ical complications predicted by detailed transport models in refs.[18,19]. However, 
the theoretical basis for those calculations has not been adequately discussed in the 
literature. 

The purpose of this paper is to derive a general interferometry formula applica
ble to cases where strong phase space and multiparticle correlations are predicted 
and to broaden the theoretical basis for the formula used in recent pion interfer
ometric analysis[19]. Our formula turns out to be a natural generalization of the 
<;_>ne proposed by Pratt[7] and is derived in a more comprehensive way using trans
port theory and the Wigner density formalism developed by Remler[21,22]. Finite 
wavepackets are used to expose the sensitivity of the interference effects to the 
production mechanism. 

The Wigner formalism connects the rate of change of then particle phase space 
distribution, fn (x1 , p 1 , · · · , Xn, Pn, t) to asymptotic observables. As e~phasized in 
[21,22], transport theories, such as hydrodynamics or cascade models, can only ap
proximate the rate of change of fn during the limited time interval when relatively 
high momentum transfer processes are occuring. At asymptotic times such models 
break down or predict free streaming. Low momentum transfer final state inter
actions leading to weakly bound states[22] and subtle Bose interference effects can 
only be rigorously extracted from transport models using the Wigner formalism. 
The formalism also allows us to derive a new equation incorporating effects of in
termediate time cascading of pions and to study the conditions under which only 
the final freeze-out coordinates dominate the interference pattern. 

The main result of this paper is summarized by the following formula. for the 
Bose-Einstein symmetrized n pion invariant distribution: 

(3) 

with the smoothed delta function given by 

hil(k, k',p) = (21r~p2 )-3/2 exp( HP- !(k + k'))2 
/ ~p2 + ~(k- k') 2~x2 ) ( 4) 

The brackets (- · ·) denote an average over the 8n pion freeze-out space coordinates 
{ Xt, p1 , · · · , Xn, Pn}, as obtained from the output of a. specific transport model such 
as a cascade[18] or LUND model[19]. In this form, Eq.( 4) is ideally suited for 
Monte Carlo computation of pion interference effects. The smoothed delta. function 
results from the use of Gaussian wavepackets with widths ~x and ~p that depend 
on details of the pion production mechanism. The sum is over n! permutations, 
a = ( a1, · · ·, O'n), of the indices ( x, k,p, · · · denote four vectors and all momenta are 
on-shell). 

There are several important points to note in correction with (3): 

1. The freeze-out coordinates do not correspond in general to the set of coor
dinates {Xi( t 1 ), Pi( t 1)} at any particular "freeze-out" time since the decou
pling times, x?, are usually widely distributed[21,22]. In a cascade model, the 
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freeze-out time for particle i is the time, t fi, when the last binary collision 
was suffered by that particle and (xt,pn = (xi.L(tJi),p!.L(tJi +E)). These 8n 
coordinates can be arbitrarily correlated. 

2. The wavepacket widths enters because the uncertainty principle permits us 
to interpret the ( xt, pn only as the mean values of the pion wavepackets. In 
Monte Carlo calculations involving a finite sample of freeze-out coordinates, 
the interference terms are nonvanishing only if ~p > 0 since no two Pi are ever 
the same. However, in the semi-classical limit (((xi- Xj)

2
) ~ ~x2 , ((Pi

pj )2 ) ~ ~p2 ), the dependence on the widths drops out. 

3. Eq.(3) reduces to the expression derived via a covariant current ensemble 
formalisms[19] for minimal wavepackets (~x~p = ~). In that case ~p2 = mT 
in terms of the pion mass and the pseudo-temperature parameter character
izing current elements. Our derivation thus clarifies the interpretation of the 
current elements in the later formalism. 

4. The Pratt[7] formula for interferometry correspond to the nonrelativistic and 
the ~x = ~p = 0 limits of (3). The hybrid Yano-Koonin formula[4] follows 
from (3) only if correlations between Xi and Pi can be neglected. In addi
tion the wavepackets provide a physical basis for the numerical smoothing 
proceedure adopted in [18]. 

5. In general, corrections terms to (3) appear due to cascading prior to the 
freeze-out time as we show in section 2.2 but can be neglected in the limit 
that the mean free path of pions is small compared to the source size (the 
hydrodynamic limit) or if the momentum transfers are small compared to the 
pion momenta (the Eikonallimit ). 

6. Finally, in cases where Pn is found to be sensitive to the wavepacket .size, 
pion interferometry cannot separate production dynamics from the transport 
dynamics, and ~x and ~p must be treated as addition physical parameters. A 
similar sensitivity to the form of the current elements in the current ensemble 
method is possible. As we emphasize in section 3.2, this is the case for the 
ideal Inside-Outside cascade dynamics[n]-[19], where the rapidity correlation 
scale, tiy "' ( T ~p )-1 , dependends not only on the mean pion freez-out proper 
time but also on ~p. 

7. Eq.(3) could be further generalized by allowing every packet to vary inde
pendently, e.g., via a different ~xi, ~Pi· Choosing, the coherence length ~xi 
to be very large for a fraction of the pions due to ·some exotic production 
mechanism, the interference pattern would be similar to that due to partially 
coherent fields[5]. 

8. Relative Coulomb and other final state interactions are not considered here 
but can be included via methods dicussed by Bowler[16]. 
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The remaining sections are organized as follows: In section 2.1 the Wigner den
sity formalism is introduced in connection with pion interferometry. Section 2.2 
is the main body of this paper where the interferometry of cascade dynamics is 
derived based on non-relativistic transport theory. In section 2.3 the covariant gen
eralization of the Wigner density formula is proposed and shown to be equivalent to 
one derived via the covariant current ensemble method. In section 3.1 we illustrate 
the formulas first for an uncorrelated Gaussian source, and finally in section 3.2, 
interferometry of ideal inside-outside dynamics is considered in detail.. 

2 Pion Interferometry of Cascading Systems 

2.1 Wigner Density Formalism 

The inclusive number distribution, P( a), of final multi pion configurations in states, 
Ia), can be calculated if the the exact density matrix, p(t) = l¢(t))(¢(t)l, for the 
system were known. Formally, (see, e.g., refs.[21,22]) 

P(a) =lim Trpcxp(t) = jdtT1·pcxdd p(t) = -ijdtTrpcx[HI(t),p(t)] , (5) 
t-+oo t 

where we used the equation of motion of p and split the Hamiltonian, H = Ho + 
HI, into a part, H0 , whose eigenstates include, Ia), and an interaction part, HI, 
including the source currents producing pions and interactions with other particles 
of the system. The last equality follows as in [22] by use of the cyclic property 
of commutators in traces and the assumption that [H0 , Pcx] = 0. In this paper we 
.consider noninteracting multipion states, e.g., Ia) = lk1 , • · ·, kn) for which H0 is 
just the free Hamiltonian. 

Evaluating the trace in the Wigner representation, the n-pion inclusive distri
bution can be evaluated from 

where ¢>i = (xi, Pi) are six dimensional phase space coordinates with integration 
measure d¢>i = d3xid3 pi(27r t 3 in standard (1i = c = 1) units, and Wcx is the Wigner 
representation of the asymptotic density matrix, la)(al, 

Wcx(l/>t, · · ·, lf>n) = j {I] d3yie-ip;·y;} ({xi+ !Ydla)(al{xi- !Yd) (7) 

and then-pion inclusive phase space density at time t as given by 

It is important to note that the label I on the time derivative in (6) implies that 
only time variation of fn due to interactions are to be taken into account. Transport 
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models provide at best an approximation to the dynamical evolution only over a 
limited space-time region, where short-range interactions due to H1 are important. 
As emphasized in re£.[21,22], Eq.(6) is the point at which such approximations can 
be introduced. Hydrodynamics[17], for example, can approximate the dynamics 
only during the time that local equilibrium is maintained and breaks down beyond 
some freeze-out time. Monte Carlo event generators[24] and cascade models[18] can 
approximate the dynamics only to the last large momentum transfer interaction and 
assume fre~ streaming beyond that. Bose or Fermi symmetrization and multiple soft 
interactions leading to weakly bound states[22] are obviously beyond the scope of 
most classical transport models. In that case Eq.(6) provides the only rigorous 
link between of transport calculations and the asymptotic multiparticle final states 
observables. The main trick is that quantum effects are included through the use 
of an exact final state Wigner densities. Of course, it may well be that no classical 
transport model can adequetly describe (8/8t)Ifm· However, the point is that (6) 
allows an experimental test of such models. 

For pion interferometry our primary interest is to exploit the Bose symmetry 
of the asymptotic wave functions. Neglecting final state interactions[5,16] the sym
metrized final wavefunction 

(27r)-3n/2 
(xl ... X lkt .. . k ) = """eikcrl'Xl ... eikcrn·Xn ',n' ,n II L...J yn. (1 

(9) 

leads to the following Wigner density: 

W, (A.. .. . A.. ) _ ~ """IIn { -iq(u;,O:;)·X; £3( . _ K( . - ·))} k 1 , .. ·,kn 'f'l, ,'f'n - I L...J e v p, u,,u, , 
n. ua i=l 

(10) 

where CJ = (ut, · · ·, Un) and (j denote permutation vectors of n indices, and the 
relative and mean momenta are given by 

q(i,j) 

K(i,j) 

k;- kj 

~(ki + kJ (11) 

Denoting the spatial Fourier transform of the inclusive phase space densities by 

where ~i _ (q;, Pi), the integration over phase space coordinates in (6) given (10) 
leads to the following expression for the n-pion inclusive distribution: 

where (i>(i,j) = (q(i,j),K(i,j)), and the permutation symmetry of the classical 
distribution fn( </>1, · · ·, </>n, t) = fn( </>(!p ···,</>(In' t) has been employed. 
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2.2 Semi-classical Cascade Ensemble 

In classical transport theory[25], the n-particle phase space distribution can be 
expressed as the ensemble average of a product of microscopic distributions 

(14) 

that describe the phase space distribution of individual test particles, labeled a, 
which were produced at times, tao, and which move along classical trajectories 

· <Pa(t) = (xa(t), Pa(t)) , t 2: tao , 

with 
d _ /E _ E _ ( 2 2)112 dt Xa - Pa a = v a ' a - Pa + ma 

In terms of the microscopic distributions, ga, the n-particle distribution is given by 

(15) 

where ( · · ·) denotes the ensemble average over the trajectories of n-tuples in events 
with total multiplicty, N, and CN,n = N!/(N- n)!. 

To incorporate minimal effects due to the uncertainty principle, we must allow 
for a spread of coordinates around the classical trajectories. The semi-classical 
generalization of (14) is achieved by the simple substitition 

(27r?86(</J- <Pa)--+ 8~(</J- <Pa) = (.6.x.6.pt3e-(X-Xa)2/2Ax2 e-(P-Pa)2/2Ap2 ' (16) 

with the condition that .6.x.6.p 2: ~· We note that classical transport theory is gen
erally valid only in cases when the phase space density is low, i.e. f(x,p).6.x.6.p ~ 1, 
and when the wavepackets do not overlap on the average. In the semi-classical limit 
the final observables should then not be sensitive to the wavepacket size. On the 
other hand, if a sensitivity to .6-x and .6-p is found, then this indicates that the inter
ference pattern involves a convolution of effects depending on the quantal aspects 
of the production dynamics and of effects resulting from the transport dynamics. 

We consider here the simplest case, where transport can be described by classical 
(billiard ball) cascade dynamics. In this case, the momenta of particles are changed 
discontinuously through momentum transfers, .6-pai at specific "collision" times tai 
corresponding to the ith collision of particle a such that 

f(a) 

Pa(t) = Pao + L .6.paJ1(t- tai) (17) 
i=l 

The particles move along zigzag paths in coordinate space. In (17), f( a) denotes 
the total number of collisions suffered by particle a. We denote the straight line 
phase space trajectory between tai :::; t :::; ta(i+l) by 

(18) 
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where Xai = Xa(tai), Pai = Pa(tai + 0), and Vai = Va(tai + 0). The semi-classical 
microscopic distributions (14) can be thus expressed as 

9a(</Y,t) = 8(t-taJ)8~(<P-<PaJ(t)) 
f{a)-1 

+ I: 8(t- ia;)8(ta(i+l)- t)8~(<P- <Pai(t)) , (19) 
i=O 

where taf denotes the last collision time, i.e., the decoupling time of particle a. 
Taking the time derivative and using the equations of motion, we see that 9a obeys 
the classical the transport equation 

(20) 

where Vp = p/ Ep, and the "source" phase space density including modifications due 
to final state cascading is given by 

sa(<P,t) = 8(t-taJ)8~(<P-<PaJ(t)) 
f{a)-1 

+ I: ( 8( t - tai) - 8( t - ia(i+l)) )8~ ( <P - <Pai( t)) (21) 
i=O 

In the absence of cascading, the source density reduces to the intuitive form 

(22) 

With cascading included, Sa includes not only (22) but also a "collision" term 

f(a) 
Ca(<P, t) =I: 8(t- tai)(8~(<P- <Pai)- 8~(</Y- <Pa(i-1))) · 

i=1 

vVith the transport equation (20), the time variation of fn is given by 

(23) 

The left hand side obviously describes free streaming while the right hand side is 
the sought after rate of change of fn due to interactions in this model. 

To perform the time integration in (13), we show next that the spatial Fourier 
transform of the right hand side of (23) can be written as of a total time derivative 
in the semiclassical limit for the special set of momentum coordinates involved in 
eq.(13). Using the tilde notation of (12), the transformed transport equation from 
(20) is 

( Ot + i q · V p) g: ( q, p, t) = S-a ( q, p, t) . (24) 

Since sa is given by (21), the solution of (24) can be written as 

- ( t) -.iq·Vpt ( t) 9a q, p, = e na q, p, (25) 
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where 
I iq·Vpt - I jt 1 

na(q,p,t)= -oodte sa(q,p,t). (26) 

In terms of this solution, the space-time Fourier transform of the interaction rate 
in (13) can be expressed finally as 

(27) 

where 
n 

Bn({~i}) = Lqi · Vp; (28) 
i=l 

Only the eiBnt phase factor stands in the way of immediate time integration in (13). 
However, for pion interferometry, a special set of momentum coordinates, { ~i}, are 
required in eq.(13). For a given permutation, a, they are 

Evaluating Bn in this case leads to 

n 

Bn({~(i,a;}) = L(ki- k;J/E(i,a;) ~ 0 , (30) 
i=l 

1 
whereE(i, a;) = ((k; + k,J 2 /4+m2)2. For two pion interferometry 82 - 0 is trivial, 
but even for n 2': 3 pion interferometry, Bn ~ 0 in the nonrelativistic (E ~ m) limit. 

Vvith (30), the time integration in (13) gives 

(31) 

where 
na(~(i,j),oo) = (27rt3 j d4xeiq~'(i,j)x~'sa(x,K(i,j),t) , (32) 

is the space-time Fourier transform of the source distribution (21) with 

1 1 
qo(i,j) = q(i,j) · K(i,j)/E(i,j) ~ (kf + m2)2- (kJ + m2)2 (33) 

corresponding to the approximate pair energy difference. 
Taking the space-time Fourier transform of sa in (21), we therefore find that 

f(a)-1 
na( q, K, 00) = { eiqXaf b~( q, K -Paf )+ L (eiqXai- eiqXa(i+ll)b~( q, K- Pai)} ' (34) 

i=O 

where this Gaussian smoothed delta function is given by 

(35) 
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In the limit, 6.x, 6.p--+ 0, obviously 8~( q, p) --+ 83(p ). 
There are three interesting limits of (34). First in the strict classical limit every 

term in the sum over intermediate scatterings vanishes because classical particles 
propagate along straight line trajectories between collisions such that 

(36) 

Therefore, in the classical limit only the final decoupling time contributes and (34) 
reduces to 

(37). 

Second, even for 6.p > 0, the cascade corrections can be neglected if R ~ .\, 
where R is the radius and ,\ the mean free path. In this case the number of terms, 
f( a) "' R/ ,\ in the sum is large, but the difference of the phases in each term is very 
small: 

(38) 

To see this, note that the interesting range of q is "' 1/ R, the time interval between 
collisions, 8t "' .\fva, the linear term vanishes on account of (q · 8v) ~ 0, and finally 
that the velocity dispersion is 8v2 /v~ ~ 1. Therefore, in this "thermal" limit 

(39) 

with corrections on the order of 8na/na r-w (.\/ R). For the above estimate we as
sumed implicitly that the typical momentum transfers were on the order of the pion 
momenta. In the opposite (Eikonal) limit, where 6.pai/Pai ~ 1 and Paf ~ Pao, (39) 
still holds, but in this case, na can also be expressed directly in terms of the initial 
production coordinates as 

(40) 

with corrections appearing to order 8na/na r-w (R/ .\)6.p~jp~. 
For applications where 8na/na ~ 1, (31) reduces to the following semiclassical 

expression for the n-pion inclusive distribution 

which involves only the phase space coordinates, (xi, Pi), of the pions at the decou
pling times, ti. 

It depends also in general on the spread of the wavepacket in phase space. We 
emphasize that ( 41) permits arbitrary dynamical correlations between the seven 
dimensional decoupling phase space coordinates and also arbitrary n-pion dynamical 
correlations. While intermediate cascade corrections to ( 41) may be small, such 
correlations resulting frqm the cascading can nevertheless modify strongly the final 
interference pattern, e.g., in the case where collective flow is generated[7]. In the 
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case when only a few collisions occur, eqs. (31,34) provides a way to calculate 
distortions caused by intermediate state cascading. 

If n-pion dynamical correlations are absent, then the ensemble average in ( 41) 
can be expressed in terins of the space-time Fourier transform of the pion breakup 
distribution 

D(q,p) = j d4 xexp(iqx)D(x,p) , (42) 

where 
(43) 

and ¢> f are the breakup phase space coordinates and t f are the breakup times. 
Note that D is normalized as f d4 xd3pD( x, p) = 1. We emphasize that D does not 
correspond to the one body phase space density, f( x, p ), at any one time, x0

, because 
it involves the fluctuations in the breakup times. Only in the ideal hydrodynamic 
model[17] can D be identified with f at the freeze-out time. In terms of D, 

n 

Pn(kl, · · ·, kn) ~ (CN,n) L II D~(q(i, O"i), K(i, O"i)) , (44) 
0' i=l 

where D ~ is the wavepacket smoothed breakup distribution 

D~(q, K) = j d3pD(q,p)b~(q, p- K) . (45) 

In particular, the single inclusive distribution is P1(k) = (N)D~(q = 0, k). The 
two-pion correlation function is given by 

( )
- _ (cos( q · (vK(taf - tbf) - (Xaf - Xbf ))e-q

2 
~x

2 

8ip(K - Paf )8ip(K - PbJ )) 
c kl, k2 1 - ( 3 ( )) ( 3 ( )) 8~P k1 - Paf 8~P k2- Pbf 

(46) 
with q = k1 - k2 and K = ~(k1 + k2). If the multiplicity distribution is not Poisson, 
then the ratio binomial moments enters as in (1 ). In the limit ~x = ~p = 0, ( 46) 
reduces to the expression derived by Pratt [7]. In addition to including smearing 
associated with the production of finite wavepackets, our derivation more general 
than that of Ref. [7] and show how corrections due to intermediate state cascading 
can be calculated via (34) 

It is interesting to compare ( 46) with the phenomenological formula proposed 
in [4] and used in cascade studies in [10]. The Yano-Koonin formula differs from 
( 46) in the replacement of the t'Yo K's in the numerator by k 1 and k2 and setting 
~x = ~p = 0 leading to 

Re{D(q, ki)D( -q, k2 )} / D(O, ki)D(O, k2) 
(cos(q · (x1- x2))83 (p1- ki)83(p2- k2)) 

(83 (pl - ki)83 (P2- k2)) 
(47) 

In this expression, q0 , is the exact relativistic energy difference. In general ( 4 7) is 
valid only when the variation of D( q, k) with k is small in the sense that 

(48) 
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Since \l K rv 1/ P and q rv 1/ R, ( 48) holds in the semiclassical limit when RP ~ 1. 
However, as we shall see in section 3.2, Cyg could differ substantially from the 
true correlation function in situations where D( x, p) involves strong correlations in 
phase space. 

2.3 Covariant Generalization and the Current Ensemble 

A major limitation of the above derivation is the lack of Lorentz covariance. This 
problem can be cured either by turning to the covariant current ensemble formalism[5,12] 
or by generalizing the above Wigner formalism. We propose here a simple covariant 
generalization of ( 41 ), which reduces to it in the nonrelativistic limit and show that 
the same result can be obtained with the covariant current ensemble method[19]. 

The covariant generalization of the breakup distribution ( 43) is clearly 

V(x,p) 

V(q,p) 

(84(x- XJ)84(p- PJ)) 
- (eiqxf 84(p- Pi)) ' (49) 

Next we note that for J{J.L = t(kf + kj), qi-L = ki- kj, and k[ = PJ = m 2
, in 

the nonrelativistic limit we have q2 
:::::::: -q2

, ](
2 

:::::::: m 2 + q2 /4, and I<p :::::::: m 2 + 
((ki-p )2 + (kj- p )2)/4. A convenient covariant generalization of b( q, K- p) is the 
covariant delta function, btl. (ki, ki, p) given by Eq.( 4). With these generalizations we 
see finally that Eq.(3) in section 1 is a natural covariant generalization of Eq.( 41 ). 

For the case-- without multiparticle dynamical correlation, the genralization of 
( 45) is then 

(50) 

It is remarkable to note that, for the minimal wavepackets satisfying /:ix/:ip = t, 
(50) simplifies to same expression as derived via the covariant current ensemble 
method in [19]: 

(51) 

To see this connection, we recall that in the later formalism[5,12], the source of 
pions is represented by an ensemble of current elements, each one specified as 

(52) 

where u~ is the boost velocity of the emitting source and Xa is the space-time origin 
of current element a, and J0 (x) refers to each current element in its rest frame. The 
Fourier transform of the total source current is then 

J(k) = 'L,Jo(u~kp,)eik~'x~ei<Pa ' (53) 
a 

with random phase factors ei<Pa introduced to describe completely chaotic sources. 
The n-pion inclusive distribution function is then given by 

(54) 
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where (· · ·) denotes the ensemble average over the space-time coordinates Xa, four
velocities ua, and random phases cPa· In the absence of dynamical multi-pion cor
relations, that ensemble average can also be expressed in terms of q. "freeze-out" 
phase-space distribution, 'D(x~p), where pj = muj. Then, the n pion inclusive 
distribution function can be written as 

(55) 

with a complex amplitude G(ki, kj) given by the convolution of the freeze-out dis
tribution and two currents elements that specify the production dynamics: 

G(ki, kj) = j d4pD(ki-kj,p)j~(pki/m)jo(Pki/m) = (ei(k;-kj)xaj~(paki/m)jo(pakjjm)) 
(56) 

As emphasized in [12,19] the dynamical model dependence therefore enters, not 
only through the distribution , 'D(x,p), of the freeze-out phase-space coordinates 
but also through the the specific form of the current elements j 0 • 

Finally, we recall that for a pseudo-thermal parametrization[12,19] for on shell 
Fourier transform of the current elements, with 

io(pkjm) = e-p~"kp./(2mT) ' (57) 

the amplitude G(ki, kj) is given by 

G(ki, kj) = (ei(k;-kj)Xafe-~(k;+kj)PaJf(mT)} (58) 

We therefore see that the pseudo-thermal current ensemble is completely equivalent 
to the minimum Gaussian packet Wigner formulation in Eq.(51), if l::!..p2 "'mT. In 
this formalism, the current elements play the same role as wavepackets do in the 
Wigner density formalism described above. 

3 Examples 

3.1 Uncorrelated Gaussian 

Consider first the nonrelativistic and uncorrelated Gaussian breakup distribution 

D(x, p) = (27rr2)-lf2(27rR2)-3f2(27rP2t3/2 exp( -t2 /2r2- x2/2R2- p2 /2P2) ' 
' (59) 

where r 2 = (t2), R 2 = (xl}, and P 2 = (p;). Evaluating the wavepacket smeared 
Fourier transform ( 45) leads to 

Pl(k) ex e-k2/2(P2+t:;.p2) ' 

C( q, K) 1 + e-q~r2-q2 R~ ' (60) 
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where q0 is given by (33), and the effective root mean square radius in each spatial 
direction is 

2 2 2 1 
Rc,. = R + ~x - 4(P2 + ~p2) (61) 

In the semiclassical limit, RP ~ 1, and thus the last term is negligible. 
For this Gaussian ensemble, CYK from (47) is also given by (60) but with ~p = 0 

and Rc,. -4 0. For ~x~p 2: ~' Rc,. 2: R, and thus the correlation function is always 
narrower than naively expected for a given R. 

This simple Gaussian ensemble show clearly how breakup time fluctuations can 
distort the geometrical interpretation of the correlation function. Time fluctuations 
( T > 0) induce a K dependence of C(k1, k2 ) = C(K, q) through its dependence on 
the relative energy: qo ~ q · VK. If we try to extract the geometrical information 
from the small q variation of C using 

(62) 

then we see that 

R;,eff ~ R~ + r 2
(IC/EK)

2 

R'i,eff ~ 2(R~ +r
2(KJ./EK) 2

cos
2 fh) (63) 

Thus if we integrate over all orientations of K1. with respect to q1., then the effective 
rms transverse radius would be 

(64) 

Of course, experiments always have a finite resolution for longitudinal momen
tum differences. Therefore, the experimental correlation function plotted as a func
tion of one variable, say the transverse momentum, always has an effective intercept 
in the lowest q1. bin less than 2. For correlations projected on a single variable, say 
q1., with other variables integrated over certain cuts the intercept can differ dra
matically from 2 and has often led to erroneous conclusions (see [14] for further 
discussion). 

For ]{ = 0 pairs of course no problem occurs. However, experimentally pairs 
are analyzed by binning in finite rapidity intervals in which K / EK I'V 1. This 
simple analytic case shows that R~f f would then measure roughly the sum of the 
longitudinal radius and source time with relatively small dependence on the rapidity 
interval under consideration, while Re_/ 1 would show a maximum value exceeding 
the correct transverse radius in the rapidity interval nearest the rapidity of the 
source. This behavior of Re_/1 would occur because K1. is limited emiprically while 
Kz is not. Note that Re_/1· would tend to the correct transverse radius in rapidity 
bins where K1./ EK -4 0. Therefore, we see that large fluctuations of the emission 
times of the pions can result in significant narrowing of correlation functions and 
that narrowing could be misinterpreted as evidence for anomalously large radii and 
less than chaotic fields. 

14 



3.2 Ideal Inside-Outside Cascade 

A more interesting example involving relativistic and correlated distributions is 
given by the ideal inside-outside distribution[23,7,12,14,17] . The freeze-out phase
space distribution is in this case 

'D(x,p) ex c5(r(t,z)- r)c5(ry- y)c5(E- Ep)c52 (p_!_)e-xi/Ri , (65) 

1 
where Ep = yfp2 + m 2, r( t, z) = ( t2 

- z2 ) 2 is fixed to the freeze-out proper time, r, 
and the space-time and momentum rapidity variables, 

'f/ = ~ log((t + z)j(t- z)) , y = ~ log((E + Pz)/(E- Pz)) , (66) 

are assumed to be perfectly correlated. A uniform rapidity distribution is assumed. 
The rms transverse radius of the system is R_1_. 

The covariant Wigner distribution (50) can be evaluated as in [12] and we find 
that 

(67) 

where 
(68) 

measures deviations from a minimal packet, and 

2 . 2 
2 rn 2 2 2 zmr 2 2 2 m 

z = (----:\4-r )(mu +mu)- A 2(mu -mu)+2(r +A4)mumucosh(y1-y2) 
4 L.l. p L.l. p 4 L.l. p 

(69) 
Here ml_ = m 2 + kl_. 'In the limit that t. = 0 and .6.p2 = mT, we thus recover the 
formula in Ref.[12]. 

It is interesting to study the rapidity correlation scale by restricting to mu = 
-mu = m_1_ and small .6.y = y1 - Y2· Furthermore assume that .6.p ~ m. In that 
case, 

mm_1_ 1 r 2 .6.p4 1 2 z ~ --[1 + -( +- ).6.y l ' 
.6.p2 2 m 2 4 

(70) 

and we can use the asymptotic expansion of the Bessel function, 

(71) 

With this approximations, (67) becomes 

(72) 

The single inclusive distribution is therefore 

(73) 
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and the correlation function is given by 

ForE= 0 and ~p2 = mT, 

(75) 

What is most important to observe in the above is that the rapidity correlation scale 
is strongly influenced by the width of the wavepacket in momentum space. In this 
model that width determines the average transverse momentum of the final pions 
through (73) and thus is constrained experimentally. However, even at large freeze
out times it is thus clear that the rapidity correlations in the ideal inside-outside 
cascade picture depend on the production dynamics. 

Another way to emphasize the above point is to compare the above results to 
those obtained via the Yano-Koonin ansatz[4]. That ansatz can be recovered from 
(3) by replacing in Eq. (4) 

(76) 

With this substitution, the ensemble average with (65) is simply proportional to a 
phase (for Q.L = 0), 

D(q, k) ex eiT(qocoshy-qzsinhy) ' 

and the correlation function is 

This gives 

C ·(k k ) _ 1 Re[D(q, kt)D( -q, k2 )] 

YK t, 
2 

- + D(O, kt)D(O, k2) 

which in the ~y ~ 1 limit leads to 

(77) 

(78) 

(80) 

Therefore, without the use of finite wavepackets, the dependence on ~y is nnly of 
4th order. This shows that Eq.(78) is not adequate in general to deal with correlated 
dynamics. 

In the general case, it is necessary to use Eq.(3) as summarized in section 1. 
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