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1. INTRODUCTION

Rayleigh presented the first complete analysis of the morphological instability of con-
tinuous phases in 1878.' As Rayleigh remarked, “[these] phenomena, interesting not only in
themselves, but also as throwing light upon others yet more obscure, depend for their explana-
tion upon the transformations undergone by a [cylindrical body] when slightly displaced from
its equilibrium coﬁﬁguration and left to itself".2 The Rayleigh analysis indicates that
infinitesimal periodic perturbations with a wavelength, A, exceeding 2xR (the cylinder cir-
cumference) will reduce the specific (per unit volume) surface energy, and thus will increase in
amplitude. Growth of perturbations with A>Apia(= ZwR) eventually cause the formation of

one discrete particle per wavelength increment of cylinder.

Such phenomena continue to be the subject of considerable interest; a wide range of
microstructural phenomena involving capillarity-induced shape changes have been analyzed
or modeled by a Rayleigh analysis. These include: the stability of lamellar eutectics, 3-3
fibers in composites,® and artificially lengthened precipitates,’ -8 the shape evolution of field
ion emitter tips,”' healing of cracks introduced by thermal shock,“"l2 as well as by scoring
and welding of bicrystals,'>'4 and the stability of the continuous pore phase during sintering

of powder compacts.'*'$

The Rayleigh analysis permits qualitative understanding of many of these phenomena,
however, complications arise when the continuous phase is located at a grain boundary. For
an intergranular phase, each grain boundary intersection is characterized by some dihedral
angle. The associated deviation from a cylindrical geometry changes both the surface energy

per unit volume and the stability condition.

The modifying effect of dihedral angle on the stability of continuous grain boundary
phases was recognized by C. S. Smith.!” In discussing continuéus phases along three grain
junctions Smith wrote, "If a second phase forining ata grain edge has a dihedral angle against
grain boundaries.'of nearly 1807, it will behave like a cylinder and will certainly break up. If,

however, the interphase tension is low in comparison with the adjacent grain boundary
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tension, the resulting triangular shape becomes stable at longer and longer lengths until, at a

dihedral angle of 60° and below, the phase becomes stable at any length of grain edge.”

The stability of continuous phases along three grain junctions of tetrakaidecahedral
grains has been evaluated by both Beere '®!% and Tucker and Turnbull.?® These analyses indi-
cate the important modifying effect of dihedral angle on intergranular phase continuity condi-
tions . More geherally, continuous phases may be situated at (along) the junctions of an arbi-
trary number of grains. The ensuing analysis quantifies the discussion of Smith by extending
Rayleigh’s method to continuous phases surrounded by n grains with (variable) dihedral angle
¥. Results indicate the stability condition depends strongly on the intergranular phase
geometry (as dicfated by the values of n and y), and may differ significantly from that of a

cylinder.

A complete analysis of morphological instability has two components:?! a thermo-
dynamic analysis identifying the smallest wavelength (infinitesimal ampl_itude) perturbation
for which the amplitude will increase, and a kinetic analysis determining the particular
wavelength for which periurbatiou growth is most rapid. A thermodynamic analysis for non-
faceting surfaces with single-valued interfacial tensions is presented here. Possible
modifications resulting from surface faceting?*?’ and the implications of the analysis to the

kinetics of phase breakdown have been discussed elsewhere.?3



2. THEORETICAL ANALYSIS: DETERMINATION OF Ay,q

In this section, the briefest outline of the analysis of Apmi, is presented. The interested

reader is referred to appendix I for a detailed account of the involved mathematics.

The objectives are the calculation of the surface area and volume of both a perturbed
and unperturbed channel as a function of the number of bounding grains 7, and the dihedral
angle ¢. The results of these calculations are employed to define the condition for thermo-

dynamic stability of a continuous grain boundary phase.

2.1. Analysis

Figure 1 illustrates most of the geometrical parameters relevant to the analysis. Isotropic
interfacial energies (grain boundary and interphase) are assumed, i.e., the energy for each type
of interface has some unique but constant value. Each interphase boundary will thus have
identical curvature, and intersect the adjoining interphase boundaries at a common dihedral
angle, y. The intergranular phase will display n-fold symmetry. The channel cross-section

may be circumscribed by a circle of radius R., which intersects all n triple junctions. Let the

radius of curvature for any side be o', then it is possible to describe one of the surfaces by:
(x + 1P +y2=p? 2.1
within - —:— <6< % 7' is the distance between the center of the particular circular arc and

the origin.

Normalizing,

1
p and n= R, (2.2)

£
R,
A perturbation on the cross-section can be described as the largest term of some periodic

function of wavelength A and arbitrarily small amplitude é.

R, = R, + écoskz (2.3)
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where k = ~

The surface excess energy per wavelength is:
S =v:As + YppAg (2.4)
where A; is the surface area per wavelength, and Ay, is the grain boundary area.

The expressions for the surface and grain boundary area may be computed for arbitrary ¢ and

n.

2nw

Ag = =@ - R,) 2.5)
where « is an arbitrary boundary length.
2n=R, §52k?
A = X lU + = P] (2.6)
where,
= xr_r*_ ¥ 7
U Zp'n 3 + 2] 2.7
and
= 3 T ¥ T p)
P (20 +pn)(n‘+ > 2)+ (2.8)

cos(%)(Snpzcos(%) - 2r’sin¥(Z)cos(T) - nzpsin(-g-) - 2p3sin(-‘§-) - 2p3sin3(%))

The volume per wavelength may also be computed:
vV, 2 2 .
"V, = (2R, + ) (2.9)

where V, is a geometric factor.
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Expanding the surface excess energy, eq. (2.4), with the constraint of constant volume:

iy

kv,
2=V,

cos(%) (2.10)

¥ " L2
;- 4n1rcos(2)a . x| KV, 7 i 4n7rcos(2)a
= k k |2xV, k

'/2

kV,
27V,

nr ¥
Y5k 2 27V,

2cos(¥) - U + [ﬂ]kzpl%z

As in all problems of metastability, stability is determined by the sign of the second deriva-

2

tive, i.e., the term multiplying % Thus, the channel is unstable to all infinitesimal perturba-

tions with wavelengths A > A, for which the term which multiplies 6% is negative. Finally,
the equation
P K

Amin = 27R, | ———
U—2cos(-g—)

(2.11)

defines a critical condition for perturbation growth. It is analogous to the Rayleigh result for

the cylinder.

The cos-dji term stems from the change in grain boundary area. Only dihedral angles in the
range, 0 < ¢ <=, are considered, cos% is always positive. For y between 0 and =, both P and

U are positive. Thus, the change in grain boundary area accompanying development of a per-

turbation increases Am;, and stabilizes the intergranular phase.

2.2. End-State Calculations

The stability condition derived in this analysis defines the minimum wavelength neces-
sary for an infinitesimal periodic perturbation on R, to increase in amplitude. Infinitesimal
perturbations with A > A\, decrease the interfacial energy in comparison to that of an unper-
turbed cylinder having the same volume per wavelength. Wavelengths less than An;, can grow

for large perturbations.?*
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The interfacial area of the perturbed channel is sensitive to the form of the imposed per-
turbation. Conceivabl);, a perturbation with an additional radial or rotational component
could yield a smaller Ay, than derived here. Hence, although the calculated values for Amin
presented serve as a sufficient condition for instability; perturbations of greater geometrical

complexity may provide a smaller value for A, as a necessary condition for instability.

Accordingly, it is desirable to determine a lower limit wavelength A, as a function of ¢
and n. This entails calculating the perturbation wavelength for which the total (grain boun-
dary and in'terphase boundary) interfacial energy per wavelength in the unperturbed and final
(discrete particle) states are equal (Appendix II). Shorter wavelength perturbations would
increase total interfacial energy. Thus, the difference between Ay and Ay, indicates the max-
imum possible reduction in Ay, achievable by imposition of a more geometrically complex or

large perturbation.

The calculation is straightforward for ¢ = x, since this implies v, = 0, and conse-
quently, changes in grain boundary area accompanying the transition from a cylinder to an

ensemble of equidistant spheres of equivalent total volume need not be considered.® For the
simple case of a cylinder, \; = —g-Ro independent of n. For y < =, the calculation is more

tedious. Results for n = 2 and n = 3 are present in Figs. 2a and 3a, respectively. Forn = 3, '
results of Clemm and Fisher®> were used to describe the geometry of the discrete phase. The

generalization to arbitrary n and results for n > 3 will be presented elsewhere.*

“Comparison of end-state calculations for n = 2,3 including and excluding grain boundary area changes
indicate a trend similar to that suggested by Eq. 2.11, i.e.. the grain boundary area changes associated with
an infinitesimal perturbation increase A. and stabilize the continuous phase. :
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3. DISCUSSION

Results of the analysis for several n are presented in Figures 2-4. For each n (Figures
2a-4a), A\nin coincides with the Rayleigh result (2xR.) for ¢ = 180°. For n = 2, the ratio

Xmin

27R,

is < 1 for all y < 180° , decreasing with ¢ to a limit of (—176-)"z as y = 0. The

corresponding end state calculation (see Appendix II) for » = 2 indicates that A, follows a
similar trend, decreasing from 0.716 at ¢y = 180° to 0.633 when y = 0. The present values of

)‘min

27R.

are lower than those appropriate to a sinusoidal perturbation imposed on p,>> and thus

more closely approach a necessary condition for instability. The close correspondence
between A, and A\, suggests that although a further reduction in A, is possible, the decrease

is likely to be small.

Amix‘l

27R.

For n 2 3, Apin and tend to infinity as ¢ - » - 27”, or equivalently, as the inter-

face curvature vanishes. The end state calculation (n = 3) shows a similar increase in A\; as ¢
decreases from 180° to 60°. A previous analysis indicated a similar trend but a more rapid

min

27R,

increase in with decreasing ¢.2* For fixed n, a continuous phase with lower ¢ is

expected to be more stable than one with higher y. For n = 3, the phase is completely stable
to (infinitesimal) perturbations when ¢ < » - %:r— For fixed ¢, the stability increases with »
(Table I).

To compare this analysis and that of Rayleigh, two normalization parameters are intro-

~duced. Defining R,, as the cylinder radius yielding the same volume per unit length as an

normalizes the

A
intergranular phase characterized by a dihedral angle ¢, the ratio 2:;“
_ »
actual A,;, by the minimum wavelength that would grow in a geometrically similar compact

Amin

27R,,

with an equivalent volume fraction of (cylindrical) second phase. The dependence of

on ¢ for various n is presented in Figs. 2b-4b.
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An alternative normalization mode is based on consideration of the surface curvature as
characterized by p. The stability condition of the intergranular phase may be compared with
that of a cylinder having the same curvature, i.e., one with radius p. The results of this com-
parison, presented in Figs. 2c-4c, indicate the approximation Apiq = 27p overestimates Amin

for all ¢ < 180° and becomes progressively poorer as y decreases.?

3.1. General Considerations:

The composition, inherent properties, morphology, and spatial distribution of a second
phase within a matrix, can have an important impact on a material’s ultimate properties.
The incorporation of continuous filaments into polycrystalline matrices ﬁmy dramatically alter
mechanical behavior. High temperature stability and useful lifetimes of such composites will
be influenced by the fibers’ relative susceptibility to morphological instabilities and concurrent
coarsening.’ Continuous phases may pyovide high diffusivity transport paths, (e.g., vapor tran-
sport along continuous pore channels in UO; fuel elements?®) or be preferentially leached,
thus lirhiting the utility of a material in storage applications, e.g., containment of nuclear '
waste. In these cases as well as others, factors influencing the morphological stability of con-
tinuous phases may become important considerations in materials design. The stabilizing

effect of the dihedral angle is discussed below for specific cases.

3.2. Consideration of n = 2

Crack healing experiments have been conducted on cracked sapphire single crystals, '3,
bicrystals.'* and thermally shocked polycrystals'' and used to determine surface diffusivities
in alumina. During annealing, the crack first breaks down into parallel, high aspect ratio pore

channels. These channels in turn undergo a Rayleigh instability, resulting in breakup into a
Amin
27R,

In comparing normalizations, the trend is simply a consequence of having p > R. > R,; when

Vv < 180°.
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string of equidistant isolated pores. The ratio of pore spacing ()) to (apparent) pore radius r,
differs for surface diffusion and volume diffusion controlled breakup; the pore radius r, and
an experimentally measured breakup (ovulation) time are used to determine the appropriate
diffusivity.

The dihedral angle will affect the shapes of both the continuous and discrete pores, and
through its effect on \,;,, will also affect the kinetically dominant wavelength, and thus both
the size and spacing of discrete particles or phasés resulting from perturbation growth
processes. Experiments on a series of bicrystals with a systematic variation in ¥ (owing to
misorientation effects) would be expected to reveal a systematic variation in particle size and
spacing. In polycrystals, incorporating a spectrum of y, "scatter” in the sizes and spacings of
discrete particles would be observed. In polycrystalline alumina,'' the pore spacing to pore
diameter ratio varied by as much as factor two. Similar variability was obtained for the break-

down of elongated bubbles (appearing to lie on two grain interfaces) in tungsten filaments.®

For alumina, surface diffusion was identified as the dominant transport process in each
case. However, the deduced surface diffusivities differ by between one and two orders of
magnitude at the same temperature. An assessment of the contribution to scatter owing to

dihedral angle effects is therefore of interest.
Since the shapes of both the pore channel and the isolated pores are affected by v, it is

anticipated that 2 will also be dihedral angle dependent. For constant L,L decreases
2r, R. " 2r,

by = 4% as y varies from 180° to 0 (Appendix III). Recent dihedral angle measurements in

alumina by Handwerker*® have indicated a wide dihedral angle range, 85° to 170°. Within

this range of y, there is a factor v2 decrease in Amin- The total “scatter” in 2—?- will depend
p

on the dihedral angle dependence of the kinetically dominant wavelength. If the kinetically

dominant wavelength is a mechanism dependent, but dihedral angle independent multiple of

Amin. the total scatter in —Zt— owing to dihedral angle effects is < *10% and similar —22"—
p p

ratios would be obtained regardless of whether measurements were conducted on single
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crystals or polycrystals. If the observed scatter reflects primarily dihedral angle effects, the

ratio of the kinetically dominant wavelength to A\, must depend on y.

While the pore spacing:pore diameter ratio determines the dominant transport mechan-
ism, the appropriate diffusivity is calculated using the measured breakdown time and the iso-

lated pore’s radius. For surface diffusion dominated breakdown of a cylindrical pore, the

4

B : r . . .
breakdown time is proportional to -b”——. Only when ¢ = 1807 is the isolated pore spherical
s

and the analysis strictly valid. For a lenticular pore on a two grain interface, r,, the apparent
pore radius, is both proportional to A" and a function of . The breakdown time will also be
modified by dihedral angle effects on both local curvature differences and the volume of mass
which must be transported to accommodate breakdown. Discrepancies between surface
diffusivities determined using single crystals and polycrystals are thus likely. A quantitative

assessment of these effects is in progress.?*

3.3. Consideration of n = 3

Pore stability during intermediate stage sintering has been considered by Beere,!3:!?
Tucker and Turnbull®®, as well as others. Two approaches have been employed. Beere, and
Tucker and Turnbull have assumed a specific grain shape, a tetrakaidecahedron, and
evaluated the pore shape minimizing the total interfacial energy (at constant density) as a
function of ¥. The results indicate that the compact density at which a continuous pore phase
(along three grain junctions) is no longer stable increases as y decreases. Pore phase break-
down is predicted at a pore fraction of = 8% when ¢ = 1807, and a pore fraction approaching
0% as ¢y — 60°. For UO,, for which ¢ = 907 is quoted, the critical porosity is = 4%. Similar
values are presented by Tucker and Turnbull. .

Alternatively, the pore phase has been approximated as a cylindnical channel along three

grain junctions. Breakdown of the continuous pore phase, marking the transition from inter-

mediate to final stage sintering, has been assumed to occur by perturbation growth processes.
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Assuming the same grain shape as Beere, and equating the grain edge length to An;,, one can
similarly estimate the critical density at which pore closure could occur by a Rayleigh instabil-
ity. The volume fractions porosity corresponding to ¢ = 180° , 90° and 60° are = 8%, 2%,
and 0% respectively. Although this approach neglects "end effects™ associated with four grain
corners, 5 similar trend in stability and critical pore fraction is indicated; a decrease in y is
expected to delay pore closure until a higher density has been reached. The dihedral angle
distribution may consequently have an important modifying effect on microstructural evolu-

tion.

Nichols has recently presented a simplified model for stable open porosity in which
pores are idealized as cylinders, predicting a critical volume fraction of porosity (or swelling)
of =5-6% for the continuous/discontinuous porosity transition for equiaxed grains.?’ A
dihedral angle distribution would be expected to introduce a spectrum of transition condi-
tions, with pore channels of higher ¢ closing more rapidly and at lower density. The gradual
loss of (redundant) open pore channels makes gas removal (e.g., binder burnout) more
difficult. Eventually, regions will become isolated from the surface due to the closure of lower
¥ channels. Pore phase continuity will also affect the swelling of ceramic nuclear fuels. Dur-
ing swelling, low ¢ channels would be expected to open first, and venting of gases should

occur when adequate pore interconnectivity is achieved.

Dihedral angle distribution dependent spectra of pore closure conditions and sizes, will
also introduce a spectrum of pore-grain boundary separation conditions. This factor, com-
bined with effects of ¥ on pore shrinkage and coarsening behavior, as well as pore mobility,?
may contribute to the development of microstructural inhomogeneities promoting the initia-

tion of abnormal grain growth.

Narrowing the dihedral angle distribution would be expected to lead to more uniform
microstructure development. A comparison of dihedral angle measurements in undoped and
MgO-doped Al,O;,°® has indicated that dopant additions reduce the width of the dihedral

angle distribution. Handwerker et al. point out this increases the uniformity of
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microstructural evolution by reducing the variation in driving forces for densification.?’ The
potential benefits of a dopant-induced reduction in boundary mobility have frequently been
cited. Dopant effects on the uniformity of the pore structure produced during the transition

from intermediate to final stage sintering may also be important.

In addition to the pore phase in powder compacts, second phases at three-grain junc-
tions are commbnly found in alloys with a large difference in either the melting points or
solubilities of the constituents.” A residual glassy phasé along three-grain junctions may also
develop in liquid-phase sintered materials. Similar stabilizing effects may be of importance in

these cases as well.

3.4. Considerationof n > 4

Table I illustrates the increased stability to perturbation growth accompanying an -
increase in n (¥ constant). The enhanced stability is manifested in two ways. The stabilizing
effect becomes significant at progressively higher ¢ as n increases, and the dihedral angle
range within which perturbation growth is possible diminishes (Figs. 2-4). Thus, stabilization
effects of the type considered are expected to be extremely important when a continuous

phase is bounded by a large number of grains.

When n is large, one would also anticipate periodic fiber-matrix grain boundary inter-
sections along the fiber axis, and "rumpling” of the fiber surface in the z direction. The result-
ing changes in the geometry of both the unperturbed reference state and the perturbed state
are expected to modify Apin. Growth of a perturbation results in a net increase in grain boun-
dary area and enhances stability (Eq. 21). Increasing grain boundary density is thus expected

10 increase Amin. The extent to which Ay, is increased by this effect increases as ¢ decreases,
. 2 . .
perhaps as much as doubling A\, as ¢ —- 7 - —nl When ¢ < 1807, surface rumpling will

also modify Ay, however, a quantitative assessment is difficult.
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The general trend illustrated in Table I suggests that the high temperature stability of
intergranular phases could be enhanced by proper manipulation of ¢ and n. If stability to
breakdown were desirable, e.g., fibers in composites, it would be advantageous to maximize
the number of coordinating grains. Thus grain size:fiber diameter ratio (Q) emerges as a

potentially important parameter in materials design.

Grain growth and fiber coarsening may modify n, introducing an additional time-
dependent component to morphological stability. Grain growth may dramatically decrease
fiber stability within certain ranges of Q. A decrease in Q from 20 to 4 may only have a lim-
ited effect, whereas an additional factor of 2-3 increase in grain size would likely have a pro-

found influence on fiber stability.

When n is sufficiently large to inhibit perturbation growth, other factors inducing mass
redistribution along or between fibers may assume greater significance. A variation in n along
the fiber axis will produce local curvature differences may induce mass transfer from regions
of lower-n to higher-n regions; relatively coarse-grained regions may emerge as preferential
fiber-pinchoff sites. Similarly, differences in coordination number may provide a driving

force for interfiber mass transfer (coarsening).

Cline has proposed that if the rod fraction in a composite exceeds 20%, two-dimensional
coarsening occurs more rapidly than breakdown and spheroidization.®* Weatherly has pro-
posed a lower volume fraction for this transition.’ These estimates are likely to be further
modified when intergranular phases are considered. The minimum aspect ratio necessary for
breakdown into two or more particles will increase as n increases or ¢ decreases. Local sur-
face curvatures. and thus the curvature differences driving coarsening are also affected by n
and ¢. Thus, analysis of transition conditions appropriate to intergranular phases is likely to

be complex.
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Table I is a comparison of 7R m, and m
8.
TABLE I
A A A
number, # 27R, 27p 27R,,
2 0.910 0.841 1.161
3 1.093 0.768 1.266
4 1.271 0.688 1.415
S 1.500 0.596 1.633
6 1.864 0.487 2.000
7 2.663 0.344 2.824
8 o0 0 oo

=24 .

fory = 135 and n varying from 2 to
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APPENDIX 1

In this appendix, the detailed analysis of Ay, is presented. Enough of the details are
eliminated to make this appendix approach brevity and enough of the tricks are included to

keep the reader on the right track; perhaps even interested.

1. GEOMETRY

The intersection of the grain boundaries with the surfaces form vertices of an n-sided regular
polygon. The polygon is circumscribed by a circle of radius, R,. The center of the circle
coincides with the origin of a cartesian coordinate system. Local equilibrium requires each
surface to have uniform curvature, let the radius of curvature for each particle be p’. It is
always possible to arrange one of the n circles so its center lies upon (£0), where,

-0 < £ £ 0. The equation for the circle is: (see fig. N)

(x + 1)+ y2=p? . (A-D)
from the law of sines,
’ ) R
L T - £ (IA-2)
sin(X) cos(lp-) cos(= + i)
n 2 n 2
Define
£ =1 )
p= R and n= R (IA-3)

Transforming to cylindrical coordinates and restricting r to the surface. (x-»rcosf. y —»rsin,

=)
r = R.(p* - n’sin’9)" (IA-4)
We perturb the circumscribing circle infinitesimally

R. = R, + écoskz (IA-5)
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where 4 is an arbitrarily small amplitude and ks%"f- is the wavenumber of a fourier mode.

Equations (4) and (5) give:
r = (R, + écoskz)[-ncos8 + (o? - n’sin26)"] (IA-6)

Noting that p and 5 are not functions of z, we define:

r o= rgr. (IA-7)
where
r- =R, +ocoskz  and ry = -ncos + (p? - nsin’4)" (1A-8)
2. Thermodynamics
The surface free energy is:
F = ;'Yi”i _ (IA-9)

where v; is the specific surface energy of the i surface and o; is the total area of the i sur-

face.

For the case at hand,

F =0, + Yeb Ogb (IA-10)
It is sufficient to consider only the surface energy per wavelength, defining / = -ii:
f= YsAs + YebAgh (IA-11)

3. CALCULUS

Calculating A, first:

k .
Agy = n!dz[a - (R, + écoskz)] (1IA-12)
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where a is an arbitrary length.

e (IA-13)
Now for A;
r 2x
n T A
_ N2 (92, 2,07 s .
As—n,dﬂ‘[d[r +(ao)+’(az)] (IA-14)
“n

rearranging

—Zkl %]
A, = nfd&[ )2] (IA-15)
x + (_

Note that (32-) is of order 8. We shall call sufficient approximation any taylor series up to

and including order &2. To sufficient approximation then:

LA 4
n k
)2 2
= nfdﬂ[dz[rz (— )2] (IA-16)
7x 2(r' +(

))

using (7) and factoring,

r 2
n k
_ dr } 8%k sink
A, = n[do[dz(Ro + koskz)[ra + (701 ] L) S';r z (1A-17)
Sz | 2Arg + (270)3)
Again to sufficient approximation
A
462k2 : lk..
A, =n]dolrg +( dz|R, A [o i + 6coskz (IA-18)
. . d ro
.2 2ry +
n

do))



Integrating the z dependent part,

It is convenient to examine the term: r# + ( )2

n°sinfcosé
( —) = gsinfd - -
(pZ _ ,7251020)'/2
and after some algebra,
dro nrgsing

d8’ " 7, + ncosh

With even more algebra, we find:

r2 4 ( d"o 2 _ p2r02
d de (rg + ncosd)?

Rewriting equation (19),

H
2n=R, . pre L 82k2rg (rg + ncosf)?
re + ncosb 4p*r

n

with the following definitions, we have:

2n=R 2
s = n:()’U 6kP]

where

f r(, + ncos()

n

|
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(IA-19)

(IA-20)

(IA-21)

(IA-22)

(IA-23)

(1A-24)

(IA-25)



and
A
P fd& ré (re + ncosb)
. P
s
Calculating U,
H
U=p|del1 - __mcosf
i (p2 _ n?.sin20)'/z
T
it is not too hard to find:
nsin(=)
U = 2p|Z=sin )
n
Using equations (2) and (3),
v
' cos( 2)
P .4
sin( n)

we find,
DS A S 2
U—Zp[’l 2+zl

It is convenient to split P into five parts: -

P=P1+P2_+P3+P4+P5

~where

; .
P = —2n3£d0cos30{l - —"——S-ITn—Q-
| ot

l.ﬁ_
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(IA-26)

(IA-27)

(1A-28)

(IA-29)

(IA-30)

(IA-31)

(1A-32)



P, = -6mp?

1.2 Y2
d()cos&[l - mﬁ]

0°

d\,:]ﬂ

P = 2[d8(p’ + 3pn?)

S 3 |

Py = -=[d6(35* + 59%p°)sin6

© |t
3 |

and

4
P5=8n—
p.

dosin*g

S 3 |n

After some simplification, the following are obtained:

2
T P
2[1 + cosz(—';]) + 5

8

P, = -293
1 29 2 7

) *sin%( <)
I T PP e R NN Y o
P, = 4 [5-2 . ]sm(z)sm(n)+3”(2

Py = (20° + 6,,%)%

_ |32 2 sin(Eycos(Ty - &
p4_{p + 59°p [sm(n)cos(n) "]

4
=1 13X _ i ™ Ty~ 2%ind( X r
Ps p [3n 3sm(n)cos(n) Zsm(n)cos(n)]

2 sin(‘—zp-)sin(-g-) + [L + (£

¥
5)
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(IA-33)

(IA-34)

(IA-35)

(IA-36)

(IA-37)

(IA-38)

(IA-39)

(IA-40)

(IA-41)

Combining equations (37) through (41) with the definition, (31), and simplifying, we get for P:
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P o= @+ E+¥-I), (1A-42)
cos( % XSno'cos( %) - 2n’sin(Zycos(T) - wipsin(¥) - 20%sin(L) - 20%sin’ ()

4. VOLUME DETERMINATION

Simple geometry yields the following expression for the cross-sectional area

) = nR.2 lsintE)cos( =) + sin(¥ + Fyeos(L + Ty ¥ . _ .
A(z) = nR, sm(n)cos(n) + sm(2 + n)cos(z + n)+ > + - 3 (1A-43)
using the definition for R, and defining a scaling factor V,,:
A(z) = (R,% + 2R, 8coskz + 8%cos*kz)V, (IA-44)
The volume per wavelength of the perturbed shape is:
2x
&
V, = !dzA (2) (IA-45)
integrating,
V,
v, = "k“ (2R,? + &%) (IA-46)
5. ANALYSIS
Since,
- v
Yeb = 275C08( > ) (1A-47)

(11) becomes:

[ = v,(A, + ZCOS(%)Ag,,) (1A-48)
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with (13) and (24):

f = 2';("' [[U . ﬁ’ﬁl - ZCOS(%)]RO + zacos(%)] (IA-49)

Solving (46) for R,

kVp % V, , 2
R, = 3V, I- k7, ) (1A-50)
to sufficient approximation:
[kv, )" (220, |" 2
Ro=lzevi| ~ v | 7 (1A-51)
using (51) in the expression (49) and simplifying,
¥ " ¥ v
e 4n7rcos(2)a . x| kY, /.U i 4n1rcos(2)a cos(i) v, 2 152
; s k k |2xV, k 27| 27V,
kv, 1" kv, 2 .
nz p ¥, _ X 1,2p]8°
L b [2°°5‘2) bl P P] 2

If the term which multiplies ° is positive, the free energy is increased by the perturbation;

conversely, a perturbation grows if

kv,

¥ 2
2cos(2) U + Pk 3V,

<0 (IA-53)

Since we need only determine the sign for expressions like the above, it is valid to write:

kV, R
3V = R, (1A-54)
For all perturbations for which A>\p;,, where,
o ] ' . P Ya
Amin = 27R, - (IA-55)

U—Zcos(izb-).



amplitudes will increase with time.
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V Appendix II: End-State Calculation

It is useful to determine the size of the discrete particle, resulting from the breakup of a
continuous phase, which yields the same total interfacial energy as the original unperturbed
continuous phase. The calculated size defines an absolute lower limit for the wavelength of
breakup, independent of the perturbation details. A sample calculation for n = 2 is presented

below.

Using parameters defined in appendix I, the volume of the continuous phase assumes the

form:

V. = k_si_r;(i)moz (IIA-1)

sinz(i)

The total interfacial energy is given by:

f. = «os(i;-)x(a-Ro) s —2_3R, (I1A-2)
sin( 5) :
In eq. I1A-2, the first term is due to the boundary and scales with the factor 2~cos—-2¢i, since v,

has been set to unity.

The volume of the discrete phase is:
v, = 27"{2 . cos(%)][l - cos(Lypr? (I1A-3)
where r is the radius of curvature of the spherical cap.
The total interfacial energy for the discrete phase is
- ¥ = 2in ¥ — eac( 1,2
S4 = 2cos( 5 N2aX - =r-sin’( > )] + 4x[1 - cos( 5 Nr (I1A-4)

Volume conservation requires that V. = V,;. The lower limit wavelength )\, is thus defined

by setting /. = f,, yielding

3
¥y_ Yiiny ¥
v 91{2[1 - cos( > )] - cos( > )sin (2)

27R, -

7 (ITA-5)
(8sin($)llY - sin(L2 + cosCEFTI - cos(E)p®



-35.

Ay

The limit of 7R,

4
as ¥ approaches 0 is (;;’7) which is = 0.6328.
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Appendix III: Effect of ¥ on ——
2r,

Crack healing experiments have been employed to estimate the surface diffusivity of
alumina. The transport mechanism controlling breakdown of high aspect ratio pore channels
is determined by evaluating the pore spacing:pore diameter ratio. An analysis of dihedral

angle effects on this ratio for n = 2 follows.

The volume conservation condition V., = V, (Appendix II) provides a relationship
between R, and r. The spacing between pore centers is simply A. The apparent (grain boun-

dary plane) pore radius r, is related to the radius of curvature of the spherical cap r by

r, = rsin(%) (IIIA-1)
If the perturbation wavelength is expressed as
A = «x27R, (I11A-2)

where « is a kinetic scaling factor, the ratio E’-:—— is of the form
p

A 2 1
3, = C3GW)]3 (ITIA-3)
Ip

where

2 - 3COS(%) + COSJ(%)
G) = (I11A-4)

sin(«‘g-)[\b - sin(psi)]

Consequently, to assess the changes in 2—?— that are purely the consequence of changes in
p

)
phase geometry, one can evaluate the change in G 3 as ¢ varies from = to 0. The results are

given in table II.
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Table II illustrates pore spacing ratio as affected by geometry, see appendix III for

clarification.

TABLE 11
v 180° 160° 140° 120° 100°
n 0.860 0.850 0.843 0.838 0.833
it
v 80° 60° 40° 20° 0°
n 0.830 0.828 0.827 0.826 0.825
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