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Abstract

Measurements of nt, K* and p, p inclusive cross sections and fractions in e*e-
annijhilation at Vs = 29 GeV are presented. The momentum interval covered
corresponds to 0.01 < z < 0.90, where z = p/Ppeam- The analysis is based on
approximately 70 pb-1 of data collected between 1984 and 1986 with the

TPC/2y detector at PEP. Charged particles are identified by a simultaneous

"measurement of momentum and ionization energy loss (dE/dx). The

recently upgraded detector's momentum resolution of (Ap/p)? = (1.5%)2 +
(0.65% -p (GeV/c) )2 and a dE/dx resolution of typically 3.5% allow the

measurements to be extended to higher z than previously reported.

This work was supported by the United States Department of Energy. under
Contract DE-AC03-765F00098. |
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Chapter 1
Introduction

In the Standard Model of elementary particle physics, quarks and
leptons interact by the exchange of photons (electromagnetic interactions)
gluons (strong interactions) and intermediate vector bosons (weak
interactions). The electromagnetic and weak interactions are described by the
Glashow-Weinberg-Salam model, and the strong interactions by quantum

chromodynamics (QCD). One of the currently unsolved problems of this

~ picture is how the fundamental fields of QCD, quarks and gluons, transform

into observable hadrons, e.g. pions, kaons, and protons, in high energy

reactions such as ete- annihilation.

In this dissertation, the inclusive production of charged hadrons in
e+e'.annihi1ation is studied, that is, the reaction ete- —» hadron + X, where
the hadron is a charged pion, kaon or prdton, and X represents all other
particles in the event. The inclusive cross sections and charged hadron
fractions are fundamental quantities providing information about quark and
gluon fragmentation. Measurements of these quantities are presented based
on data collected between 1984 and 1986 with the TPC/2y detector at PEP,

operating at a center-of-mass energy of Vs = 29 GeV. Recent upgrades in the



detector allowed for measurements of improved accuracy, and extending to

higher z, where z=p; . /Pp..m, than previously reported (1, 2, 3, 4].

The particle spectra in the high-z region provide a sensitive probe of

the hadron production mechanism, especially for the case of baryons.. For

example, dimensional counting arguments predict that the baryon to meson
ratio for z — 1 should fall as (1-z)1-2 (5] whereas the symmetric Lund string
model predicts a rising baryon fraction [6]. The potential to discriminate
between competing hadron production models is enhanced at high z by the
fact that a comparatively large fraction of the particles in this region are
produced directly in the hadronization process, rather than as the result of

resonance. decays.

Thié dissertation includes descriptions .of the theory of hadron
prodiuction in ete” annihilation, the TPC/2y detector, pﬁrticie identification
by »iohization energy loss, event reconstruction, selection and simulation, the
analysis techniqtie for obtaining inclusive cross sections and fractions, and a
comparison of results with previous measurements and with theoretical

predictions.



Chapter 2

Theory of Hadron Production
in ete- Annihilation

2.1 Introduction

The reaction ete~ — hadrons proceeds, to a good approximation, as
shown in figure 2.1. In the first stage, the electron and positron annihilate
into a virtual intermediate vector boson (photon or Z°) which decays into a
quark-antiquark pair. This part of the process is well described by the standard
model of electroweak interactions using perturbation theory. The quark and
antiquark move apart with a certain probability of emitting a hard (i.e. large-
Q2) gluon. Hard gluon emission can be described by perturbation theory of
quantum chromodynamics, since for sufficiently large Q2 the QCD coupling

constant, o, is small.

These primary particles (or partons) are not, however, directly
observed. Instead one sees "jets" of hadrons, a jet being several or more
particles whose momenta are more or less aligned along some axis. The
transformation of the initial partons (quarks and gluons) into observable
hadrons is known as hadronization. The gray blob in figure 2.1 reflects our

lack of understanding of this part of the process. The "observable" (i.e. color-



Figure 2.1 The reaction e¥e™ — hadrons.

Figure 2.2 The reaction e*e” = fermion pair.



neutral) hadrons include resonances whose lifetimes are on the order of 10-22
seconds. The resonances decay into longer lived hadrons (e.g. pions, kaons,
protons) which can be detected experimentally. Each part of this process will

now be examined in greater detail.
2.2  e*e- Annihilation into Fermion Pairs

The fofmation of spin-1/2 particle-antiparticle pairs in electron-
positron annihilation is described to lowest order in quantum
electrodynamics by the Feynman diagram shown in figure 2.2. In the limit
where the center-of-mass energy is much greater than the fermion's rest

mass, one obtains the differential cross section

5 2
do x<e :
(d—[jjff_ = ‘Ts‘" ( 1+ COSze) . (21)

Here 6 is the angle between the incoming electron and the outgoing fermion
in the CM system, « is the fine structure constant, s is the square of the total
center-of-mass energy, and ey is the charge of the outgoing fermion measured
in units of the electron charge. For the production of pairs of spin-0 particles,

the angular distribution would be proportional to sin26.

Integrating equation 2.1 over the polar angle 6 one obtains the total

cross section for annihilation into fermion-antifermion pairs:

4
O'ff- = 3"575' a2 e? (22)

For creation of muon pairs one has ¢, = 1 giving, for Vs = 29 GeV,

47

Outyr =35 o2 = 0.103 nb. (2.3)



For creation of quark-antiquark pairs of a given flavor (q =u,d, s, ¢, bor t) one
obtains

LA R 2
%33 * ¢ 24)
where the factor of three comes from the fact that a quark can be formed in
three different colors. The u, ¢, and the as of yet unobserved t ciuarks have a

charge of 2/3, and the d, s and b quarks have -1/3. Thus the flavors u, ¢, d, s

and b are predicted to be produced in the ratios 4:4:1:1: 1.

In order to calculate the total cross section for ete- annihilation into
hadrons, one traditionally sums equation 2.4 over the relevant quark flavors

and divides by the cross section for e*e- — u*p- as predicted by equation 2.3:

R = =

O e+e- — hadrons 2
S 3 z e, (2.5)

Including the flavors u, ¢, d, s and b one obtains R = 11/3. Recent
measurements of R at PEP and PETRA give R = 4.03 + 0.02 (stat.) £ 0.05 (sys.)
[7). The fact that the measured value is close to 11/3 is taken as ev‘idence that
quarks can indeed be produced in three different color states, and that the t
quark is too massive to be produced at PEP or PETRA energies. The
discrepancy between the predicted and observed values is attributed to strong
and electroweak interaction corrections and can be used to estimate the QCD

coupling constant, o [7].

Free quarks have not, however, been observed in ete- annihilation.
Searches for fractionally charged particles (i.e. 1/3,2/3, 4/3 xe) have resulted

in limits on the total inclusive cross section o(ete” — q, @+ X) of 104 - 10-2 x



c(e*e” — p+u-), depending on the quark mass and charge [8, 9]. Instead, one
sees events with back-to-back jets of "ordinary” hadrons (i.e. 7, K, p, etc.) such
as the two-jet event shown in figure 2.3. An event axis and a quantitative
measure of the event shape can be determined by defining the momentum

tensor
n
Mop = 2 Pia " Pip (2.6)
i=1

where o and B refer to the x, y and z components, and i runs over all the
particles (or in practice only the detected charged particles) in the event.
Diagonalizing Mg, one determines unit eigenvectors n,, and normalized

eigenvalues Ay

Ag = ———— (2.7)

Ordering the eigenvalues so that A} 2 12 2 A3 = 0, one defines the sphericity, S,

and the aplanarity, A, by

=%(12 + A3) (2.8)

INTIOY

A=3 A3 (2.9)

The eigenvector n1 defines the sphericity axis, the direction with respect to
which the sum of the squares of the transverse momenta is minimized. For
extreme two-jet events, S — 0, whereas for Spherical events, S = 1. Extreme

flat events have A = 0, and lie in the plane defined by 71 and ny. A scatter
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Figure 2.3 A two-jet event seen by the TPC. The event is characterized by
low spehricity, S = 0.0343, and low aplanarity, A = 0.00461. (a) End view. (b)
Radial view (i.e. projection onto the r-z plane).



plot of A versus S (figure 2.4) shows that most of the multihadron events

possess a two-jet structure.

The distribution of angles between the sphericity axis and the beam
direction, 6, for multihadron events is shown in figure 2.5. It agrees quite
closely with the 1 + cos26; distribution predicted for spin-1/2 quark-antiquark
production, after the latter has been folded with the detector acceptance. The
interpretation is that the colored quark and antiquark turn into colorless
hadrons via interactions involving only small transverse momentum
transfers, resulting in jets which "remember"” the original direction of the

quark-antiquark pair.
2.3  Perturbative QCD

The quark-antiquark pair created in the annihilation process move
apart with a relative speed close to c, interacting via gluon exchange. For
sufficiently small distance scales (d ~ 10-14 cm) the four-momentum transfers
involved in the interaction are sufficiently large (VQ2 ~ 1/d) that perturbation
theory can be used. This is because the coupling constant in quantum
chromodynamics, os, decreases for large Q2. This is an important property of

QCD known as asymptotic freedom, and is expressed by the formula

127
% Q%) = (3372N,) Tog (02 7 A2)

(2.10)

where Ny is the number of quark flavors and A is a parameter determined by

experiment.
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Using the Feynman diagram rules derivable from the lagrangian of
QCD, one can, for example, compute the cross section for one of the quarks to

emit a gluon, as shown in figure 2.6 [10]. In terms of the kinematic variables
Xq=2E, / s, x 7=2E 5/ s, Xg=2Eg /s, (2.11)

the normalized cross section to order a2 is

1
- ; - = (212)
O‘dquxq 3 (1'xq)(1'xq_

This cross section diverges if the gluon's energy approaches zero, leading to
xg — 1and x5 = 1, or if the gluon is collinear with either the quark or
antiquark, leading to x; — 1 or x, — 1 respectively. Physically, these situations
correspond to the impossibility of resolving an infinitely soft gluon or a
quark-gluon pair separated by an infinitely small angle. Second-order (i.e.
a¢2) calculations for ete- — hadrons are complicated mathematically but

have been carried out. Results can be found in reference [11].

Events of the type e*e- = q q g lead to three jets of hadrons in the final

state, such as the one shown in figure 2.7. Three-jet events are characterized

by high sphericity but low aplanarity, since momentum conservation requires
that the g, q and g momenta lie in the same plane. At the center-of-mass
energy of the PEP storage ring (29 GeV) roughly 8% of the events are of the
three-jet variety, having a sphericity greater than 0.3 and an aplanarity less

than 0.1.

An alternative approach to perturbative QCD is used in the leading-

logarithm approximation (LLA). Insteac of summing all diagrams up to a

[

1‘/

v



Figure 2.6  The Feynman diagrams for the process ete” — q qg to order oo
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ExP= 15, RUN= 313, EVENT:= 1542, Plx 10= 1
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Figure 2.7 A three-jet event seen by the TPC. The event is characterised by
high spehricity, S = 0.676, and low aplanarity, A = 0.0633. (a) End view. (b)
Radial view (i.e. projection onto the r-z plane).
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fixed order in o, diagrams containing leading infrared and collinear
singularities are summed to all orders. The LLA probability for the decay of a

parton A into partons B and C is given by
dt o (t)
= 5 —— dz Pg/a (@) (2.13)
where the virtuality of parton A is given by t = (pg + pc)?, z is the fraction of
parton A's momentum given to parton B, and Pg, (z) is the Altarelli-Parisi
splitting function, given in [12] for A, B = q, g g. Using equation 2.13, one can

calculate the probability of a "parton shower" as shown in figure 2.8 [13].
24  Hadronization

Equation 2.10 predicts that as the Q2 of the interaction decreases below
about 1 GeV2, the strong coupling constant, o, becomes of order unity, and
the predictions of perturbation theory become invalid. Pertﬁrbation theory
fails, therefore, to predict how the quarks and gluons, which carry color
charge, bind together to form colorless hadrons. In order to obtain
quantitative predictions for, for example, the production rates of pions, kaons
and protons, one must turn to phenomenological models, implemented in
practice as Monte Carlo programs. Some additional insight is provided by

dimensional counting rules [5].
24.1 Independent Fragmentation Models

One of the first models for the process ete- - qq — hadrons was the
independent fragmentation model of Feynman and Field [14]. In the
Feynman-Field scheme, the original quark and antiquark each transform into

a jet of hadrons independently, via processes of the type

15
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Figure 2.8 A parton shower following the decay of a virtual photon into a

quark-antiquark pair.



qo — hiqo @) + qs, ’ (2.14a)
q; = hiqy, @) + qo, etc. (2.14b)

Here, qg is the quark from the original quark-antiquark pair. A new quark-
antiquark pair (q;, q1) is created from the vacuum as represented in figure '
2.9. The quark qp and the antiquark q; combine to form a hadron h(qy, q),
leaving an unpaired quark, qi, with less energy than the original qg. This
procedure is then repeated for quarks qj, qp, and so on, until the remaining
quark is left with insufficient energy to form a hadron. It is assumed that the |
transverse momenta of the quarks and antiquarks created from the vacuum
follow a Gaussian distribution, and that the total transverse momentum of
each pair is zero.v The flavor content of the hadron is determined simply by
the flavors of its constituent quarks. The probabilities for producing vector or
pseudoscalar mesons are left as adjustable parameters, which in the original

version were made to be equal.

The model involves one arbitrary function, f({), which specifies the
probability that the hadron h(g;, g;) will receive a certain fraction, {, of the
momentum of its parent quark, qj. (The variable { is the same as 1-n used in
[14], and should not be confused with z = ppairon/ Pheam-) Feynman and Field

chose f({) to be of the form
O =1-a+3a(1-¢)2 (2.15)

where the parameter a is determined from experiment. It is assumed that the
same function f({) applies to all iterations of the cascade. The hadrons
initially produced in this procedure are called primary hadrons, and include

short-lived resonances. The order in which the primary hadrons are
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Figure 29 A schematic representation of hadron production in the

Feynmah-Field model.



produced is known as their rank. By specifying the function f({), one
determines the momentum spectrum of the primary hadrons. It can be

obtained via the integral equation

1

D@ =f@ + J%C-f({) D(%), (2.16)

z

where z is the ratio of the hadron's momentum to that of the initial quark,
qi1, or equivaléntly, Phadron/ Pbeam- The first term in equation 2.16 corresponds
to the case where the hadron has a rank of one, (i.e. contains the original
quark) and the second term corresponds to hadrons produced in subsequent

iterations of the cascade.

The model as described up to this point does not include any
mechanism for baryon production, although baryons are observed to account
for approximately 5% of the total multiplicity in multihadron events [3, 4]. A
simple extension of the Feynman-Field model for baryon production was
proposed by Meyer [15]. In this scheme, one assumes that occasionally two
quark-antiquark pairs, instead of one, are produced from the vacuum. vThe
quarks and antiquarks then align to form a baryon-antibaryon pair. For this
to take place, the (anti)quarks in the two pairs must be created with a small
relative momentum, and behave somewhat like a single particle or
"(anti)diquark”. Meyer originally used the same fragmentation function (i.e.
the same value of a in equation 2.15) and the same transverse momentum
spectrum for baryons as for mesons. By introducing additional parameters,

however, these could in general be different.
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In addition to predictions for the inclusive momentum spectra, the
model also predicts that the quantum numbers of mesons of neighboring
rank should be highly correlated. This arises from-the fact that the quantum
numbers of the quark and antiquark (or diquark and antidiquark) pulled from
the vacuum are necessarily opposite. So, for example, if the quark qg in figure
2.9 is of type u, and the pair (qy, qq) is composed of an s and an s, then the
hadron h(qy, q1) will have strangeness S = +1 (e.g. a K*). If the pair (g, qp) is
composed of a u and a u, the meson h(q;, q2) Will have strangeness S = -1
(e.g. a K'). If particles of neighboring rank remain similarly ordered in
1ongitudinal momentum (or rapidity, y =1/2 In(E+p, / E-p.l ) )-one would
expéct to observé hadrons of opposite strangeness produced close together in
momentum space. Such correlations have been studied for a variety 'of
quantum numbers, including strangeness [16], baryon number [17], and
electric charge [18]. (In fact, depending on the choice of f({), the correlation
may be washed out considerably. This occurs because for a sufficiently broad
f(£), mesons of lower rank can be produced with higher momenta. See

reference [17].)

The picture as described so far is complicated by several effects. First,
one should not expect all flavors of q q pairs to be produced in the cascade
with equal probability because of differences in quark masses. Feynman and
Field assumed the quark flavors u, d and s to be produced in the ratios 2:2:1.
('This point is examined in greater detail in section 2.4.2.) In addition,
equation 2.16 only holds for primary hadrons, which include short-lived
resonances. These resonances decay into longer lived hadrons which share
their parent's momentum, resulting in a much larger number of low

momentum hadrons (mostly pions) than would be predicted by equation 2.16.



Although the Feynman-Field model does a surprisingly good job of
parameterizing experimental results, a number of problems prevent it from
being regarded as a true theory of hadronization. For example, at the end of
the cascade, one always has one quark and one antiquark "left over", with no
simple way of combining them together to form a hadron. In addition,
because the model employs the momentum of the original quark in the
laboratory frame, it is not Lorentz covariant. These problems were pointed
out by Feynman and Field, who intended for their model to provide a
convenient parameterization rather than a fundamental theory for hadron

production.
2.4.2 String Fragmentation Models

In an attempt to place hadronization on a more solid theoretical
footing, Artru and Mennessier [19] and Andersson [6] have proposed models
in which the force field between the original quark and antiquark is
approximated as a massless string. The latter of these two models (the Lund
model) has been very successful in describing a wide range of experimental
data. A number of aspects of this approach will be described, including the
flux-tube picture of the QCD force field, suppression of heavy flavor
production, predictions for transverse and longitudinal momentum spectra,

and mechanisms for baryon production.

Casher, Neuberger and Nussinov [20] have examined the relationship
between hadron production and the tubelike configuration of the color field
between the quark and antiquark. Consider an electron and a positron
separated by a certain distance, as shown in figure 2.10 (a). The electric field

lines follow the usual dipole pattern, having a significant non-zero value
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Figure 2.10  (a) The electric field lines between and electron and positron.
(b) The lines of force between a quark and antiquark, confined in a narrow
flux tube.
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even at distances large compared to the separation. In the case of a quark and
an antiquark carrying color charge, however, the color field is believed to be
confined to a narrow flux-tube, as shown in figure 2.10 (b). Within the
context of QCD this effect stems from the fact that gluons couple to
themselves (the three-gluon coupling) whereas photons in QED do not. The
parallel field lines imply a constant field strength (i.e. independent of
separation distance) and a constant energy per unit length in the tube, «.
(This is analogous to a parallel-plate capacitor in electromagnetism.) This
picture is consistent with the lineaf potentials predicted by QCD lattice gauge

theory calculations [21].

The energy per unit length, x, is simply the force on the quark or
antiquark at the ends of the tube. Solving the equation of motion dp/dt = % k¥
for a bound q q pair (i.e. a meson), one obtains classical "yo-yo" trajectories
such as those shown in figure 2.11 (a) (meson at rest) and figure 2.11 (b)
(meson moving with a speed f). Consider the quark and antiquark turning
points (x1, t1) and (x, t2) as shown in figure 2.11. If the meson is at rést, ty - t1
=0and x2-x1 = m/k, where m is the meson's mass. Thus one obtains the

condition
(x7 - x1)2’- (tr-+1)2 = m2 / K2 (2.17)

which is valid in all reference frames, since the quantity (x2 - x1)2 - (t2-¢1)? is
a Lorentz invariant. The speed, momentum and energy of the meson are

given by
B = (t2-t1) / (x2-x1), (2.18a)

p=k(ta-t1), (2.18b)
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(x 1, t4)
(x 1, tq)

Figure 2.11 (a) "Yo-yo" trajecfory for a quark-antiquark pair, representing a
meson at rest. (b) A meson moving with a velocity f.



E=x(x2-x71). (2.18b)

Such a picture is useful for studying the space-time development of a
quark-antiquark system and its subsequent transformation into hadrons. As
the the original quark and antiquark produced in et*e- annihilation recede
from each other, their kinetic energy is transformed into potential energy in
the color field. Multiple particle production results from quark-antiquark
pair production within the flux-tube, where the color field is assumed to be
completely screened in the regions between the pairs. This is depicted in
figure 2.12, where the shaded areas denote regions of nonvanishing color
field. In the figure, quark qp and antiquark Eh. combine to form a meson

h(qp, ¢1), @1 combines with @ to form the meson h(qy, @) and so forth. Note

‘that the space-time coordinates of the pair-production vertices are constrained

by the mass-shell condition (equation 2.17) in order that the mass of the

quark-antiquark system correspond to a physical meson mass.

The q q pair production within the flux tube is assumed to proceed in a
manner similar to fermion-pair production in the 1 + 1 dimensional QED of
Schwinger [22]. If a quark and an antiquark, both of mass m,; and transverse
momentum with respect to the tube p, are created at the same point in the

flux tube, energy conservation is violated by an amount 2m , where m =

2 2
(mq +p)) 1/2 (the transverse mass.) Once the quark and antiquark are

separafed by a distance d =2m; / x, energy conservation is maintained
provided that the field is completely screened in the region in between. As
can be shown using a WKB calculation [6], the probability to tunnel from the
initial state with no quarks to the final state with a quark and antiquark

separated by a distance =2m, / k, is given by
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Figure 2.12 The space-time evolution of a quark-antiquark system resulting
in meson production. The shaded areas correspond to regions of

nonvanishing color field.




P < exp = |- (2.19)

An immediate consequence of equation 2.19 is that production of
heavy quarks in the flux tube is highly suppressed. Using a value of x = 0.2
GeVZ = 1 GeV/fm (obtained from charmonium spectroscopy [23] or the slope
of Regge trajectories) and quark masses my = mg = 0, mg = 250 MeV and m, =
1.5 GeV, one obtains relative probabilities for the production of u, d, s and ¢ of
1:1:0.37:10°16. Thus, strange quark production is substantially suppressed,
which should result in a lower production rate for kaons compared to pions.
Heavy quarks (c or b) are expected to come almost exclusively from the

original q q pair.

The flux tube picture is the basis for the Lund model [6], in which q q
pair production is viewed as the breaking of a string. First, a string is
produced with flavors u, d, s, ¢, b chosen according to the ratios 4:1:1:4:1
for the quark and antiquark at the endpoints. A q q pair is produced in the
string, creating a break. The color field is assumed to be screened between the
pair, allowing the two pieces of string to separate. The relative probabilities to
produce various quark flavors are left as adjustable parameters, although the
final values come out similar to those discussed in the preceding paragraph.
The transverse momenta of the quark and antiquark are equal and opposite,
and are assumed to follow a Gaussian distribution. The relative probability to
produce a vector or pseudoscalar meson is left as an adjustable parameter. A

typical vector to pseudoscalar ratio is roughly one.

Once the transverse momentum, spin and flavor (and hence the type)

of the hadron have been established, the longitudinal momenta, p,, is
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determined. The first meson, composed of the the endpoint quark and the

antiquark from the nearest break in the string (or vice versa) receives a

fraction, {;, of the available E+p, :
(E+p 1 = &1 (E+p)otal - (2.20a)

The transverse momentum, spin and flavor of the second meson are then

similarly chosen, and its E+p, is a certain fraction of the remaining available

E+p,:
(E+p))2 = G (E+p, )remaining- (2.20b)

The procedure is repeated until a certain minimum (E+p1 )remainmg is reached,

at which point the system decays into two mesons according to two-body

phase space.

By using the quantity E+p,, rather than p,, the {; are invariant under
Lorentz boosts along the direction of the string. The {; are random numbers
distributed according to some probability distribution function. In the
symmetric Lund model one imposes the (reasonable) restrictions that the
rapidity distribution have a central plateau and that the particle spectra on the
average not depend on whether one begins the procedure at the quark end or
the antiquark end of the string. This restricts the distribution function to be

of the form [6, 24]:

bm
F(O = Nag l? ¢ (1—%—{)% exp[' CLJ’ 221)

where Ng, a4, ag and b are parameters (the index « refers to the flavor of the

initial quark, B refers to the flavor of the quark produced in the middle of the
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string) and m = (mj, + p‘_?L) 1/2 is the transverse mass of the hadron produced.

In current implementations all of the a, are assumed to be equal, in which

case equation 2.20 reduces to

2
© « a) ( : mLJ (2.22)
f C exp C . .
Typical values for parameters in equation 2.22 are a =1 and b = 0.7 GeV-2.

The Lund model has been extended to include baryons using a diquark
scheme similar to that used by Meyer [14, 25]. It is assumed that a break in the
string can be caused by creation of a diquark-antidiquark pair. The diquark
mass is assumed to be considerably larger than that of a quark, leading to a
suppression of the baryon rate as predicted by equation 2.19. In addition,
diquarks consisting of a light quark (u or d) and a strange quark are assumed
to be heavier than diquarks made up of two light quarks. Summing over all
spin and flavor combinations, the diquark to quark ratio is typically around
0.09. Because of the exponential term in equation 2.22, f({) peaks at a much
higher value of { for baryons than it does for pions. This results in an
increase in the predicted fraction of protons (and of heavier particles in

general) for particles of higher momentum.

In the string picture as described so far the initial parton configuration
has been a single quark-antiquark pair. The Lund model incorporates gluon
emission by describing gluons as "kinks" in the string. Details of this
procedure are given in reference [26]. In current implementations, the Lund
model uses some form of perturbative QCD (fixed-order matrix elements or.

parton showers) to describe the initial evolution of a system of quarks,
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antiquarks and gluons. The four-momenta of the gluons are then associated

with kinks in the string. The transformation of the string into hadrons then

follows the same procedure as described above, where p, is understood to

mean the momentum along the local string direction.

A modification of the Lund scheme has recently been proposed by the

UCLA group [27]. In this model, the Lund expression for f({), equation 2.22, is

2
reinterpreted as a simultaneous probability density for {, my, and p,. The
probability for the production of a hadron of E+p, fraction {, mass m, and

2. .
transverse momentum p | is given by

1-0" [ b mij )

multiplied by the square of the Clebsch-Gordan coefficients coupling the
hadron to its constituent quarks, and by the relative weight of the next two
stages in the chain to account for local quantum number conservation. All
suppression of heavy hadron production enters through the hadron mass in
equation 2.23. There are no "quark level" parameters such as the s/u or
diquark/quark ratios in the Lund model. Spin counting is taken care of
automatically by the Clebsch-Gordan coefficients, and no separate parameter
for the relative production rates of vectors and pseudoscalars is introduced.
The UCLA model only contains two adjustable hadronization parameter's, a

and b, compared to typically 10 parameters in the Lund model.



2.4.3 Cluster Fragmentation Models

Hadron production can also be described by so-called cluster models. In
this approach, a parton shower is generated using the leading-log
approximation. The shower evolution is Stopped when the parton virtuality,
t, falls below some cut-off, t,. Gluons are then split into quark-antiquark pairs.
Adjacent quarks and antiquarks are associated with éolor-singlet clusters
which decay into pairs of hadrons (mesons or baryons) according to two-body

phase space.

The fundamental parameters!_are the virtuality cut-off, t,, and a QCD
scale pafafneter, A, which enters into ag (equation 2.10) which in turn enters
into the LLA parton-brénching probabilities (equation 2.13). In the most
widely used example of this approach, the Webber model (28], additional
parafneters are included for treatment of very high and very low mass
clusters. For example, very large mass clusters are first allowed to break up
according to a string scheme, and clusters of a sufficiently small mass are
allowed to "decay" into a single hadron. It should be pointed out that the
Webber modél contains no function corresponding to the f({) of string or
independent fragmentation models, which would directly determine the
hadron momentum distributions. Instead, parti‘cle production rates are
determined entirely from the parton shower and the kinematics of the two-

body decays.
2.4.4 The Caltech-II Model

The Caltech-II model [29] employs features of both string and cluster
models. The model begins with the generation of an LLA parton shower.

The final partonic state is associated with a system of strings. The strings
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break into smaller strings in a way analogous to the Lund model, but with an
important difference: In the Lund approach, the space-time coordinates of the
quark-antiquark production vertices are required to obey the mass-shell
constraint, equation 2.17. In practice, this amounts to generating hadrons of
known masses with momenta determined by the fragmentation function,
f(0). In the Caltech-II model, however, the probability of a break is assumed to

be constant in over the length of the string:

%bg%}s = constant. (2.24)

In this way, one replaces the fragmentation function, f({), by the
relatively simple ansatz of constant break-up probability. Unfortunately, this
leads to string segments whose masses do not necessarily correspond to the
masses of any real hadron. This problem is overcome by stopping the string
evolution at a sufficiently large mass and allowing the segments to decay into
physical hadrons. This stage is analogous to the cluster decay of the Webber
model. Instead of using a two-body phase-space decay, however, the Caltech-

I model employs a more sophisticated parameterization of low mass data.

2.4.5 Dimensional Counting Rules

Some additional insight into hadron production is provided by
dimensional counting rules (DCR) [5]. For the inclusive process ete” —

hadron + X, the normalized cross section is predicted to be

l. do-i 1- 2) 2n-1

o dz ~ z (2.25)




in the limit that z = phadron/Pbeam approaches one. Here 1 is the minimum
number of quarks (or antiquarks) "left over" in producing the hadron i, as

shown in figure 2.13. Thus, n = 2 for baryons and n = 1 for mesons, yielding

_1_' dOomeson (1 -2)

o dz -~ (2.26a)

1 dOparyon  (1-2) 3

~

. dz -z

(2.26b)

Different assumptions concerning the quark spin lead to slightly differing
predictions. The main point is that the baryon cross section is predicted to fall
off faster than the meson cross section for z = 1. This can be understood
qualitatively by noﬁng that the minimum number of quarks left over, n, is

the same as the minimum number of gluons exchanged. Since the Q2 of the

gluon must be large to produce a high-z hadron, and since the gluon‘

propagator goes as 1/(Q2, one expects the probability to produce a high-z

baryon to be less than that of a high-z meson.
2.5  Effects of Resonance Decays

Resonances with decay times on the order of 10-22 seconds are
produced in the hadronization process at roughly the same rate as longer-
lived hadrons. Largely because of kinematic constraints, most resonances
tend to decay into pions, which share the momentum of their parents. As a
result, a large fraction of the low momentum pions are not produced directly
in the hadronization process. The Lund model prediction for the fraction of
hadrons which are primary as a function of z = Phadron/ Pbeam 1S shown in
figure 2.14. From this it can be seen that to disentangle the characteristics of
resonance production from other properties of the hadronization process, it is

necessary (or at least preferable) to look at higher momentum particles.
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BARYON

Figure 2.13 Feynman diagrams for Yy — hadron + X, showing the minimum
number of quarks "left over", n. (a) For mesons, n = 1. (b) For baryons, n = 2.
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Figure 2.14 The fraction of charged pions, kaons and protons which are
primary (i.e. not from resonance decays) as a function of z = p/Ppeam,

according to the Lund model version 5.3.
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Chapter 3

PEP and the TPC/2y Detector

3.1  The PEP e*e- Storage Ring

The data used in this analysis were collected between 1984 and 1986

with the TPC/2y detector at the PEP e*e- storage ring. The PEP ring has a

circumference of approximately 2.2 km, and is located at the end of the 3.2 km

Stanford linear accelerator. The layout of PEP is shown in figure 3.1. The ring
coﬁtains three bunches of electrons and three counter-fotating buncﬁes of
positrons, with a beam energy of 14.5 GeV, colliding at six interaction regions.
The time between collisions is 2.45 ps and the beam current is typically 15 - 25

mA, resulting in an instantaneous luminosity of 10 - 25 x 1030 cm-2 s-1.
3.2 The TPC/2y Detector: Overview

The TPC/2y detector consists of a number of detector subsystems, most

of which can be seen in figure 3.2. These include:
i) The inner drift chamber (IDC) [30].
ii)  The time projection chamber (TPC) [31-41].

iii) The outer drift chamber (ODC) [30]."



MARK I

Figure 3.1 A schematic view of the SLAC linac and the PEP storage ring,

showing the positions of the six detectors.
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iv)  The hexagonal (barrel) electromagnetic calorimeter (HEX) [42].
v) The muon chambers [43].

vi)  The pole tip electromagnetic calorimeters (PTC).

vii) The PEP-9 (forward) detector subsystems.

Since this analysis relies almost entirely on charged particle information from
the TPC itself, only this subsystem is discussed here. Special attention is

given to the upgrades carried out between the 1983 and 1984 running cycles.

3.3 The Time Projection Chamber

The TPC is a large volume drift chamber providing three dimensional
tracking of charged particles over approximately 87% 6f 4rm. A schematic
representation of the TPC is shown in figure 3.3. Also indicated in the figure
is the coordinate system used in this analysis: the x direction points outward
from the center of PEP, y points upward, and z points along the beam
direction from (approximately) north to south. The dip angle, 4, is defined as
the angle with respect to the x-y plane. The TPC consists of a cylindrical
volume, one meter in radius and two meters in length, filled with 80% argon
- 20% methane at a pressure of 8.5 atmospheres. A uniform electric field
parallel to the beam and pointing from the endcaps to the midplane is
provided by a series of equipotential rings (field cages) at the inner and outer
radii, and a central conducting membrane held at a large negative potential (-
50 to -55 kV). At each endcap there are six multiwire proportional chambers
(sectors) approximately at ground potential {32]. The TPC is surrounded by a
superconducting solenoid which provides a uniform 13.25 kG magnetic field

parallel to the beam axis.
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Figure 3.3  Schematic view of the time projection chamber.



As a charged particle traverses the TPC's gas volume, it creates pairs of
electrons and positive ions along its path. The electrons drift towards the
sense wires at the endcaps with a velocity of approximately 3.3 cm/us, where
they create an avalanche. The induced signal is amplified, shaped, digitized
and recorded. Each sector contains 183 sense wires spaced 4 mm apart and 15
rows of 7.0 mm x 7.5 mm cathode pads, as shown in figure 3.4. Information
on the track's projection onto the x-y plane is obtained from the location of
the charge induced on the cathode pads. The z position of each track segment
is determined by measuring the arrival time of the ionization at the sense
wire. A track crossing all pad rows thus has 15 three-dimensional points
from which its trajectory is determined. The pulse height information from
the sense wires is used to determine the ionization rate (dE/dx) of the particle

[33]. The dE/dx measurement is discussed in detail in chapter 5.

The TPC contains 2196 sense wires and 13824 cathode pads. A
schematic representation of the signal processing chain for a singlé channel is

shown in figure 3.5 [34]. A preamplifier mounted on the sector integrates the

~ collected charge and produces a step signal with a 5 [s decay time. This pulse

is sent to a shaping amplifier in the electronics house, which produces a
signal roughly Gaussian in shape with a 250 ns peaking time. The output of
the shaping amplifier is sampled at 100 ns intervals and stored in a CCD
analog shift register [35]. The maximum drift time in the TPC is
approximately 30 us, so the CCD must record 300 samples or "buckets"”, each
corresponding to 3.3 mm of drift. After all of the ionization has reached the
sectors and the pulses have been clocked into the CCDs, the clock frequency is
changed from 10 MHz to 20 kHz for readout. Each CCD bucket is digitized

with 9 bit accuracy. Buckets exceeding a preset (software controlled) threshold
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are read out into the Large Data Buffer (LDB) and sent to the VAX 11/782
online computer. The readout thresholds are controlled by a PDP 11/70

computer.
3.4  Upgrades to the TPC

Prior to running in 1984, a number of upgre'xdes were undertaken to
improve the TPC's momentum resolution [36]. The 4 kG conventional coil
was replaced with a 13.25 kG superconducting coil, and measures were taken
to limit electrostatic distortions in the TPC. The upgrades resulted in an
improvement in the momentum resolution from (Ap/p)2 = (6%)2 + (3.6% - p

(GeV/))2 to (Ap/p)? = (1.5%)2 + (0.065 - p (GeV /)2

The original PEP-4 proposal [31] called for the TPC to be placed in a 15
kG superconducting coil. The first such magnet suffered a fatal quench while
still being tested. A 4 kG conventional coil was used during the 1982-1983
running cycles while a second superconducting solenoid was built. In
September of 1983 the second superconducting coil was found to have a faulty
suspension system due to errors in the mechanical design. A solution was
implemented which involved reinforcing one end of the magnet with a
stainless steel ring and installing a set of axial tie rods between the coil
package and the cryostat. This coil has been used since autumn of 1984 at a

current of 1900 A and a magpnetic field of 13.25 kG.

One source of electrostatic distortions in the TPC was charge build-up
on the field cages. The cages consist of a series of equipotential rings spaced
every 5 mm and maintained at the proper potential by precision resistor
chains. Charge build-up on the G-10 substrate between the rings led to

distortions of the electric field. This problem originally led to track
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distortions on the order of several centimeters ("hooks") when the detector
was tested in the summer of 1981. By increasing the width of the rings from
0.5 mm to 2.5 mm with a copper tape overlay (and hence increasing the ratio
of conductor to insulator from 1:10 to 1:1) the distortions were reduced to the
level of several millimeters for the 1982-1983 running cycle. A more
permanent solution was implemented before the 1984 running cycle in which
the 2.5 mm copper tape was removed and the field cages were coated with a
resistive paint. The resistance of the paint is much lower than that of the
G-10 substrate, but much higher than that of the resist(;rs establishing the

potentials of the rings, so that charge build-up between the rings is prevented.

Electrostatic distortions also occur if positive ions created in the
avalanche at the sense wires are allowed to drift back into the TPC volume.
This problem was solved by installing a electrical shutter or "gating grid" in
front of the sectors [37]. The layout of the central membrane, gating grid,
shielding grid, sense and field wires and cathode plane is shown in figure 3.6.
The nominal potential of the grid, Vgg, is such that the electric field between
the shielding and gating grids is the same as in the main drift volume of the
TPC. In this configuration, the gating grid is transparent to charged particles
from ionization. If, however, the potentials of alternate wires are set to Vgg
AV, then the field lines are changed in such a way that the grid is opaQue to
charged particles. Values of the potentials used are Vgg =-910V and AVgg =
90 V.

The gating grid is normally kept in the opaque state. When a pre-
pretrigger signal (see section 3.5) is generated the grid is opened long enough
for the ionization electrons to drift to the sense wires. The grid is then closed

before the positive ions created at the sense wire, which travel much more
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slowly, are able to drift back into the TPC. Unfortunately, changmg the
voltage on the gatmg grxd induces oscﬂlatlons on the sense ‘wires. These
oscillations damp out only after about 3 ps, rendering 51gnals collected duriné
this time unusable. The usable drift length of the TPC is therefore only 91 cm,

rather than 1 m.
3.5 The Trigger System

Although the time between beam crossings at PEP is 2.45 us, events of
sufficient interest to be recorded occur only at a rate of about 1-2 Hz.
Furthermore, the time required for electrons to drift from the midplane to
the sectors is approximately 30 ps, i.e. 12 beam crossing times, and the time
required to read out a multihadronic event is about 20 ms, or over 8000 beam
crossing times. A trigger system based on various prompt signals is used to
determine whether or not to open the gating grid, collect the signals and read
out the event. Triggers based on several of combinations of charged and
rteutral pverticle information are used. For multihadron events, these triggers
are latgely redundant. Here, only the charged-particle trigger is described.
More comprehensive descriptions of the trigger system are given in

references [38 39].

The trigger system is divided into three levels: the pre-pretrigger, the
pretrigger and the trigger. The pre-pretrigger requires evidence of two
charged tracks separated by at least 90° in azimuth and at dip angles of less
than 65°. A track is identified by combinations of signals in either the IDC
and ODC or the IDC and TPC. Since the gating grid is initially closed, the. TPC
can collect ionization only from tracks passing through the sectors. The pre-

pretrigger can also be satisfied by exceeding a calorimeter total-energy
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threshold. If no pre-pretrigger signal is generated, the electronics are reset in
time for the next beam crossing. The total pre-pretrigger rate is typically 4-8

kHz.

If the pre-pretrigger condition is satisfied, the gating grid is opened
allowing ionization to pass through to the sectors. The next level of the
trigger, the pretrigger, is qualitatively similar to the pre-pretrigger, but with
tighter requirements for the TPC information. The TPC uses ionization
collected between 3.2 and 6.2 ps after the beam crossing time, corresponding to
the region between 10 and 20 cm from the sectors. If no pretrigger signal is
generated before 6.2 us after beam crossing, the gating grid is closed and the
electronics are reset. A pre-pretrigger signal with no pretrigger leads to a loss
of three beam crossings. Other pretriggers involve combinations of -charged

and neutral information. The total pretrigger rate is typically 200-400 Hz.

If the pretrigger is satisfied, the gating grid is kept open for 30 us, loﬁg
enough for ionization énywhere in the chamber to be collected. The TPC
wires are divided inté gfoups of eight, known as majority units. A majority
signal is generated if a certain number (typically four) of the eight wires have
signals over threshold within a time window of 2-3 ps. The bresence of a
charged track coming from the interaction point is established by a series of
majority signals for which decreasing radius is matched by a corresponding
increase in drift time. The charged particle trigger requires two such tracks
with dip angles less than 60°. Events satisfying the trigger condition are read
out into the computer. The charged particle trigger rate is typically 0.5-1.0 Hz,

and the total trigger rate (charged and neutral) is typically 1-2 Hz.



3.6  Calibration and Test Pulsing Systems

Variations in wire gain over the surface of a sector were measured
before chamber assembly, resulting in a gain map for each sector. Wire gains
were found to vary about 3%, mainly as a result of differences in wire
diameter and wire-cathode spacing. Corrections to the gain map are made
based on measurements using 35Fe x-ray sources. Each sector has three 55Fe
source rods, at 0°, -15° and +30° from center, mounted directly behind the
cathode plane. 'vThe rods can be positioned so that the sources line up with a
row of small holes in the cathode, allowing the x-rays to create ionization
near the wires. Calibration runs with the 55Fe sources were performed
approximately once per month. The long term stability was found to be better

than 0.3%

A Computer. controlled test pulsing system is used to measure the gain
and saturation characteristics of the electronics and to monitor system
stability [40]. First, pedestals are measured corresponding to the amount of
charge stored in the CCD when no test pulse is sent. Because of dark current
leakage, the pedestal depends on how long the charge is stored in the CCD.
Since charge is passed from bucket to bucket at 20 MHz while being clocked in,
and at 10 kHz while being read out, the amount of time spent in the CCD
depends on when the input is sampled relative to when the clock speed is
changed. The pedestal is found to change by 1-2% of the pulse height of a

minimum ionizing track depending on when the signal enters the CCD.

The shape of the gain curve is measured by sending pulses to the
shielding grid which induce signals on the wires and pads. Pulses of eleven

different amplitudes are sent and the response is parameterized using a spline
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fit.. The capacitive coupling between the shielding grid and the wires is not
known with sufficient accﬁracy to determine the overall scale from the test
pulsing system. A scale factor is détermined using both 55Fe source runs and
minimum ionizing pions from the data. With this procedure the gain

characteristics can be measured to better than 1%.
3.7 Position Measurement

Position measurements are made primarily from pad information,
with the sense wire information being used only to make small corrections.
The pad signals receive contributions from effectively five sense wires: the
one centered directly above the pad and the two adjacent wires on each side.
Avalanches on these five wires typically induce signals above threshold on

two or three pads. The signal on a pad can be parameterized by [41]:

2
Hp = 2 w; Hi e -n2/20-2 (31)
i=-2

where:

Hp = Pulse height on the pad,

i = Wire number, (0 for the wire centered on the pad; *1, 2 for the

adjacent wires.)

n = Distance along the pad row from the point of the avalanche to

the center of the pad,
o = Pad response rms width,

H; = Pulse height on wire i,



w; = Weight for wire i. (wg = 0.239, wy = 0.117, wy = 0.0135, w_y = w,,

w.p = wWy.)

The position of an avalanche along the pad row, 7, is determined by
fitting the measured pulse heights to equation 3.1. If the cluster contains
three or more pads above threshold, the width, o, is made an adjustable
parameter. Otherwise, o is estimated from the drift distance, L, and the angle
between the track's projection onto the x-y plane and the direction normal to
the sense wires, a. In order to compensate for fluctuations in the ionization
detected by the five wires above a pad, a correction of the form

2 2
An =| 2 iw;H; / Y, w;H; |D tana 3.2)
i=-2 i=-2

is applied, where D = 4 mm is the spacing between sense wires.

The spatial resolution in the x-y plane, oyy, is estimated from cosmic
ray data as a function of drift distance, L, and crossing angle, a. Track fits are
performed in which one pad row is omitted, and x-y residuals are
determined. The resolution is estimated from a Gaussian fit to the
distribution of x-y residuals. Values for oy, vary between 120 and 200 um

depending on tan ¢, as shown in figure 3.7.

The z position of a pad cluster is determined from the CCD bucket
information, as previously described. Ionization from a single track will
typically produce 5 to 7 buckets over threshold. A parabola is fit to the three
buckets with the most charge to determine the arrival time (and hence the

initial z position) of the ionization. The z spatial resolution, o3, is
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determined in the same manner as gyy. Typical values for o, are from 160 to

250 um, depending on the dip angle, 4, as shown in figure 3.8.
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Figure 3.7 The position resolution, Oyy, as a function of the tangent of the
crossing angle, o.
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Figure 3.8
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Chapter 4

Particle Identification by Measurement
of Ionization Energy Loss

4.1 .Introduction

The identity of a charged particle traversing the TPC is determined by
simultaneously measuring its momentum and ionization rate (dE/ dx). This
technique is based on the fact that the dE/dx of a particle depends only on its
speed and the magnitude of its electric charge, which in this analysis is
assumed to be plus or minus that of an electron. A scatter plot of dE/dx vs.
momentum for tracks from multihadron events (figure 4.1) shows clearly
defined bands corresponding to electrons, muons, pions, kaons, protons and

deuterons.

The momentum of a particle is determined by measuring its curvature
in the TPC's 13.25 kG'magnetic field. The momentum resolution is typically
(depending on dip angle and track length) given by (Ap/p)2 = (1.5%)2 + (0.65%
-p (GeV/c))2. A detailed description of the momentum measurement is

given in section 5.2.
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Figure 4.1  Scatter plot of dE/dx vs. momentum for tracks in events passing
loose multihadron selection cuts.



The basic dependence of dE/dx on velocity can be seen in figure 4.1.
For slow speeds (8 < 0.96) the dE/dx is proportional to 1/2, leading to well
separated bands of highly ionizing particles. For 8> 0.96 (the "relativistic rise
.region") the ciE /dx increases logarithmically. This is due to the relativistic
increase in the particle's transverse electric field, and hence its ionizing
power. As f3 increases further, the relativistic rise is eventually stopped at
what is known as the Fermi plateaii. This phenomenon is known as the
density effect, and is caused by the polarization of the medium, leading to an

effective limit in the range of the particle's electric field [44, 45].

Note that ionization values between 12.1 and 16.6 keV /cm correspond
to two values of velocity, leading to regions of ambiguity where the bands .of
different particle species cross. At momenta higher than that of the kaon-
proton crossover (p > 3.5 GeV/c) there is only a 1 to 1.5 keV/cm separation
between the pion and kaon bands, and only 0.5 to 1 keV/cm between kaons
and protons.. The relative dE/dx resolution is approximately 3.5%,
cofresponding to a 2 to 3.5 standard deviation separation between pions and
kaons, and 1 to 2 standard deviations between kaons and protons. Hence, a
particle's identity canhot always be established on a track-by-track basis, and a
statistical technique must be used to determine the relative abundances of the
various particlé types. As input to this procedure, one requires an estimate of
each particle's momentum and dE/dx, and in addition, an accurate estimate
of the expected dE/dx and dE/dx resolution as a function of momentum and

particle type.

57



58

4.2 Energy Loss in the TPC: Theoretical Considerations

As a charged particle passes through the gas volume of the TPC (80%
Argon, 20% CHy, at a pressure of 8.5 atmospheres) it loses energy through
interactions with the electrons of the gas molecules, resulting in the
production of electrons and positive ions (primary ionization). (Energy loss
due to Cherenkov radiation and interaction with atomic nuclei is
comparatively small and may be neglected.) The primary electrons can
collide with neighboring gas molecules to produce additional (secondary)
ionization. The electrons, primary and secondary, drift axially to the sense
wires of the TPC sectors, where they create an avalanche. Since the sense
wires are spaced 4 mm apart, each measurement corresponds to the passage of
the particle through a gas layer of about 4 to 8 mm, depending on the track's

dip angle, azimuth 'and momentum.

The number of primary ionization-producing collisions for a particle
traversing a 5 mm layer of TPC gas is on the order of 100, and the fluctuations
in this number obey Poisson statistics. These fluctuations are fairly small:
about 10% for a single gas layer, or 1% for a track travérsing most of the TPC
gas volume. The nufnber of primary collisions cannot, however, be directlly
measured. Instead, one measures the total number of electrons produced,
primary plus secondary, which leads to a fundamental difficulty in the
measufement of ionization energy loss: Relatively rare primary collisions
resulting in large energy loss, and hence in a large number of secondary
electrons, account for a comparatively large fraction of the total number of
electrons produced. Because such collisions are comparatively rare, they lead
to large fluctuations (25%-50%) in the total amount of ionization produced in

a single gas layer.



In this analysis it is assumed that the number of electrons produced is
proportional to the amount of energy the particle loses, A. A typical
distribution of energy loss f(4; B, x) for a particle of speed 3 = 0.96 traversing a
gas layer of thickness x = 5 mm is shown in figure 4.2. For adequate particle
identification a dE/dx resolution of a few percent is needed. This is achieved
by sampling the distribution (i.e. measuring the track's ionization rate) a large

number of times. It is for this reason that each TPC séctor is equipped with
183 anode sense wires. Signals induced on the pads also provide some dE/dx

information, but this is not used in this analysis.

From the set of dE/dx measurements, one could in principie estimate
the particle's speed, 5, by means of a maximum likelihood fit to the energy
loss distribution, f(4; B, x), in which B is an adjustable parameter. This
procedure is too complicated, however, to be carried out on a track-by-track
basis, particularly since it is difficult to obtain an accurate parameterization of
f(4; B, x). (Recall that x is different for each track, and would therefore need to
be included as a parameter.) Instead, it is convenient to form a single
estimator of the distribution, which ideally should be a sensitive a function of
B, and also should be as robust as possible. (i.e. it should ha\}e a small
statistical error for a given number of samples.) In order to avoid the
fluctuations caused by large energy losses, the mean of the lowest 65% of the
individual dE/dx measurements is used. This quantity, hereafter referred to
as the truncated mean dE/dx or simply the "dE/dx" of a particle, is assumed,
for the purposes of theoretical calculations, to be proportional to the most
probable value of f(4; B, x). To establish an energy scale for the data, the
truncated mean dE/dx for minimum. ionizing pions is assigned a value of

12.1 keV/cm, based on preliminary theoretical calculations.
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4.3  General Theory of Ionization Energy Loss

We would like to derive the energy loss distribution, f(4; B, x), or at
least its most probable value, as a function of the parameters 8 and x. This
was done by Landau [46] by relating f(4; B, x) to the differential cross section,
do/dE, for losing an amount of energy E in a collision with an atomic

electron. One starts with the Laplace transform of f(4; S, x):

7 ;B2 = IO e A f(A; B, ) dA. @1)

This is related to the energy loss cross section, do/dE, by {47]

= =]

f@; B x)=exp| -x f (1.-e'F’E)pg—ng , 4.2)
0

where p is the number of atomic electrons per unit volume. This can be
inverted numerically or (for example) by

O + i
fap0= 5= | ePipipx dp @3)
O - ico
For energy transfers large compared to atomic binding energies, do/dE

is essentially the Rutherford cross section:

( 2redt 1
mc2 BLEZ

I
A

do/dE (4.4)

L 0 E<E
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where m is the electron mass. The minimum energy transfer, E°, corresponds
to a collision time on the order of an orbital period for an atomic electron.

Landau's treatment is equivalent to using
nE =ln[s—ar | + B 5
n =in 2mC2 ﬁ2)2 + Bz (43)

where [ is the ionization p.otential of the atom. (I =13.5eV - Z.)

f(4; B, x) is found using the Laplace transform procedure outlined
above, and can be expressed as the product of two terms:
1 .
fla; B, x) = E ¢ (A). (4.6)
The variables £ and A are defined by

_2méfpx
=T

11 (s-elmer-c) ws

“7)

where C = 0.577 is Euler's constant. ¢ (1) is the Landau distribution, given by

O + foo

1 ' -
o) = 5= j exp(u Inu + Au)du. (4.9)
' O - 1o
The famous "Landau tail" of ¢ (1) is the source of the large energy-loss
fluctuations mentioned in section 4.2. The maximum of ¢ (1) oécurs at A =

- 0.225, leading to a most probable energy loss, Amp, of

Amp = & (mé - 0.198). (4.10)



(In fact, the additive constant in equation 4.10 was originally determined by
Landau to be 0.37. A calculational error was later discovered by Maccabee and
Papworth [48], who provided the corrected value of 0.198.) Note that the
relativistic rise in equation 4.10 comes entirely from the fact the the

minimum energy transfer, E*, depends on the particle's speed.

Equation 4.10 for the most probable energy loss is only valid to the
extent that do/dE is accurately described by the Rutherford cross section given
in equation 4.4. This corresponds to the case where typical energy transfers
are large compared to the maximum binding energy, so that the atomic

electrons can be treated as free particles. In reality, the probability to transfer

an amount of'enefgy, E, to an electron is strongly peaked at the binding

energies corresponding to the various atomic levels. An energy-loss cross

section which takes into account this effect is given by [49]:

do do do

dE = (Hfjresonance + (E)Rutherford , (4.11a)
do '

(a'é') resonance (4.11b)

m 2 &E[m(E|1+¢ﬁﬁu-g@»y - P Re (e(E)

do 2met 1 E o

(af)Rutherford = mc2 [Q—-EE .[ f(ENME", (4.110)

0

where € = € + igy is the dielectric constant of the medium and f(E) is the

oscillator strength. These are related by

drpo(hc)

a =1-—"rop

E
[ feraE, (4.12)
0 ,
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2m2pa(hc)s :
& (E) = ——35—— E) . (4.13)

The oscillator strength is proportional to the atomic photoabsorption cross
section (for atomic number Z):

c2
2 athc)2Z

fE) = o, (E). @14)

The first term in equation 4.11a, (d6/dE)resonance, is proportional to

f(E) and therefore peaks at energies corresponding to atomic energy levels.

‘This term shows the origin of the Fermi plateau: for > 0.96, but By (1-¢6) «

1, the cross section rises as In By. For sufficiently large f7, the denominator of
the logarithm becomes proporﬁonal to B292, and (d6/dE)resonance becomes
independent of the particle's speed. (do/dE)Rutherford 1S essentially the
Rutherford cross section multiplied by the fraction of electrons bound by an

energy less than E.
44  Model for the Most Probable Energy Loss in the TPC

Ideally, one could plug the expression for do/dE given in equation 4.11
into the expression for f (p; B, x) (equation 4.2) invert the Laplace transform to
find the energy loss distribution, and then determine its most probable value,
Amp. We choose the simpler approach of finding Amp using the resonance
and Rutherford cross sections separately, and thén simply adding the results

[50]. In other words, we make the approximation:

Amp = (Amp)resonance + (Amp)Ruthe'rford- - (4.15)

For the oscillator strength, f(E), it is convenient to use different

approximations for the resonance and Rutherford terms. For the resonance



term, the following parameterization was obtained from photoabsorption

data [50, 51]: (See figure 4.3a.)

- S/ SR
f(E) J =§as i =%vel Par* pCH4 Yy fl] & (4.162)

fi (B) = (4.16b)

0o E < Ej.

The index j is summed over gas types, argon and methane, p; is the number
of electrons per unit volume from gas type j, i is summed over the atomic
energy levels, and the weights, rwij, sum to one for each component of the gas.
The gas mixture of 80% Ar, 20% CHy, by number of molecules, at a
temperature of 21° C corresponds to electron densities of ps, = 3.05 x 1021
cm-3 and pcy, = 4.24 x 1020 cm™3.  Argon is approximated as having four
energy levels, and methane as having two. Values for the parameters wy;, E;j,
and s;; are shown in table 4.1. The resulting real and imaginary parts of the

dielectric constant are shown in figures 4.3b and 4.3c.

The mean number of resonance collisions per unit length can be found
by integrating (do/dE)sesonance, multiplied by the appropriate electron density,
over energy. For this, the energy dependence inside the logarithm can be
approximated as being constant, and set equal to the mean ionization

potential, E;;’, for energy level i, gas j. This is defined by

InEy = | fj(E)InEdE, (4.17)
' 0
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Figure 4.3 (a) The oscillator strengths, f(E), for argon and methane. f(E) for
the argon-methane mixture is given by a weighted sum of the two curves
(equation 4.16). (b) The imaginary part of the dielectric constant, from
equations 4.12 and 4.16. (c) One minus the real part of the dielectric constant,
from equations 4.13 and 4.16.
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Table4.1  Parameters used in the model for ionization energy loss
described in section 4.4. The index j refers to the gas, and i to the energy level.
The "outer" level of CH, combines hydrogen with the L-level of carbon.

Atom Level wij E; (eV) Sij
Ar K 0.111 3206.0 2.75
Ar L 0.444 248.0 229
Ar M 0.133 52.0 320 -~
Ar M 0.311 15.8 3.20
CH,4 B K 0.2 283. 2.52

CHy "outer” 0.8 115 215
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yielding

- 1 _
- Ejj" = Eij exp (Sij 7 ) (4.18)

Using this to integrate (d6/dE)resonance, One obtains for the mean number of

collisions per unit length for electrons of energy level i, gas j:

(_dﬂ) 2net p; wi sij- 1 y
y

dx ..~ mc2B2 Ej  si

2mc2B2}2' .
(ln (Eif T+ PPR(1 - e(E) | J* 1 - P2 Rel(e(E; >>J- (4.19)

Since the resonance cross section is strongly peaked at the binding
energies, the most probable energy loss for a given gas and energy level can be
approximated by the most probable number of collisions multiplied by the
mean ionization potential for that level. The number of collisions in a gas
layer of thickness x follows a Poisson distribution, the most probable value of
which is one half less than its mean. This yields

dN 1 )
(Amp)resonance = 2 2 ( (a'x_) X - i‘) Ey" . (4.20)
Jj = gasi=level 1)

For the Rutherford term, it is easier to approximate f(E) as a sum of
delta functions centered about the mean ionization potentials, using the same
weights, wj;, as before:

) ’
fB) = X % ———— wj §(E - Ej"). (4.21)
7 1 PartPchy
This breaks the Rutherford cross section into six terms: four for argon and

two for methane. Each term is of the same form as the Rutherford cross



section given in equation 4.4, which was used to obtain equation 4.10 for the

most probable energy loss. (Amp)Rutherford can therefore be approximated as

3
(Amp)Rutherford = z z wij & (ln?;/ + 0.198). (4.22)

J=gas i=level
Using the definition of E;j’, (equation 4.17,) this reduces to

Ei
(Amp)Rutherford = Z éj (ln ——Ejj" + 0.198), (4.23)
j = gas

where E;” is the mean ionization potential for gas j, defined by

E'= % | wyfy(®)InEdE. (4.24)

1= level 0

This yields mean ionization potentials of 208.0 eV for Argon and 49.9 eV for
methane. Note that (Amp)Rutherford is not directly proportional to the gas
layer thickness, x, but rather to x In x. For purposes of the energy loss model,
(Amp)Rutherford is evaluated at x = 5 mm. In the data, the dE/dx of each track is

corrected for the dependence on gas layer thickness.

The final expression for the most probable energy loss per unit length
is obtained by summing equations 4.20 and 4.23 and dividing by the gas layer
thickness, x. (See figure 4.4a.) Note that only the resonance term contributes
to the relativistic rise. This results from the fact that the minimum energy
transfers for the six terms in the Rutherford cross section were set equal to the
mean ionization potentials, E;;’, independent of the speed of the particle. The
contributions from the various energy levels to (Amp)resonance are shown in
figure 4.4b. From this it can be seen that most of the relativistic rise comes

from collisions with the L-shell electrons in argon.
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Figure 4.4 (a) Model prediction for the most probable dE/dx as a function of

By, showing the contributions of the resonance and Rutherford terms.

(b)

Contributions to the resonance term of the most probable dE/dx by energy
level.



4.5 Fit of the dE/dx Model to Data

As mentioned in section 4.1, the required accuracy for the expected
dE/dx as a function of velocity is approximately 0.2%. In order to achieve
this, the model for (dE/dx)mp described in the previous section was
parameterized and fit to data from a variety of track samples. These included
protons from the 1/f2? region, pions from the minimum ionizing and
relativistic rise regions, cosmic ray‘ muons, conversion pair electrons and
Bhabha electrons (i.e. electrons from e*te- — ete”). The protons, pions and
conversion pair electrons were taken from multihadron events (i.e. the same
events we eventually want to study) so that systematic errors from gain

variations and track environment cancel.

In order to have track samples of sufficient purity, particles were taken
from regions where identification by dE/dx does not depend crucially on the
dE/dx measurement (e.g. the 1/2 region) or where identification is provided
by means other than dE/dx. (For example, the cosmic ray muons are
identified by their ability to penetrate the iron in front of the muon
chambers.) An exception to tﬁis is the pion sample, which is not well
separated from kaons and protons in the relativistic rise region. Here, a
maximume-likelihood fit was performed for the dE/dx distribution of tracks
within a narrow momentum interval. The technique is essentially the same
as that used to determine the charged hadron fractions, and is described in
detail in section 6.3. For purposes of obtaining information on the dE/dx as a
function of velocity, an extra adjustable parameter was used corresponding to
the mean dE/dx of the pions in the momentum interval. The pions from the
relativistic rise region are crucial for establishing the accuracy of the dE/dx

versus velocity curve.
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The model prediction was parameterized to allow translations and

linear transformations in In fyand dE/dx. In other words,
dE dE
o =C: | 3= + D 4.25
(dx )ﬁt(ﬁw (dx ]modd (4.25)
where (dE/dx) 4.1 is evaluated at

(n BY) model = A-InBy + B. (4.26)

The data and resulting fit are shown in figure 4.5. The X2 per degree of

freedom is 1.50. The values obtained for the parameters are:

A = 0986
B = -0.055
C = 0999

D = 1532 keV/cm

The fact that A =1 and B = 0 indicates the extent to which the velocity
scales agree between theory and experiment. The fact that D is not zero, but
rather represents about a 10% shift for particles between the minimum
ionizing and plateau regions, can be interpreted in several ways. It could be
the result of a pedestal subtraction problem in the data, or (more likely) an
underestimate of the Rutherford contribution to the most probable dE/dx in
the model. For purposes of data analysis, the distinction is unimportant.
What is important is that the parameterization of the model fits the data well.
Figure 4.6 shows the dE/dx for cosmic ray muons and pions from the

relativistic rise region divided by the predicted dE/dx. The dashed lines
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Figure 4.5 Data points: the truncated mean dE/dx from several track samples
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region.



indicate the estimated systematic uncertainty for the dE/dx versus velocity

curve of 0.2%.
4.6 Estimation of the dE/dx Resolution

In addition to the expected dE/dx as a function of velocity, a knowledge
of the dE/dx resolution is needed. This was determined from a sample of
approximately 47,000 minimum ionizing pions from multihadron events.
The tracks were required to have at least 80 usable ionization measurements
for determination of the truncated mean, and to have a dip angle between
-45° and 45°. The relative resolution, o/ / (dE/dx), is shown in figure 4.7,

in which tracks of all dip angles are combined. The resolution improves

slightly for larger dip angles because of the increase in the effective thickness

of the gas layer sampled and pedestal restoration problems in the electronics.

A parameterization of oyg/4, / (dE/dx) is given by

odg/dx/(dE/dx)r;‘\/ =4b (1+cn+dlsindl) 4.27)

where n is the number of ionization samples used to compute the truncated

mean and A4 is the dip angle. Determined parameter values are:

a = 0.168
b = 4.62x104
c = -5.46 x 104
d= -0.258

Figure 4.8 shows a histogram of the difference between measured and

predicted dE/dx, divided by the dE/dx resolution for each track, for the
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minimum ionizing pion sample. The distribution is well described by a
Gaussian of unit width out to three standard deviations, demonstrating that
the dE/dx response is indeed well understood. Studies with cosmic ray
muons indicate that o4g/4y / (dE/dx) remains approximately independent of
the mean dE/dx of the track sample for the relativistic rise region. For the
1/ B2 region, the resolution was observed to improve somewhat for track
samples of increasing mean dE/dx. (Empirically, o4g/ax / (dE/dx) o
(dE/dx)-035) The relative systematic uncertainty in the dE/dx resolution is

estimated to be 8%.



Chapter 5

Event Reconstruction, Selection
and Simulation

5.1 Introduction

The basic flow of the analysis used to convert raw input signals into
data summary tapes (DSTs -- actually disk files) of multihadron events is
shown in figure 5.1. Event selectioh is carried out at several stages along the
way; details are given in reference [52]. The basic philosophy is to analyze the
data with the best available calibration constants and correction factors, use
the analyzed data to refine the calibrations and corrections, and then
reanalyze the data. Only the charged particle analysis for TPC information

" will be described here.
5.2 Online Analysis

The first stage of the analysis chain, known as preanalysis, is an online
event filter for fast rejection of spurious events, mostly beam gas collisions
and cosmic rays [53]. Qualitatively, the cuts imposed in preanalysis are
similar to (although tighter than) those required by the hardware trigger.

Events satisfying charged particle triggers are first processed by the "charged
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Figure 5.1
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DISTORTION AND DE/DX CORRECTIONS
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APPLY FINAL CORRECTIONS TO “F" TAPES
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FINAL MULTIHADRON EVENT SELECTION.
WRITE DST'S TO DISK.

The data analysis chain for multihadron events.



preanalysis”. Recall that the charged particle trigger uses TPC wire signals and
information from the inner and outer drift chambers to identify at least two
charged tracks with dip angles less than 60°. In the charged preanalysis, TPC
pad information is used to verify that this condition actually éxisted. va the
event is rejected by the charged preanalysis but a neutralvtrigger was satisfied,
the event is processed by the "neutral preanalysis" for verification that the
corresponding trigger requirements were met. All events passing preanalysis
are recorded on the raw-data tapes. The fraction of events rejected is typically
35%. Approximately 1,000 raw-data tapes were written during the 1984-1986

running cycle.

For the events passing preanalysis, as much further analysis as possible
is done online. Large-angle Bhabha events (e*e- — e*e”) and multihadron
candidates (4-5% of the events passing preanalysis) are processed through the

final (DST) level. As many of the other events as possible (typically about

70%) are processed through track reconstruction and the first level of

distortion corrections. The charged track reconstruction and momentum

determination can be summarized as follows:

1) Find clusters of wire and pad hits. Determine space points from

pad clusters. (Program CLUSTER.)
2) Find tracks from space points. (Program PATTERN.)
3) Associate wire clusters with tracks. (Program HAWIRE.)

4) Use wire information to refine space points. Apply distortion

corrections. (Program DISTORT.)
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5) Determine the tracks’ momenta from independent fits in

the bend plane and in z. (Program DISTORT.)

6)  Determine truncated mean dE/dx. Assign particle type.
(Program DEDX.)

7) Redetermine momenta with helix fit. Extrapolate
momenta to origin including energy loss corrections based on

particle type assignment. (Program TRAGIC.)

8) Redetermine momenta using the constraint that the tracks come

from a common vertex. (Program VERTEX.)
9) Summarize data in "DST" format. (Program MAKEDST.)

The online analysis is done using best guesses for calibration constants
and correction factors, usually based on a weighted average of the most recent
previous data. The processed data is then used to determine new corrections
for offline analysis. Information from the multihadron candidates is used to
establish the beam position on a run-by-run basis. Drift velocity correction
factors are determined from tracks crossing the midplane, and from the edge
of the distribution of hits in z.  Minimum-ionizing pions from all of the
events-(mostly two-photon collisions) are used to determine gain factors for
the dE/dx analysis. Because of fluctuations in the methane fraction of the
TPC gas, the gain factors are crucial for achieving the dE/dx resolution
necessary fo'r'pafticle'identification. Gain factors as a function of run number

are shown in figure 5.2.
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Run-by-run dE/dx gain correction factors for the 1984-1986

running cycles. The factors are based on minimum ionizing pions from

single-photon annihilation and two-photon multihadronic events.
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5.3  Offline Analysis

Once the events have been recorded, the raw data tapes are transported
to LBL for further analysis using the refined calibration constants. For events
not processed online, the track and event reconstruction procedure described
in the previous section is performed up to creating the DST information. For
events which have already been processed, the analysis chain is started at the
point where the wire information is used to refine the space points and
distortion corrections are applied (step 4 above, program DISTORT). Cosmic
ray events identified by information from the TPC and the muon chambers
are removed. Low-angle Bhabha events are counted for determination of the
integrated luminosity, and every tenth event is kept. The output events are
written to "E" tapes. The information retained on the "E" tapes includes
individual wire pulse heights and space points, but not raw input signals (i.e.

digitizer outputs).

DST information is produced from the "E" tapes, and events satisfying
loose criteria for T+1-, multihadron (i.e. q q) and large angle Bhabha events
are output to "F" tapes. There were 193 "F" tapes for 1984-1986. In addition,
the DST information for events passing a tighter set of selection criteria for
multihadron events is written to disk. For the purposeé of the multihadron

event selection, a "good" track is defined as satisfying the following criteria:
1) Dip angle, |1 < 60°.

2) Curvature error, Ac < 0.3 (GeV/c)? or relative curvature error,

Ac/c < 0.3.

3) Momentum in the ITPC, prpc > 100 MeV/c.



4) Momentum extrapolated to the interaction point, py,rx > 120

. MeV/c.

¥

: 5) Distance of closest approach to the event vertex in the bend

plane, Ar < 6 cm.

6) Distance of closest approach to the event vertex in the direction

of the beam, Az < 10 cm.

A preliminary mass assignment is made for each track based on its
dE/dx and momentum. Pairs of oppositely charged tracks with low invariant
mass and dE/dx values consistent with electrons are identified as electron-
positron pairs from photon conversions. The total charged energy, Ey, is
computed from the measured momenta and the preliminary mass
assignments. The sphericity axis is determined, which defines two
hemispheres for the event. The following criteria are used to select

multihadron events:

1) The number of "good" tracks identified not to be electrons, Ny,

2> 5.

2) Total charged energy, E.; 2 7.25 GeV. (Suppression of two-

photon collisions.)

3) Sum of z components of momenta, Z Ip,| <04 E/c. |
(Suppression of two-photon collisions and events with large

initial state radiation.)

4) The total number of "good" tracks, Nggog, 2 half the total

number or tracks, Nyg1/2.
¥
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5) In at least one hemisphere there must be at least 4 non-electron

tracks or the invariant mass of the tracks must satisfy My 220

GeV. (Suppression of 1+t~ background.)

6) The event vertex must be within 2.0 cm of the origin in the x-y

plane and 3.5 cm in the z direction.
7) The dip angle of the sphericity axis, |4g,,! <45°.
This resulted in a sample of 20,126 events.
54  Final Corrections to the Data

Once DSTs with multihadron events were available on disk, further
analysis was carried out to study systematic effects in the dE/dx measurement.
This was based on approximately 47,000 minimum ionizing pions from
multihadron events. Correction factors were determined for dependence of
the dE/dx on sector, end cap, and dip angle. For example, figure 5.3 shows the
uncorrected mean dE/dx for minimum ionizing pions divided by the
expected value as é function of dip angle. Variations on the order of several
percent can be seen. Correction factors were computed by fitting third order
polynomials to the data. The sector-to-sector variations were also on the
order of several percent. The dE/dx corrections resulted in an improvement
in the dE/dx resolution from 3.7% to 3.5% for pions with at least 120 wire

samples for determination of the truncated mean.

In addition, a final set of distortion corrections was developed based on
pru- and Bhabha events. These included corrections for E x B drift based on
magnetic field maps obtained with NMR probes [54], and a set of empirical

corrections for distortions from sources not entirely understodd, but assumed
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to be mainly electrostatic in origin. The result of these corrections was to
improve the momentum resolution for high momentum tracks from
approximately Ap/p =0.9% - p (GeV/c) to 0.65% - p (GeV/c). The resolution is
determined from the width of the curvature distribution for muons from
u*p- events, as shown in figure 5.4. The constant background is from cosmic

ray muons which pass through the interaction point.
5.5 Event Simulation

A Monte Carlo event generator and detector simulation program is
used to determine the event selection efficiency and particle acceptances,
estimate béckgrounds and test various data analysis procedures. To simulate
multihadron events, the Lund version 5.3 generator was used. (See section
2.4.2 and references [55-57].) The output from this program is basically a list

of particles produced in the event, with their types and momenta.

This particle list is the input to the program TPCLUND which
simulates the detector response. The philosophy behind TPCLUND is to
adequately simulate the overall characteristics of the detector, while running
sufficiently quickly to allow a number of events comparable to the amount of
actual data to be processed in a short period of time. The time required to

process a typical multihadron event is 1.8 seconds on a VAX 8650 computer.

The speed requirement places constraints on the level of detail in
which the detector can be represented. TPCLUND describes the detector as a
series of hexagonal layers, each characterized by a certain number of radiation
lengths, nuclear interaction lengths, and a certain ionization rate for a
minimum ionizing particle. The simulation of the particle's evolution from

layer to layer includes the effects of decays, nuclear interactions and hard



electromagnetic processes (i.e. bremsstrahlung for charged particles, pair
production for photons) multiple Coulomb scattering and ionization energy
loss. Particles from decays and particles produced in interactions in the

detector's material are treated in the same manner.

Rather than simulating the production of ionization in the TPC and its
subsequent drift and detection by the sectors, TPCLUND generates space
pbints corresponding to the places where a particle's trajectory crosses a pad
row. The positions of the points are then smeared according to the measured
position resolution of the detector as a function of drift distance, (i.e. z)
crossing angle, o, and pad row. Points are thrown away in regions where
tracks overlap. A significant amount of time is saved by not using the pattern
recognition program used for the actual data. Instead, points are associated
with a track if they are within 3 cm of its trajectory. Ambiguous points are
associated with only one track. Tracks with at least three points are said to be

found, and the momentum is determined by a fit to a helix.

Individual wire signals are not simulated by TPCLUND. Instead, a
truncated mean dE/dx is generated based on the particle’s momentum and
particle type. The number of usable dE/dx measurements that the track
would have had is then estimated. This takes into account how many wires
were crossed, track overlap, effects of delta rays and electronics saturation.
The dE/dx resolution is then estimated from the number of usable dE/dx
measurements and the dip angle using equation 4.27. The initial truncated

mean dE/dx value is then smeared with a Gaussian distribution of this width.

From this point, the analysis in TPCLUND mimics the analysis for the

real data. A particle type is assigned based on the momentum and dE/dx.
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The energy loss in the material between the detector and the interaction point
is then estimated. The particle's trajectory is extrapolated to the interaction
point including the effects of energy loss. The momentum .vis then
redetermined using the vertex constraint. The output is recorded in the same
format as for the real data, so that the same analysis programs can be used for

both.
5.6  Backgrounds in the Multihadron Event Sample

The reactions ete- — e*e- + hadrons (two-photon reactions) ete- = 1+t
and ete- — ete” events were studied as potential sources of background to the
multihadron event sample. Background subtractions for the n, K and p
momentum spectra are made, although these corrections are in all cases

small compared to uncertainties from other sources.

The reaction ete- — e*e” + hadrons can be viewed as a collision of two
photons [58]. For the case where one or both of the Q2 values of the colliding

photons are large compared to vector meson masses (O(1 GeV)), the process

can be described by the Quark Parton Model (QPM). A Monte Carlo study was

carried out in which 61,504 QPM events were generated and pfocessed
through the detector simulation program TPCLUND. The total center-of-
mass energy of the two-photon system, Wy,, was required to be greater than 3
GeV, corresponding to a cross section of 0.42 nb. Of the generated events, 224
were accepted by the selection criteria discussed in section 5.3, from which the
fraction of QPM events in the multihadron event sample is estimated to be
0.5%. The error in this value could be quite large (a factor of 2-3) in view of
the experimentally observed excess of two-photon events over the QPM

prediction [59]. Nevertheless, the QPM background is sufficiently small that it



does not constitute a significant source of systematic uncertainty in the
analysis of annihilation (i.e. qq) events. The relative background levels for
the various particle species (with statistical errors only) are shown as a

function of z =p / Pheam in figure 5.3.

For the case in which the photons' Q2 values are small or of the same
order as vector mesoﬁ masses, the process e*e- — e*e- + hadrons can be
described by the Vector Dominance Model (VDM). Requiring Wy 2 3 GeV as
before, the cross section for this process is approximately 2.4 nb. Events of this
type‘tend to produce hadrons at very srﬁall angles with respect to the beam
direction, so that the amount of detected energy is typically below the
minimum energy cut of 7.25 GeV. In a Monte Carlo study with 80,000
generated VDM events, four passed the the multihadron selection cuts with
the exception of the 45° cut on the dip angle of the sphericity axis. Of the four,
only one passed this final cut, corresponding to a contamination of only

0.01% in the multihadron event sample.

For the reaction ete- — t+t-, 100,000 events were generated and
processed through the detector simulation program. The total cross section
including radiative corrections is 0.136 nb. 975 events were accepted,
corresponding to a contamination of 0.4%. The background levels as a
function of z are shown in figuré.5.6. The backgfound peaks at high

momentum, reaching 4% for pions in the interval 0.7 < z < 0.9.

Bhabha events were studied as a potential background to the high
momentum region. 200,000 events were generated of the type ete- — ete-and

ete” — e*e~y, where the minimum scattering angle with respect to the beam

direction was 30° and the minimum photon energy in the radiative events -
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was 0.5 GeV. The corresponding cross section is 3.64 nb. Approximately 1%
of the events contained at least five charged tracks due to electromagnetic
processes in the 15% r.l. of material between the interaction poiﬁt and the
detector. The multihadron event selection requires, however, that these
tracks be identified not to be electrons. None of the events satisfied this
criterion, leading to a 68% confidence level upper limit on the fraction of

Bhabha events in the multihadron sample of 0.01%.



Chapter 6

Determination of the Inclusive

Cross Sections and Fractions

6.1

Objectives

The 20,126 events passing the multihadron event selection criteria

were analyzed to determine the charged hadron inclusive cross sections and

fractions. Specifically, the following quantities were measured:

1)

3)

4)

1 do

o1 Az (ete- = h +X) as a function of z = Phagron/ Pheam fOr b = 1%,

K%, p, p and total.

-1 do :
Otot B dx (ete"— h +X) as a function of x = Epggron/ Epeam for h = n#,
K#* and p, p.

55 (ete"— h +X)  as afunction of z = Pragron/ Pheam for h = n=,
Ot dz e
K#* and p, p.

Charged hadron fractions as a function of z = pyaaron/ Pheam-

K/x, p/n and baryon/meson ratios as a function of z = Ppagron/ Pheam-
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Here o,,; refers to the total cross section for the process e*e- — hadrons. The

quantities listed above are clearly not independent; all are computed for the

sake of convenience in comparison with theory and with other experiments.

The fractions and particle ratios have the advantage that a number of

systematic uncertainties (e.g. those associated with the acceptance) largely

cancel out.

6.2 Track Selection

For determination of the quantities listed above, tracks from the

selected events were required to satisfy the following criteria:

1)

)

3)

4)

5)

Number of dE/dx wire samples for determination of the

truncated mean dE/dx, ny, 2 40.
Absolute value of dip angle, 141 <60°.

Curvature error of track, Ac < 0.15 GeV-! or relative curvature

error, Ac/c £0.15.

Distance of closest approach to event vertex in the x-y plane, Ar <

3 cm.

Distance of closest approach to event vertex in the beam

direction, Az <5 cm.

At low momenta, a substantial fraction of the observed protons come from

nuclear interactions in the material between the interaction point and the

TPC. Therefore, only negative particles are used for z < 0.25.



6.3 Statistical Fit for the Number of Observed Hadrons

For determination of the hadron fractions and cross sections, the track
sample is divided into z (i.e. momentum) intervals as shown in figure 6.1
and table 6.1. Also shown in figure 6.1 is the expected truncated mean dE/dx
as a function momentum for electrons, pions, kaons and protons. In the
following these curves are referred to as Tj(p), where the index i refers to the
particle type. In the relativistic rise region (z > 0.25), however, there is only a
1 to 2 standard deviation separation between protons and kaons, and only 2 to
3.5 standard deviations between kaons and pions. As a result, the relative
abundances of the various particle types must be determined by a statistical

technique.

For purposes of the statistical analysis, it is convenient to normalize
the dE/dx of a track by the expected mean dE/dx value for pions at the track’s

measured momentum:

dE '
R = 5=/ Tap). 6.1)

The variable u;(p) is defined as the expected mean dE/dx for particle species i

divided by the expected mean dE/dx for pions at the momentum p:
up) = Tip) / Tpp), i=e n K p. (6.2)

For a sample of tracks all of momentum p, particle type i, number of
wire samples for truncated mean determination n,, dip angle 4, and
momentum error Ap, the variable R is assumed to follow a Gaussian

distribution centered about u;(p) of width
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(dE/dx)
q; = [om,-n-z 7 (1, ) 1i(p) [ — o ’J ]

Ap_d 2
. ( (p)dpm»)_, (6.3)

Here, 0.1 .,, (ny, A) is the relative dE/dx resolution (i.e. 64gp/q,/(dE/dx)) as
determined from minimum ionizing pions and given by equation 4.27.
(dE/dx)m,-n_Ilis 12.1 keV/cm, the ionization rate for a minimum-ionizing
particle. The exponent « is zero for relativistic particles (8 > 0.96) and 0.35
otherwise. (See section 4.6.) The second term corresponds to the broadening
due to momentum measurement errors. The contribution from this term is
only significant in the 1/f2 region, since the multiple Coulomb scattering

contribution to the momentum resolution is inversely proportional to S.

The tracks within a given momentum interval do. not, however, all
have the same dip angle, number of dE/dx samples, or momentum
resolution. Therefore o; is different for each track and must be treated as a
random variable. Furthermore, the momentum interval is not
infinitesimally narrow; it is necessary to consider different values of
~momentum, and hence different values of u;(p) within the interval. It is
assumed that the distribution of the variables R, p and o; for tracks within a

sufficiently narrow momentum interval are distributed according to

where the function f (R, p, o;; ¢;) is given by

. . 2
fR,p o5 0) = 2 -—(—p-l——exp[ (R #' (p)) ] (6.5)
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The index i is summéd over the four p‘article types: e, n, K and p.. The four
adjustable parameters, ¢; are proportional to the abundances of the
corresponding particle types. Studies with minimum-ionizing pions indicate
that the assumption of a Gaussian distribution is well justified. (See figure

4.8.)

- The abundance of each particle type is determined by an extended

maximum likelihood fit {60]. The likelihood function is given by

» 'L:exp(-Zi'@)I'JIf(Rj,p,-,oi,-;¢,->, (6.6)

where the index j runs over all tracks in the momentum interval. It is not
necessary to include g (p, 0;) in the likelihood function, since it does not
depend on the adjustable parameters, ¢;. The likelihood function is

maximized using the program MINUIT [61]. By using the extended

.maximum likelihood technique (i.e. including the exponential term in front

of the usual product in equation 6.6) the parameters, ¢; give the actual
number of pafticles (not the fraction) of each type. The fit does not require
binning in the variable R (i.e. dE/dx) and makes maximal use of the
information available for each track. This is particularly important in the

high momentum region, where limited statistics are available.

In order to see qualitatively the results of the fit, a histogram of R can

be compared to f (R, <p>, <0;>; ¢;). Plots for several momentum intervals

are shown in figures 6.2a - 6.2d. The function f is evaluated at the mean

values of momentum and o; in the interval, and its area is scaled to that of
the histogram. Note that the relative number of hadrons can be determined

even when the peaks are quite close together. This relies heavily on the fact
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that the positions of the peaks (i.e. y;(p)) and the widths, o;, are not adjustable
parameters, but instead are determined from separate measurements.
Contributions of the uncertainties in these quantities to systematic errors in

the cross sections and fractions are discussed in section 6.5.

The fit number of particles in each momentum interval is corrected for
background from the processes ete- — 1*1- and e*e- — e*e” + hadrons as
discussed in section 5.6. These corrections are small, and the associated
uncertainties do not constitute a significant source of systematic error in the

cross sections or fractions.
6.4  Acceptance Corrections

Given a certain number of particles observed in the detector, one must
estimate how many particles were actually produced in the e*e- collision.

The ratio of these two quantities (the acceptance) was determined using the

Lund version 5.3 Monte Carlo event generator [55-57] and the Monte Carlo

detector simulation program TPCLUND, described in section 5.5.

First, 139,497 multihadron events were generated and processed
through the detector simulation program. The event generator included
initial state radiation (i.e. photon emission) so that the initial partonic system
had, on the average, a center of mass energy somewhat less than 29 GeV.
Events and tracks were selected using the same cuts as for the real data. 73,793
events passed the selection criteria described in section 5.3, correspohding to
an efficiency of g,,5 = 0.529. By looking at the reconstructed momentum,
zTpc, and the generated particle type of each track, the number of pions, kaons

and protons in a given zrpc interval passing the track selection cuts per

| accepted event was determined.
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A second set of 500,000 Monte Carlo events was generated using the
same event generator, except that the effects of initial state radiation were
turned off. The total number of particles of each type (without any detector

simulation or cuts) was recorded as a function of the generated z, zpc.

Protons were defined to include the decay products of weakly decaying
baryons. Pions included decay products of Kg, mesons, but not those of KOL

From these two Monte Carlo data sets, the acceptance for particlé type i,
Aj, is given by

Number of particles
of type i in Azqp~ passing

track cuts per accepted event

Ai = Number of particles of type i X Epattern- (6.7)

generated in Az, per event
without initial state radiation

where epattern’ = 0.97 is the estimated pattern recognition for the real data.
(The corresponding efficiency in TPCLUND is essentially 100%.) The pion
acceptance is computed using the number of pions plus the number of
muons passing the track cuts. This corrects for the fact that muons are not
separated in the statistical fit. The muon spectrum in the Monte Carlo is in
agreement with an independent measurement which utilized the TPC/2y
detector's muon chambers [62]. The acceptance as a function of z for pions,
kaons and protons is shown in figure 6.3. The disconfinuity corresponds to

the requirement that only negative particles be used for z < 0.25.

-

6.5  Error Analysis

The cross sections and ratios listed in section 6.1 are functions of the

observed number of hadrons of type iin Az, n;, the acceptance, A;, and the
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Figure 6.3  Acceptance for charged pions, kaons and protons as a function of
Z = Phadron/ Pheam- The discontinuity corresponds to the requirement that

only negative particles be used for z < 0.25.
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total number of accepted events, N,,.,;s = 20,126. For example, the

normalized inclusive cross section for hadron type i is computed as

1 dO’,‘ n;
Ot Az~ A; Az Neyents'

(6.9)

The relative error in this quantity is equally sensitive to the relative error in
n; as to that in A;. The fraction of hadrons of type i is given by

f _ ni/A,-
r - n,t/A,t + nK/AK + np/Ap'

(6.10)

Here, the errors due to the acceptance largely cancel, since the errors in A,

Ax and A, are highly correlated.

In order to carry out the error propagation for functions of n; and Ai; a
6x6 covariance matrix, Vij: is defined in which 7, j = 1, 2, 3 corresponds to n,.
nkg and np/ and i = 4, 5, 6 corresponds to Ay, Ak and Ap. The covariance
matrix is assumed to be in block diagonal form, with no correlations between
the errors in n; and the errors in A;. The final covariance matrix is the sum
of a number of terms corresponding to both statistical and systematic

uncertainties.

For the statistical errors, the part of the covariance matrix
corresponding to n., ng and Onp is computed as part of the maximum-
likelihood fit. This is done numerically by the program MINUIT using the
routine HESSE [61]. Statistical errors in A,, Ax and AP are assumed to be

uncorrelated, and contribute only to Vg4, Vs5 and Vg respectively.

For ny, ng and np, the systematic errors are dominated by knowledge of

the mean expected dE/dx as a function of momentum, T;(p), and by



knowledge of the dE/dx resolution. The uncertainty in Ti(p) is taken to be

AT/T =0.2% fori = n, K and p, and 0.4% for i = e. (See figure 4.6.) The
contribution to V;; is estimated by repeating the fitting procedure with T;(p)

displaced by + AT; for one of the hadron types:

VieT X ((Tq+ATg) - n{Tq-ATg) (nf(To+AT ) - ni(To-AT ), (6.11)
=~ | |

where «a is summed over e, n, K and p. The contribution from the
uncertainty in the dE/dx resolution is computed in a similar fashion:

V:jes = % (nl-(o+Ad) -n0-A0)) (n{o+A0) - n(o-A0)), (6.12)

where ¢ is the relative dE/dx resolution for minimum-ionizing pions. Ac/o

is estimated to be 8%.

For Ap, Ax and Ap, contributions to the systematic ‘uncertainty are

considered from the following sources:

1) Pattern recognition efficiency.
2) Simulation of nuclear interactions.
3) Simulation of the ionization energy loss correction for material

between the beam line and the TPC.
4) Effects of momentum smearing.
5) Sensitivity to the cut on the number of dE/dx measurements.

The systematic error in the pattern recognition efficiency should be

highly (but not completely) correlated between particle types. (Differences in
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transverse momentum spectra could, for example, lead to a dependence on

particle type.) The contribution to the covariance matrix is taken to be

VIS = (@2 + Q%2 6) A; A; | (6.13)

Here (and in the remainder of the discussion of acceptance errors) V;; is

understood to refer to the lower-right 3x3 quadrant of the covariance matrix.

The error due to nuclear interactions is broken into three parts: an
uncertainty of 10% in the number of nuclear interaction lengths (6.4%)
between the beam line and the TPC, a 20% uncertainty in the total interaction

cross section, and a 75% uncertainty in production cross sections. In order to

estimate the effect of these uncertainties, the contributions to the acceptance

roduced absorbed
for particle type i from particles produced, A’: , and absorbed, A; ,

were estimated from the Monte Carlo. The contributions to the covariance

matrix from thickness, particle absorption and production are taken to be

] duced bsorbed duced \
V:fzckness =(10%)2 (A;Zro uced, . A‘: sorbed, )1/2 (A;)ro uced, + Ajfzbsorbed_ )1/2’ (6.142)
absorption 2 absorbed | gbsorbed
Vz’j S = (20%) Ai Aj , (6.14b)
ducti | oduced
Vgro uction _ (75%)2 A;;r uce A;;roduced. (6.14¢)

The relative uncertainty in the amount of ionization energy loss in the
material between the interaction region and the TPC is assumed to be 15%,
independent of the amount of energy lost. This leads to the following

contribution to the covariance matrix:



VE® = A (nE™) A (InE™) Toss Tow
loss loss
X E.
_ 5oy A; i oA} T | (6.15)
dp  Bi op B | |

The derivatives with respect to momentum are computed by finite
differences. The energy loss by particle type i is estimated as the average
energy loss of a minimum ionizing particle (10 MeV at 4 = 45°) divided by §;°.
This source of error is only significant for momenta corresponding to the 1/ iz

regions.

The acceptances could have been determined using the number of
particles passing the track cuts in an interval of the gen'erated momentum,
Azyc- The resulting spectra would then need to be unfolded to correct for the
effects of momentum smearing. Because of difficulties in carrying out such
an unfolding procedure, the acceptances were determined using the
momenta as reconstructed by the detector simulation program. (See equation
6.7.) This effectively corrects for momentum smearing, but is only corréct if
‘the momentum spectra in the event generator are the same as those of the
real world. Based on estimates of such a discrepancy, the contribution to the

covariance matrix for 0.7 < z < 0.9 is taken to be

p smearing

vl = (10%)2 A; A . | (6.16)

For z < 0.7 the momentum smearing error is negligible.

Systematic errors due to track cuts were estimated by varying the
selection criteria listed in section 6.2. For the most part, the acceptance

corrected results are sufficiently insensitive to the cuts that the corresponding
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systematic uncertainties can be neglected. The one exception concerns the cut
on the number of dE/dx measurements (n,, 2 40). This effects the results for
highly ionizing protons, and for pions of sufficiently low momenta that their

tracks curl up inside the TPC. The contributions to the covariance matrix are

2
VUt = %2 A 0.010 < z < 0.015, (6.172)
2 |
Veg = (10%)2 A 0.035 < z < 0.040 (6.17b)
2 ' |
Vg = BB A 0.040 < z < 0.045 . (6.170)

For the cross sections, statistical errors dominate above x ~ 0.5. The

syétematic errors for the proton and kaon cross sections are dominated by the

0.2% uncertainty in the dE/dx vs. velocity curve and the 8% uncertainty in

the dE/dx resolution. The pion cross section is dominated by the uncertainty
in the pattern recognition efficiency. Because of the correlations in a number
of the systemaﬁc errors, the uncertainties in the fractions are predominantly

statistical over almost the entire momentum range.
6.6 . Results

The various cross sections and particle ratios listed in section 6.1 are
shown in figures 6.4 through 6.11. Values are given in tables 6.1 through 6.6.

One of the cross sections contains factors determined from the Monte Carlo:

1 doj 1< n; '
Otot B dx <ﬁi > Aj Ax (6.18)

Nevents )



Values of <1/f;> determined from the Lund version 5.3 event generator are
given in table 6.3. The factor of z in the cross section z/ oy, do;/dz is taken as
the average z for all particle types over the momentum interval:

z do; <z> n; 6.19)
Ot dz — A; Az Nepents ’

All points are plotted in the centers of the corresponding z or x intervals.
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Table 6.1 The normalized cross section 1/ 06y, do;/dz fori=n* K*,p,p and

towal (i.e. i + KX+ p, p) as a function of z = Ppagron/ Pheam:-

: 1 do ) .

z interval oo I ete - h* + X)
nt K* P. P total

0.010-0.015 884172 - - 915+74
0.015 - 0.020 1383 +5.4 - - 1448+ 5.6
0.020 - 0.025 1495+ 6.6 - - 157.7+7.0
0.025 - 0.030 1442 +5.0 5.56 + 0.49 - 1534 +£5.2
0.030 - 0.035 1309 £4.1 721 £0.56 - 1422 +4.3
0.035 - 0.040 1129+ 35 7.60 £ 0.59 3.63+0.65 1241+ 3.8
0.040 - 0.045 104.6 £ 3.2 93+1.2 346+ 046 1173+ 3.6
0.045 - 0.050 93.8+3.0 8.55+0.96 3.99+0.46 106.4 + 3.3
0.050 - 0.055 83.8+27 8.73 £ 0.65 3.64+0.41 96.2+3.0
0.055 - 0.060 760+ 25 8.48 +0.74 3.35+0.39 87.8+2.7
0.060 - 0.065 682+26 92+13 3.32+£0.39 80.7+ 2.6
0.065 - 0.070 609+ 3.0 8.8+23 2.76 £0.33 725+24
0.070 - 0.075 - - 4.00+048 692+24
0.075 - 0.080 - - 3.04 £ 0.58 60.0+2.2
0.080 - 0.085 - - 39+1.2 53322
0.085 - 0.090 - - 343057 492 +18
0.090 - 0.100 360+19 56+15 3.06 £0.33 446+14
0.100 - 0.110 299+ 15 6.32 £ 0.92 2.69 = 0.60 39.0+1.3
0.110-0.120 - 5.13+ 0.61 - 339+13
0.120 - 0.130 - 513+ 0.49 - 294 + 1.1
0.130 - 0.140 - 5.00 £ 0.38 - 26.1+1.0
0.140 - 0.150 - - - 22.11 £0.82
0.150 - 0.160 - - - 20.44 £ 0.79
0.160 - 0.180 12.48 £ 0.51 - - 17.00 + 0.58
0.180 - 0.200 10.77 £ 0.45 - - 14.38 £ 0.58
0.200 - 0.220 795+ 0.36 - - 11.31 £ 0.44
0.220 - 0.250 6.13+0.26 - - 8.96 £ 0.32
0.250 - 0.300 409014 1.73 £ 0.11 042 +0.10 6.24 +0.18
0.300 - 0.350 261+0.10 1.161 £ 0.073 0.313 £ 0.062 4.08 +0.13
0.350 - 0.400 1.581 + 0.071 0.842 £ 0.055 0.222 £ 0.046 2.644+ 0.093
0.400 - 0.500 0.874 + 0.038 0.470 £ 0.030 0.120 £ 0.022 1.463 + 0.049
0.500 - 0.600 0.370 £ 0.022 0.249 £ 0.020 0.044 + 0.012 0.663 + 0.029
0.600 - 0.700 0.190 £ 0.015 0.090 £ 0.012 0.0305 + 0.0080 0.310+ 0.019
0.700 - 0.900 0.0466 + 0.0070 0.0225 £+ 0.0048 0.0064 + 0.0023 0.0755 + 0.0098



Table 6.2 The normalized cross section 1/ 0y, do/dx, where x = 2Ej,4,01,/ VS,

for fixed intervals of z = Ppairon/ Pheam-

i 1 do

z interval Xcenter B & (etem — h* + X)
nt K=

0.010 - 0.015 0.016 142.+12. _ -
0.015 - 0.020 0.020 1809+7.1 -
0.020 - 0.025 0.024 177.2+7.8 -
0.025 - 0.030 0.029 162.1+5.6 0.044 141%12
0.030 - 0.035 0.034 1425+45 0.047 152+1.2
0.035 - 0.040 0.039 1204+3.7 0.051 139+1.1 0.075
0.040 - 0.045 0.044 110.0+3.4 0.054 152220 0.077
0.045 - 0.050 0.048 97.7+3.1 0.058 13.0+15 0.080
0.050 - 0.055 0.053 86.6+2.8 0.063 124+09 0.083
0.055 - 0.060 0.058 78.1+26 0.067 115+10 0.087
0.060 - 0.065 0.063 698+2.6 0.071 119+17 0.090
0.065 - 0.070 0.068 622+3.0 0076 11.1+28 0.094
0.070 - 0.075 - - 0.097
0.075 - 0.080 - - 0.101
0.080 - 0.085 - - 0.105
0.085 - 0.090 - . 0.109
0.090-0.100 0.095 364+19 0.101 63%17 0.115
0.100- 0.110 0.105 302+15 0.110 7.0+10 0.123
0.110- 0.120 - 0.120 5.58+0.67
0.120- 0.130 ' - 0.130 5.51+0.52
0.130 - 0.140 - 0.139 532+041
0.140 - 0.150 - -
0.150 - 0.160 - -
0.160 - 0.180 0.170 12.52+0.51 -
0.180 - 0.200 0.190 10.79 +0.45 -
0.200 - 0.220 0210 7.97+0.36 -
0.220 - 0.250 0.235 6.14+0.26 -
0:250 - 0.300 0.275 4.09%0.14 0277 1.76+0.11 0.283
0.300 - 0.350 0.325 2.61+0.10 0327 1.174+0.074 0.331
0.350 - 0.400 0.375 1.582+0.071 0.377 0.849+0.055 0.381
0.400 - 0.500 0.450 0.875+0.038 0451 0.472+0.030 0.455
0.500 - 0.600 0.550 0.370+0.022 0551 0.250+ 0.020 0.554
0.600 - 0.700 0.650 0.190+0.015 0.651 0.0910.012 0.653
0.700 - 0.900 0.800 0.0466+0.0070  0.801 0.0225+0.0048  0.803

145+2.6
11515
114+13
92+1.0
7.60+0.89
6.87 + 0.81
5.30+0.63
7.18 £0.86
51520098
6319
531088
449 =048
3.72+083

0.45%0.11
0.326 *+ 0.064
0.229 £ 0.047
0.122 £ 0.023
0.045+ 0.012
0.0308+0.0081
0.0065+0.0023
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Table 6.3 Values of <1/f> from the Lund version 5.3 event generator used to
compute the cross section 1/ 0y, Bdo/dx. (See table 6.2 and figure 6.6.)

z interval <1/p>
nt K+ P, P

0.010 - 0.015 1.267 - -
0.015 - 0.020 1.144 - -
0.020 - 0.025 1.089 - -
0.025 - 0.030 1.060 1.591 -
0.030 - 0.035 1.044 1.450 -
0.035 - 0.040 1.033 1352 1.996
0.040 - 0.045 1.026 1.282 1.822
0.045 - 0.050 1.021 1.231 1.690
0.050 - 0.055 - 1.017 1.193 1589
0.055 - 0.060 1.014 1.163 1.506
0.060 - 0.065 1.012 1.139 1.440
0.065 - 0.070 1.010 1.120 1.386
0.070 - 0.075 1.009 1.105 1.341
0.075 - 0.080 1.008 1.093 1.303
0.080 - 0.085 1.007 1.082 1.271
0.085 - 0.090 1.006 1.073 1.244
0.090 - 0.100 1.005 1.063 1.211
0.100 - 0.110 1.004 1.052 1.175
0.110 - 0.120 1.004 1.043 1.148
0.120 - 0.130 1.003 1.037 1.126
0.130 - 0.140. 1.003 1.031 1.109
0.140 - 0.150 1.002 1.027 1.095
0.150 - 0.160 1.002 1.024 1.084
0.160 - 0.180 1.002 1.020 1.070
0.180 - 0.200 1.001 1.016 1.057
0.200 - 0.220 1.001 1.013 1.047
0.220 - 0.250 1.001 1.011 1.038
0.250 - 0.300 1.001 1.008 1.028
0.300 - 0.350 1.000 . 1.006 1.020
0.350 - 0.400 1.000 1.004 1.015
0.400 - 0.500 1.000 1.003 1.011
0.500 - 0.600 1.000 1.002 1.007
0.600 - 0.700 1.000 - 1.001 1.005

0.700 - 0.900 1.000 1.001 1.004
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Table 6.4 The cross section z/ 0y, do;/z as a function of z = pya,0n/ Pream for

i =, K*¥ and p, p. The factor of z is taken as the mean z over the interval for
all particle types combined.

: z do +

z interval <z> 5 az (ete- - ht + X)
nx K= )

0.010 - 0.015 0.0126 1.118 + 0.091 - -
0.015 - 0.020 0.0175 2426 + 0.095 - -
0.020 - 0.025 0.0225 336+ 0.15 - -
0.025 - 0.030 0.0275 3.96+0.14 0.153 + 0.014 -
0.030 - 0.035 0.0325 4.25+0.13 - 0.234+0.018 -
0.035 - 0.040 0.0374 423+0.13 0.284 + 0.022 0.136 + 0.024
0.040 - 0.045 0.0424 444+ 0.14 0.393 + 0.051 0.147 + 0.020
0.045 - 0.050 0.0474 445+ 0.14 0.405 + 0.046 0.189 + 0.022
0.050 - 0.055 0.0525 440+ 0.14 0.458 + 0.034 0.191 + 0.022
0.055 - 0.060 0.0575 436+ 0.14 0.488 + 0.042 0.192 + 0.023
0.060 - 0.065 0.0625 426+ 0.16 0.574 + 0.084 0.207 + 0.024
0.065 - 0.070 0.0675 4.11+0.20 0.60 + 0.15 0.186 + 0.022
0.070 - 0.075 0.0724 - - 0.289 + 0.035
0.075 - 0.080 0.0775 - - 0.235 + 0.045
0.080 - 0.085 0.0825 - - 0.321 +0.098
0.085 - 0.090 0.0875 - - 0.300 + 0.050
0.090 - 0.100 0.0948 3.41+0.18 0.53+0.14 0.290 + 0.031
0.100 - 0.110 0.1049 3.14+0.16 0.663 + 0.097 0.283 + 0.063
0.110 - 0.120 0.1149 - 0.589+ 0.070 -
0.120 - 0.130 0.1248 - 0.6401 % 0.061 -
0.130 - 0.140 0.1349 - 0.674 + 0.052 -
0.140 - 0.150 0.1448 - - -
0.150 - 0.160 0.1550 - . -
0.160 - 0.180 0.1699 2.120 + 0.086 - -
0.180 - 0.200 0.1896 2.042 + 0.084 - -
0.200 - 0.220 0.2095 1.666 + 0.076' - -
0.220 - 0.250 0.2346 1.438+ 0.060 - -
0.250 - 0.300 0.2728 1.115 + 0.039 0.473 +0.029 0.116 + 0.027
0.300 - 0.350 0.3236 0.843 + 0.032 0.376 + 0.024 0.101 + 0.020
0.350 - 0.400 0.3722 0.588 + 0.026 0.313 +0.020 0.083 + 0.017
0.400 - 0.500 0.4438 0.388 + 0.017 0.208 + 0.013 0.0531 + 0.0098
0.500 - 0.600 0.5420 0.200+ 0.012 0.135+0.011 0.0240 + 0.0064
0.600 - 0.700 0.6408 0.1214 + 0.0097 0.0579 + 0.0075 0.0195 + 0.0051
0.700 - 0.900 0.7701 0.0359 + 0.0054 0.0173 + 0.0037 0.0050 + 0.0017
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Table 6.5 Charged hadron fractions as a function of z = ppa4,0n/ Pheam-

z interval Charged Hadron Fraction (%)
m K* P, P

0.035 - 0.040 9095 + 0.66 6.12 + 045 293 + 0.51
0.040 - 0.045 89.15 + 0.99 7.90 £ 0.94 2.95 + 0.38
0.045 - 0.050 8821 + 0.90 8.04 + 0.84 3.75 + 0.41
0.050 - 0.055 8713 + 0.74 9.08 + 0.63 3.79 + 041
0.055 - 0.060 86.52 + 0.89 9.66 + 0.80 3.82 + 0.43
0.060 - 0.065 845+ 1.7 114 + 1.6 411 + 047
0.065 - 0.070 840 + 3.1 122+ 3.1 3.81 + 0.44
0.070 - 0.075 - - 5.77 £ 0.66
0.075 - 0.080 - - 5.06 + 0.92
0.080 - 0.085 - - 73+ 21
0.085 - 0.090 - . 70+ 1.1
0.090 - 0.100 80.7 + 3.5 124 + 3.3 6.86 + 0.70
0.100 - 0.110 769 + 3.2 162 + 23 69+ 15
0.110 - 0.120 - 151 + 1.7 .

0.120 - 0.130 . 174 £ 1.6 -

0.130 - 0.140 - 19.1 + 1.3 -

0.140 - 0.150 . . -

0.150 - 0.160 - = -

0.160 - 0.180 734 £ 16 - -

0.180 - 0.200 748 £ 19 - -

0.200 - 0.220 703 + 16 - -

0.220 - 0.250 684 £ 1.6 - -

0.250 - 0.300 654 + 1.1 278 + 1.6 68 1.6
0.300 - 0.350 639 £ 1.3 284+ 1.6 77+ 15
0.350 - 0.400 598 + 1.7 31.8 + 1.8 84+ 1.7
0.400 - 0.500 59.7 + 1.5 321+ 17 82+ 15
0.500 - 0.600 558 + 2.3 375+ 25 6.7+ 18
0.600 - 0.700 610 + 3.2 29.1 + 3.4 98+ 25
0.700 - 0.900 617 + 4.5 29.8 + 5.0 85+ 29
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Table 6.6 The ratios K*/n, (p, p)/nt and (p, p)/ (1t + K¥) as a function of z =
Phadron/ Poeam:

z interval K*/n* (p, p)/n* (p, p)/ (n*+K*)
0.025 - 0.030 0.0386 + 0.0035 - -

0.030 - 0.035 0.0551 + 0.0043 - ' -

0.035 - 0.040 0.0673 + 0.0053 0.0322 + 0.0058 0.0302 + 0.0054
0.040 - 0.045 0.089 + 0.012 0.0331 + 0.0044 0.0304 = 0.0040
0.045 - 0.050 0.091 £ 0.010 0.0426 + 0.0049 0.0390 + 0.0044
0.050 - 0.055 0.1042 + 0.0080 0.0434 + 0.0050 0.0393 * 0.0045
0.055 - 0.060 S 0112 0010 0.0441 £ 0.0052 0.0397 = 0.0046
0.060 - 0.065 0.135 + 0.022 0.0486 + 0.0059 0.0429 + 0.0051
0.065 - 0.070 0.145 = 0.042 0.0453 + 0.0056 0.0396 + 0.0047
0.070 - 0.075 - 0.0612 + 0.0074 -

0.075 - 0.080 - 0.053 £ 0.010 -

0.080 - 0.085 - | 0.079 + 0.024 .

0.085 - 0.090 - 0.075 + 0.012 -

0.090 - 0.100 0154 = 0.047 0.085 + 0.011 0.0736 = 0.0081
0.100 - 0.110 0211 = 0.038 0.090 + 0.023 0.074 = 0.018
0.250 - 0.300 0424 £ 0027 0.104 £ 0.025 0073 £ 0.018
0.300 - 0.350 0446 + 0.030 0.120 £+ 0.024 0.083 + 0.018
0.350 - 0.400 0.532 £ 0.040 0.140 £ 0.030 ' 0.092 =+ 0.020
0.400 - 0.500 0537 + 0.039 0.137 + 0.026 0.089 = 0.018
0.500 - 0.600 0673 + 0.067 0120 + 0.033 0.072 + 0.020
0.600 - 0.700 0477 = 0.075 0.161 + 0.044 0.109 + 0.031
0.700 - 0.900 048 =+ 0.11 0.138 + 0.049 0.093 £ 0.034
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Chap‘ter 7
Discussion of Results

7.1 Introduction:

In this chapter the measured cross sections and fractions are compared
to the results of other experiments and to various theoretical predictioﬁs. As
in the previous chapter, error bars include both statistical and systematic
uncertainties. All data points, including those of other experiments, are
plotted in the centers of the corresponding x or z intervals. (This is done for
lack of a better alternative: several instances will be pointed out where this

procedure leads to apparent discrepancies between experiments.)
7.2 ~ Comparison with Other Experiments

In figures 7.1 and 7.2 the differential cross section 1/f0;,; do/dx is
plotted along with results from HRS (1], Mark II [2], TASSO [4] and the
previous measurement made by the TPC group [3]. The TASSO
measurement was made at a center-of-mass energy of Vs = 34 GeV, and the |
others at Vs = 29 GeV. The TASSO group reported the cross section s/f3
do/dx, which was converted to the normalized cross section 1/806;,; do/dx

using the TASSO value of the total cross section (R = 4.01) [63]. In general, the
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measurements from TPC/2y (this analysis), TPC [.3], TASSO [4] and Mark II {2].
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Comparison of the inclusive cross section 1/B0o1 do/dx with
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agreement between experiments is fairly good. There is a discrepancy
between the K% cross sections at low momentum, where the TASSO
measurement is higher than the other three.  The proton cross section from
this analysis in the region 0.2 < x < 0.4 is somewhat lower than in the
previous TPC measurement. The points at the highest momentum reported
by TASSO correspond to a very wide momentum interval (10 < p < 17 GeV,
or 0.59 < x < 1.0). Because of the rapidly falling cross section these points
should actually be plotted more towards the left edge of the interval, which

would move them into closer agreement with the TPC/2y results.

In figures 7.3 and 7.4 the charged hadron fractions are compared to the
previous TPC measurement [3] and to the measurements by TASSO [4] and
HRS [1]. The disagreement at low momentum with TASSO stems from the
previously mentioned discrepancy in the kaon cross section. The only
published high-z data is from the TASSO group, with one measurement in
the interval 0.59 < z < 1.0. The TASSO measurement agrees at high-z with
this analysis within quoted errors. The TPC/2y measurement is also in
.agreement with an unpublished measurement by the DELCO group at PEP

[64], which set a 90% c.l. upper limit of 15% on the proton fraction for z > 0.6.

In figure 7.5 the cross section 1/ 0y, do/dz (ete” — h* + X) where h* is a
charged stable hadron (i.e. n* + K* + p, p) is shown along with measurements
by Mark II [65] and TASSO [66]. The lowest momentum point by Mark II
corresponds to a relatively broad interval (0.0 < z < 0.05) which could account
for the discrepancy between it and the TPC/2y and TASSO measurements.

Other than this, the measurements are in reasonably good agreement.
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7.3  Comparison with Fragmentation Models

Quaiitatively, the overall particle ratios are in agreement with the
theoreticall considerations discussed in chapter 2. That is, we observe more
pions than kaons and more kaons than protons. The most obvious feature of
the particle fractions for z > 0.3 is that they are approximately constant. This is
in disagreement with the dimensional counting rules discussed in section
245, which predict a falling proton fraction. The statistical errors, however,

are fairly large for z > 0.6, so a decreasing proton fraction cannot be ruled out.

Comparisons of various measured quantities with the predictions of
several hadronization models (Lund [6, 55-57, 67], Webber [28], Caltech-II [29]
and UCLA [27]) are shown in figures 7.5 through 7.15. Each Monte Carlo data
set is based on 300,000 events, except for that of the UCLA model which is has
only 100,000 events. The parameters used are given in table 7.1. The main
difference between Lund 5.3 and Lund 6.3 is in the generation of the initial
partonic configuration. Version 5.3 uses exact second-order QCD matrix
elements, while version 6.3 uses parton showers. The Lund parameters are
based on previous studies by the TPC/2y groﬁp (53, 68, 69]. In the Webber
model version 3.0, clusters always decay into two particles. In version 4.1,

clusters of small enough mass "decay"” into single hadrons.

In the low-z region (z < 0.15) there are only small differences between
the predictions of the different models, and most are in excellent agreement
with the data. The Webber model (both versions 3.0 and 4.1) predicts
substantially fewer low-z protons than the measured number, and the UCLA

model predicts slightly too few low-z protons and slightly too many low-z

133



134

Table 7.1 Parameters used in Monte Carlo hadronization models.

Lund JETSET parameters (d = default):

version: 53 6.3
a 0.955 0.361
b 0.6 GeV-2 0.6 GeV-2
Agep 0.642 GeV 0.372 GeV
0q 0350 GeV 0.351 GeV
qa/q 0.1 (d) 0.09
s/u 0.3 (d) 0.3 (d)
V/(V+PS), 4 05 (d) 05 (d)
V/(V+PS), 0.6 (d) 05

" V/(V+PS).p 0.75 (d) 0.75 (d)
0 - 1.0 GeV

For the Lund model, the parton evolution was by second order QCD
matrix elements in version 5.3, and by parton showers in version 6.3.
Parameters for the Webber and Caltech-II models and any parameters not
mentioned explicitly above were left at their default values. The UCLA

model used a = 0.9, b = 0.85 GeV-2.
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kaons. All of the models have been tuned to reproduce the total charged

multiplicity, which is dominated by low-z pions.

In the high-z region (z > 0.25) the Lund 6.3, Webber 4.1, Caltech-II and
UCLA models are in reasonable agreement with the total incluéive Cross
section, as shown in figure 7.5. For the K/= ratio (figures 7.6 (a) and 7.7 (a))
the Webber model prediction is somewhat low in the range 0.25 < z < 0.6, but
contiﬁues to rise enough to be in agreement for z > 0.6. The Caltech-II K/n
ratio is in mild disagreement in that it fails to level off. Both the Lund and
UCLA models reproduce the K/n ratio very well. (Recall, however, that the

UCLA model predicts too many low-z kaons.)

The predictions for the p/n ratio differ substantially in the higH-z
region, as can be seen in figures 7.6 (b) and 7.7 (b). The UCLA model is in the
best agreement and the Webber model also does quite well, although both
predict too few low-z protons. The high-z proton rate is somewhat too large
in the Lund model, and significantly too large in the Caltech-II model. The
problem with Caltech-II could possibly be cured by using an alternate decay
scheme for high-z clusters, in which, for example, clu;ters cohtaining

diquarks are not allowed to "decay" into a single baryon [70].

" In figures 7.8 through 7.15, the differential cross sections 1/0;,; do;/dz
and the charged hadron fractions are compared with model predictions.
None of the models agree very well with the data over the entire momentum
range. Lund 6.3 predicts too manyl high-z protons, as mentioned in
connection with the p/n plot. Webber 3.0 does not predict enough particles of
any type at high-z, since clusters always decay into two particles. This is

remedied somewhat in version 4.1, although neither version predicts particle
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ratios which agree over the entire momentum range. The UCLA model
agrees with the data better than any other model at high-z, but disagrees at
low-z in the kaon and proton rates. Nevertheless, it does surprisingly well
considering the small number of adjustable parameters. The high-z particle

fractions in the Caltech-II model are in significant disagreement with the data.

The Lund model was investigated further by adjusting the parameters
2 and b in the fragmentation funcfion, f({) (equation 2.22). For this, a2 and b
were changed in a way that the total multiplicity remained constant. The best
from tuning to low-z data are a = 0.995, b = 0.6 GeV-2. This predicts too many
high-z protons, as seen in figure 7.13. The values a = 2.0, b = 1.2 GeV-2 makes
things worse, as seen in figure 7.14. The high-z proton fraction is more in
agreement (although still too high) with a =0, b = 0.15 GeV-2 (figure 7.15) but
this leads to cross sections at high-z that are too large for all particle types.
The proton fraction is also affected by the diquark to quark ratio, but this is

fairly well determined by the proton cross section at low momentum.

Given the large number of parameters involved (up to a dozen) the

~results of this analysis cannot exclude the Lund model in its present form.

The comparison, however, is not favorable, and it appears that one must do
more than simply adjust 2 and b. One possible solution would be to revert to
the fragmentation function, f({), given by equation 2.21, with separate values
of a for mesons and baryons. Such an f({) could also be used in a UCLA-type

model.
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Figure 7.15 Comparison of the inclusive cross sections 1/ 0y, do/dz (a) and
charged hadron fractions (b) with predictions of the Lund model version 5.3,
with fragmentation function parameters a = 0 and b = 0.15 GeV-2.



Chapter 8
Summary and Conclusions

The normalized differential cross sections and charged hadron
fractions have been measured for the process ete- — h* + X at Vs = 29 GeV,
where ht is a charged pion, kaon or (anti)proton. The measurements were
based on approximately 70 pb~1 of data collected between 1984 and 1986 by the
TPC/2y detector at PEP. Charged particles were identified by simultaneous

measurement of momentum and (velocity sensitive) ionization rate.

The cross sections at low momentum are in fairly good agreement with
previous measurements, and with the predictions of most hadronization
models. This analysis provides a significant improvement in the knowledge
of the particle ratios at high momentum. For z = p/Ppeam > 0.25, the charged
hadron fractions are observed to be approximately constant. This is in
disagreement with the predictions of several hadronization modeis and with
dimensional counting rules. None of the models studied are in better than
fair agreement with the data over the entire momentum range. While some
disagree worse than others, no serious attempt has been made to tune the
models, and further work along these lines is needed. It is hoped that the

results presented here will be useful in this regard.

147



148

References

1. M. Derrick, et al. (HRS) Phys. Rev. D35, 2639 (1987).

2. H. Schellman et al. (Mark II) Phys. Rev. D31, 3013 (1985).

3. H. Aihara et al. (TPC) Phys. Rev. Lett. 52, 577 (1984).

4. M. Althoff et al. (TASSO) Z. Phys. C17, 5 (1983); An update of these
results is given in Inclusive pion, Kaon and Proton Production in ete-
Annihilations at 3¢ GeV CMS Energy, 1985 Int. Symp. on Lepton and
Photon Interactions at High Energies, Kyoto, (1985).

5. S. Brodsky and G. Farrar, Phys. Rev. Lett. 31, 1153 (1973);

V. A. Matveev et al.,, Nuovo Cimento Lett. 1, 719 (1973);
S. Brodsky and J. Gunion, Phys. Rev. D17, 848 (1978).

6. B. Andersson, G. Gustafson, G. Ingelman and T. Sjostrand, Phys. Rep.
97, 31 (1983).

7. R. Marshall, Rutherford Appleton Report RAL-87-031 (1987) and
references therein.

8. H. Aihara et al. (TPC) Phys. Rev. Lett. 52, 168 (1984).

9. H. Aihara et al. (TPC) Phys. Rev. Lett. 52, 2332 (1984).

10.  See, for example, F. Halzen and A. Martin, Quarks and Leptons: An
Introductory Course in Modern Particle Physics, John Wlley & Sons,
New York (1984).

11.  See, for example, G. Kramer, Theory of Jets in Electron-Positron
Annihilation, Springer-Verlag, Berlin (1984) and references therein.

12. G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).

13. G. C. Fox and S. Wolfram, Nucl. Phys. B168, 285 (1980).

14.  R.D. Field and R. P. Feynman, Nucl. Phys. B136, 1 (1978).



15.
16.
17.
18.
19.
20.
21.
22.

23.

24.

25.

26.
27.
28.
29.
‘30.

31.

32.
33.

34.

36.

149
T. Meyer, Z. Phys. C12, 77 (1982).

H. Aihara et al. (TPC) Phys. Rev. Lett. 53, 2199 (1984).
H. Aihara et al. (TPC/2y), Phys. Rev. Lett. 57, 3140 (1984).

R. Brandelik et al. (TASSO) Phys. Lett. 100B, 357 (1981).

'X. Artru and G. Mennessie., Nucl. Phys. B70, 93 (1974).

A. Casher, H. Neuberger and S. Nussinov, Phys. Rev. D20, 179 (1979).
J. Kogut and L. Susskind, Phys. Rev. D11, 395 (1975).
J. Schwinger, Phys. Rev. 128, 2425 (1962).

E. Eichten et al., Phys. Rev. D17, 3090 (1978); E. Eichten et al., Phys. Rev.
Lett. 34, 369 (1975).

B. Andersson, G. Gustafson and B. Soderberg, Z. Phys. C20, 317 (1983).

B. Andersson, G. Gustafson and T. Sjostrand, Nucl. Phys. B197, 45
(1982).

B. Andersson and G. Gustafson, Z. Phys. C3, 223 (1980).

C. D. Buchanan and S. B. Chun, Phys. Rev. Lett. 59, 1997 (1987).

B. R. Webber, Nucl. Phys. B238, 492 (1984).

T. Gottschalk and D. Morris, Nucl. Phys. B288, 729 (1987).
H. Aihara et al., IEEE Trans. Nucl. Sci. 30, 153 (1983).

Proposal for PEP Facility Based on the Time Projection Chamber (TPC),
Johns Hopkins University, Lawrence Berkeley Laboratory, University
of California at Los Angeles, University of California at Riverside and
Yale University, PEP Experiment No. 4, SLAC PUB-5012 (1976).

R. Fuzesy, N. Hadley and P. Robrish, Nucl. Instr. Meth. 223, 40 (1984).
H. Aihara et al., IEEE Trans. Nucl. Sci. 30, 63 (1983).

R. Jared, D. Landis and F. Goulding, IEEE Trans. Nucl. Sci. 29, 57 (1982).
R. Jared et al., IEEE Trans. Nucl. Sci. 29, 282, (1982).

J. Marx, TPC Note TPC-LBL-82-84, Lawrence Berkeley Laboratory (1982).



150

37.

38.

39.

40.
41.
42.

43.

45.
46.
47.
48.
49.

50.

51.
52.

53.

54.

55.
56.

57.

P. Nemethy, P. Oddone, N. Toge and A. Ishibashi, Nucl. Instr. Meth.
212, 273 (1983).

M. Ronan, TPC Note TPC-LBL-87-12, Lawrence Berkeley Laboratory
(1987).

M. Ronan, J. Millaud and T. McGathen, IEEE Trans. Nucl. Sci. 29, 427
(1982).

H. Aihara et al., IEEE Trans. Nucl. Sci. 30, 162 (1983).

H. Aihara et al., IEEE Trans. Nucl. Sci. 30, 76 (1983).

H. Aihara et al., IEEE Trans. Nucl. Sci. 30, 117 (1983).

H. Aihara et al., IEEE Trans. Nucl. Sci. 30, 67 (1983).

E. Fermi, Phys. Rev. 57, 485 (1940).

A. Crispin and G. Fowler, Rev. Mod. Phys. 42, 290 (1970).

L. Landau, J. Phys. U.S.S.R. 8, 201 (1944).

R. Talman, Nucl. Instr. Meth. 159, 189 (1979).

H. Maccabee and D. Papworth, Phys. Lett. 30A, 241 (1969).

W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30, 253 (1980).

The model presented here is similar to those described in: G. Lynch,
TPC Note TPC-LBL-81-6, Lawrence Berkeley Laboratory, (1981); M.
Shapiro (TPC, Ph.D. Thesis) Lawrence Berkeley Laboratory Report LBL-
18820 (1984).

* F. Lapique and F. Piuz, Nucl. Instr. Meth. 175, 297 (1980).

S. Kaye, TPC Note TPC-LBL-87-1, Lawrence Berkeley Laboratory (1987).

J. W. Gary (TPC, Ph.D. Thesis) Lawrence Berkeley Laboratory Report
LBL-20638 (1985).

M. L. Stevenson, TPC Note TPC-LBL-84-37, Lawrence Berkeley
Laboratory (1987).

H.-U. Bengtsson, TPC Note TPC-UCLA-84-1 (1984).
T. Sjostrand, Computer Phys. Comm. 27, 243 (1982).

T. Sjostrand, Computer Phys. Comm. 28, 229 (1982).



L

58.
59.
60.

61.
62.
63.

64.

65.
66.
67.
68.

69.

70.

See, for example, H. Kolanoski, Two-Photon Physics at e*e- Storage
Rings, Springer-Verlag, Berlin (1984).

A. Bicker, VIIth International Workshop on Photon-Photon
Collisions, A. Courau and P. Kessler ed., World Scientific, 101 (1986).

L. Lyons, Statistics for Nuclear and Particle Physicists, Cambridge
University Press, Cambridge, 98-102 (1986).

F. James and M. Roos, Computer Phys. Comm. 10, 343 (1975).
H. Aihara, et al. (TPC) Phys. Rev. D31, 2719 (1985).
R. Brandelik et al. (TASSO) Phys. Lett. 113B, 499 (1982).

M. Prescott Duro (DELCO, Ph.D. Thesis) Stanford U., Phys. Dept., RX-
1134 (1985).

A. Petersen et al. (Mark II) Phys. Rev. D37, 1 (1988).
M. Althoff et al. (TASSO) Z. Phys. C22, 307 (1984).
T. §j6strand, University of Lund Report LU-TP-85-10 (1985).

H. Aihara et al., Z. Phys. C28, 31 (1985).

" Tadayuki Takahashi (Ph.D. Thesis) U. Tokyo, Phys. Dept. UT-HE-87/2

(1987).

T. Gottschalk, private communication.

151



Ve e '

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

....LJV



