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Abstract

We examine the cross section for the production of charged hadrons in 3-jet
events produced from e*e~ annihilation at 29 GeV center of mass energy. The
data was taken at the Pep-4/Time Projection Chamber between 1983-1984. In
particular we are interested in the production of hadrons by the particle which
mediates the strong interaction, the gluon. We find that the number of protons
produced by the fragmentation of the gluon is at variance with the LUND model

of fragmentation.
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Chapter 1

Introduction

All particles (and therefore all mattef) can be divided into two broad groups:

those particles which can undergo the strong interaction (hadrons) and those

that do not (leptons). Leptons, as yet, have shown no sign of substructure.

Therefore leptons can be viewed as elementary. Hadrons are a different kettle of

fish.

Hadrons appear to have substructure. The quark model f)roposes to build
hadrons out of elementary particles (quarks). It should be stated that the quark
model has been very successful. From the time it was proposed in the early
1960’s until today it can account for every one of the over 100 hadrons which

have been discovered in the interim.

The theory of the interaction between the quarks, Quanfum Chromody-
namics (QCD), was proposed in the early 1970’s. This theory is the culmin_atioﬁ
of work which started in the 1930’s. Without an attractive potential between nu-
cleons, nuclei would literally fly apart because of the coulomb repulsion between
protons. This interaction is called the étrong interaction because the force must
be stfong enough to overcome the coulomb repulsion.

QCD is a field thedry analogous to the field theory of electromagnetism,
Quantum Electrodynamics (QED). In QCD, there is a massless boson which '

intermediates the strong interaction just as in QED the photon intermediates the
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electro-magnetic interaction. The boson in QCD is called the gluon. Therefore,
if QCD is a valid theory, we expect to find some evidence for the existence of the
gluon.

No quark or gluon has ever been observed directly. Instead all we observe in
our detectors is hadrons. The process which an elementary particle (quark or
gluon) undergoes in order to reach the observable final state is called hadroniza-
tion or fragmentation. In fact we do not expect to see an elementary quark or
gluon until fantastically large energies (if then). The strong interaction is so at-
tractive that it may require upwards of 10'® GeV in order to break the attraction
and observe quarks and gluons as free particles.

We call this phenomenon confinement. There exist no theories of confinement
although several approaches like lattice QCD may yield such a theory eventua,lly.
The best alternative to the theory of confinement is to model the manner in
which confinement expresses itself.

This thesis seeks to probe a phenomenological question: What is the nature
of gluon fragmentation?

The thesis is organized as follows: We will first amplify the theoretical frame-
work described in the introduction in chapter 2. Chapter 3 presents a description
of the apparatus, chapter 4 then discusses the theory of energy loss by particles
in matter. Understanding how ﬁarticies lose energy as they traverse a gas vol-
ume is crucial to understanding ;che heart of our apparatus. Chapter 5 discusses
how events were selected for analysis, chapter 6 our analysis method and finally

chapter 7 will present the results.



Chapter 2

Phenomenology of Hadronic
Interactions

The 1930’s saw the beginning of a long list of particle discoveries. It became
apparent there existed a force which overcame the coulomb repulsion between
protons within the nucleus of an atom. Otherwise atoms would not be stable.
Yukawa predicted that the force was mediated by a particle about 200 times as
massive as the electron [1]. The discovery in 1947 of the pion confirmed the
prediction and soon physicists were facing a baflling array of particles.

This chapter’s brief overview of strong interactions will hardly do the field
justice. Nevertheless, we must set a frame for the measurement of inclusive cross
sections in 3—jet events. The chapter first will briefly discuss the emergénce of
the quark model. We will then discuss the parton model which gives strong
supporting evidence of the correctness of the quark hypothesis. Afterwards, we
will discuss the theory of the strong interaction, QCD, the principle of asymptotic

freedom, 3 jet events and finally fragmentation.

2.1 - Beginnings: The Emergence of the Quark
Model

The situation facing physicists at the beginning of the 1960’s was one of con-

fusion. The strongly interacting particles seemed to have an underlying order.

-
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Figure 2.1: The lowest mass multiplets of mesons and baryons. These were
the particles which had been discovered at the beginning of the 1960’s with the
exception of the n° Its discovery was one of the first triumphs of the quark
model.

Particles with the same spin, parity and distinguished only by differing charge
and mass organized themselves into groups (called isospin multiplets)[2,3]. Since
the masses of the particles within an isospin multiplet are nearly the same, it
was conjectured that a rotation symmetry in charge space of the interaction

Lagrangian exists (called isospin symmetry) but the electromagnetic interaction

slightly breaks the symmetry.

It was also noticed that there are two sets of particles. One set, the baryons,
were of higher mass than the second set, the mesons. Furthermore, a baryon
when it decays must net one and only one baryon. But here the mass symmetry
was very badly broken. The baryons, for instance, have mass differences up to
30 — 40% within the baryon octet shown in figure 2.1. This is in contrast to the
~ 0.1% to ~ 1.0% differences in mass between each of the particles inside an

isospin multiplet. Presumably, if there were a symmetry governing the strong

-+
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interactions, it was badly broken by the interaction. Several possible global sym- -
metries were advanced during the 1950’s and 1960’s to explain the observations,
but the most successful of the attempts is the quark model.

Murray Gell-Mann and Yuval Ne’eman each advanced separately in 1961
the idea that the underlying symmetry was SU(3)[2]. The baryons and mesons
each fell into an irreducible representation of the Lie group SU(3). In 1964
Gell-Mann[4] and Zwieg[5] suggested that all hadrons could be made of more
fundamental spin 1/2 particles called quarks[6]. Specifically, quarks correspond
to a fundamental multiplet of SU(3) (called a 3 because there are three indicesA)
and all representations of SU(3) could be made out of the quarks. Table 2.1 lists

the quarks and the quantum numbers necessary to build all the known hadrons.

Baryon Strange-
Quark Q/e I3 Number ness Charm Bottom Top
u 2/3 1/2 1/3 0 0 0 0
d -1/3 -1/2 1/3 0 0 0 0
s -1/3 0 1/3 -1- 0 0 0
c 2/3 0 1/3 0 1 0 0
b -1/3 0 1/3 0 0 -1 0
t 2/3 0 1/3 0 0 0 1

Table 2.1: The quark model. The u, d and s quarks were all that was needed to
explain the hadrons discovered until the early 1970’s when charm (c) and later in
the decade bottom or beauty (b) were observed. Top (t) has not yet been found.
Note that anti—quarks have exactly opposite quantum numbers.

Every meson was to be made of a quark and an anti—quark and every baryon
was to be made of three quarks. Mathematically, we write the following:

mesons qq 33
baryons ¢q¢ 3@3®3

The product space of 3 ® 3 can be reduced to a direct sum of two irreducible

spaces: an 8 and a 1. The baryons break into a direct sum of a 10, two 8’s



Figure 2.2: The parton model of the proton.

and a 1[6,7]. Successfully predicting that all the hadrons could fall into these

categorizations was a major accomplishment of the quark model.

2.1.1 The Parton Model

If the proton were made of point-like objects, it should be possible to do the

equivalent of a Rutherford scattering experiment. Just as the point-like con-

stituents of the atom made their presence felt by sometimes scattering a particles

through very large angles, so too would the quarks scatter a high energy probe
of the proton through large angles. This is the essence of the parton model.
Bjorken assumed that the proton could be thought of as a collection of objects,
each carrying a portion of the proton’s momentum. The strong interaction binds

the hadron constituents together. In the limit of using a high energy probe of

Y
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a hadron, the interaction: will be dominated by t_he coupling of the probe to the
constituents of the hadron and the binding effects will become negligible.
Figure 2.2 is a graphical representation of the proton. The quantity fi(z)
is bthe probability that the parton ¢ carries a fraction z of the momentum of
the proton. Bjorken|[8] showed that the scattering cross section for high energy

electron—proton (ep) scattering at a given value of @? is dependent only on

—¢ _ & (2.1)

$=2MV_2p-q

where ¢ is the 4-momentum transferred from' the electron to the proton in the
interaction, —¢? = Q?, M is the mass of the proton, v is the difference in energy
between the initial and final state electron and p is the initial four momentum of
the proton. This remarkable result (called Bjorken scaling) was observed at the
Stanford Linear Accelerator Center in 1969. The same experiment also observed
the expected distribution in angle of the final state electron. Taken together, the

two observations indicate that the proton is made of point-like spin 1/2 objects.

2.2 Towards QCD, the Theory of the Strong
Interaction

This section describes the basis for the theory of the Strong Interaction, Quan-
tum Chromodynamics, QCD. We shall briefly describe the color symmetry and
why it is required. We shall then sketch the gauge field QCD. Basically, QCD
is patterned after the very successful theory of the electromagnetic interaction
Quantum Electrodynamics, QED. We shall draw on this analogy heavily as QED

can be used as a simpler model for its more complicated brother.

2.2.1 The Need for Color

The quark model is an elegant and simple way to bring order to the particle

zoo. However, the naive quark model has an immediate problem. The 10 corre-
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Figure 2.3: The lowest mass baryon 10 in the quark model.

sponding to the spin 3/2 baryons is shown in figure 2.3. The A**, for instance,
consists of three u quarks. Since the A*t and the u quark are fermions, the
A** wave function must be anti-symmetric under the interchange of any two of
its constituent u quarks. Yet the A** is spin 3/2 and each u quark is spin 1/2.
Therefore, the A*+ ‘must be symmetric under the interchange of spin indices.
We also suppose the A** to bein a relative s wave (orbital angular momentum
L = 0) because this is the lowest lying 10 of the baryons[3,6,9]. Hence the spacial
portion of the wavefunction is also symmetric under £ — —Z. Therefore the wave
function of the A*t is symmetric under the interchange of any two u quarks.
Finally, the quarks which make up the A** are identical. Hence there must be
an internal degree of freedom for quarks which allows the overall symmetry of

the A++ to be anti-symmetric.

The new symmetry is called “color”. We have not, as yet, observed individual



quarks. We assume color is the mechanism by which quarks are confined inside
of hadrons. Therefore, each hadron must be a color singlet. We need at least
three colors in order for a baryon to be a color singlet. We therefore make the
minimal assumption that there are three colors.

This hypothesis has some immediate measurable consequences. Consider
ete~ — ¢g and ete~ — ptu~. Since the final states are both of two spin
1/2 fermions, the only difference between the two cross sections is due to the
charge of the quark as opposed to that of the muon. Also there are five possible
quark species. Hence, the ratio. of the hadronic cross section to the muon cross
section must be [3,9]

do(e*e~ — Hadrons)

do(ete~ — ptu-)

= Xe (22

where e, is the fractional quark charge. Without color the sum over the possible
quark species at 29 GeV center of mass energy in the interaction gives 11/9.
However we must include the fact that the final state can only be a color singlet
and one can use any of the 3 colors. Hence, R is multiplied by 3. Therefore, we
expect R to be about 3.7. The result measured at PEP and PETRA is about
3.9[10,11]. The remaining discrepancy will be discussed in section 2.2.4. Finally,
a similar argument gives a factor of nine in theoretical estimate of the lifetime of
the 7° and a factor of three to the decay rate of the 7 lepton into hadrons. Color
is crucial, otherwise the theoretical estimates would not match the measured

values of these processes.

2.2.2 The Gauge Theory, QCD

The theory of the strong interactions is patterned after the field theory of the
electromagnetic interactions. However, instead of photons mediating the inter-

action, a massless spin one boson carrying color (called the gluon) mediates the
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strong interaction. We present here an overview of the gauge theory of the strong
interaction, QCD, based on reference [3]. Let ¥ be the quark wave function. ¥
carries three indices corresponding to the three possible colors (SU(3)):

v,
v=| o, (2.3)
Uy

where 7, g and b refer to the possible colors the quark can carry, red, green and
blue.
The interaction Lagrangian is postulated to be invariant under rotations in

color space. It can be written as

1 . .
Lr = =361 G + T (i7,D* —m) ¥ (24)
where
A
D* = o + igs?kAz ’
G;c“' = 6“AZ — 6”14;: + gsfklmA;LA:-c ’ (25)

Al is the gluon radiation field which can take on eight values corresponding to an
irreducible representation of SU(3), v, is the Dirac matrix for four-component
and g, is the coupling constant of quarks to the gluon radiation field. The eight
Ar matrices are the generators of SU(3) and obey the following commutation

rules:
D, Al = 2tfkimAm (2.6)

where the fi, are the structure constants of the Lie algebra. Table 2.2 gives a
list of their values.

We can understand the interaction Lagrangian for QCD by comparing the
terms to the more familiar example for electrodynamics. The term

A’°Ag) - m> \

v (i%(a“ + 2‘Qs7

> Y
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gk fge ik fik
123 1 345 1/2
147 1/2 367 -1/2
156 —1/2 458 +/3/2
246  1/2 678 +/3/2
257  1/2

Table 2.2: List of structure constants of SU(3). Note that structure constants
are symmetric under even and anti-symmetric under odd permutations of the
three indices. The structure constant is zero for all combinations of indices not
listed or obtainable by permutation.

corresponds to the term
U (i7,(8" + ieA¥) — m) T

in the Dirac equation{1,12,13]. A, is the vector potential from electrodynamics.
These terms represent the interaction of the particle (quark in the case of QCD,
the electron in the case of QED) with the field.
The term
_%GZquuu
is analogous to the term

1
4

F"F,, where F** = g A” — 9" A*
in electrodynamics where F is the electromagnetic stress tensor[14]. These terms
correspond to the energy stored in the field.

‘We see that the only difference between the two Lagrangians comes in the
form of the terms. We have extra factors, terms and matrices in the case of
QCD.

The reason for the differences is that the additional terms are needed to main-

tain rotational invariance of the interaction Lagrangian in SU(3) color space. The

terms arise because the matrices which generate SU(3) color do not commute
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QED QCD
Figure 2.4: Basic Feynman diagrams for QED and QCD.

with each other (SU(3) is a non-abelian group). Charge symmetry in electro-
magnetism is generated by a unitary one parameter group U(1). Since U(1) is

an abelian group we do not need terms which look like
gsfklmAuAu . (27)

in order to maintain gauge invariance in electromagnetism.

The extra terms are a general feature of all non-abelian gauge theories (so
called Yang-Mills theories)[15]. However, the only practical difference in using
the QCD and QED Lagrangians to calculate amplitudes is the presence of extra

interactions which correspond to interactions between the gauge bosons them-
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seives. We now have contact interaction terms between the gluons because of
the term shown in equation 2.7. Another difference is in the interaction of the
quark with the gluon. We must include the generators of SU(3) in the coupling.
But the only change over QED is that we increase the strength of the vertex by
a constant factor related to

i TrFXF) .

k=1

Figure 2.4 shows the Feynman diagrams for the basic QED and QCD interactions.

2.2.3 Asymptotic Freedom

Perhaps the most impdrtant observational phenomenon that QCD must predict
is Asymptotic Freedom. That is in the limit of very high energies, the quarks
appear to be free particles. This is an underpinning of the quark-parton model,
which, as we saw in section 2.1.1, provides the most consistent picture of fhe
structure of hadrons. But also, QCD must reproduce the low energy behaviour
of the strong interaction. As the energy of the interactions drops, the strong
interaction can bind quarks together. |

This implies that the strong coupling constant can take on two separate be-
haviors: at low energies the strong coupling constant must be large and at large
energies it must be small. We begin the explanation of the phenomenon by
considering QED. We will find that QED has similar phenomena, but that the
behaviour is exactly opposite to what we need in QCD.

When electrons travel thru space, they can emit virtual photons as shown
in figure 2.5a. The virtual photon pairs can themselves form virtual electron—
positron pairs as shown in figure 2.5b [9]. The positrons are then pulled closer
to the initiating electron by the electrostatic attraction between them and the
electrons tend to be pushed to the outside (if a positron initiates the sequence

the same phenomenon occurs but the virtual electron and positron exchange
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Figure 2.5: Production of virtual electron pairs from the vacuum in QED: a)
the emission and absorption of a virtual photon and b) the formation of virtual
electron positron pairs.

roles). This happens quite frequently so an electron is surrounded by a cloud of
electron—positron pairs. The cloud is neutral and hence it is very hard to see the

charge of the initiating particle since there are so many electron—positron pairs.

But as we come closer and closer to the cloud by using higher and higher
energy probes, the more we penetrate the layers of virtual pairs surrounding the
initiating electron. Therefore we see more and more of the originating electron’s
charge. This behaviour is called vacuum polarization because the virtual

electron pairs polarize the vacuum and screen the charge inside the cloud.

The important diagram to calculate is figure 2.5b. If we use the usual Feyn-
man rules to calculate the probability of this process we will find an ugly surprise.
The Heisenberg uncertainty principle implies that virtual particles needn’t con-

serve energy because they exist for infinitesimal periods of time. Hence there is



15

u'
i

Figure 2.6: Lowest order correction to electron scattering due to presence of
fermion loop.

no upper limit on the energy that the particles in the fermion loop can take on.
This leads to an infinite probability that the process shown in figure 2.5 occurs.

Even more troubling, this is only the first of an infinite number of loop diagrams.

The solution to the dilemma is, to say the least, unsettling. We make the

ansatz that the underlying unmeasurable charge and mass of the electron are

infinite. The infinity due to the loop diagram is then absorbed into the charge
to give the finite measured charge of the electron. We cannot measure the bare
charge of the electron because it is always surrounded by virtual electron pairs.
Hence the electrostatic experiments which measure the force between charged
objects do not measure the fundamental charge of the electron. Rather, this sort

of experiment measures the screened charge of the electron.

We can view the effect of the fermion loop as modifying the photon propaga-
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tor. It can be shown(1,9,12] that the photon propagator changes from

Dyu(g’) = =ity (2:8)
to
_ 9w Gw [ Mdp
D, = zq2 D {37r /m, p?
2a0 1 ¢*z(1 -z
7{—/0 dzz(1 — z)In (1 - %—)-)} (2.9)

where a = €?/4m, q is the 4-momentum transferred in the process, g,, is the
metric tensor for flat 4-space, m is the mass of the electron and M is the arbi-
trarily large momentum cut-off for the fermion loop. Using the above photon

propagator, the matrix element for eX — eX scattering shown in figure 2.6 is

2
o — (1eT7A _ v o« Mmoo * 9 -0
iM = (tetuvyou) ( q) (1 gy In " 5m m2) ej (2.10)

where eyou is the electron current and ej° is the current to which the electron
couples and we take the limit of small momentum ‘transfers g.- The important
point to take from this equation is not the precise mathematical form (for we
have not motivated the mathematical steps leading to it). Rather‘consider the

redefinition of the electric charge to be
1
2 M2 2
e,:e(l— ¢ ln—)

where e, is the observed electric charge and we make use of the ansatz that the

charge appearing in the Lagrangian should be the infinite but unobservable bare

charge e. Then the matrix element will become finite:

2 2

. . Z er q -0
- = —_— _ = leg°. 2.11
iM (_zeruygu)( 2) (1 3 2) €r] ' ( 1 )

This effect has been observed in hydrogen and is called the Lamb shift.

Renormalization is the ‘procedure by which we include all corrections to

photon and electron propagators due to loop diagrams[12]. The Renormalization

%
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procedure must ensure that by including all corrections to all orders that the
infinities can all be accounted for by rescaling the charge and mass of the particles
in the theory. It also must be true tnat the final values for the propagators and
matrix elements are independent of the upper and lower energy cutoffs used for
the loop calculations. If a theory satisfies these requirements, it is considered
renormalizable.

The independence of propagators and matrix elements from the cutoffs used
to calculate the loop diagrams can be stated mathematically. It is called the

Renormalization Group Equation|[9]:
p== = (2.12)

where M is a matrix element and p is the scale at which the process is occur-
ring. One can then show that in QED, the coupling constant o varies with the

renormalization point u as

3ma(p?)

2y — 2.1
A1) = e i (2.13)
whiere Q? = —¢? the 4-momentum transferred squared[9)].

We see that this equation is the mathematical explanation of the vacuum
polarization. As the Q? increases, the denominator goes to zero. Therefore, the
coupling constant a grows with increasing Q2. Physically, the electric charge
increases as @2 increases. At the point when the denominator becomes zero, a
becomes infinite. Using QED as a perturbation theory comes into question at
such large Q%. Nevertheless, the basic phenomenon has been explained.

We need the opposite behavior for the coupling constant in QCD. It should
not surprise the reader that the behavier in QCD comes about due to the self-

interactions of the gluons. The strong coupling constant a, = ¢g2/8xw varies with

Q? as
2y 127
(@) = B3 on, mg2/A2

(2.14)
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where we have chosen

2 _ 2 —127
—H P 33 20 )a, (1)

A

and n; is the number of quarks. Note that when Q? = A%, a,(Q?) = co. These
equations express mathematically the properties required for the strong interac-
tion: At low Q?, the coupling constant is large. At high @2, the coubling constant
is small. Notice however if there were enough quarks, the vacuum polarization
would overcome the attractive potential caused by the gluons and the coupling
constant would not obey the property of asymptotic freedom. There are only five
quarks at our current energies so this does not present a problem at the present

time.

2.2.4 3—jet events

The previous section showed that the strong coupling constant is small at high Q2.
In electron—positron annihilation the entire center éf mass energy is transferred
to the final state particles. Hence in electron—positron annihilation at 29 GeV
center of mass energy, the quarks and anti—quarks will behave like free particles.
When the separation distance between the quarks becomes large enough, con-
finement forces will begin to dominate the interaction. The confinement forces
must become important at distances on the order the size of the proton, about

1 fm(or 1073 cm).

Figure 2.7 shows a graphical view of a strong interaction. There are at least

three separate regimes in the interaction:
e The perturbative regime where the quarks are free,

e the pre-confinement/confinement regime where the confinement forces be-

gin to come into play and eventually dominate the reaction and
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Figure 2.7: The stages of ete™ annihilation into hadrons. Not to scale.

e the decay regime where the primary hadrons formed ‘can decay, strongly,
electromagnetically, or weakly. We are not concerned with this later phase
in particular but the data we are interested in certainly is affected by these

processes.

The quark, however, has a finite probability proportional to a,(Q?) to emit
a gluon. At 29 GeV, the strong coupling constant a, is in the range of 0.1 to

0.2[16,17,18] and this process has a non-negligible probability of occurring. In



20

Figure 2.8: a) ete™ — ¢gg. b) The view from Center of Mass frame.

particular, the quark can emit a gluon during the perturbative stage of the inter-
action. This can lead to a relatively large p; in the event and gluon hadronization

separate and distinct from that of the quark.

We can use Feynman rules to describe and calculate the process shown in
figure 2.8, ete™ — q?g. If the gluon is a spin one boson, the angular distribution
and energies which the three partons will take on in such an interaction are given
by the differential cross section

d’c o z? + 2
dzidz, 3w 0(1 —z1)(1 — z2)

(2.15)

where z; = 2E;/W, E; being the reconstructed energy of the parton and W the
center of mass energy of the event and og is the cross section for the process
ete~ — ¢qg. We order the energies of the partons according to Ey; > E; > Ej

[19,20,21]. This differential cross section expresses the angular distribution of

s
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the partons because.
2 sin 6;

r; = "
' Ysing;

where 6, is the angle between partons one and two, 6; is the angle between
partons two and three and 6; is the angle between partons three and one and
we assume all three partons are massless. Requiring conservation of energy and
momentum leads to the above equation for z;. Note that the sum of the three
angles is 360° (see figure 2.8b).

We notice that this cross section diverges as z; or zo goes to 1. If either z; or
z2 goes to one, it implies that one of the parton angles goes to 180°. This implies
that both z; and z; go to 1 and z3 gées to zero by momentum conservation.

This is an example of an “infrared” divergence. We have an infinite probé—
bility to radiate zero energy gluons. It is precisely the same process as brem-
sstrahlung[l] or the radiation of low energy photons by electrons in QED. In-
frared divergences in both QED and QCD must be renormalized by rescaling
the mass of the initiating fermion. Even so, we still have a large probability of
radiatiﬁg low energy gluons in the direction of motion of the quark. Hence most
three parton events ére: indistinguishable from two parton events because there
is no way to separate the low mass collinear gluon’s hadronization from that of
the quark.

There also will be hard gluon radiation where it will be easy to discern the
fragmentation of each of the three partons in the event. Such events have been
found at PEP and PETRA([22,23] and are widely regarded as confirmation of the
existence of a gluon. A vector gluon is favored over a scalar gluon as shown by
comparing the angular distribution of the three parton axes with that expected
from equation 2.15 [18,24].

Unfortunately, the perturbative picture is not the end of the story. The three

parton axes we observe are obscured because we do not observe the primary par-
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tons. Rather, the preconfinement and confinement form hadrons into collimated
low transverse momentum jets traveling in the general direction of the initiating

partons.

The transverse momentum in the jet i1s due to the Fermi motion of the partons
inside of the hadrons into which they are bound. The transverse momentum of
the particles relative to the jet axis is well described by a gaussian with a width
of about 350 MeV[25,26,27]. The finite value of momentum transverse to the jet
means that the hadrons associated with a parton are detected'in a cone whose
half opening angle with respect to the jet axis is about 10° at 29 GeV. This
implies that in a large number of evernts the hadron jets overlap and we will not

easily be able to separate the two partons.

We conclude this section by stating that QCD predicts the existence of events
in hadronic interactions which are characterized by three collimated hadronic
clusters called jets. Usually, the lowest energy jet will be initiated by a gluon
since gluons are emitted by a bremsstrahlung process. However, we expect that
some of the events which we characterize as having three jets really were events
with two partons or events with multiple hard gluon emission. Multiple gluon
events are suppressed by additional factors of a, for each gluon. Therefore, we
expect that the only appreciable contamination of our three jet sample by events

whose parton count is not three will be from two (¢g) or four parton events

(q788)-

Finally, the process shown in figure 2.8 will modify the total hadronic cross
section. If we include gluon radiation into the theoretical estimate of R (see
equation 2.2), R rises from =~ 3.7 to ~ 3.9. The measurements of R congregate

around this value with rather large measurement errors[10,11].
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2.3 Fragmentation

We have seen from the previous sections that QCD predicts the existence of events
in which three collimated hadronic jets will be observed. We know approximately
at what rate this process occurs. But we have not yet discussed the rate various
particle species will be produced inside of each of the hadronic jets produced in
such interactions. In fact, QCD as a perturbation theory cannot tell us much
about the low Q? reactions because the strong coupling constant is greater than
one for reactions with Q2 <~ 4 GeV. This regime is exactly where low m‘a,ss‘
hadrons are formed.

This is not to say that a theory of hadronization/confinement will not be
developed based on QCD. However, we have to use a different approach in the
interim. We base this approach on models of hadronization. All of the models
of hadronization make some connection with QCD. This connection is generally |
fairly tenuous and rapidly diverges onto some form or other of assumption which
allows us to determine the probability to form various particle types.

We will discuss the parton model and scaling violations as a prelude to our

discussion of the various models of hadronization.

2.3.1 The Parton Model Révisited

We shall discuss the parton model in more depth than our quick sketch earlier.
We must understand scaling in order to understand the form for the inclusive
cross sections we are trying to determine.

The parton model of hadrons is based on the assertion that all hadrons can
be constructed out of more elementary constituents. Figure 2.2 is a graphical
representation of the parton model. This figure also includes the basic interac-
tion: A high energy photon acts as a probe to the structure of the proton. It

couples to one of the constituents of the proton which then scatters. We can use
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QED to calculate the probability that this interaction occurs.
Let us consider ep — eX scattering. The interaction cross section is equal to

do
dE'dSV

= L, W  (2.16)

where L is the electron current, W is the hadronic current and the primed coor-
dinates refer to the final state electron[9]. We can write the most general form
for the hadronic current based on Lorentz covariance of the strong interaction:

Wa i, Wa

vV v 14 v W v 14
WH = —Wig" + T2p’ + 350°0 + 35 (0 + ¢) (2.17)

where p is the initial momentum of the proton, M is the mass of the proton and
g, as usual, is the 4-momentum transferred from the electron in the interaction.

We now impose the conservation of the electromagnetic current, that is
g W =qW* =0 . (2.18)

This requirement determines a relationship between W; and Wy, and W, and

Ws. The most general form for the hadronic current becomes [9]

— ., ¢, W2 Pq . P4,
W = Wi(—g" + 7 )+ (P - 7 a*)(p ——;;—Q) : (2.19)

We now need a theory of the proton in order to calculate W; and W,. Once one
assumes the proton is made of partons, it can be shown that the scaling property
of the cross sections occurs. The spin of the partons affects the distribution of
the final states in space only. If we assume the partons are quarks, we can use
the rules of QED to derive what we expect the structure functions W, and W,
to be. |

The scattering cross section for ex — ep is

do 62 Q* . 62 Q?\ 402E"
(m) = <COS— + —Tn—'SIH— ) 6 (l/ - % q4 (220)

where m is the mass of the muon, Q? = —¢?, 8 is the scattering angle of the

electron in the laboratory frame and v = p - g/M, M being the mass of the

1)
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proton[1,9,12]. If we assume the quark is a spin one half fermion, then the cross
section for eq — eq scattering, will be the nearly the same as the cross section
for ey scattering. The only ché,nge in the cross section is due to the different
. charges of the quérk é,nd muon. That is, one a in the cross section transforms
to ae? where ¢, is the fractional charge of the quark.

One can determine W and W, by using equations 2.16 and 2.19 to determine
the ep scattering cross section. Using standard methods from QED to determine

L#¥, one can derive that

d 6° . 6%\ 402E"
(WZQ’) = (W2 cos 5 + 2W; sin 5 ) qq4 . (2.21)

One can equate the expressions in equations 2.20 and 2.21. We find that|8]
2 2 '
ow, = L (,, _ 9_)

2m2 2m
and

W, = 5(1/—@—2) . (2.2zj

2m

This derivation of the scattering cross section has considered only one parton
in the proton. We must sum over all possible partons in the proton to determine
the ep scattering cross section. We define f;(z) as the probability that parton i
carries fraction = of the proton momentum. We identify the high Q? behaviour
of Wi and vW, with the proton structure functions F; and F;. One must also
include the kinematics of the parton model. The energy, longitudinal momentum
and mass of the parton_is nearly z times the corresponding quantity for the

proton. Overall, we find
v _ .
— 2r N
Fw) = Xi:/dxe,f,(:z:)mé(l w:c) |
Fy(w) = ‘fz-’Fz(w) (2.23)

where w = 2Mv/Q?. Notice that the integral over the delta function will require

that £ = Q?/2Mv. We conclude that the structure functions are independent
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of the momentum transferred in the interactions, @%, but are only dependent on
the fraction of the proton momentum which the parton carries, z.

The property of scaling of the differential cross section was derived by
Bjorken and Paschos in 1969[8]. It is the basis of proof that the proton is com-
posed of partons. By measuring the structure functions F; and F3, it has been
proved the partons are spin 1/2[9]. We now must consider QCD corrections to

the parton model.

2.3.2 Scaling Violations

The simple view of the proton is complicated by QCD. Gluons can be emitted
by each of the quarks which make up the proton. We must include interaction

terms like those shown in figure 2.9.

Gluon—quark interactions which lead to scaling violations can be incorporated
into our formalism by calculating the probability of each process shown in fig-
ure 2.9. If we only consider the lowest order diagram shown in figure 2.8, the
modification to the structure function has been calculated to be

Bod) s [y (s0-2/m+ EPaam ) (220

x

where ¢(y) is the probability of finding the quark with momentum fraction y
of the proton momentum before the interaction, x is the fraction of the proton
momentum the quark will carry after the interaction[9]. Notice that the first
term, §(1 — z/y), recovers the original parton model calculation. The second

term represents the scale violating part of the structure function.
First we notice that the scale violation is only a logarithmic function of Q2.
Next we notice that the strength of the scaling violation is proportional to as.

This is due to our consideration of only a first order modification to the scattering
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1
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Figure 2.9: Diagrams representing some interactions also present inside the pro-
ton.

cross section due to the strong interaction. Finally,

P, () = % (1 + z2)

1—2
is one of the “Altarelli-Parisi splitting functions”[28] where z = ¢ /y. This func-
tion represents the interaction of a virtual photon with quark which leads to a
quark and a gluon (hence the term “splitting”). The subscript gq refers to the
interaction of the photon with a quark density, ¢(y), which leads to a quark ¢ in

the final state.
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We can make the interpretation of the second more clear by rewriting equa-

tion 2.24: ,
B9 - wa [ L w +adw)a-a/y
= 2 ei(a(z) +Aq(2,Q%) (2.25)
where
8q@,@) = g2 % [ Ya)Pur(a/y) -

This equation expresses mathematically the statement that a quark which carries
momentum fraction z could have been generated from a higher momentum quark
which has radiated a gluon. We add that this is only one of the possible sources of
scaling violations. There are more “Altarelli-Parisi splitting functions” describ-
ing the ¢volution of quark and gluon densities inside of any hadron. For example,
P,, represents the probability that an interaction with the initial gluon density
leads to a final state quark, Py, represents the probability that an interaction
with the initial gluon density leads to a final state gluon and Py represénts the
probability that an interaction with the initial quark density leads to a different

flavor quark in the final state (see figure 2.10).

2.3.3 Models of Fragmentation

We now turn our attention to models of fragmentation. We are interested in how
the state ete~ — ¢q hadronizes. While the discussion in the last two sections
has focused on the proton, we should note that the reactions ete~ — ¢g and

eq — eq are related. We can use the crossing relation[29]

Me"‘e"—»q?}'(paapb,pca Pd) = Me"q—-ﬁe"q(pw —DPd; Pe, _pb) (2‘26)

where M is the matrix element for the process and p,, ps, etc. are the momenta
of the particles, to relate the scattering of electrons off of a proton to electron—

positron annihilation into hadrons. The only difference is that in the casc f the
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Figure 2.10: Interaction diagrams representing each of the “Altarelli-Parisi split-
ting functions”.
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protons there are two other spectator quarks. Even so, scaling of the differential
cross section will st.ill be present.

We must introduce a new quantity, D;‘(z, Q?), which is the probability that
a hadron A contains the debris from quark ¢ and carries the fraction z of its
energy. This groups the theoretical uncertainty about fragmentation into one
function. In this way the D functions are entirely analogous to the f functions
in electron—proton scattering.

The scattering cross section for this process is given by

% ~ Boo Yy D}(z,Q?) (2.27)

where oy is the total cross section of ete~ — ¢g [30,31,32]. Scaling implies that

5 (%) == ok )

really has no dependence on Q2. Hence, the fragmentation functions D;‘ are only
functions of z.
Energy and probability conservation lead to a constraint on D, [25,33]

> /01 zDg(z)dz =1

hadrons

which is analogous to a similar property for the f functions in ep scattering:

Z/lwf,(a:) =1.

— Jo

These two equations state that the total fractions of energy (momentum in the
case of f) carried away by the resulting particles must total one. The other
constraint on both D and f is that scaling holds. This means that D is solely a

function of z. The D}(z) functions are often parameterized as

z)"

1—
DXz) = Ah(——z——— (2.28)
where n and Aj are parameters. By integrating zD;‘(z), we find that

Ap=<z>(n+1)
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where < z > is the average z for that particular hadronic species.

Generally, the models of hadronization simply assume the above behaviour
of the fragmentation functions. This is an expression of the fact that confine-
ment is incalculable at some level. Therefore, we parameterize the behavior of
fragmentation functions according to scaling and leave it at that.

All viable current models of hadronization use Schwinger [34] 161 QED as

a model for confinement. In 1 &1 QED, as a high energy electron—positron pair
separate, an induced polarization charge is formed which neutralizes the electric
field between the two initial particles. The polarization charge neutralizes the
electric field by combining with the initial electron and positron and forming two
separate neutral electron—positron bound states. This is exactly analogous to
what we believe the process is in QCD. However in QED, it is possible to solve -

| the problem exactly.

Currently, there are three viable models of hadronization. Only one of the
models uses QCD in a very direct way by generating parton showers. The other
two models are not as closely connected with QCD. We shall now briefly describe

each model.

Independent Fragmentation

Feynman and Field in 1977 [25] produced a Monte Carlo model of fragmenta-
tion which could explain the jet structure of events observed at SPEAR. They
hypothesized that fragmentation can be viewed as a cascade process where ¢7
pairs are formed out of the vacuum. Mesons are then formed by the Schwinger
mechanism outlined above.

We begin with an initial a@ pair of quarks where a refers to a specific flavor of
quark. As the a@ pair separate, a color field will arise between them. Presumably,

once the energy in the field becomes large enough another pair of quarks, say
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Mesons

Figure 2.11: Graphical representation of independent fragmentation.
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Hadrons

initial state qq pair

RepreSents the the motion
of massless quarks in a
linear potential (Constant force)

Figure 2.12: Graphical representation of LUND string model.
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QCD shower forming the
final state.

The formation of Colorless clusters
in the Cluster fragmentation model.
The Clusters subsequently decay to
hadrons.

Figure 2.13: Graphical representation of Cluster fragmentation.
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BB, can be formed.

The Feynman and Field model starts with the quark and then separately the
anti-quark. The 38 pair is formed next to the iﬁitial quark (or anti-quark as
the case may be). A meson is formed by pairing a with 8. This meson will get
a random fraction, 7, of the initial quark energy, Wy. The principal unknown is
the probability weight as a function of . This function is labeled f(n). Feynman

and Field define this function as

f(n)dn = The probability that the meson leaves momentum fraction

n to the remaining cascade. (2.29)

The probability function is simply parameterized as
f(n) =1~ a+3an’

where a is a parameter to be fit. Notice that the constant 3 is fixed by the
requirement .

/0 ' fnydn =1
and choosing the power of 7 to be two. The power of 1 is chosen by consideration

of the fragmentation function F(z;) which equals[25]

F(ap)= (1 =2)+ [ f)P(es/yin/y . (2:30)

The quantity F(zy) is the mathematical statement that a hadron of momentum
z; could have been formed directly from the primary quark (probability that
we get a hadron with momentum fraction 1 — 25 is f(1 — zy)) or could have
been formed after a series of ¢q pairs had been formed before it. The probability
that the previous cascades left exactly the correct amount of momentum is given
by F(z¢/n)f(n). Since n could be any number from zy to 1, we get the rather
imposing integral equation shown above. Finally, the function f is a fﬁnction

only of n because of our assumption of scaling.
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Transverse energy is now added to each meson. The meson is given p; ac-

cording to a gaussian distribution whose width is about 350 MeV.

After the first meson has been formed, the remaining momentum in the sys-
tem is nWy. We then repeat the same process only using this momentum as the
starting point and 3 as the initial quark. This process continues recursively until
the momentum given to a meson drops below a minimum threshold. A graphical

representation of the scheme is shown in figure 2.11.

We have simpliﬁed the explanation of Feynman and Field’s model by confining
ourselves to one flavor when we determined F(z;). Actually, we have to consider
all possible flavors and the relative probabilities of pulling each of the different
flavors out of the vacuum. Also we have neglected the meson spin. Yet including

these details will not solve some of the basic problems with the model.

First, momentum and energy are not conserved. In independent fragmenta-
tion models these quantities are not conserved even though at each vertex we
conserve energy. The problem is that we consider the quark and the anti-quark
formed in the interaction ete™ — ¢g separately. A single massless object (the
quark or the anti-quark) materializes into many massive hadrons in Feynman
and Field type models. One cannot simultaneously conserve momentum and

energy in such a situation.

Moreover, gluon radiation is not included. One has to put gluons in “by
hand” by requiring that a certain fraction of the events have gluon radiation.
In this case, the gluon is fragmented exactly as the quarks. Finally, there are
no baryons in the Feynman and Field model. We might add that these defects
were pointed out by the authors themselves. They never meant their model to
be a precise statement of nature but rather they wanted it to reflect enough of
nature so that experimental measurements could be placed into a framework and

normalized.
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Hoyer[35] and Ali[36] have implemented fixes to the Feynman and Field model
to solve these problems. The precise details of their implementations can be found
in their articles. However, independent fragmentation as a model of fragmenta-
tion has been ruled out by the observation of the “LUND string effect” which

shall be described in the next section.

LUND string model

The LUND group’s string model of hadronization takes a slightly different ap-
proach to fragmentation. They base their hadronization scheme on manifest
Lorentz covariance and putting the quark and anti-quark onto equal footing.
They use directly the color field between the quark, anti—quark pair.

We begin by considering fragmentation in two dimensions. We can assume
that the quark and anti—quark are traveling in the +2 and —z directions respec-
tively. They assume that a potential linear in the separation distance arises as
the quark and anti-quark separate. When the distance becomes large enough a
qq pair will be formed.

So far string fragmentation is exactly the same as Feynman and Field frag-
mentation. Here is where they diverge. We first note that the color field arising
in the separation of a g7 can be thought of as being linear in the separation dis-
tance. Models of Charmonium with a linear potential have done a reasonable job
of predicting the spectrum of the ¢¢ bound states [37,38]. Two massless bosons,
traveling at the speed of light inside a constant force field, will oscillate about
their center of mass. This is analogous to the motion of a spring.

If one stretches a spring too far, it wi_ll break or deform. We know, that if
the spring analogy is to work in the stroﬁg interactions, a mechanism must be
invented to insure that if the spring breaks, color will still be confined. Here

the LUND group makes the ansatz that the Schwinger model insures color con-
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ﬁnement.‘ To wit, when the spring breaks, the ¢g popped from the vacuum, is
configured to form to two mesons (¢g pairs) with the initiating ¢g pair. Hence,
the color field between the newly created particles is neutralized thereby confin-
ing color to the two new springs. These two new springs are then be treated in an
equivalent manner as originating spring. LUND calls the springs, “strings”. The
fragmentation process continues recursively until we no longer have enoug_h en-
ergy in the strings to supply the minimum transverse energy required to form the
appropriate hadron. We show the graphical representation of the string model
in figure 2.12.

This approach has a great appeal (even if it has nothing to do with reality).
First, by treating ¢g pairs equivalently, the theory can be made Lorentz covari-
ant. The mechanism is the same as in the Schwinger model. While a single
massless object cannot materialize into massive particles, two massless objects
cén. There are no asymptotic fermion states in Schwinger’s model. Furthermore,

the spectrum of the only solution contains a single stable neutral boson with mass

where g is the coupling constant between the electrostatic current and the fermions.
What has happened is that the energy contained in the field between the two
massless objects is manifested as a "mass”. With LUND strings, the constant ¢
becomes the strength of the linear potential between the quark and anti—quark.
Gluon radiation and baryons, are still problems. Gluons are added as kinks
on the string. The system is fragmented as two separate strings, each terminated
on the kink. This has a measurable consequence. The event center of mass frame
(which is the same as the laboratory frame in electron—positron annihilation) and
the string rest frame are related by a boost. Because of the boost, particles are
observed to be produced closer to the jet axis in the event center of mass frame

than would be the case if each jet fragmented separately. This implies that the
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string model would produce fewer particles between the jets in the event center of
mass frame than independent fragmentation would. A deficit of particles relative
to independent fragmentation in fact has been observed in 3-jet events and is

called the LUND string effect[18,39)].

Baryons are added by including the possibility of forming a diquark, anti-
diquark pair from the vacuum. The diquark is attracted to the quark side and the
anti—diquark is attracted to the anti-quark side of the fragmenting string. This
forms a baryon, anti-baryon pair which neutralizes the color field. Fragmentation
of the two strings is then continued just as before. This explanation is slightly
unsatisfying since stable diquark, anti—diquark pairs could be directly produced

in ete~ annihilation and hence show up as an increase of R.

Another more promising explanation is due to Casher, Neuberger and Nussi-
nov [26]. They speculate that from time to time ¢g pairs are pulled from the
vacuum with the wrong colors to neutralize the color field. States with 4 or more
quarks are then formed. Baryons are then the possible result after another ¢g
pair is created in the color field. We must conserve baryon number in strong in-
teractions. This is a constraint on any model of baryon production. The scheme
of Casher et. al. does in fact satisfy this constraint. However the baryon and
anti-baryon may not be “adjacent”. That is sometimes the color field will be

| neutralized by the production of mesons between the baryon anti-baryon pair.

There is some evidence that this occurs[40].

Baryon production is suppressed because usually the color field is neutralized
with the creation of ¢§g. And even if the color field is not neutralized, it is possible

to form mesons and not baryons.

We note that in the same paper the authors derived the suppression of p; for
pai‘ticles pulled from the vacuum. They derived that if the force field between

the quark and anti—quark is linear, the probability of pulling a quark, anti-quark
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pair of mass m from the vacuum with transverse momentum p; to the color force
field is proportional to

exp(—cm?) (2.31)

where m? = p? + m? is the transverse mass, m is the rest mass of the quark and
¢ is related to the strength of the linear potential arising inside the flux tube.
This is the mathematical explanation for why the distribution of the transverse

momenta of particles produced in hadronization is a gaussian.

Cluster Model

This model is the most directly connected to QCD of the three. Recall the

evolution of quark density that one obtains by considering the lowest order eq

scattering. The equation 2.24 hints at the ability to recursively find the quark

density inside the proton. Equation 2.24 is much like equation 2.30, the equation
which describes the Feynman-Field cascade of quark, anti-quark pairs [41].

Figure 2.13 shows the situation graphically. We begin by considering either
quark line. We use the Altarelli-Parisi splitting functions to determine the prob-
ability and at what energy gluon emission occurs. When a gluon is emitted it is
added to the list of particles to keep track of. We then restart the process with
all the new particles we have.AN otice that gluons can also couple to other gluons.

The cascade continues until the energy characteristic of the interaction drops
below a cut off on the order of 1 GeV. Notice that this is well below the energies at
which we think perturbation theory is valid. Partially this problem is alleviated
by considering higher order diagrams in the calculation of the Altarelli-Parisi
splitting functions than the first order diagram that we used as an example. In
particular, the Leading Log Approximation can be used to sum certain classes
of diagrams to all orders.

The real problem, however, is the assignment of the results of the shower
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calculation into color singlets. Low energy gluons are decayed into light ¢q pairs.
Then adjacent quark and anti-quark lines are assigned opposite colors, guaran-
tying that the clusters are colorless[41,42].

Baryons are added by allowing the possibility of producing diquarks. The
colorless clusters are decayed by a simple isotropic phase space model. This is
perhaps the weakest point of the cluster models as now formulated. Clusters
if they produce a baryon, must also produce an anti-baryon. If the cluster
contains a baryon and anti-baryon, there is not much energy left over for any
other hadrons. Hence, the center of mass of the baryon and anti-baryon is to
good approximation the rest frame of the cluster.

The TPC collaboration has measured the angle between the baryon, anti-
baryon pair and the jet—axis for that cluster in the baryon, anti~baryon center
of mass. If the decay of the cluster were isotropic, one would expect that all
angles would be equally populated. Not so, the decay prefers the direction of the

jet-axis[40].

Some Concluding Remarks

The preceeding section completes our survey of the strong interaction. The

chapter can be summarized as follows:

e All hadrons can be described as being composed of quarks. Quarks are
spin 1/2 fermions which carry baryon number 1/3, fractional charge and

carry color. Hadrons are colorless objects.

o The Parton Model predicts that the differential cross section, E%(da /dz),
should not be a function of the energy of the interaction. Instead the

differential cross section is a function solely the ratio of Q* to 2Mwv.
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QCD is the theory of the strong interaction. It predicts that at low energies
we will have very large interactions which lead to confinement. At high
energies the interactions between quarks decrease thereby showing that

the observation of scaling and QCD are not inconsistent.

Gluons are the massless mediators of the strong interaction. There are

eight different gluons corresponding the 8 representation of SU(3).

We expect, by scaling, that the fragmentation function D;‘ is a function

solely of z in electron—positron annihilation.

Each hadronization model has its own assumptions and problems. Usually
they are dependent on a whole series of parameters which must be fixed by
a comparison of the model to the data. For instance the following quan-
tities must be parameterized and optimized by comparison of the Monte
Carlo predictions to the data: Ratio of vector to pseudo-scalar mesons, the
probability of pulling various quark flavors from the vacuum, the probabil-
ity for producing a meson at a particular fractioﬁ of the initiating quark
(or string) energy, the relative probability of ‘diquarks as opposed to quarks

ete.

In closing, baryons are the most compelling sector to examine when testing

hadronization models. This is because the effects of decay are reduced with

the baryons. There is less @ in the reaction baryon — proton than in most

meson decays to pions or kaons. This implies that more information about the

primary process is preserved by protons than by pions or kaons. However, baryon

production is suppressed because the higher the mass of the produced hadron,

the more its production is suppressed(cf. equation 2.31).
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Chapter 3
The PEP—4 Detector

The advent of colliding beam facilities has led to a series of “4n” detectors. The
i(:iea of 4w detection is to detect all particles emanating from the reaction. In
et e~ collisions one possible reaction results in the total annihilation of the initial
state particles, leaving energy in the form of a virtual photon which must “turn
into” matter. Also the ete™ colliding beam is an excellent source of phdtons, so
the interactions between two virtual photons can be studied.

Typically a 47 detector at a colliding beam facility consists of
e An “inner” charged particle detector. This detector is placed. as close to
the beam as possible and is used to
1. get as large a lever arm as possible for tracking particles,
2. provide a fast trigger to read an event,
3. detect short lived particles and
4. locate the vertex at which the reaction took place.
Some 47 detectors use silicon strip detectors or specialized gas proportional

chambers for highly precise measurements. However, our inner charged

particle detector is a standard drift chamber.

e A central tracking chamber to provide the best tracking of charged parti-

cles in the system. This can include standard drift ch;:mmbers, Cherenkov
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imaging detectors or Time Projection Chambers.

An outer charged Pa.rticle detector to help with triggering the detector and
charged particle tracking. Usually, this detector is a proportional chamber.
The electronics can be built to provide Time of Flight information. A
Time of Flight system can be used to distinguish between particles up to
~ 2 GeV at modest cost. However, our outer charged particle detector is
used only for triggering and tracking of charged particles since the TPC

already provides excellent particle identification.

A magnet to bend the charged particles so the momentum of charged parti-
cles produced by the interaction can be measured. We must insure that the
detectors inside of the magnet are made of materials which are permeated

by a magnetic field (iron is out).

A calorimeter to detect the neutral energy produced in the interaction.

There are two types of calorimeters:

1. electromagnetic calorimeters to detect photons and electrons and

2. hadronic calorimeters to detect charged pions, kaons, protons, along

with the long lived neutral hadrons, K°’s and neutrons.

About one third of the energy produced in an ete~ annihilation is neu-
tral. Most of the neutral energy is carried away by photons produced in
the decay of 7%’s. Hence it is most important to have an electromagnetic
calorimeter with good photon reconstruction ability. Also, electrons pro-
duced in the interaction need to be detected. But if the calorimeter is
a good photon detector, it will also be a good electron detector. This is
because an electron’s interactions with matter are vnearly the same as a

photon’s.
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e A muon detector. We detect a muon (u) by placing many interaction
lengths of material before a proportional wire chamber. Since u leptons
only weakly interact with matter, they penetrate the material; while the
remaining hadrons, electrons and photons are stripped away by interactions

with it.

e End Cap plugs fill out the 47 geometry. These detectors look at small
angles and detect forward going particles. They can include calorimetry,
muon detection, scintillators, tracking chambers, sodium iodide, lead glass

etc.

However, because of cost and space restraints, there is no way to fully in-.
strument all of the solid angle with equal capabilities. This has led to different
philosophies on how to make a detector system. Some systems are designed to
measure a particular interaction only. Other systems try to detect everything

resulting from e*e~ interaction. Our goal is to have good solid angle coverage
augmented by an extremely powerful central detector with the ability to separate
different particle types in order to study fragmentation.

Our central detector is called the Time Projection Chamber (TPC). It has
the ability to measure energy loss of a particle as it traverses the gas volume of
the detector. It simultaneously measures the momentum, thereby determining
the mass of the particle.

The TPC is cylindrical in shape. It is 2 m long and 1 m in radius. At each
end of the cylinder are six proportional chambers called sectors which collect
the ionization produced by the barticle [43]. A uniform electric field is generated
to drift the ionization produced by the track along the z axis of the gas volume to
the sectors. A magnetic field is generated to measure the curvature of a charged

particle track and hence the momentum of the particle. We must have the electric

field and magnetic field parallel because of the long length drift geometry of the
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TPC. Otherwise the ionization electrons would be pushed by E x B forces. The
more E x B forces which act on the drift electrons, the more imprecise our
position and hence momentum resolution is. If the E x B forces became too
large, we wouldn’t even be able to detect the drift electrons with this cylindrical
geometry. A by product of making the magnetic field parallel to the electric field
is the curling of the drift electrons around the magnetic field lines. Therefore the
diffusion perpendicular to the drift direction is reduced.

The next sections will describe each of the detector elements which make up

the PEP-4 detector system.

3.1 The PEP—4 Detection System

In the introduction to this chaptér, we discussed the basic layout of all ete~
colliding beam detection systems. Figure 3.1{44] shows the layout of the.PEPf4
detection system.

First; there is an aluminum beam pipe. The pipe has a radius of 8.5 cm and
is designed to hold the vacuum of the beam line. We position a pressure wall at
11 cm which holds the 8.5 atm pressure of the TPC. Foliowing the pressure wall
is a cylindrical drift chamber. The inner radius of the chamber is 13 cm from the
beam and the outer radius is 19 cm from the beam. This chamber is operated
with the same gas at the same pressure as the TPC.

Now come the components of the central tracker, the TPC. First, we must
create the uniform electric field which is parallel to the beam. This is done by
the inner and outer field cages. The inner ﬁeld cage is hexagonal in shape
and the normal to the plane of any one fin measures 20 cm to the beam. This is
followed by the TPC which occupies the space 22 cm to 100 cm from the beam.
Outside of the TPC, we place the outer field cage. The final component of the

field definition elements is a fine mesh stainless steel screen placed at the mid-
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plane of the TPC. The screen is placed at high voltage. The sectors are grounded.
The field cage is a series of precision resistors which divide the voltage to make

a uniform electric field inside the drift volume of the TPC.

A solenoidal magnet is used to create the 4kG magnetic field parallel to the
beam. The inner radius of this magnet is 102 cm from the beam. The inner
radius of the magnet also has the task of completing the containment of the
8.5 atm TPC gas. The magnet is followed by an outer drift chamber located at
119 cm to 124 cm from the beam..

A set of trapezoidal electromagnetic calorimeters arranged to look like a
hexagon looking down the beam axis (the “hex” calorimeter) is located from
125 to 170 cm from the beam.

Finally outside of the hex calorimeters lies an altefnating sequence of iron and
proportional wire chambers to provide muon detection. The final muon detector
is about 310 cm from the beam interaction point. The first layer of iron is placed
directly after the hex calorimeters and serves not only as a hadron absorber but
also as the magnet return leg. Each iron segment is about 35 cm in length. The
last two layers of muon chambers are placed with no iron between them at all.
The wires of the last layer of muon chambers are arranged perpendicular to the

wires in the previous three layers.

Our endcap plug consists of a “pole tip” calorimeter, which covers from about
11° to 41° in angle from the beam, and a set of muon door detectors which
provide forward muon detection. The PEP-9 detection system provides a low
angle detection capability and is located forward of the muon “door” detectors.
The primary purpose of PEP-9 is to study the interactions of two virtual photons.
Since two photon interactions are not the subject of this thesis, the PEP-9 system

will not be described further here.

The inner drift chamber (IDC) is a fairly standard proportional wire chamber
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with 60 wires in each of four concentric layers. The layers are labeled A, B, C
and D. The wires are strung axially (along the beam direction) and layers A and
C are rotated with respect to layers B and D by one half the wire spacing. We
do this so that the sum of the time of arrival on the A and B layers is constant
for stiff tracks no matter what angle the track comes out with respect to the
beam[45]. A diagram of the inner drift chamber is shown in figure 3.2a. The
constant sum of the arrival times makes it possible to make a fast trigger on high
momentum tracks. We will describe the full trigger system later in this chapter.
The detector is designed to be operated with the same gas environment as the
TPC. Hence this detector operates with a 8.5 atm mixture of 80% argon and
20% methane gas.

We have been unable, however, to use the detector for tracking purposes for

two primary reasons:

1. Early in the data taking cycle, wires began to spark. This necessitated
turning off sections of chamber wires. Ultimately the wire voltage was
reduced and the electronic gain was increased to compensate for the reduced

gas gain. This reduced the position resolution of the IDC.

2. It has been hard to calculate reliably the relative time delay between dif-
ferent wires. Without removing this relative delay, we cannot determine

reliably the location inside the drift cell of ionization left by the particle.

The field cageé are simply a plastic with high bulk resistivity, G10, with metal
strips placed every 4 mm. We placed a precision resistor between each pair of
metal strips (see figure 3.3). The sectors are mounted at the ends of the TPC
volume and are grounded. We placed a metal screen at the midpoint of the TPC
gas volume (z = 0). We energize the screen to a potential of —75 kV. The metal

strips act as voltage divider where the voltage linearly and uniformly steps from
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—75 kV to zero. Hence the potential on the boundary of the TPC is

6(3) = %Y—(IOO. em — | z)

where z is the coordinate along the z axis. The unique electrostatic solution
to this boundary value problem is a uniform electric field everywhere inside the

volume of the TPC[14]. The electric field is

a2 Eyz z2>0 *
E= { —Eoz z2<0 (3-1)
where Ey = —750. V/cm and 2 is the unit vector in the z direction.

The outer drift chamber (ODC), like the IDC, is azimuthally symmetric.
However, the ODC has 216 wires strung in each of three separate layers labeled
the E, F and G layers. The wires are strung axially and are 304 cm long. Plastic
I-beams delimited the drift cells and the grounded cathode surface of the cell -
is the aluminum sheet which makes up the body of the detector. Figure 3.2b
shows the cross section of the ODC perpendicular to the beam direction. Each
of the detector layers is rotated with respect to the other layers so that tracks
cannot pass through dead areas in all three layers. The ODC is constructed in
six segments and is mounted on the magnet coil. Fi.nally, the ODC operates on
the exhaust gas of the TPC at atmospheric pressure[45].

The hexagonal calorimeters have 40 layers of 0.25 radiation length thick
aluminum-fiberglass laminate alternating with a 6 mm thick gas gap[46]. Sense
Wi;‘es are strung every 5 mm inside the gas volume. The aluminum is cut into
slabs and forms the cathode plane. The aluminum slabs are placed at +60°
with respect to the wires so a three dimensional picture of the shower could be
developed. Nylon wires are strung every 10 mm normal to the sense wires (see
figure 3.4). The Nylon wires break the gas volume into 5 mm X 10 mm geiger
cells because of the fact that the nylon wire provides a dead area which ends any

shower induced by the passage of a charged particle. The gas volume is filled
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Figure 3.5: Cross section of muon chamber element.

with 80% Argon and 20% Ethyl Bromide mixture. However, we lost two modules

during the running due to the formation of Aluminum Bromide.

The muon chambers are proportional chambers whose bodies are made of
aluminum. Each of 404 sepafate muon cha;nbers has seven, eight or eleven
triangular tubes extruded from the aluminum. The ends of the chamber form
an equilateral triangle. The base of the triangle measures 8.2 cm in length and
the chambers range in length from 0.82 m to 7.35 m. We ran the chambers at
2400 V in the proportional mode[47]. The cell efficiency is 99.6% at this voltage
in our 80% argon 20% methane gas mixture at one atmosphere pressure (see
figure 3.5). The efficiency of the cell dropped off only within 5 mm of the apex
of the chamber despite the triangular shape of the cell. We defined the two cell
efficiency as the probability that an adjacent muon cell will fire. The two cell

efficiency of the chamber is about 65%. Finally, the position resolution of the
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muon chamber is 700um. The excellent position resolution and high efficiency
allowed us to track particles independently with the muon chambers[48].

‘There are four layers of chambers in the barrel region of the detector. The
forward region of the detector has 3 layers of muon “door” detectors. The first
two muon door detector layers have 35 cm of iroh between them. The last two
muon door detector layers have no iron between them. However, the wires in
the first two layers ran vertically and the wires in the last layer ran horizontally.
This is in complete analogy with the muon barrel detectors.

But the heart of the PEP—4 detector system is the Time Projection Chamber.

3.2 The TPC

The idea behind the TPC is simple; measure the momentum of a track and simul-
taneously make multiple measurements of the energy lost per unit length of gas
volume traversed (dE/dz) by that same track. We measure the momentum of a
track by measuring the position of the track at several points inside the cham-
ber. Measuring the momentum and the energy loss of the track simultaneously
measures the mass of the particle since the energy loss is a function of velocity.
Additionally, the TPC has the ability to measure the coordinate along the beam
axis. This gives the TPC the ability to determine a three dimensional view of
a track, helps reject beam-gas events, and determines a good vertex position.
Figure 3.6 is a diagram of the Time Projection Chamber.

We used the concept of a “long length” drift chamber in building the TPC
in order to measure each track’s parameters. If we built a long traditional drift
chamber with many layers of wires strung parallel to the beam, we would have
had problems of electrostatic stability and gain uniformity along the wires. We
would also have problems measuring the z coordinate. Using a long length drift

chamber solves the above problems in an elegant way[49,50].
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We measure the 2 coordinate by measuring the time it takes for ionization
caused by the particle traversing the gas volume to arrive at our detection plane
(at the end of the drift in z). Electrostatic problems and gain uniformity problems
are reduced because we can divide up the detection plane in a way we choose
and hence can reduce the maximum wire length and the average wire length
considerably.

But we pay a price for this geometry. We need an electric field to drift the
ionization electrons produced by a track. The electric field must be along the
z axis. We also need a magnetic field to measure the momentum of the parti-
. cles. The TPC has drift lengths of up to one meter for the ionization electrons.
Therefore the electric and magnetic field must be parallel or else the electrons
will be deflected by E x B forces. The larger the E x B force, the worse our
position and hence momentum resolution will be. A reasonable figure of merit is
that the position measurement will off by

| v, By ‘
2me

Az =~ t3q
where t is the drift time, v, is the drift velocity along the beam direction, B
is the magnetic field perpendicular to the z direction, m is the mass and ¢ the
charge of the particle. The above equation shows that the displacement of the
measured position from the value it would have in the absence of E x B forces is
dependent on the drift time squared times the magnitude of the magnetic field
perpendicular to the z axis.

As the ionization electrons drift thru the gas volume, they scatter off the
molecules of the gas. The width of the electron cloud at the end of its drift is
widened due to diffusion[51]. One must choose a gas where the diffusion will not
be so large as to degrade the position resolution that we seek. Argon is a good

choice because the scattering cross section is at the Ramsauer minimum for the

drift velocities of interest in our case. Additionally, the diffusion is proportional
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to the drift time. An ionization electron drifting one meter will have ~ 1 mm

diffusion in the TPC.

More seriously, the longer the drift distance the more electrons will be lost
due to their interactions with the gas. One must remove all possible sources of
electro-negative substances inside the gas volume. All oxygen (particularly in

the form of water) must be scrubbed from the incoming gas.

Finally, one must make sure that the gain along the wire of the detecting
proportional chambers is uniform. Our design criteria were driven by the desire
to measure dE/dz to 3%. This implies our systematic errors should be kept to

the 1% level.

We implemented the TPC idea by making two endcaps each of six kite shaped
proportional chambers called sectors. Figure 3.7 shows a diagram of one chamber.
Every 4 mm we string a sense wire with a field shaping wire strung between each
pair of ‘wires. The sense wire plane is 4 mm above the grounded cathode plane
of the sector body. A grid of 4 mm pitch is placed 1 mm above the sense wire

plane.

The grid, sense and field wires form a drift cell. Drift electrons pass thru
the grid and cause an avalanche on sense wires along the path of the track. The
field wires help shape the field to reduce the cross talk between adjacent cells.
The field wires also improve the electrostatic stability of the chamber. The sense
wires are placed at a potential of 3400 volts and the field wires at 700 volts. The
gas gain resulting frorh this electrostatic configuration is 1000.

We placed under every 131 wire a row of 7.5 mm x 7.5 mm cathode pads.
The positive ions liberated by avalanche on a sense wire are attracted to the
cathode plane. Hence by measuring the pulse detected by the pads we can

localize the avalanche position along the wire. Unfortunately, the cathode pads

couple to other sense wires than the wire directly above the pad row. A good
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approximation to the signal seen by the pads is a sum over the five closest wires
to the pad itself[52].

We amplified the signals detected by the sense wires and the cathode pads by
a set of preamplifiers located on the sector itself. The preamplifier has a gain on
the order of 10'° amp/coulomb! and it drove a differential signal over a twisted
pair of wires. We needed the pre-amplification on the sector because the signals
had to travel on the order of 100 feet of wire in order to reach the electronics
hut which is located outside of the beam wall. We used a differential signal to
reduce the contribution of outside electronic noise sources.

However, locating the preamplifiers on the sector made it necessary to cool
the sector too. Gain is extremely sensitive to temperature variations. Hence, if
there were systematic variations in temperature we would systematically detect
a different signal across the sector. Therefore controlling temperature to £1° C
is crucial[53].

The sectors were cooled by circulating water thru aluminum bars. The brass
ground plane of several pre-amps is in contact with a brass casing. This brass
casing is then placed in contact with the aluminum cooling bars. The arrange-
ment of using metal to metal contacts for the cooling system improves our heat
conductivity and allowed us to meet the design goal of less than 1° C variation

in temperature across the sector.

'3.2.1 TPC Electronics

The energy loss by a particle as it traverses a length of gas is proportional to
the number of electrons freed. Hence, by measuring the number of electrons
liberated as a track traverses a length of gas, we can determine the energy lost
by the track as it traversed that length of gas. Therefore, we need a linear (or at

least we need to be able to calibrate any nonlinearities) stable electronic ~v~1em

lpad preamplifiers have about three times the gain of wire preamplifiers.
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which can turn the number of electrons detected into a measurable voltage by

which we can deduce the energy loss by a particle.

The electronics house is divided into four rows of electronics. Each row has
fourteen racks of seven bins. Each bin can hold up to seventeen circuit boards.
At most, sixteen separate cards in a bin are used to monitor sixteen electronic
channels each. The seventeenth board in a bin is used for master control functions
for the rest of the bin. Hence, each bin of electronics can read out up to 256

electronic channels.

A block diagram of the TPC electronics chain is presented in figure 3.8.
The electronics chain begins with the preamplifier. The preamplifier is simply
an amplifier with a capacitor connected to the input and output stages of the
amplifier. This configuration integrates the charge dep;)sited on the input leg of
the amplifier. The output stage of the amplifier then drives a differential signal
over a twisted pair of wires. The pre-amp has a 200 ns integration time and the
capacitor is bled off by using a resistor in parallel to the capacitor. The capacitor
discharge circuit has a 5 usec time constant. We needed to bleed off the capacitor

so another avalanche could be seen on the same sense wire or pad.

The next element in the electronics chain is a shaper amplifier. The principal
task of this amplifier is to turn the pre-amp signal into a pulse proportional in
voltage to the amount of charge detected and to remove the long 5 usec tail. The
shaper accomplished its twin tasks by differentiating the signal and making a
“pole-zero” subtraction to remove the long tail. However, the shaper amplifier
signal has a slight undershoot which lasts for many micro seconds after the initi-
ating track’s signal has been detected in the electronics. This means that signals
from tracks subsequent to the initial track must be corrected. Signals from tracks

within 3 ¢cm in z are inseparable and hence cannot be used.

The signal from the shaper amplifier is input for a Charge Coupled Device
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(CCD). CCDs are semi-conductor devices which have separate charge storage
cells called buckets. Our CCDs have 455 buckets. We number the buckets from
0, the output bucket to 455, the bucket where the charge is initially placed. Each
bucket holds charge until the device is clocked at which time the charge moves
from cell ¢ to cell i — 1. Thus, the time of arrival of charge @ equals N X 7,50

where 7). is the time between clock pulses and N is the number of clock pulses

loc
from time %, to the time ¢ at which charge @ was clocked out of the device.
The CCDs were clocked at two separate rates. Ordinarily the CCDs were
clocked at 10 Mhz (although they can be run at rates as high as 25 MHz) corre-
sponding to 100 ns per bucket. Usually the information is not digitized. When
the drift chamber signaled a possible interesting event (a pre—trigger), the clock-
ing rate was slowed to 50 kHz so the information could Be digitized. The TPC
only requires 200 buckets to store the entire event at a drift velocity of 5 cm/usec.

We use 300 CCD buckets to be safe.

However, there is a dark current in the CCD which depends on the tempera-
ture of the device. Given a particular stable temperature, the dark current adds
charge Qq in time 74,0 to charge in each bucket. Hence each bucket has a

background of

Total Dark Current = Q4 X 7 X N, (3.2)

where N, is the bucket number inside the device and bucket 1 is the first digitized
bucket of the device. The contribution of the dark current must be removed from
the signal. Fortunately, equation 3.2 indicates that the contribution of the dark
current is linear in the bucket number. We cool the electronics house to 16° C to
reduce the effect of the dark current. Typically, four digitizer counts are added
to the charge detected after clocking 300 buckets at the slow clock rate for the
TPC. |

Next, we must digitize and store all relevant information. We record the
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channel number, pulse height, and the number of slow CCD clocks elapsed since
the pre—trigger time. Digitization of the signal is done by comparing the signal
to a ramp run concurrently with the CCD clocks. A separate digitization clock
is started when the ramp is at zero. When the ramp passes the value of the
signal, the value of the digitization clock is placed into local board memory. If
the digitized value of the signal is higher than a preset integer threshold, the
channel is flagged as having data present. The threshold is determined channel
by channel in the course of calibration. Once the threshold was determined, its
value was written onto a board Random Access Memory (RAM). The RAM in
which the thresholds are stored is called the “Lower Limit RAM” (LLR).

Any data present on any of the fifteen separate channels on the board will
flag the board as having data present and cause the Readout Master Controllgr
to read the data from the board and store it into a Large Data Buffer (LDB)
readable by all three online computers. The online computers were an PDP 11/70
which monitored and controlled the electronics of the TPC, and two VAX 11/780
computers. One 11/780 was for PEP—4, the other for PEP9. The LDB stored
the event data from each of the detector electronics. Once all the electronics
from each of the detectors had been read, all online computers were informed
and all other triggers were held off until the computers were finished with the

data in the LDB.

The electronics readout is organized into lists. Most lists read only one detec-
tor’s electronics. The trigger, inner and outer drift chambers, the hex calorime-
ter, the “pole tip”calorimeter, the muon chambers and the results of monitoring
voltages, pressures etc. are put into separate lists. The TPC is broken into 30
separate lists[54]. Each endcap of the detector is divided into a set of 15 lists.
Each of six wire lists monitors one sector’s worth of channels (184 wires) and

hence can be placed into one bin of electronics. Pad lists are different. There are
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fa,r'fewer pad hits in an event. Hence we place up to 1007 pad channels on a pad
list. Each pad list may read two separate pad rows. Pad list six, for instance,
reads pad rows zero and eight for all sectors. The longer pad rows are read into
a single list. Pad list 11 monitors pad row 10 from all sectors, a total of 672
pad channels. All lists, except pad list 10, monitor at most monitor 768 pad
channels. Pad list 10 monitors 1007 pad channels. A bin of electronics reads
up to 256 electronic channels. Therefore, all pad lists consist of three bins of
electronics except for pad list 10’s four bins.

The Readout Master Controller reads data at 10 MHz. If more than 200
channels in a particular list have data stored for a particular bucket, we will
clock out the next CCD bucket. Hence, .if more than 199 channels in a particular
list have data, we hold off further CCD clocks until all the data has been stored.
One side effect will be to add more dark current to subsequent CCD buckets. We
neglect this effect because so few events have this problem and the extra amount
of dark current is small in any case.

Finally, the electronic readout is organized to take into account the jet struc-
ture of hadronic events. A typical event does not have equal occupancy of hits
in each sector. Pads present no special problem since it is unlikely to find two
particles with exactly the same momentum in the same event. But wires are a
different story. Every charged particle in a jet will in general produce signals

detected on the same set of wires. Hence, for a typical ten track, two jet event,
5 tracks/jet x 140 wires X 5 buckets/track x 1 jet

or about 3500 hits on the wires in each of two separate sectors. There will be no
hits on any other sector in the event. Worse, we must account for the fact there
are events with 20 to 30 tracks. Every list must have enough memory in order to
store such events. We would have to have 10K words of memory on each list if

we simply divided the electronics by sector. We can reduce the electronic storage
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requirements and reduce cost and computing load by spreading the storage load
of one sector’s wires. |

This is accomplished by what we call “spiral” readout of the wires of the
TPC. Basically, we divide the wire electronics into lists. Each list (0, 1, 2, 3, 4,
5) corresponds to one sector’s worth of wires (11 boards x 16 channels = 192).
But, instead of a list of electronics reading one sector, a list monitors wires in
every sector. The first board in a list i, detects signals from the first sixteen
wires in sector ¢ (wires 0 to 15). Then the next board detects signals from wires
16 to 31 from sector 7 + 1 for lists oné, three and five and ¢ — 1 for lists zero, two
and four. Wires 32 to 47 for sector ¢ + 2 are read by the third board in lists one,
three and five, ¢ — 2 for lists zero, two and four. This spiral pattern of readout is
maintained until all wires are accounted for[55]. |

The effect of organizing the readout in this fashion is to spread the load of |
electronic readout over many lists. Each list has only 32 wires in any one sector
that it monitors. Only 4K words of memory are needed for each wire list reducing
the storage requirements in the LDB by a factor of 2.5 or so. Obviously, this
reduces our costs both in purchase of memory and cooling requirements because

we use fewer electronic components than otherwise would be the case.

3.2.2 TPC Calibration

We must convert the TPC’s electronic digital reading into ionizing electrons in
order to realize the power of the TPC. We needed to perform several different

calibrations:

e Calibrate the CCD pedestal and dark current contribution to the stored

digitized pulse.
e Calibrate the electronic response of the preamplifier and shaper amplifier.

e Absolutely calibrate the response by using a known amount of ionization.
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Figure 3.9: Quesient level of a CCD. The curve is Pulse height versus Bucket
read. Notice the slight increase in pulse height over the 300 buckets read.

Calibrating the CCD’s

We set the threshold lower limit RAM (LLR) value channel by channel to zero
in order to determine the pedestal levels and determine the increase of digital
counts with time for the channel. Setting the LLR value to zero allowed all
the CCD data to be stored in the LDB for analysis. Then we initiated a fead
out cycle which causes the CCD’s to be read out using the slow CCD clock
rate. We turned off all sectors to insure that no response to ionization would be
measured by the electronics. Figure 3.9 gives an example of the measured pulse
height versus bucket number curve. A least squares fit to the data for a line was

performed for this curve, 1.e.
Pulse Height = AN, + B (3.3)

where N, is the bucket number, B is the pedestal at zero time and Pulse Height
is the digitized pulse height. Determining constants A and B channel by channel

establishes the pedestal as a function of bucket number for a particular chainel.
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A noise value is associated for the channel by determining the RMS deviation
of the Data from the fitted line. Only four channels are done at a time because
no data is suppressed and Pad Lists have only 2K words of memory in the LDB.
The threshold or Lower Limit RAM value for the channel was set to the Pedestal
value at bucket 300 plus five times the noise value for the channel. Typically the
pedestal at zero time is in the range 20 to 30, the noise value was 2 to 3 counts
and the Lower Limit RAM setting was 40 to 50 counts. These numbers should
be compared to the 110 digital counts which correqunds to the amount of charge
left by a minimum ionizing track in a 4 mm drift cell in the TPC. Channels with
excessively high pedestal, noise, Lower Limit RAM or slope were turned off and

flagged for repair.

Calibration of Electronic Response

The measured digital pulse height must now be calibrated to an absolute scale

of energy loss. We measured the each channel’s response in two steps:

1. Determine the response of the channel to a known amount of current as a

function of digital pulse height.

2. Determine the response of the channel to a fixed amount of energy loss.

The first step involves placing a known voltage across a capacitor. Pulsing
the pre-amplifier as in figure 3.10 has the exact same effect as depositing charge
on the wire. Even though we can pulse the pre-amplifiers in this way, we actually
pulse the wire grid plane above the sector. The capacitor is then the capacitance
between the wires and the grid and the pads and the grid. The digital response
of the electronics to charge being placed on the wire is gaussian. The response is
fit to a parabola to save time (the description of cluster ﬁnding can be found in

section 5.1). We use the maximum peak height of the parabola as t1: electronic
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Figure 3.10: Depésiting a kndwn amount of charge at the pre-amp input by
placing a known voltage across a known capacitance.

response to the pulser voltage. One could also use the area of the fitted parabola
as the digital response but the peak height actually produced fewer problems.

A pulser voltage versus digitized electronic response curve can then be made.
A typical curve is shown in figure 3.11. The fit is a spline. The digital response is
linear between 60 and 400 digital counts. Above 400 counts, the response curve
saturates and flattens out. The flattening of the response curve is caused by the
saturation of CCD buckets. If the charge that is deposited into a CCD bucket
exceeds a maximum amount, the charge spills out of that bucket and shifts it
to the next bucket. This affects the fitted electronic response. When the CCD
channel saturates, neither a parabola nor a gaussian is a good representation of
the CCD response.

A stable, linear pulser is the most important component of the electronic cal-
ibration system. Variations in temperature and number of pre-amplifiers pulsed
should not change the output of the pulser. The pulser for the TPC is stable
to about 0.1 to 0.2 percent to such variations. The pulser is linear to about

0.1%[53).
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Electronic calibration was done before and during the running cycle. When-
ever the accelerator was off for a day or two, we would do an electronic calibration.
We could not calibrate the electronic response of the system if the accelerator
was running because track ionization would be confused with the effect of puls-
ing the grid. Also, we would calibrate the electronics aftér the running cycle was
completed, to check the stability of the calibration. The calibration was stable
to the level of 1%. |

Fe®® Source Calibration

We then calibrate the digital response to an absolute amount of chai'ge deposited
on a wire. This is done by use of a Fe® source. The Fe® source releases a 6 keV
X-ray. The X-ray converts inside the gas volume depositing about 6 keV onto
one wire. The Fe®® sources are placed onto little tabs on a metal rod. There is a
button source for each wire in a sector on each rod.

A hole along a channel in the sector for the rod is placed in the G-10 face of
the sector. Each hole is aligned with each sector wire. A spring is placed at the
bottom of the channel for each rod. Ordinarily the spring causes the source rod
to be pushed such that the button sources are not in line with the holes in the
sector. But, when the channel is placed at 30 pounds higher gas pressure than
the TPC, the rod is pushed down so the sources line up with the holes. The
holes are lined with a copper alloy and placed at a slight negative potential to
reduce the effect of Fe®® X-rays which convert inside the hole.

There‘ are three source rods in the sector. They are at positions —~16°, 0° and
30° with respect to the center line of the sector. We placed the source rods at
different positions to measure gain variations along the wire.

Procedurally, we randomly triggered the TPC, and read out all 455 buckets of

the CCD. We ran a source calibration run whenever we had one or two hours of no
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beam. Source calibration was once a week in general. Repeating the calibrations
helped us monitor the variation of absolute calibrations and to measure the
variation of the gain along the length of a wire. Absolute calibrations were

stable to about 1%.

3.3 Trigger

The basic philosophy? of the TPC trigger was to allow maximal flexibility in
designing possible triggers. Thus, coincidence windows can be {raried, the number
of hits in a chamber which define if there is a “track” can be varied, the total
number of “tracks” required by the vtrigger to cause the electronics to be read
and the event stored on tape can be changed etc. We use the tracking ability of
the TPC to find tracks. Duriﬁg th.e running cycle in 1983, the charged particle
trigger required two tracks with reasonable vertex positions to be found in the
sectors. There are also neutral, muon, cosmic and two photon triggers. Since we

are only interested in hadronic events, they will not be described here.

Any trigger decision is constrained by the 2.5usec time difference between
beam crossin.gs. Since it takes about 20usec to sweep out all the ionization from
the TPC, we must break the trigger into two parts. The first stage decision
must come fast enough to allow all latches and registers to be reset before the
next beam crossing. The first stage decision must also reduce the number of
prospective triggers to a minimum. If not, we will miss many “good” physics
events because of the time it takes to drift ionization from an event to the sectors.
The second stage of the trigger must examine the data in the electronics more

carefully and make the decision whether or not to keep the event.

2This section is based on references [39,45,56]



72
Pre—Trigger

The first stage of the trigger is called the pre-trigger. The pre-trigger decision
comes within 2usec of beam crossover, allowing 500 ns to clear all of our electronic
registers and latches in preparation for the next beam crossing.

The event must have at least two prospective tracks for there to be a valid
pre-trigger. The track is defined by matching hits in the inner drift chamber
(IDC) with the outer drift chamber (ODC) or the sector itself. The IDC forms
the basis of the decision. It was pointed out in the brief description of the IDC
that the layers of the IDC were rotated with respect to one another by one half
a drift cell length. This was done so that the sum of arrival times of ionization
~ from a track on layers A and B (C and D) is a constant for high momentum
tracks irrespective of angle of that track. A 30 ns time window is placed around
the sum of the arrival times on the A and the B (C and the D) layers which
rejects tracks with momentum less than 120 MeV. In addition, we require there
to be a coincidence between the A and the C layers (or the B and the D layers)

to define IDC hits as a prospective track (see figure 3.2a).

We match hits in the IDC and the ODC by designating fixed, overlapping 30°
swaths in the two detectors. An ODC track is defined by grouping together ODC
drift cells and requiring two hits in different layers of the same group. Layer E
of the ODC is divided into 72 non—-overlapping groups of three wires apiece. An
ODC pre-trigger group consists of one of the groups from layer E, the 4 cells
from layer F directly behind layer E and 5 cells from layer G directly behind layer
F (see figure 3.2b). The hits on the wires are required to occur within the 300 ns
maximum drift time of ionization within an ODC cell. If aligned 30° swaths in
the IDC and ODC have hits, a pre-trigger track is defined.

The ODC can only be used for tracks which make an angle greater than 45°

with respect to the beam. We must use the sectors for tracks below 45°. In 2 uséc,
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only ~ 10 cm of ionization in z will have been swept out of the gas volume by
the electric field. Hence, the criterion for a track in the sector is relaxed for the

purposes of making a pre-trigger.

The sector is divided into 23 groups of eight wires apiece. The signals from
these eight wires are grouped together as input to a majority logic unit. The
signal is taken directly from the output of the shaper amplifier and compared to
a trigger discriminator level set for that channel. If more than a certain fraction
(usually 3 out of 8) of the eight wires exceed the trigger threshold, the majority

logic unit fires.

The drift time is broken into 64 time slices of ~ 0.4usec apiece. The TPC
midplane occurs at time slice ~ 50. The rest of the time is used for trigger
decision. Each time slice corresponds to about 2 cm of drift in the z direction.
The majority signal lasts for at least 4 slices. If more ionization drifts in from
any of the eight wires during that time, the majority logic unit signal will persist

for a longer time.

Majority logic unit signals from neighboring sectors are combined (logical
OR) into six overlapping supersectors (see figure 3.12) in order to reduce edge
problems. Two 30° IDC wedges are combined to correspond to any one super-
sector. If there is a prospective track in either of the two IDC wedges, we enable -
the corresponding supersector. Subsequently, if a majority logic unit within that

supersector fires, a pre-trigger track is defined.

We need at least two pre-trigger tracks within 2usec of beam crossover in
order to have a valid pre-trigger. The pre-trigger rate was between 500 Hz and

1000 Hz compared to the rate of single hits in the IDC of 14 kHz.
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Figure 3.12: The organization of sectors into supersectors.
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Ripple and -Majority Triggers

Once there is a valid pre-trigger, the trigger system commences a search for
tracks using data from the wires. We use the wire data to search for continuous
tracks starting at high radius and going inward to lower radius. A time window
is made to constrain the vertex of the track to within ~ 25 cm in z. Background
from synchrotron radiation is rejected because it is unlikely that hits due to syn-
chrotron radiation will mimic a track. Background from beam-gas interactions
is rejected by the vertex cuts. |

Any majority logic unit ﬁan initiate a ripple trigger within the pre-trigger
time of 2usec. The majority logic unit initiating a ripple trigger enables the next
innermoét_ set of three majority logic units. If within 2 to 3usec one of the set
of three logic units fires, the ripple continues to the next innermost set of three
logic units. The ripple must continue to the innermost two logic units. A ripple
track is defined if the innermost two logic units also have data within a timing
window.

The timing window is selected by the pre-trigger. Both timing windows are
chosen to require that the track originate from near the origin. This implies we
must separate the large angle tracks (> 45°) from low angle tracks (< 45°). If
the pre-trigger was the coincidence of an IDC and ODC wedge (“large” angle
pre—trigger), the timing requires that the signal on the inner radius come from
within 20 cm of the TPC mid—plane. If the pre-trigger was the coiﬁcidence of
an IDC wedge and a supersector (“low” angle pre-trigger), the timing requires

~that the signal on the inner group of wires be within the range 16 to 36 cm in 2
of the mid-plane.

Finally, the ripple must also be in angular coincidence with pre-triggers from
the IDC or the ODC. A ripple track is defined if the supersector in which the

ripple occurred has an ODC pre-trigger within 60° of its center for large angle
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triggers or an IDC pre—trigger in one of the two 30° IDC wedges corresponding
to that supersector for low angle triggers. Two such ripple tracks define a ripple
trigger. Figure 3.13b gives an example of a ripple trigger in a multi-pronged
event.

The ionization from tracks whose angle with respect to the beam is about
90° will arrive on all the wires in the sector nearly simultaneously. Hence, at
some point the ripple trigger will cease to function because of signal propagation
delays. Tracks whose angles are greater tha,n. 84° with respect to the beam will
not reliably cause # ripple trigger. For these tracks, a different trigger is used.
The majority logic units are segregated into two groups of eight and one group
of seven units (a majority group). The majority group generates a signal if at

least three of the units in the group are on. A majority trigger is generated if

1. all the groups fire in one endcap and at least one majority group in the

other endcap fires too,

2. the time of the majority trigger corresponds to positions within 5 cm in 2

of the TPC midplane,
3. there is a large angle pre-trigger present and

4. at least one ripple signal is generated.

Conditions 1, 2 and 3 impose the requirement that at least two tracks come near
the mid—plane whereas condition 4 is imposed to reduce the majority signal rate.

The sum of the rates for ripple and majority triggers is about 0.8 Hz. The
overall trigger rate for the experiment was ~ 1.5 Hz. The balance of the triggers
are neutral and two photon triggers. This trigger rate allowed us to read, partially
analyze and write to tape all events. If the rate were around 4 to 5 Hz, we
would begin to. have trouble doing these minimum required tasks. The charged

particle trigger is greater than 99% efficient for hadronic events with five or more
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particles[57,39,53]. The trigger need not be considered further because of this

very high efficiency.
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Chapter 4

Theory of Energy Loss in
Materials |

’I‘he power of the TPC comes from the ability to measure simultaneously momen-
tum and energy loss per unit length of a particle. The energy loss for particles
which carry the same plus or minus charge in a given material is solely a func-
tion of B = v/c where v is the velocity of the particle and c¢ is the velocity of
light!. Therefore, the simultaneous measurement of these two quantities gives us
a measure of the mass m of the particle. We will describe the basic properties of
energy loss and why we went to the TPC design in order to accomplish the goal

of good particle identification.

4.1 Introduction to Energy Loss

When a particle traverses a material, it loses energy because of interactions with
the atoms which constitute the medium. While one één look at this process
quantum mechanically, we present here a semi-classical picture of the interaction.

Most interactions between the particle and the medium occur at large impact
parameters. These interactions can be characterized as quasi—elastic scatters

where very little energy is transferred from the particle to the atom. These

1The only exception to this rule is low momentum electrons. However, the TPC can only
measure momenta larger than ~ 100 MeV/c where this should not present a problem.
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interactions lead to the excitation of the atom. Most interactions between the
particle and the medium are of this type since the volume goes as b where b is
the impact parameter.

However, the smaller the impact parameter, the larger the momentum trans-
ferred from the particle to the atom. At small impact parameters, electrons
scatter directly off of the particle. It is possible to treat the electron as free in
‘this' case. Unlike the case of excitation, the energy distribution of the ejected
electrons is not a gaussian. The electron energies follow the characteristic 1/E?
distribution of Rutherford scattering where E is the energy of the electron. This

distribution cuts off at the maximum possible energy that a particle of mass

m > me can impart to an electron
Emax = 27 8*me (4.1)

where v and S refer to the incident particle and me is the rest mass of the
electron.

Herein lies the problem of measuring the energy lost by a particle. Most in-
teractions of an incoming particle with the surrounding medium are well behaved
and the energy lost can be described by a gaussian distribution. If we make more
measurements by doubling our materi.al and hence doubling our statistics on the
number of electrons freed by the particle, we would improve our measurement of
the energy loss. This would hold true until the sample thickness became so large
that one has to consider the energy lost by the particle itself as it traversed the
sample.

But the Rutherford scattering of electrons by the incident particle never allows
us to reach this happy state of affairs. There are very few hard scatters in thin
samples. But by making our samples too thin, we subject ourselves to excitation
fluctuations. We have to make our samples thick enough so that we can measure

the energy lost by the particle to the precision we wish. But the number of hard
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scatters also increases linearly with sample thickness. Since the energy spectrum
of the scattered electrons is so broad (it lasts until Emax) and drops off so slowly
(1/E?), the average energy lost per unit sample léngth 1s very much skewed away
from the average excitation energy. Also the width of the distribution is affected
by this 1/E? Rutherford scattering tail (called the Landau tail). An ensemble of |
pé,rticles obeying the 1/E? distribution will have In Emax average energy lost and
Emax as its width. The excitation energy is much smaller than Fmax. Therefore
measurements of the average energy lost per unit length of a particle travéling
thru a medium will be skewed to much higher values than would be given by
just using the excitation interactions. For example, the excitation energy of the
K shell in argon is 3.206 kilo electron volts (keV)[58]. The minimum 48 for a
particle accepted in this analysis of TPC data is 0.863. This implies a minimum
Emax for the electrons scattered by particles detected in the TPC of 740 keV!
Let us furthvgar consider the case of the TPC. Let N; be the ﬁumber of electrons
freed by excitation of the atom. The width of the excitation peak is 55% FWHM.
We wish to determine the width of the peak to about 4% FWHM. This implies

55% 2
N"‘(4%>

we need about

or about 190 electrons freed[53,58]. A sample thickness of 4 mm at 10 atm of
- Ar-CHy will free about 200 electrons. But in this 4 mm sample, we will also have
about 18 .hard scatters.

’The way around this problem is to make many measurements of energy lost in
a particular sample thickness. If we do this, we can characterize the energy loss
curve including the long Rutherford scattering tail. Then there are severé,l ways
of extracting the most probable energy lost for the particle. We chose to throw
away what are probably hard scatters and characterize the reniaining energy loss

measurements. The mean energy loss determined by this procedure is called the
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“truncated mean”. Typically one throws away between 30 and 40 percent of the
measurements and then takes the mean of the remaining 60 to 70 percent to
determine the most probable energy loss[59]. In the TPC we use only the lower

65% of the measurements in this determination.

The picture of energy loss we have presented to this point has not included
some important secondary processes. First of all, the ground state of an atom
does not have only one electron shell occupied (unless we are talking about
hydrogen). Hence we must sum over all the occupied energy levels to determine
the contribution of excitation to the energy loss. Secondly, it is possible that
the atom will already be in an excited energy state before the interaction with
the incoming particle. The atom may have been excited by the passage of a
previous charged particle, a collision with another atom in the gas, interaction
with a photon etc. In any case, the electron emitted might be from a different
energy level than the ground state level. Thirdly, there is the possibility of
internal conversion of a photon emitted by an atom in an excited energy state
which results in an electron being ejected from that atom (Auger electrons).
Fourthly, it could be that the deexcitation of an atom results in a photon which
converts into visible energy after that photon travels to a different energy loss
measurement cell. If this were the case, we would overestimate the energy loss
of the track in the cell in which the conversion occurred (if the conversion took
place in a measurement cell in which the track in question passed). Conversely,
we would certainly measure a lower energy loss in the energy loss measurement

cell in which the photon was created. This is one contributor to “cross talk”.

We must also consider the interactions of the primary electrons produced by
the process of energy loss with the gas as this electron drifts. Secondary electrons
can be produced in interactions of the drift electrons with the medium. Finally

we must consider the fluctuations in the avalanche at the sense wire. All of these
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effects must be taken into account in order to form a complete picture of the

measurement of energy loss of a particle as it traverses a medium.

4.2 Average Energy Loss

There are several methods one can use in order to calculate the most probable
vaiue of the energy lost by a particle as it traverses a material. We could use
a precise quantum mechanical treatment of the problem. However, it turns out
that calculating the process semi-classically gives very similar results. We will
present a short description of this calculation in this section. It is a summary of
the method of Jackson[14] and other authors[50,59,60].

Semi-classically, the interactions which lead to energy loss by a particle
traversing a medium are caused by the electric field produced by the particle
interacting with the electrons in the medium. The electric field produced by this

particle is

where ¢ is the particle’s charge and r is the distance from the particle to the
point of observation in the rest frame of the particle. One must transform this
field to that of the medium which is at rest in our, the laboratory, frame. If one
sets the impact parameter of the interaction to b, then the electric field seen by

an electron due to the passing particle is

i t b
E=-D % D2, (4.2)

3 3

where z, y and z form a cartesian coordinate system, Z is the unit vector of the
z axis which is defined as the direction of motion of the particle and § is the unit
vector along the y axis, r = 1/b% + 72v%#2, v is the velocity of the particle and ¢
is the time since the electron at the point of observation was at positioﬁ by in

the particle rest frame.
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The energy lost by the particle due to the interaction of the electron with
the electric field of the particle is simply the kinetic energy taken by the electron

from the field
Ap?
2m?

AE = (4.3)

where Ap is the impulse imparted to the electron in the interaction.
Ap = ' / ﬁdt’
—00

= ./w ef)dt‘

2eq

- (4.4)

Finally, by integrating over all possible impact parameters and summing over all

possible electrons in length dz, one gets the energy lost by the particle in length

dz. It only remains to determine the limits of the possible impact parameters.
The minimum impact parameter b, is set by the maximum possible energy

transferred to the electron. Equation 4.1 and equation 4.4 imply the minimum

b = [2e%¢? /mv?
min - AEmaz

€q
v mev?

impact parameter must be

where m is the mass of the particle traversing the medium. The average of
equation 4.4 over many orbits of the electron around the atom goes to zero.
This means once the particle passes at a distances large enough that the electron
completes many orbits of the atom during the time of the interaction, no energy
will be transferred. This implies that the maximum impact parameter is set
by the condition that the time of the interaction can at most be the orbital

frequency. We make the ansatz that
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where w is the orbital frequency of the electron. Note that v is the velocity of
the passing particle in the rest frame of the electron.

The final result for the energy loss is given by

2.2 v

2
dE/dz = 4axNZ <4 [logB - ——] (4.5)

mev? 2c?
where N is the density of the medium in datoms per unit volume, Z is the number
of electrons per atom and B = 1.123v?m.v®/(we ¢). This equation gives us the
essentials of the behavior of the energy loss curve. At low momentum, dE / dz
falls as 1/03%. After By passes‘ minimum ionization (v ~ 3.5), the energy loss
rises logarithmically. It is interesting to compare this result to the precise result

derived by Bethe[14]. He derived

dE/dx =47 NZ 'l [log B - fjl
mev? c?

where B’ = 2v’m.v?/(hw). We must reconsider our minimum impact parameter
in order to compare the semi—classical result to the quantum mechanical result.
If one does this, the only difference between the precise quantum mechanical and
the semi—classical formulas for the energy loss is a faétor of 2 in the logarithm
term and B%. For small § this is a very small difference and for large 8, these
terms are swamped by the logarithm of (87v)2. |

This is not quite the entire story. According to this formulation of the energy
loss, as the velocity of the particle increases so should the energy loss. However,
the energy loss curve saturates for 8+ of the incident particle about 200. The
effect was explained by Fermi in 1940. The plateau in the energy loss curve is
called the Fermi pléteau.

The flattening out of the energy loss curve comes from the break down of one
of the principal assumptions at high momentum. It was assumed that the elec-

trons contributed incoherently to the energy loss of a particle traveling through

the medium. But b,,,, is about Bvyw. Take for example the M shell of argon; In
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this case 1/w equals 4.2 X 1072 cm. The distance between atoms at room tem-
perature in 10 atm of argon is about 5 x 1078 cm. The number of atoms which

a particle traveling thru the medium will “see” at any one particular time is

4r 4

47
N = —=—p —
3 maa:/3r

= (Bv)®x (bm—r”-)
= (By)® x 0.58 (4.6)

where r is the distance between atoms. Hence particles traveling with 8+ on
the order of 1 only interact with one atom. But for 3v on the order of 200, the
particle interacts with 4.6 million atoms. One must consider the bulk response

properties of the medium when so many atoms are affected.

One cén see in equation 4.2 that the electric field of the p:;xssing' particle as
seen by the electrons is proportional to the v of the particle. If the particle is
traveling with the canonical value of By equal to 200, the affected atoms in the
medium see a very large electric field. This field will polarize the atoms. This in
turn means that our prediction for the number of atoms affected in the medium
will be wrong. Polarization of the medium will reduce the interactions of atoms
far from the particle by screening the atoms from the electric field produced by
the particle. Hence the energy lost by the particle will be reduced. |

The effect is called the Density Effect, because for denser materials the
effect will be enhanced. This can easily be seen from equation 4.6. The closer
the packing of atoms, tile more atoms which are interacting with the particle at
any given time. As a result, in solids polarization effects set in so rapidly that
there is hardly any logarithmic rise in the energy loss curve.

It is possible to calculate the change in energy lost by the particles due to
the density effect by including the complex index of refraction in our calculation

of the electric field produced by the passing particle. The result is that we must
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modify the most probable value of the energy lost by the atom to

2.2 2
dE/dz = 4rNZ <2 '[log B - ”—]

m.v? c?

where B” equals

2 2
" Y mev

= Bl + By2(1 — ¢)]

where ¢ is the complex dielectric constant[59,60].

" Finally one can include the effect of several atomic shells in an atom. The
above expression is summed over several different éhells with a weight accounting
for the different probabilities for electrons to occupy the shell and the varying
proba.bility that a passing particle could interact with an electron ip that shell.
There is more of a chance that virtual photons emitted by the passing charged
particle would interact with weakly bound as oppoéed to strongly bound electrons
to the atom. One can calculate this probability by assuming that the electron
is bound harmonically to the atom. Hence the weight is called the oscillator
strength. One can also include the spectral line shape of thé electron in each of
its possible atomic levels. One simply multiplies the probability that the electron
was in a particular shell by the line shape for that particular shell to determine

the oscillator strength.

4.3 Monte Carlo of Energy Loss in the TPC

The ideas on energy loss presented in the previous two sections point toward
making multiple energy loss measurements in order to determine the most prob-
able energy loss. A track’s velocity is determined by the most probable energy
loss because the most probable energy loss for a particular particle is simply a
function of the velocity.

Allison and Cobb[59] have reported that the resolution of the most probable
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energy loss is

R(%FWHM) = 96n~%4(g P)~*% (4.7)

where n is the number of measurements, z is the sample thickness in centimeters
and P is the pressure of the gas in atmospheres. The formula indicates that the
'resolution is inversely proportional to the number of samples raised to a power
slightly smalier than 1/2. We would e'xp‘ect the power to be 1/2 if the resolution
were strictly a statistical process. However, the slight difference between 0.46

and 0.5 is not signiﬁéa.nt.

Furthermore, the resolution is also inversely proportional to the cube root of
the effective sample length zP. The quantity zP is proportional to the number
of electrons the particle encounters in the gas in sample thickness z. If there
were no Landau tail, again one would expect the power of the zP term to be
1/2 instead of 1/3. Howevér it is not surprising that the relation is not quite as
good as 1/2. There will be more low energy excitation interactions between the
particle and the atoms of the medium as we increase zP. If there were no other
processes, we would expect the power to be 1 /2. But the number of high energy
Rutherford scattering interactions also incréases as we increase zP. Hence we
don’t recover all the benefit of increased effective sample length. Additionally,
there is no way to totally separate all of the high energy collisions from the low
energy excitations. Therefore the reduction of power from 0.5 to 0.32 is not

unreasonable.

A simple Monte Carlo program was implemented to check the ideas on energy
loss presented in this chapter. The Monte Carlo was based on the ideas of
Lapaque and Piuz[61] as expanded by Gerald Lynch and Marjorie Shapiro [53,58].

The basic idea of the Monte Carlo is to generate the number of collisions in the
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gas according to the distribution

dN  (dN dN | R
z Z / exc T / Rutherford

where exc and Rutherford refer to the excitation and the Rutherford scattering
cross sections respectively. An excitation or a hard scatter is chosen and the
energy of the electron resulting from the interaction generated according to the
appropriate energy distributions for those two types of events.

The excitation term could be a delta function but here it was chosen to follow

K= (5) @Y

where f; is the oscillator strength of atomic level ¢, E; is the energy of the ith
atomic level, F is the eﬁergy of the ‘ejected electron and s is a parameter[58,61].
The electron scattering energy is generated to follow the characteristic 1/E?
distribution of Rutherford scattering. Figure 4.1 from reference [53] shows a
comparison of the results of this Monte Carlo with actual data from vthe TPC.

We do not use the top 35% of the wire pulse heights in order to measure the
most probable energy loss. The resulting truncated mean is the average of the
refnaining 65% of the pulse heights. The truncated mean is a measure of the
most probable energy loss. The function Tr(n)v represents the value of the most
probable energy loss és a function of n = By of the particle.

- We used TPC data to determine the precise shape of Tr(q) for the TPC. We
used low energy protons for the 1/3? region of the dE/dz versus momentum plot,
cosmic ray muons for the minimum jonization and the relativistic rise regiqns of
the curve, conversion electrons from the material in front of the TPC for the end
of the relativistic rise and Bhabhas for the Fermi plateau. Figure 4.2 shows the
fit to the data and the comparison with the theoretical curve. We see a small

difference between the two curves near the Fermi plateau but otherwise there

is no measurable difference. The ~ 0.5% difference near the Fermi plateau is
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Figure 4.1: Comparison of simple dE/dz Monte Carlo with data taken in 1983.
A sample of minimum ionizing pions was used for the comparison.
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Figure 4.2: Theoretical Energy loss vs 3y and what we fit using TPC data.
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probably because of momentum measurement problems. Measurements of the
energy loss curve using a 14kG magnetic field show that there is no difference
between the theoretical curve and the data even at the high momenta[62]. The
principal difference between the 4kG data and the 14kG data is the improved

momentum resolution.
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Chapter 5

Data Reduction and Event
Selection

This Chapter describes how multi-hadronic events were selected for detailed
analysis, corrections applied to this data and finally how events with probable
hard gluon radiation (so called § jet events) were selected from the overall set of

multi-hadronic events.

We must first find tracks in order to classify the events detected by the TPC.
Once we compile the raw data from the TPC detector, we find and associate a
momentum and energy loss for each track detected by the TPC. Also we must
make corrections dependent on the conditions inside the TPC. In practice we had
to approach this problem iteratively as it was impossible to make the corrections
without first having a rough idea of what the tracks were. We then used this
rough knowledge to improve our space points and to make corrections to these
space points. Using the updated set of space points we could then refit the

detected tracks.

A multi¥pass analysis was implemented in the 1982-1983 data cycle to carry
out this analysis. We improved on the iterative process by computing data
constants online during the next data cycle in 1984-1985. However | shall only

examine the procedures used in 1982-1983 here.
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5.1 Track Reconstruction

Let us recall our orthogonal coordinate system definitions from the previous

chapter:

e 7 is the distance from the middle of the sector to the space hit along the

pad row,
e ¢ is the distance from the base of the sector to the space hit and

e zis the coordinate of the origin of the ionization along the beam axis where

z = 0 is at the midplane.

The z coordinate is measured by using the charge storage capabilities of CCD’s
as was mentioned in the electronics section. However, we have not described how
to extract these coordinates from the raw space point hit yet.

When a particle traverses any medium, it leaves little bunches of ionization
along the path it traversed in that medium (a track). As each of these bunches
of ionization drift toward our detection device (in our case a sector), the cloud of
ionization diffuses. The clouds of ionization are pushed along the z axis by the
electric field and it is therefore convenient to talk about the diffusion along this
direction (longitudinal diffusion) separately from the diffusion perpendicular to
the direction of motion.

The time it takes for ionization to reach the sector is (100 cm—|d|)/v, where v,
is the drift velocity and d is the z coordinate where the ionization was produced.
Hence as long as we are able to measure times on the order of o, /v, by the CCD’s |
we will be able to determine the time of arrival of the ionization at the sector.
The diffusion along the drift direction after a one meter drift in Ar-CHj4 is on
the order of 3.5 mm. For our conditions, v, is about 5 cm/usec. As long as the

CCD’s can measure times on the order of 50ns we will be able to determine the
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z position of the ionization in the chamber by fitting the number of eléctrons _

detected as a function of time.

We define a cluster as three consecutive CCD buckets above the pedestal or
quiescent level of an individual electronic channel, and where the middle bucket
is a local maximum in pulse height. Recall that in the electronics section we
sajd that the electronics was to first order linear in its response to the number of
electrons drifting to a wire. Hence a local maximum in pulse height translates to
a local maximum in the number of electrons detected in time. The cluster pulse
heights then determine a parabola as é, function of time. This gives an expected
location of the true maximum in time. By multiplying the expected maximum
time by the drift velocity we determine a preliminary z coordinate. This is the

procedure used on wire channels.

For the pads, we follow a similar procedure t§ determine the coordinates in
the plane perpendicular to the direction of drift. Due to diffusion perpendicular
to the drift direction, the ionization cloud usually extends over at least two
adjacent pads. We have to try to associate adjacent pad hits together and form a
single space point. We begin by using the same procedure used on wire channels
to determine the z coordinate. But if hits on two adjacent pads are within a
tolerance in z, we associate the pad hits as originating from the same parficle.
The hits must be within the larger of two CCD buckets.or two CCD buckets times
tan A where tan A = z/ R, R being the radial position on the sector of the hit.
Two CCD buckets correspond to 1 cm at the drift velocity of 5 cm/usec. This
definition also extends to three pad points. If all three pads have a z coordinate
which satisfies the two pad hit criteria, all three pad points are called a single
space point. Finally, the z coordinate for the space point is the weighted average

of all the 2’s of each individual pad hit.



The diffusion perpendicular to the direction of drift is equal to

o;p xt X L (kT)3
+ Po m

where P is the pressure, o is the elastic cross section for drifting electrons inter-
acting with the gas molecules, T is the temperature of the gas, m is the mass of
the electrons and ¢ is the drift time[51]. This width is modified by several effects
which will be described later. In total, the pad response width is typically about
one half of a cathode pad. The following table gives the percentage of hits which

have one, two or three pads[52]:

Number of pads Percentage of total hits

1 5%
2 pads 55%
3 pads 40%

We can fit a gaussian of the form
H, = H, exp(n—m0)*/29%

for the pulse heights along the pad row[63]. In this formula H,, is the pulse height
on a pad, Ho is the pulse height of the avalanche, 7 is the coordinate at the center
of the pad and np is the coordinate of the avalanche. If only two adjacent pads
are éﬁ'ected by the avalanche, then we need to know the o in order to determine
the gaussian. However if three pads are in a hit, the gaussian is completely
determined.

This simple picture of space points then must be corrected for ionization
fluctuations and electrostatic distortions before we can make the final track fits.
But this is the basis by which we determine the points of ionization left by a
track in the plane of the sectors. We now can discuss how track finding and

measurement was done step by step.
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5.2 Multipass analysis of 1983-1984

Pass 1: Online Data Analysis

During online running, our goal was to make sure to record all “interesting”
events and reject obvious “junk” events. “Intereéting” events are events that have
physics relevance or somebody is willing to analyze. “Junk” events are events
which had the signature of cosmic ray, beam-gas or beam-beampipe events. We
are constrained to do the classification in 100 ms because our event rate for

triggers was 1 to 3 Hz.

We show in Figure 5.1 a typical “interesting” multi-hadron event from an end
and side view. Figure 5.2 shows what reconstructed data for the same evenf looks
like in the TPC itself. Notice how free of background the data is. Also notice
that we have a three dimensional reconstruction of the data. The combination of
low background and having a three dimensional reconstruction allow us to design

a very fast and effective filter for rejecting non-interesting events.

We used Digital VAX series 11/780 computers for our online running. We
used the same computers for our offline processing so we could use the same
programs to run on and off line. There were many benefits we gained by doing
this, not the least was that we cut down on redoing the same sort of analysis. But
online we gained the ability to select a random subsample of events to analyze

completely which were used to monitor the detector systems.

We had an online filter program called PREANALYSIS whose function
was to reject obvious “junk” events. Basicallsr it searched for the tracks which
triggered the Detector. The program used the information from the majority
logic trigger units described earlier to define the triggering tracks. The trigger
requires that a charged track extrapolate to within 30 cm of the interaction point

in z to be considered a “good” track. However we can make tighter cuts on tracks
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Figure 5.1: Typical multi-hadron event in the PEP—4 detector. a) View from
side and b) view from end.
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with the information from the TPC. Using the digitized data from the sector we
can now require that a track be within 14 cm in z and 10 cm in the zy plane of
the intersection point. This mostly eliminates beam-gas related background and
cosmic ray events from our data sample.

Also if we had a neutral trigger, we required that the shower be consistent
with an electron or photon to eliminate false .triggers caused by cosmic rays. If
a cosmic ray traveled parallel to the cathode plane of a layer, it_ could deposit
enough ionization to exceed the energy threshold of the trigger. Events such as

this were eliminated by a simple pattern recognition cut on the shower shape.

Pass 2: Pattern Recognition

Once online filtering has rejected obvious junk events, we can find tracks offline.
We find tracks by first forming n clusters described earlier in this chapter. We do
the crude job of determining the most probable n position, 7o, of the avalanche
along the pad row. We do the simple weighted average of the pulse heights to
~ determine the avalanche position. We then associate a set of  clusters as a track
by three different algorithms. They are, three point circle fit, two point circle fit
with the third point assumed to be the interaction point, and a histogramming
method. The various algorithms a,ré discussed in detail in references [39,57]. 1
will here present a thumbnail sketch of how they work.

The three point circle fit takes sets of three pad points and tries to fit a helix
to them. Since the TPC measures the three dimensional space points, a helix
is overdetermined by this set of three pad points. Therefore, we can reject bad
tracks extremely quickly. Not all combinations of three pad points are tried.
Rather, all possible combinations from particular specified sets of three pad rows
are used. The two point circle fit follows a similar scheme except the third point

is assumed to be the origin. In both schemes tracks are kept only if the number
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TPC  (z axis)

Figure 5.3: Definition of the Dip angle in the TPC.

of good points on them exceeds a certain value. The number of good'point.s
ranges from four to seven depending on the track topology (high dip angle tracks
require less, and low dip angle tracks require more). |

For‘events with a large number of hits, neither of the above algorithms is used.
The amount of time spent checkiﬁg all possible ;chree (or two) point combinations
goes as a high power (= 10) of the number of points in that event[57]. We use the
histogramming algorithm for large events instead. The idea of the histogramming
algorithm is to quickly bin together points which would lie on the same track. If

is done by first histogramming pad points into bins of sin A

sin A = 2/y/22 4+ y? + 22

where A would be the dip angle of the track (see figure 5.3) if the track originated
at the interaction point. A point in a particular sin A bin is selected. This point is

called the privileged point. A circle is then fit to the privileged point, the origin
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and another point in the histogram bin. The sagitta for the circle is calculated
and histogrammed. For each other point in the histogram, a circle can be formed
and for each circle we histogram the sagitta of that circle. The largest sagitta
bin is chosen as the orbit road. All points which lie within :L-2 cm of the fitted
circle are kep_t. We repeat the same procedure for all the points which have been
rejected by this method. Finally, at the end of the procedure, track segments are
merged together if they fita single orbit zinci duplicate tracks are rejected. At the
end, we attempt to ﬁnd tracks with pad pomts which have not yet been placed on
a track using the two point algorithm. Overall the pattern efficiency for finding
tracks hitting more than three pad rows was measured to be 95+5%[57]. Pattern
is not 100% efficient because of electrostatic distortions which especially effect
low angle tracks, dead pad channels and decays of charged hadrons in flight.
We can now make tighter cuts on the e.vents to further reduce our background.
For a track to be considered good, it must pass within 10 ¢m in 2 and 5 cm in
| the zy bending plane of the interaction point. We then make a prehmmary
classification of the event and unless the event falls within some physms category
it will be thrown out. For instance, only events consistent with 77 would be kept
for further 7 analysis. The same could be said for hadronic, and two photon

analyses.

Pass 3: Monitoring of Constants

We now must begin correcting our space points and dE/dr measurements for.
detector effects. The first step in this process is to determine detector constants.

In general, we read out many important monitored values event by event.
This included voltages for all detector systems, temperatures of the sectors, field
cage voltages etc. We then use this data to form best guesses for gain and drift

velocity. This still leaves us with run to run variations of the gain and drift
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velocity. We then correct these variations by run. The rest of this section will

be devoted to describing the way each of the constants was determined.

e The most important constant beside the gain was the drift velocity. The
measurement of the z coordinate is the way the TPC gains its ability to
determine an event in 3 dimensions. The drift velocity is expected to be a
function of the electric field to pressure ratio, which can be approximated

by a polynomial[64,65],
v = az + bz? + cz® (5.1)

where ¢ = E/P, E the electric field, P the pressure in the TPC and a,
b and c are fitted constants. We modified this expression to correct for

pressure effects and for variations in the fraction of methane

P
:L‘, — m(_P_l)G
g’ = x'(%)” (5.2)

where P is the pressure, and we normalize to pressure P1 chosen to be
8.5 atm of pressure and f is the measured methane fraction. We use z’ to
correct for pressure effects and z” to correct for variations in the fraction
of methane (note that 0.2 is the nominal fraction of methane). While these

expressions don’t have a theoretical basis, we get a good representation of
the data by setting H to 0.8 and fitting G to G = 0.093 £ 0.008. Our

corrected expression for the drift velocity in the TPC is

"2

v=(&i2)ox(am"+bx + cz) . (53)

Setting @ to 0.3 gives the best representation of our test data from August
and November 1980.
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This expression is a reasonable estimate of the drift velocity in the TPC.
However our knowledge of the methane fraction is limited. Also one wor-
ries that the drift velocity depends on experimental conditions since the
two measurements of the drift velocity in Ar-CH4 don’t agree with each
other and also not with our measurements inside the TPC[66,67,64]. Fur-
thermore, we cannot control things like gas purity, and the temperature

inside the TPC changes throughout the day. Hence we took the approach

-of ‘using the-above formula at the beginning of the run to determine the

drift velocity and then using the data to measure the drift velocity on a

run to run basis.

We can measure the drift velocity in the TPC by selecting cosmic rays
which pass thru both the mid-plane and the sector, two track events like
bhabha scattering (ete~ — ete™) or ete™ — ptp~ and requiring such
events to match in z. Or we can plot the z position for all tracks detected
in a particular endcap, requiring that no track be from the opposite side of
the mid—plane. We chose the latter method because of the larger amount

of statistics available.

o The drift velocity must be corrected for a 1.5°C/m temperature gradient from

top to bottom inside the TPC. The drift velocity depends on the pressure
and hence the temperature. It manifests itself as a continuous correction
from top to bottom in the dip angle because the z position determines the

dip angle. It can be expressed as

Atan A = 2ATF

(1 —-1.3tan}) (5.4)

for y = 0.4 meters to y = 0.9 meters where AT is the thermal gradient, F'
is the slope of the drift velocity vs temperature curve and T is the average

temperature[68].
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e Another important constant is the beam interaction point. We measure it on
a run to run basis. We do this by plotting the vertex position (the common

point of all tracks found during pass 2) for all events.

ob We lose a certain number of electrons during the drift in long length drift
chambers. This is because of capture of electrons by impurities in the gas.
For instance 0; contamination as low as 0.15 ppm Ar-CH, leads to a 1%
loss of electrons drifting 1 m in the TPC. Also diffusion affects the rise
time of the signal on the wires which changes the electronic response. This
effectively does the same thing as electron capture and results in interpret-
ing the reduced pulse height as reduced dE/dz. We must correct for this
effect. We do this by plotting pulse height vs z. We cén parameterize the

electron capture as

N = Nyexp~ol/lm . (5.5)

where « is the coefficient of electron capture, L is the drift length, Ly is
one meter, N is the original amount of ionization and N is the observed
ionization[69,70]. This equation also applies to pulse height since pulse
height is directly proportional to the number of electrons. Hence the slope
of the log pulse height vs z curve gives a. Altypical value of « 1s 0.15 which

implies a 15% loss of electrons for electrons drifting one meter.

e We must calibrate the wires. Temperature variations inside the electronics hut
will affect the CCD’s. The dark current inside these devices depends on the
temperature of the device itself and hence the pedestal level will change as
a function of time. On average this will change only the overall gain, if we
assume each CCD is affected in the same way. The gas purity varies from.

tank to tank, also affecting the overall gain.

We correct for gain variations by defining minimum ionizing particles to lose
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12.1 KeV/cm in our Ar-CH4 mixture. We associate wire hits with tracks
found in Pass 2 by requiring the origin of the ionization hitting the wire to
be within +1 cm in z of the presumed track’s orbit. If two wire hits on the
same wire are within +3 cm, we do not use either of the two hits on any
track This is because the recovery time of the amplifier makes it difficult to

determine the actual pulse height of hits within one half microsecond. If a

-wire has saturated (where the digitized. pulse height vs actual pulse height

curve flattens out), we remove that wire’s neighbors from the list because
we cannot estimate the contribution of cross-talk to the neighboring wire

signals.

The 65% truncated mean is then determined. We discard the top 35% of the
wire pulée heights and use the average of the remaining pulse heights as an
estimator of the average energy lost per 4 mm track segment. We eliminate
the tail of the Landau distribution by disca,rd_ing the top 35% of the wire
pulse heights. Sector by sector we require that minimum ionizing pions
lose the 12.1 KeV/cm over a run. Recall that electrons are projected to
lose about 15 KeV/cm and pions about 12 KeV/cm at 500 MeV /c. Hence
in order to reject electrons we do not take all tracks with momentum range
corresponding to minimum ionization for pions in Ar-CH,. Rather we take

a wide swath of 2.0 KeV/ cm about 12.1 KeV/cm in order to insure that

we have only pions.

e Finally run to run constants to calculate electrostatic distortions were calcu-

lated. Most of the distortions were caused by positive ions liberated during
an avalanche passing back thru the grid and into the drift volume. Addi-
tionally the surface of the field cages accumulated charge during the run.

We shall discuss distortions in the next section.
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Pass 4: Track Reconstruction

We are now able to réﬁne our found space points once W'e have a preliminary idea
of the particle momenta. We can now “hang” wires onto the tracks for dE/dz
determination. |

Our primary problem is to correct the space poinfs for ion.iza.tion fluctuations
and distortions. We also must make a more accurate determination of the n co-
ordinate. Along the 5 coordinate the ionization cloud is a gaussian. If three pads
are hit, a gaussian which passes through each of the three points is determined.
If only two adjacent pads fire, we need to know the sigma of the distribution
to determine the gaussian. In either case, using a gaussian form for the pulse
heights along the n coordinate is a great improvement over the weighted average
method.

Our ability to track particles with the TPC depends on knowledge of o be-
cause one half of the pad hits have one or two pad points. The o of the gaussian
distribution in the n-€ plane depends prin.cipally on the crossing angle of the
track to the pad row. The expression for o of this distribution can be parame-

terized as the sum of several contributions
=024+ +0? (5.6)

where oy is the iﬁtrinsic width of the pad response due to a point charge at the
sense wire including electronic noise[63]. The contribution of diffusion to the
width of the pad response distribution is o;. The contribution to the broadening
due to tracks crossing the sense wires at an oblique angie is estimated by o,.
We also include in this term the contribution due to the fact that five wires
contribute to the signal on a pad row, not just the wire directly above the row,

and F x B effects.

Figure 5.4 shows the situation of a track at angle o to the sense plane. We
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7.5ran

Figure 5.4: Typical oblique track to wires and pads.

can use this picture to determine what the oy and o, terms should be.

of = ai%(l + tan® a) | (5.7)
and »
' 1
0% = D? 5 + Sy) tan’ (5.8)

where L is the drift distance, Lys is the maximum drift distance (one meter inside
the TPC), a is the angle the track makes to the normal of the sense wires, o, is
the RMS transverse diffusion after drifting one meter, D is the distance between

sense wires,

2 .
&= Y

=2
2
Sw = E w; = 0.5
1=-2 .

and w; is the weight of the ith wire. The values of the weights are wo = 0.239,
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w; = 0.117, w, = 0.0135, and w_; = w;.

| The o, term arises because the RMS diffusion of the electron cloud is propor-
tional to the time the electron cloud has drifted. The tan? a term occurs because,
for angled tracks, we must consider the diffusion normal to the wire.

We now must consider the effect of having several wires contribute to the
signal on a pad as opposed to the wire above the row. This is the oy term.
Consider a track crossing a wire at angle a. Then we would collect ionization
along a length of wire & Dtana. The primary electrons produced along the
length D tan o now each diffuse. If we assume the electrons are produced with

equal probability along D tan a, then this effect contributes

1
ED2 tan? «

to the sigma of the pad ‘response.

We also must consider the effect of having anomalously high ionization on
any one of the five wires which contribute most strongly to the pad signal. We
assume that the pad response is gaussian. But the actual signal is actually a sum

of five displaced gaussians. The term

\/D2 tan?a x S,

estimates the contribution to the sigma of the pad response because of this effect.

We can actually measure the variation of o with respect to a by using the
sigmas determined with three pad points on a track. Reference [52] has further
details on the measurement of this variation.

Finally space points must be corrected for distortion effects. Distortions in
the TPC are due mainly to positive ion feedback. Positive ions are liberated
during avalanches and are attracted to the midplane. Radiation from the beam
and real events is preferentially emitted along the beam direction. Hence we

expect that most of the positive ions will be produced at low radius. Also the
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Figure 5.5: Residuals vs wire number. To make this plot we fit radius vs 2z for
the track using only wires between wire number forty to one hundred fifty. This
fit is distortion free showing the effect of distortions especially at low radius.

field cages which form the uniform electric field have inhomogeneities in their
bulk resistance properties. This means charge builds up on their surfaces. These
two facts imply that most of the effects of electrostatic distortions will be at
low radius. Figure 5.5 graphically depicts the effect. We plot in this figure the
residual in z vs wire number. We fitted r vs z using wires between wire number

forty to one hundred fifty. This should be the straight line
z = Rtan A : (5.9)

where X is the dip angle. We used wires in the middle of the TPC to remove the
effect of distortions from the fit. The largest residuals are at low radius although
at larger radius there is a much smaller systematic effect.

We can parameterize the charge density which produces these distortions as a

gaussian in radius plus a constant. This charge distribution gives rise to a nearly
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radial field. It is not perfectly radial because of the hexagonal shape of the inner
field cage. Nevertheless, at each sector the field is perpendicular to that wing of
the cage. We find the perturbed velocity is given to first order by

dvp(t) d’Xp(t)

dt dt?
= —Ep(a(t)) (5.10)

wheré Vp is the perturbed velocity, X, is the perturbed position, f)p is the per-
turbed electric field and & is the unperturbed trajectory of the drifting electrons.
We can see that particles produced in an ete™ interaction are hardly affected
by the distortions. This is because the perturbation is integrated over time. A
particle produced in an ete~ interaction spends a factor of ten thousand less
time than the ionization electrons produced along the particle’s path inside the
TPC. Hence any error in the tracking of a particle is dominated by the effect of
the defects on the electrostatic field on the drift electrons.

We must correct the £ and 7 coordinates measured by the sectors. | The
ionization measured by the sector coordinate (£, ) really originated at coordinate
(£ + A¢,n + An). Figure 5.6 pictorially shows the effect of the perturbing field
on the measured ¢ coordinate in the ¢~z plane. The larger the coordinate £,
the smaller the effect because of the exponentiaily decreasing perturbing electric
field. A distortion map was calculated using equation 5.10. This map related
the measured coordinates to the “true” coordinates.

The map gives the shape of the distortion but the magnitude depends on the
amount of positive ions inside the TPC at the time of the event. We determine
the charge in the chamber by using the fact that at large radius the distortions
produce a negligible effect. As figure 5.6 shows, there is an effective z distortion
because of the radial distortion field. At measured coordinate (£,7), the track

should have really passed thru coordinate (£,z + Az). If the track was at dip
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Figure 5.6: Distortion effect on £, 7 and 2z coordinates measured by the sector.

angle 6, then Az is related to A by simple geometry:
Aztanf = Af. o (5.11)

But tan § can be determined in the £~z plane by fitting a line to the middle wires

(wire numbers 40-150). We average

AE™P(€,n, )
Aztané

over all tracks to determine the amplitude factor A for the pad correction. All

space points are then corrected by

£ = £+ ANTP(En,2)
n — n+AAT(E,n, 2)
2 = z. (5.12)

We don’t use this procedure for tracks at low dip angle. Here we cannot determine

A as above because we cannot easily determine z residuals since z is constant.
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Instead we determine an average correction for the entire run in Pass 3 and use

this nominal A for the sector coordinate correction for low dip tracks.

We make our final orbits by an iterative process. First we must attach errors
to each space point for ionization fluctuations, diffusion, electron capture and
distortions. We then minirﬁize the x? for a projected track to refit the momentum
and dip of the orbit. We also must correct our dE/dx measurements. Longer

sample length per cell because of track dip or distortions must be corrected for.

We can assign a mass using the improved momentum and dE/dz. We now
improve our orbit inside the TPC by estimating the energy loss inside the gas
for a particle of this mass. We estimate the multiple scattering and energy loss
inside the material in front of the TPC and extrapolate the orbit to its closest
approach to the e*e™ beam interaction point. The final step in the process is
to require a common origin to all tracks detected in the TPC. This is called the
vertex position. If a particular track exceeds a threshold x? when we constrain
the origin to the vertex, this track is assumed not to have originated there. We
iteratively refit the remaining detected tracks to a new common origin until all

tracks constrained in this manner are under the threshold.

Finally we try to find K° and A° vertices using all tracks. This capability

was not used in this study.

Pass 5: Hadronic Event Sample

The final step of our data reduction was to isolate a multi-hadronic event sam-
ple. It is convenient to consider first the problem of how we determine the most
probable species of a particular track. We begin by discussing the particle iden-

tification properties of the TPC.
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Particle Identification by the TPC

In chapter 4 we discussed the expected energy loss curve for a particular particle.
We expect that the most probable energy loss for the particle to be a function of
n = p/m where p is the momentum and m is the mass of the particle. The TPC,
by virtue of its ability to measure energy loss and momentum simultaneously,
can determine the mass of a particle. Figure 5.7 shows what the dE/dz versus p
curve looks like for the entire hadronic sample. Overplotted onto the data is the
fit of the average energy lost per centimeter versus momentum for the different
particle species.

There are ambiguous momenta where the mass cannot be determined uniquely
because the energy loss for particle species A of mass m4 is the same as for par-
ticle species B of mass mp. We call the points where the dE/dz vs p curves
for the two particles intersect, the cross—over points. But our detector is also
not perfect. We cannot measure enefgy loss or momentum to infinite precision.
The cross—over points are smeared by our detector resolutions to regions of am-
biguity(so called cross—over regions). Therefore we must rely on a statistical
separation of particles.

We begin by taking a slice in momentum of the dE/dz vs p plot. We assume
a gaussian distribution of each species of particle in dE/dz. We center this distri-
bution at the expected dE/dz for that species at the momentum corresponding
to the center of the momentum slice. We determine a sigma of the gaussian
based on our detector resolutions in momentum and energy loss. We sum over
all particle species to determine what we expect the data to be for any given
number of each species. Finally we fit the number of each species by maximizing

the likelihood that for these fitted numbers we would observe our data.
Figure 5.8 shows an example of this fit for two different momentum ranges.

We use the more convenient ratio of dE/dz divided by dE/dz expected for a
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pion of that momentum in the plot. By using this ratio which is denoted

R = (dE/d)measured | (AE /42 )ipecta (5.13)

where (dE/dz)7, .c1ca is the expected energy loss for a pion at our measured
momentum, we are able to attain better histogramming resolution and remove
most of the variation of the dE/dz curve (most of the particles we observe are

pions anyway).
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Figure 5.8: Fitting R for two different momentum slices. Figure a) uses the
momentum slice from 450 MeV/c to 550 MeV /c whereas b) uses the slice between

3.7 GeV/c to 5.0 GeV/c. In figure a) pions are well separated from all other
particles.

In figure 5.8a, we take the momentum slice 450 MeV/c to 550 MeV /c. Pions
in this momentum slice are at minimurh ionization in Ar-CHy, 12.1 KeV/cm. In
this slice we see that pions and electrons are well séﬁé,rated but the cross—over
region for kaons and electrons has begun. By contrast figure 5.8b shows the

momentum range 3.7 GeV/c to 5.0 GeV/c. Here the pions are at best some- |
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what separated from kaons and protons but kaons and protons are nearly totally
confused.

Therefore, the width and center of the distribution of R for each particle
species is vitally important for our statistical separation. We defer until next
chapter a discussion of width. We must correct the center of the dE/dzx distri-
bution by considering the variation of the number of particles as a function of
momentum thru the momentum slice taken. The equation

P» pNi(p)dp

TP Nip)dp (8.14)

(p) =

is the average momentum in the momentum slice from p; to p,, for particle species
¢ where N;(p) is the spectrum in momentum for this particle species. Using this
value for the average momentum gives the average n for any particular particle
species and is what should be used in determining the center of the dE/dx
distribution. We used the Monte Carlo to estimate the effect of N;(p) changing
over the momentum bin. We also must correct for detector acceptance and
average energy loss for each particle type in the material directly in front of the

TPC. Further details for the procedure used can be found elsewhere [53,71].

Armed with the numbers of different particles as a function of momentum,
we can now make a probability for a particular trgck being each of the different
possible species of chargéd particle detected in the TPC. We define x? for a track
being particle species ¢ as

2
2 (nmeasured _ nbest)2 <(dE/dm)measured — Tr(nbest))
r— L +

X An? A(dE/dz)? (5.15)

where Tr(n) is the most probable energy loss for a particle at n = p/m. We min-
imize this x? to determine 5**** for each separate charged particle type detected

by the TPC. We define the probability of a track being a particular particle
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species ¢ as

Prob;(x?) = N ((p)) —x2/2/z N ((p)) , (5.16)

where Np(p) = ¥_; Ni(p) and the sum over i refers to summing over e, p, T,
K and protons. We parameterize N;(p)/Nz(p) as a linear function of In p for all
hadrons, (0.2/p)? for electrons and zero for muons.

The efficiency of this method to isolate a particular particle type is momentum
dependent because of the crossover regions. But our ability to separate electrons

from hadrons is quite good over the entire momentum range.

Event Sélection

Our goal is to isolate a highly pure sample of ete™ — 4* — ¢7. We must
eliminate backgrounds' from 77 events, two photon events and events due to
beam interaction with either gas molecules in the beam pipe or with the inner
pressure wall of the TPC. We accomplish this goal by first taking a set of well
measured tracks and then using that set of tracks to see if the event could be a
qq event.

A well measured track has:

A Momentum > 120 MeV/c. Particles must traverse a considerable amount
of material to be detected by_ the TPC. Particles of momentum less than
120 MeV/c are most probably secondary interaci:ion remnants (and so did
not traverse all the material in front df the TPC) and hence are not related

to the primary interaction.

B The extrapolated point of closest approach of the track to the interaction
point must be less than 6 cm in the zy plane and 10 cm in z. This gives

the best possible cut on tracks not from the primary vertex. We do not
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consider V’s in making the decision to keep the event as a multi-hadronic

candidate.

C The polar angle of the track must be greater than 30°. Tracks with a smaller
polar angle only cross 1 or 2 pad rows and hence the momentum measure-

ment of these tracks is suspect.

D We require dC to be less than 0.3( GeV/c)™! or dC/C to be less than 0.3
where C is the measured curvature. We throw out badly measured tracks

with this cut.
Finally we require
E more good than bad tracks in an event.

If an event passes cut E, we subject our set of good tracks to cuts to eliminate
‘background sources. A track is considered to be consistent with an electron if x?
(x? is assigned as described in the previous subsection) for the track is less than 9.
If in addition the track’s x? is less than x? for each other particle hypothesis, the
track is considered an electron. If geometrical reconstruction of two tracks yields
an invariant mass of less than 15 MeV, we consider the two tracks a conversion
pair, and hence the tracks are considered electrons.

We now subject the event to the following cuts:

F The event must have at least five good non electron tracks, i.e., at least five

tracks must not have electron as the best particle hypothesis and x2 < 9.

G One of the surviving set of tracks must not be consistent with an electron,

i.e., x2 > 9 for one of the tracks.

H We divide the event into two hemispheres by taking the normal to the spheric-

ity axis thru the interaction point ! One of the jets on either side of this

1Gphericity is a standard measure for how jet-like the event is. See References [22,23] for a
definition.
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division must have mass greater than 2 GeV/c or have a hadronic jet mul-

tiplicity of greater than 3.
I The total energy visible in the event must be greater than 7.25 GeV/c.

J The momentum imbalance along the beam axis

> wl/ T 7 (5.17)
tracks

tracks

must be less than 0.40 where p, is the momentum of a track along z and p -

is the momentum of a track.

Cuts F, G and H eliminate background. from 77. Cuts I and J eliminate
two photon and beam related background interactions. Wé are left with about
29,000 multi-hadronic events in experiments 11 and 12 if we apply these cuts.

The estimated backgrounds to this sample are listed in the following table[72]:

Source Background (%)
TT 0.4
Y 0.8
All Beam related < 0.1

Table 5.1: Estimates of backgrounds to hadronic event sample.

5.3 TPCLUND: The Simulation of the TPC De-
tector

The simulation of the TPC detector is not a formal part of the data analysis
chain. Nevertheless, simulating the detector is a crucial part of any physics.

analysis done on TPC data. Simulation of the TPC is crucial for two reasons:

1. We can check our analysis routines by simulating detector data. The sim-
ulated data is analyzed by using the same procedure and routines we use

when analyzing the experimental data and
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2. the simulation of the detector is the only practicdl way to determine detec-

tor acceptances.

We carried out these twin goals by creating two separate Monte Carlo com-
puter programs. One Monte Carlo simulated individual ionizations inside thé
TPC, tracked these individual packets to each detector element, and simulated
the response of the electronics. In particular, this simulated raw data is then used
to check raw data analysis routines. We called this Monte Carlo “GLOBAL”,
because it simulated the evént as precisely as we could. Unfortunately, GLOBAL
takes about twenty to thirty seconds to simulate the TPC for a typical ¢g event
on our VAX 11/780 (which we shall henceforth call VAX). This simulation would
simply take too long to produce the number of Monte Carlo evénts we need to
accomplish the second objective of event simulation.

We simplified the problem in order to reduce the time to simulate a ¢g event.
We do not produce individual clusters of ionization, rather we rely on the bulk
response properties of the materials which make up the detector. Instead of
tracking the ions produced along the track to individual detector elements, we
rely on parameterizations of both the drift and the electronic response to ion-
ization. Lastly, we approximate the action of our tracking routines instead of
producing simulated raw data which then must be reanalysed by our raw data
analysis routine‘s. The rest of this section will be devoted to the description of
this Monte Carlo. ‘

The simplified event simulation Monte Carlo was called “‘TPCLUND” or the
Fast Monte Carlo (FMC). The time to simulate a typical ¢ event in “TP-
.CLUND?” is reduced to about two and half seconds. The simulation pfogramv
divides the detector into 29 layers. Each layer does not necessarily correspond to
individual detector elements; Some la,yeré merely correspond to material inside

the detector. Each layer inside the TPC itself only corresponds to one pad row,
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not each wire. The seven wires below and 6 wires above and the wire directly
adjacent to the pad row are associated with this layer. Hence we have reduced
the number of layers required to simulate the TPC from 183 to 15. This is one
reason for the increased speed of the Monte Carlo. The simulation ends at the
last layer of the outer drift chamber. At this point the track buffer is passed to
routines which simulated the calorimeters and the muon chambers.

The track produced by an event generator is tracked through successive layers.
We include the possible decays, interactions, etc. for all particles. We include

the possibility of bremsstrahlung for electrons. The energy loss is set to

_ | (b+ Vb —4ac)/2a, §<0.95
AE = { (dE/da)min Az, B2 0.95 - (519)

where (dE/dz)mn is the energy loss for minimum ionizing particles in the par-
ticular material, Az is the path length in the material and

)

a = E,'
b = EX+m?—E; (dE/dz)mn AT

c = sz,'

where E; is the energy of the particle as it enters the layer. We computed the

energy loss for § < 0.95 by assuming the energy loss equals
(dE/dx)ﬂu'n/ﬁ2

where f refers to the particle. For 8 > 0.95, we assume there is no relativistic rise
and so the energy loss is simply given by the length of the track times the energy
loss per unit length for a minimum ionizing particle. The multiple scattering for
the particle is determined at the boundary of each layer-.

Once the space points are determined, we must then approximate how the
electronics would respond. We use équations 5.6, 5.7, and 5.8 to determine

the point and its error as measured by the pads. We also add the expected
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contribution of distortions to the error. Finally we increase the errors on about
30% of the pads to account for occasional badly measured tracks.

When we track particles through the TPC, we approximate the energy loss to
be zero. However, the simulated data must include what the wires would measure
as the average energy loss for each particle. So even though we approximate the
energy loss as zero for the purposes of tracking particles in the Monte Carlo,
we assign energy loss as measured by the wires by using the parameterization of
dE /dz as a function of B+ as detailed in section 4. We do this track by track.
Let us call this expected energy loss (dE/dz)ezp.

After the tracking of the particle has been completed, we determine the num-
ber of wires associated with the track. Each pad ‘hit. has 13 wires associated with
it as described earlier. We now throw out any wire where another track passed
within 3 cm in z. We account for delta rays produced by hard scatters as the
track passes thru the TPC and saturated wire channels by eliminating a random
number of wires along the track. Of course the number of wires eliminated be-
cause of delta rays is velocity dependent. We randomly set the energy loss on a
wire as a gaussian distribution centered about the average energy loss with width

given by
0 = Omin/VN (5.19)

where N is the number of wires associated with the track and

Omin = 3% X (dB/d2)exp X \/(dE[dz)m/(dE/d2)ery

where (dE/dz)n is the energy lost by a ﬁinimum.ionizing particle in Ar-CH,.
Tracking is also simplified. Instead of creating simulated raw data that our

usual tracking routines use, we consider any track with more than three pad

rows hit inside the TPC as found. A helix is fit to the space points to determine

‘the simulated momentum measured. If one space point is shared by two tracks
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because of a decay for instance, the point is put on only one track. This is
not a bad a approximatioh to our tracking routines since our measured pattern
recognition efficiency is 95% for tracks which have more that three pad points

on the track.

We also determine the vertex momentum by a simplified method. We add -
the expected vertex point for the interaction to each track found. We use the
measured vertex position error as the error on this poirit. A helix fit is then
performed on each augmented track separately. Contrast this method with the
method used in the Data. We constrain all the tracks found to a single point in
the Data.

It took about eight hours to generate 10, 000 simulated ¢§ events on our VAX.
We generated 100,000 events for the purposes of determining acceptances for
the ¢g data sample. There were detailed comparisons made between the multi-
hadron events and the simulated data. Many of the comparisons can be found
elsewhere[53,39]. We will not duplicate all of the comparisons here. However,
we will show some comparisons of relevance to the data analysis to be detailed
in this thesis. We normalize the Monte Cario to the Data by scaling the Monte
Carlo so that the same number of entries are in both the Data and the Monte

Carlo histograms.

Figure 5.9a, b, c shows some overall comparisons of the data with the Monte
Carlo. Figure a is the comparison between the overall momentum spectrum
measured in the data and the simulation. Figures b and c together show the

comparison of the dE/dz spectra.

Figure 5.10a, b and ¢ shows the comparison of the visible energy for jets 1,
9 and 3 in three jet events. We define jet 1 as the most energetic jet in a three
jet event and jet 3 as the least energetic jet. A description of how jet energies

are assigned can be found in section 5.4.1. Figure 5.11a shows the comparison
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between the sphericity observed for three jet events in both the Data and the
Monte Carlo. Figure 5.11b shows the distribution of aplanarities for accepted
events (aplanarity less than 0.1) in both the Monte Carlo and the Data?

The comparisons show that the difference between the Monte Carlo and the
Data is not large. This gives us confidence that using TPCLUND will give us

reasonable values for detector acceptances.

54 3 Jet Event Selection

We saw in chapter two that one possible outcome of an e*e~ annihilation event
is the production of three collimated jets. These events signal the production
of a hard p; gluon. Unfortunately confinement prevents us from observing the
primary partons directly. Instead our detector views the debris of fragmentation
of the primary partons.

Hadronization produces a cone of particles which travel in the same direction
as the initiating parton. The opening angle of the cone is about 20° at our
energy[73]. The object of any jet—finding algorithm must be to determine the
final state particles which are most likely associated to the hadronization of a
quark (anti—quark) or gluon. But no matter how clever we are we will be unable
to distinguish between the hadronization of any two primary partons if the two
partons are at an angle with respect to each other of smaller than ~ 20°. Even
worse, the rate of emission of gluons from quarks is proportional to 1/ sin § where
0 is the angle between the quark (or anti—quark) and the emitted gluon. Hence
most three parton events are observed as two jet events.

The direction of the primary parton is partially preserved by hadronization.
Hadrons fragmenting from a primary parton do not carry much momentum trans-

verse (p) to the direction of the primary parton. These hadrons acquire py only

2¢f. References [17,22,39] for the definition of aplanarity and sphericity.
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by soft gluon emission or Fermi motion by the quarks which form the hadron.
Typically the p; of a hadron is about 250 to 350 MeV/c. Primary qﬁarks, for
example have energies of ~ 10 GeV/c in hard three parton events at PEP. Hence
the component of momentum transx;'erse to the direction of the primary parton

is relatively small.

5.4.1 Jet Finding Algorithms

Jet finding algorithms can be characterized as attempts to find clusters of parti-
cles which together are probably associated with a single parton where the parton
could be a quark, anti-quark or a gluon. Each algorithm has criteria for what
is a cluster, and for when twd separate clusters should be merged into a single
cluster. If we cannot merge any more clusf,érs together, the clusters found at this
point are called “jets” and the algorithm stops.

Beyond these broad brushstrokes of similar philosophy in every jet finding
algorithm, there are very different techniques for the implementatién of cluster
finding. The irony is that most cluster finding algérithms get about the same
result: they find the same number of jets in any particular event. For this study,
we choose to use “similarity” clustering described by K. Lanius[74].

We assign a measure to the angle between two tracks in the similarity clus-
tering method. We form a similarity matrix, S,,, whose components are given
by |

Dyj = 5(1+ cosB) (5.20)

th

where §;; is the angle between the "™ and 3 th tracks. We calculate the generalized

multicity[75] for k clusters as

YF 1| Zjes.. Bil
?:1 Iﬁ? I

T, = (5.21)

h

where p; is the momentum of the j t particle, S,, is the set of particles which

form the mtP cluster and n is the total number of particles in the event. This
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quantity is the generalization of thrust and triplicity as described by S. Brandt
and H. D. Dahmen. The sum

th

is the momentum for the m"* cluster.

The quantity T} is less than or equal to one and Ty < Ti41. Note that only -
if every particle is a separate cluster does T} equal one. If we have guessed too
many cluéters, eliminating one cluster will not change T; by very much. But
once we go to too few clusters T; will drop precipitously. Let us assume that
we have assigned particles to the correct parton. If we now eliminate a cluster
which actually corresponds to a parton, we would assign the particles in this
cluster to a different jet. This will give a momentum which is the vector sum of
the momenta of the two prir: .y partons. Hence T} is reduced by the triangle
inequality.

The situation is similar if we assign the wrong particles to a cluster. We
can use this fact as a basis for a different type of cluster finding algorithm. We
can maximize the T} in equation 5.21 over all possible partitions of n particles.
We then must use some criteria which cuts the procedure off. This forms the
basis of the method called normicity of A. Backer[73]. The difference between
similarity and normicity is the different algorithm for deciding what particles
belong to which clusters.

Similarity works because the partition which maximizes T} is for the most
part the same that maximizes D;;. Similarity and normicity will yield the same
results if we use only the fastest particles. The only difference will come in
assigning low momentum particles. But we must limit the number of possible

partitions to maximize T} if we use the normicity method. For instance, the

number of possible classes to partition N particles into three jets is given by the
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equation[75]

SO = -;-(3’“1 +1)—2N1, (5.22)

This number grows rather rapidly with N. As an example consider N = 10 and
N = 12, Then the number of classes is given by ng) = 9330, and SS) = 86526.
Hence we must confine the number of particles considered in order to maximize
Ty. Typically one only takes the fastest F' (an integer constant) particles and
maximizes T; in normicity. We lose very little information by considering the
fastest particles because the fastest particles carry most of the information about
the primary parton. As long as F is chosen to be somewhat larger_ than the
maximum number of primary partons possible in an event, we will find all ﬁossible
jets. The typical value of F is eight.

The procedure for actually assigning particles to clusters with the similarity
method begins by considering only F particles in equation 5.21. We then consider
each of the particles as a jet and compute the multicity for ¥ = F jets. We

then compute a similarity matrix Sp with entries given by D;;. We search this

h th

max
i

similarity matrix for the maximum entry D We merge the 8 and J

clusters. The merged clusters now define a new cluster, 0. We form a new

)

similarity matrix, Sg . The similarity of the new cluster o to a cluster [ is

defined as

DY) = Min (Dy, D;) » (5.23)

where ! # i and [ # j. The rest of the entries in the new similarity matrix are

unchanged from the unreduced matrix,
im =Dim Lbm#iory.
The multicity Tx—1 is now computed. We define Dy, as

Di=T.~Ti:. (5.24)
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Recalling that Ty_; < Ty because of the triangle inequality, we see that Dy > 0.

We continue to merge the closest two clusters in similarity until
Tk Z T,fnln and Dk Z Dinln

where TR and DD are constants.

The rest of the particles not used in jet finding, are assigned to clusters by an
iterative procedure described by A. Backer[73]. A slow particle is first assigned
to the closest jet. This determines a new direction for each of the jets. We now
recalculate the angle between each of the slow particles and every jet. If the
angle betwéen this slow particle and the various jets was not minimum for the
jet the particle had been assigned, we reassign the particle to the jet which did
have the minimum angle and repeat the procedure. We continue until all of the
slow particles are at a minimum angle to the jet to which they were assigned.

Monte Carlo simulations showed that setting F' to eight gave reasonable re-
sults. Next we assume that we will never see greater than five jets. We set the
constants T,fnin to 0.999 and kain to 0.1 for k = 6,7 and 8 to turn off finding
greater than five jets. We plot the number of jets found versus the number of pri-
mary partons produced by the LUND Monte Carlo with the detector-simulated
by TPCLUND for a variety of TR and DN, We then optimize the remain-
ing constants Tgnin and D{nin by maximizing our efficiency and minimizing the
confusion of finding each of k < 5 jets which originated from k partons.

We also required the aplanarity of an event to be less than 0.1. Momen-
tum conservation dictates that the three primary partons should lie in a plane.
Aplanarity measures how much an event deviates from planarity . Finally, if the

visible energy of the cluster

218
i€5m |
is less than 500 MeV/c, we redistributed the particles in this cluster to other

clusters by the same procedure used to assign slow particles to clusters.
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Table 5.2 shows in detail the number of jets found as a function of different
numbers of primary partons. We used the LUND Monte Carlo generator as tuned

by J. W. Gary[39] and used TPCLUND to simulate the detector. Photons were

~also used in the jet finding algorithm.

Number
Number Partons Generated
Jets Found 2 3 4 Total
P, > 500 MeV/c
1 273 878 40| 1191
2 5741 | 28521 | 2581 | 36848
3 212 | 5047 | 1136 | 6395
4 63 833 | 290 | 1186
5 6| 93| 30| 120
P,s > 1.5 GeV/c
1 771 3180 227 | 4178
2 5409 | 28425 | 2758 | 36952
3 64| 3699 | 989 | 4752
4 9 129 111 249
5 0 3 2 )

Table 5.2: Number of Jets found as a function of Number of Partons Generated .
We used the LUND Monte Carlo event generator and particles were tracked thru
the detector with the TPCLUND detector simulator. Out of 80000 hadronic
events generated with LUND, 52140 events passed thru the hadronic event cuts.

Table 5.2 shows that most of the events had three initial partons. This is
because most events have a quark, anti—quark and a soft gluon. However, most
of the three jet events found by the similarity cluster method originated from -
events with three initial partons. Our signal for three jet events with three
initial partons to noise of three jet events with two, four or more initial partons
is
5047/1348 = 3.74 500 MeV/c cut
3699/1053 = 3.51 1.5 GeV/c cut
This is very similar to the results reported by K. Lanius[74]. We list in Table 5.3

Signal to Noise = {
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the results of running the jet finder on experimental data.

Hadronic Number of Jets Found

Experiment Candidates | 0 1 2 3 4 | 5
P,;; > 500 MeV/c

E1l1 11006 11 192 | 7874 (1200 | 234 | 34

E12 15056 2| 345110436 | 1649 | 344 | 34

Ell1 +12 26062 3| 537 | 18310 | 2849 [ 578 | 68

lZE62 1 26076 | 6 I 596 I 18424 [3198 T593 | 65
P, > 1.5 GeV/c

E11 11006 25| 678 T8IT| 965 92| 2

Ei2 15056 80 | 1175 | 10465 | 1311 {117 7

E114+12 26062 105 | 1853 | 18362 | 2276 | 209 | 9

[ %E62 ] 26076 | 158 [ 2OSQT 18476 | 2376 l 125 ] 3 I

Table 5.3: List of number of Jet candidates for experiments 11 and 12. The “0”
column is the number of unclassified events. We use only one half of the Monte
Carlo data available for this comparison since the entire Monte Carlo data set has
about twice the number of hadronic events. Note that the Monte Carlo agrees
with the Data to better than 10%. .

Finally, figures 5.12a, b and ¢ show the angular resolution for determining the .
direction of the primary partons in three jet events. This plot was made using the
LUND generator with the detector-simulated by the TPCLUND Monte Carlo.
We used only events wheré the number of jets found was the same as the number
of primary partons in the event (in this case 3). We then computed the jet
energies under the assumption that each quark is massless and the annihilation
occurs in a center of mass frame. at rest with respect to the detector. The Energy

of the ith jet is given by the expression
E; = Ecmai/(a1 + az + a3) (5.25)
where Ecm is the center of mass energy of the interaction,

ay = sin(¢(3) - ¢(2)) ,
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Figure 5.12: Angular resolution for each of the jets found in a 3 jet event. Figure
a, 1s the highest energy jet 1, b is for jet 2 and c is for the lowest energy jet 3.
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Figure 5.13: Energy resolution for each of the jets found in a 3 jet event. Figure
a, is the highest energy jet 1, b is for jet 2 and c is for the lowest energy jct 3.




137

a; = sin(¢® —¢®),

a; = sin(¢? - ¢W),

and ¢() is angle of the jet ¢ in the event plane. Note that since we také the
difference of the angles between the jets; the axis .in the. event plane by which
we deﬁne‘ the angle can be chosen arbitrarily. The jets are then ordered by their
energy, i.e. F3 < E, < F,. Figure 5.12a is the angular resolution of jet 1, b jet
2 and c jet 3.

The corresponding energy resolution plots can be found in ﬁgures 5.13a, b
and c. We can see that the resolution is'not symmetric about zero resolution.
There is a bias towards events whése generated pafton eneréy_ was lesé than the
energy determined by equation 5.25. This is because of initial state radiation,
i.e. the electron and/or the positron can radiate a photon before the electron
and positron annihilate. This lowers the center of mass energy of this particular
annihilation so the partons are produced with less energy. Also the assumption
that the center of mass system is at rest in the laboratory reference frame of the
detector is no longer true. Hence equation 5.25 is no longer valid. Happily this
is a small effect and we can correct for it by use of the Monte Carlo. We use
the prescription of Berends and Kleiss[76] to generate. events with initial state
radiation in the LUND and TPCLUND Monte Carlos. This prescription is in
fact what generated the bias we observe in these energy resolution plots.

Table 5.4 lists the angular and energy resolutions for each of the three jets.
The table was constructed by using events where the number of jets found
equalled the number of initial partons (in this case 3). The resolution only
quotes the gaussian central region of each plot and cuts out the initial state ra-
diation tail. Notice that the lowest energy jet has a factor of two worse angular

and energy resolution than the highest energy jet.



138

The table also lists the resolutions for both the LUND évent generator and the
LUND event generator with the detector simulation TPCLUND. We notice that
a “perfect” detector would improve the energy resolutions but not bring those
resolutions to zero uncertainty. This is because we cannot always correctly assign
each track to a jet. This problem is almost entirely caused by low (<~ 1 GeV)

particles.

Angular Energy
Monte Carlo Jet Resolution Resolution

8.68°+0.25° | 6.83+0.18%
9.65° £0.29° | 6.73 £0.20%
21.91° £ 0.83° | 19.29 + 0.69%

4.73°+0.13° | 4.35+0.12%
6.14°+0.17° | 7.46 £0.21%
16.49° £+ 0.61° | 12.28 +0.35%

LUND + TPCLUND

LUND only

OB e N =

Table 5.4: List of Angular and Energy resolutions of 3 jet events. LUND only
table was constructed by using all the tracks generated by the LUND event
generator, + TPCLUND used only particles which the simulation of the detector
found as tracks. See text for further information.
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Chapter 6

Unfolding the TPC - The
Analysis Method

As described in previous chapters, the TPC is an excellent detector for measuring
momentum and energy loss simultaneously. As we see in figure 5.7 the dE/dx
vs Inp curve shows rather narrow bands corresponding to charged electrons,
muons, pions, kaons and protons e*, u*, 7%, K* and p,p. We will try to use
these excellent sepérations to solve the following problem:

Given the underlying spectra (Number of particles vs In p) for the different

charged particle species, what are we most likely to observe in the TPC?
We can invert this question:

Given the observed dE/dz vs Inp scatter plot observed in the TPC, what

are the most likely underlying spectra for e, p*, n¥, K* and p,p?

6.1 The Mathematical formulation of the prob-
lem

Let us assume the underlying spectrum is given by Ni(p) where kis e, p, m, K
and protons, and p is the momentum. Then the most likely number-of particles

observed in the TPC at energy loss d’ and momentum p’ is given by

Erc(d,p) = 3 Npr/ Pn(Npr, Ni(p)) Proby (p — d',p)
J |

kprr
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= Z/Pmbk (p—d,p) x
k p

>_ Npr Pn(N,r, Ni(p)) ‘ .(6.1)
Ny

where Py(Np,, Ni(p)) is the probability of producing N,, particles where we
expect Ni(p), Prob (p — d',p’) is the probability of a particle of momentum p
being measured at momentum p’ and truncated mean energy loss d'. We account
for fluctuations in the number of particles produced at at each momentum by

including the term Pn(Nyr, Ni(p))[77]. However

>~ Nor Pr(Npr, Ni(p))
Npr

is just the expectation value of N,,, which is Nx(p). The equation then becomes:
Brpc(d,p) =Y / Ni(p)Proby (p — d',p'). (6.2)
kop

Clearly the heart of the problem lies in determining this probability. For instance,
if the measurement errors were gaussianly distributed.and the average truncated

mean as a function of momentum is given by the function Tr(p/massi) then

Prob (p — d', p’) would be:

1
\/2mo?

1

2
2ro}

Prob, (p —» d,p') = exp~ PPV’ /205

exp~(Tr(p/mase)=d')?/20} (6.3)

where o, is the momentum measurement width and o4 is the truncated mean
measurement width.

Additionally, we must consider the problem of binning of the scatter plot. We
need to know the probability of a particle of generated momentum bin ¢ being
measured in momentum bin ¢’ and truncated mean bin j’. This probability is

given by
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exp (p p,)2/20'

Proby (i — i'j') = / \/—2?"—2 : /

p€Bin+t Wad Bin ¢/ Bin j’
X exp ~(Tr(p/massk)— d;')zlza" dp,v dd;‘,
/ / dp . - (6.4)
p€Bini

The next step is to determine the actual spectrum Ni(p). Let Etpc(j’,7’) be

the most likely contents of scatter plot bin j’, 7’

where j’ is the energy loss bin
and ¢’ is the bin for the measured momentum of the particle. We must compare
this estimated contents to the actual observed contents Orpc(j’,7'). We note
that Poisson statistics would give Poisson(N, u) = uNe ™ /N! as the probability

to observe N particles when we expect p particles. Therefore, we define the

likelihood for the TPC observation to be[78]

L= [] Poisson(Orpc(i'si'), Erpc(i,i')). (6.5)

L,
Bins j/,4/

The log likelihood then becomes

lnﬁ' = E In Poisson(OTpc(j',i'),ETpc(j', Z,))
Bins j',4'
= >  (Orpc(j,7')In ETPC(]' i') — ETPC(J', i'))
Bins j’,¢’
— Z anTPC(J ? )' : (66)
Bins j/,¢’ .

We now maximize the likelihood by varying Ni(p) which changes Etpc(j’,%').
Notice however that Y gins; v In Orpc(j’,¢')! is a constant given a particular ob-
servation. Therefore we can define a new likelihood function |
L= 3 (Owolf,i)In Breo(i’,{) - Brec(i,{)).  (67)
Bins j,i’
The result of maximizing this function will be no different from the result of

maximizing In £’.
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Finally, to connect the value of InL to x?, assume the bin contents were
gaussianly distributed about the most likely contents of bin j’,¢' . Then the

probability of observing Orpc(j’,4') for a particular bin j’,¢' is given by

Prob(Otec(i',i"), Brpo(j's 1)) = exp™(OTpel)=Brecl /s,

X constant. (6.8)

' Defining the log likelihood as we did above and dropping the irrelevant constants,
we obtain [79]

ne = % (—(OTpc(j',z");ETpc(j',z"))z)
Bins j',i! 205 :

-X. | | (6.9)

Since this relation is only true for gaussian statistics, it is the definition for pseudo
x2. Nevertheless, we shall use this relation to get a feeling for how good a fit we

have.

6.2 Testing Unfolding

These are several problerris in unfolding TPC data:

1. The measurement errors in momentum and dE/dz are not constant. The

measurement error in momentum, o,, varies as

ap(o'co;, Outz) — \/(Uuw P)? + (0con/B)? _ ‘ (6.10)

and the measurement error in dE/dz, 04, is given by the formula

04 = Opin X % / (dE/d.'B)mm (611)

where o, is the vertex momentum measurement error, 0., is the multi-
ple scattering error and o i, is the error in measuring dE /dz at minimum
jonization. Note that the dimension of o, is 1/ GeV/c and o, is dimen-

sionless.



143

2. There are regions of the dE/dz vs Inp scatter plot where the particles are

ambiguously identified. These regions are called cross over regions.

3. Tr(n) is a complicated function of n = p/mass. In the region of the Energy
loss curve that falls as 1/3?, this function is a very steeply falling curve.
Once the curve reaches minimum ionization it rises slowly to the relativistic
plateau. This implies we need a way of dividing the curve into these two

different regions.

We conclude that it would be useful to explore what are the limitations on
unfolding TPC data. We do this in a two step process.

The first step is to create a toy model. This rather simple model is used
to understand the basic manner in which unfolding works and to derive some
information on systematic errors. The next step is to use the LUND fragmen-
tation model. The generated events are then rﬁn thru a detector simulation
(TPCLUND) which produces an expected dE/dz vs Inp scatter plot. We then
fit this plot and compare our answer to the actual spectra of particles LUND
generated. This determines our systematic error in using this method to analyze
data.

Finally, we analyze data observed in the TPC and determine the best param-

eterization possible.

6.2.1 Toy Model for Unfolding the TPC

To explore how good an analytic model we need to represent TPC data, let us
eliminate some of the complications we will observe in the real data. First, let
us have only one charged particle. Second, let us make the truncated mean as a

function of z a linear function

y=Tr(z) = Az —z0)+B.
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Finally, let the spectrum Ny, () be a linear function:

L (C(z —z0) + D) z > o
0 (6.12)

T < Zg

Nuofe) = {

where L, C and D are all non—negative constants. We now introduce the dimen-
sionless variable px = p/(1.0 GeV/c + ¢p). This variable has the following nice
property:

ép 1
. pl1l0GeV/c+cp

Ops = 6lnpx =

vt 1 |
= Ucou\/(: 2 p)? + FE/(LO GeV/c + cp) (6.13)
If we set ¢ = Oyiz/0cou, then in the limit of large p,
cp :
61 ~x Ocou—— = Ocou- .
np* & 0. il (6.14)

This means at high momentum, In p* has an approximately constant measure-
ment error[80]. Hence, we set 2 = Inp* and y = dE/dz. The measurement error
in y will be given by equation 6.11.

The following exercise was performed:

o Let

R= j_ ; Noy(t)dt / /_ ": Ny (t)dt

where R is a random number and maz is the maximum in Inp* that we
will generate. Since Ny, (t) is a simple linear function, R =.F(z) can
be inverted : = F~1(R). Figure 6.1 shows what was generated for 10

experiments where

Nioy(z) = 20L (z + 1.4)

where L = 15.0, and maz = 0.4. The histogram fits a line,

' Ni¥(z) =L (Cy(z + 1.4) + Dy)
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Figure 6.1: Ny, (z) generated

where C; = 19.28 + 0.40 and D; = 0.07 & 0.70. The x? per degree of
freedom (x2/DOF) is 24.3/43 if we compare Ny, (z) with the fit of the
line. This x?/DOF indicates that What we actually generate is consisteﬁt
with the line we wish to generate. If there were problems with the random

number generator, this would not be the case.

We choose a measured momentum and dE/dz. One can do this by gen-
erating two random numbers between 0 and 1, Ri and R,. Let R =
—2In(1 — Ry) and ¢ = 27 R;. Then we can generate two gaussianly dis-

tributed random numbers:

(Inp*)m, = (Inpx)y+ opRcos¢

(dE/dz), = Tr((Inp),)+ caRsing . (6.15)

where the subscripts m and g refer to “measured” and generated quanti-
ties respectively. “Measured” in this case is what we generate to simulate

gaussian measurement errors.
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Figure 6.2: Projections of the generated “measured” quantities

-~

Figure 6.2 shows two projections. Figure 6.2a shows the projection onto the

y axis of

(dE/dz)r = (dE/dT)measured/(AE[dT)capected VS Inp * .

where (dE/dz)ezpected = TT((In p*)m). If one generates the quantities correctly,
then one would expect ((dE/dz)r) to be 1.0 and o(4g/is)y to be Tmin = 0.039.
The gaussian fit shown is .

((dE/dz)r) = '1.0002 + 0.0006
a(dE/dm)R = 0.03855 =+ 0.00040.

To construct a model for this generated data, we begin with equation 5.4.
Notice that this equation for Proby (¢ — ¢'j')decomposes into Prob(P)i(i — ') X
Prob(E)r(i — j') if and only if Tr(n) is a constant or varies slowly over the
momentum bin i. We will assume that this latter condition is met and set T'r (1)
to the value corresponding to 7 at the middle of momentum bin . We store into

two arrays, Smearp(z,i') and Smearg(z, j'), the decomposed probabilities so

Prob; (i — 1'') = Smearp(s,7') Smearg(, j') . (6.16)
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Figure 6.3: N, (z) generated, —1.36 < z < —0.04.

The final ingredient in the model is defining which bins in dE/dz vs lnpx
space are used in determining the pseudo x2. First of all, we cannot get too close
to the edges. Notice that in the projection onto the lnp* axis of the generated
data in figure 6.2a there is a drop off near In px = maz = 0.4. This is because we
don’t generate data for Inp+ > 0.4. If we did generate data beyond maz, then
“particles” generated above maz would feed down into lower momentum bins
because of measurement error and hence would fill in this drop off. However,
we cannot make an infinite grid in order 'to compute Prob; (i — ¢'5') and so we
must put bounds on z and y over which we compute the smearing. In order to
be able to use the maximum amount of data, one should set the high z bound
to maz and only use bins for x? where £ <~ 0.2. Next we notice that over
the 10 experiments the fitted C parameter to figure 6.1 is a bit over a standard
deviation low. If however we only fit to z < —0.04, then the fitted value for
C = 19.77 £ .55, well within errors of 20.0 (see figure 6.3). Finally when we get

too far from the T'r(n) vs In px curve, there is no reason to compute ~incaring to
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it. Hence only for bins where
Prob (i — 1'5") > smear_min

do we smear or use the bin in the pseudo x? calculation. Smear_min is a just
small constant on the order of 0.1% to 1%.

Table 6.1 summarizes the maximum likelihood fit of the toy model in for
10 different generated “experiments” using this model'. The x2,,, columns are
not the pseudo x?’s as defined by equations 6.6 and 6.9; rather it is a direct

comparison between Ntf‘,i;(ln p*) and Nyoy(lnpx). It was defined as

NiYz) - N (x')]2
2 toy\ Ve toy\ ¥
comp = § : 3 6.17
Xeomp bins [ ANt{)yt(wt) ( )

where'x,- refers to the value of z in the middle of the i*® bin and ANtfo’;(x;) was

determined using the full covariance matrix V[78]:

L AN (+)dt - Fit 4y dy
AN{’:;(‘T,) — Z / toy( ) an Lini 6Nt0y( )

Bini OP, P, APnAP,

Py=P/* k=1,2

m,n=1,2

(6.18)

th, nth entry of covariance matrix V, P, = C and P; =

where V,,.,, is the m
D (see 6.12). Also x2,.,5; is the same as x2,,, except that only bins where
Nioy(z) > 1. are used.
As shown in table 6.1, the average of x2,,,,’s is respectable. Also the average
of the Cy;; and Dy;; are well within errors of the generation coefficients C' = 20
and D = 0. The likelihood fit is also reasonably unbiased. This can be seen from
the fact that [ Nﬁ,’;"emted and [ N{:,'; are ~ —0.1% different in each experiment
(see the following table). |
- We also observe that the systematic error (o,y,) is much smaller that the

statistical error. When z = —1.15, the number of particles in an z bin is 2.4.

1Experirvnent number 4 seems to be a statistical aberration. If one throws out experiments 8
and 4, the best and worst comparisons to Nyoy respectively, the average of the remaining x2/DOF
drops from 1.80 to 1.29.
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test |  Cri Dyt Comp | Xoomps1 | X2 | x5 s,
11204+£2.0 0.3+1.1 | 19.8 18.3 413.11 | 412.55
21181+1.9 09+1.1| 26.8 16.9 382.14 | 381.12
3(205+20 ] -10+1.1| 67.3 59.5 400.04 | 398.75
4(16.1+1.8 25+1.11 2424 160.0 | 401.57 | 395.39
5(1225+2071-1.2+1.11} 37.1 28.9 371.48 | 369.88
6(21.1+20 ] -0.1+1.11} 13.5 13.5 405.79 | 405.09
71216+20|—-154+1.1} 914 81.0 431.82 | 429.98
8119.7+1.9 0.34+1.1 3.8 2.9 381.48 | 381.41
91{2214+201]-09+1.11 22.9 17.2 412.86 | 411.71

10122.5+20| -144+1.1] 51.8 41.9 403.45 | 401.68

Ave | 20528 | —02+16] 57.7 | 440 |400.37 ] 398.76

Aveg | 19.5 +2.9 0.3+1.8| 78.7 56.7 393.67 | 391.54

Table 6.1: Table of 10 experiments with 0., = 0.06,04 = 0.039. Aves is the
average of the first 5 experiments.

test J Gen J Fit

1 288 287.8

2 267 266.8

3 265 264.5

4 272 271.7

5 288 287.7

6 291 290.2

7 270 269.7

8 278 277.6

9 288 287.8

10 285 284.7
Ave | 279.2£10.0 | 2789+ 9.9
Aves | 276.0 £ 10.1 | 275.7 + 10.1

Table 6.2: Number of particles generated and the total number of particles fit for
10 experiments with 0., = 0.06, 04 = 0.039. This shows that the fit is reasonably
unbiased.
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This means the statistical error (Ostat) is

1
Ostat = \72=4 = 58%

for z < —1.15. At z = 0, the number of particles in an z bin is 16.8. This implies

that
1

v16.8

for —1.15 < z < 0.. We plot in ﬁgufe 6.4a,b the projection of ASi,y = (N,fo’yt -

= 24%

Ostat 2

Nioy)/Nioy Vs z scattet plot onto the AS,,, axis. Figure 6.4a is the projection
onto the Sy, axis for £ < —1.15 and figure 6.4b is the projection onto the Stoy
axis for z > —1.15. We equate the systematic error for the toy model to the

standard deviation of Sy,, in each of the two projections. We find

, ] BEU% z<-115
=) 6.0+£03% «>-1.15

.Hence for £ < —1.15, 05ys ~ Ostat and for —1.15 < z < 0, T4, is a factor
of four larger than the o,,;. When we double theb statistics for the generated
experiment, we expect the statistical error to decrease by the square root of 2.
But we see in table 6.3 that the systematic error also drops by the same factor.
This means we could expect in real data this technique will yielci reasonable
systematic errors. These results merely show the toy model is self‘ consistent.
What happens if our model parameters (0cou, 04, ¥ = A(z — o) + B, etc) are
incorrect? We begin by regenerating the first five experiments. But then we
determine Prob(P)(: — ') and Prob(E)(i — j') with incorrect values of o
and gpin. Table 6.3 shows the average x2imy,, X:s{’ittdo and Osys Over the five

experiments for various values of 0.5, and onin.

Near the best values in parameter space, X2,.,4, €quals
(P, — P})? /o, (6.19)

in the limit of X2,.,4, being a function only of P;. If we fit the different x*'s

as a function of 0., and oni, We estimate 0., = 0.065 £ 0.011 and omin =



151

g sop b)

[P]

= u

St

= 0k

Qo -

[=]

,q_) 20

_g u

= 10

~ N Lol 11
) 0 -.8 0 8
fit

(Ntoy toy )/Ntoy

Figure 6.4: Figure a) is the projection onto AS,, axis for z < —1.15 and b) is

the projection onto AS,,, axis for ¢ > —1.15

Osys (%)

Par Value X2 xz,f;',fdo Inp<~-1.15 Inp>-1.15
) 0.050 395.42 + 15.89 | 393.27+15.70 | 47.5+5.9 6.4+04
0.055 394.35+17.21 1392.224+17.03 | 48.0+6.0 6.5+ 04
0.060 393.67+16.63 | 391.54+16.50 | 43.3+ 3.8 6.0+ 0.3
Ocou 0.065 393.42+16.02(391.20 +15.89} 45.9+5.8 6.7+0.4
0.070 393.61 4+ 15.38 | 391.47+15.28 | 46.3%+5.9 6.8+ 0.4
0.075 394.26 £ 13.17 1 392.11 +£13.12| 46.6 +£5.9 6.9+0.4
0.080 395.37 £ 12.58 | 393.21 +£12.56 | 47.1+6.0 6.9+0.4
0.035 401.70 + 19.51 | 399.47 £ 18.99 | 46.9+6.0 6.7+ 0.4
0.037 396.47 £ 17.00 [ 394.36 +16.65 | 46.0+ 5.8 6.6 +0.4
0.039 393.67 1+ 16.63 | 391.54 +16.50 | 43.3 £3.8 6.0+0.3
Omin 0.041 392.774+13.12{390.67+13.20 | 45.0+5.7 | 6.6+04
0.043 393.524+11.71{391.45+12.03 | 44.8+5.7 6.6+ 0.4
0.045 395.67 £ 10.60 | 393.62 +11.71 | 44.6 £5.7 6.6+ 0.4
0.047 399.02+ 9.80 | 396.96 +£ 10.62 | 44.7+ 5.7 6.7+ 04

[Double Statistics | 488.45 £ 13.51 | 457.02 £ 13.61 ] 37.2446 | 42£03 |

Table 6.3: Average of first 5 experiments, vary 0., and ouin. Double Statistics
is L = 30, 0oy = 0.06 and omin = 0.039 '
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Figure 6.5: Fit of x2mt  vs opmin.

pseudo

0.041240.0022. Table 6.4 summarizes fitting x3,c,q, by this method and figure 6.5

gives an example of one of the fits. Notice we get the same fitted parameters if

{rs ) o« ey . o 2 fit
we use x2,%, from our initial spectrum or we use the minimum xp,{,:‘do found

by fitting the best spectrum. Recall that we generated our distributions with
Oiou = 0.06 Omin = 0.039. Hence our determinations of these parameters using
equation 6.19 are systematically high. In fact our determination of oy, is about

1o high.

Fitted Parameters
From Ocou Omin
X2t 10065 £ 0.011 | 0.0412 = 0.0022
x2 5 10.065+ 0.011 | 0.0412 £ 0.0022

pseudo

Table 6.4: Fitting x2,.,4, as a function of 0., and G pmis. Initial x2,,.4, is computed
g pseudo p

by setting Nt{,"J to Ny generated. Fit X34, Was the minimum x? found using
the CERN program MINUIT. -
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To understand this systematic difference, we must consider the assumption
under which we constructed the smearing probabilities. It was assumed that
Tr(n) varies slowly over the Inp* bin and hence one can decompose the prob-v
ability for smearing into a product of a momentum smear and a dE/dr smear.

But over a momentum bin dE /dz changes by
A(dE/dz) = AA(lnpx) = —4.33 x 0.04 = —0.16 .

This means that percentage change in dE/dz is —0.16/(~ 15) or about 1% in a
typical z bin for the toy model.

We can generate experiments with dE/dz = constant to check this effect.
If dE/dx = constant, then one can strictly decompose the smearing probability
as in equation 5.16. Unfortunately, we cannot tell anything about the smearing
along the Inp* (z) axis if dE/dz(y) = constant. Also we don’t expect any
difference in the fit for different o;’s because the only important variable is the
measurement error along the x axis. Nevertheless, the pseudo x? should be
minimum for o4 = 0.039, the generated measurement error along the y axis.

We can see in table 6.5 that this is indeed the case. We plot x2,..4, Vs 04
in figure 6.6. We estimate that o4 = 0.0399 £ 0.0017 using equation 6.19. This
means fhat the systematic error dropped by a factor of two by moving to a more
correct analytic model. |

We surmise from this exercise that there is a systematic error due to inability
to make a perfect analytic model. Conversely, we have to do the best job we can

in constructing this analytic model.

6.2.2 Determining.parameteré for analytic method

In general, how can we determine the resolution parameters of our analytic
model? We can measure quantities like the multiple scattering error (o), the

vertex momentum error (0, ) and the dE/dr measurement error (omin) etc by
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) . Uaya(%)
Omin * X2iE X2l |lnp<-115|lnp>1.15
0.035 | 350.4 + 39.1 | 348.2 + 37.8 31.1+4.0 6.94+04
0.037 | 344.4 + 35.1 | 342.2 + 33.7 31.14+4.0 6.94+04
0.039 | 341.9+ 35.6 | 339.6 + 33.9 31.14+4.0 6.91+0.4
0.041 | 342.2 4+ 29.0 | 340.0 £ 27.5 31.1 +4.0 6.91+0.4
0.043 | 344.8 +26.7 | 342.5 + 25.1 31.1+4.0 6.91+04
0.045 | 349.1 £ 24.8 | 346.9 + 23.1 31.14+4.0 6.94+0.4
0.047 | 3564.9+23.2 | 3526 +21.5 31.14+4.0 6.9+04

Table 6.5: Average of first five experiments with dE/dz = 15 and varying opmin

N < 20k
16 |
12 F

—
N
T

2.4 | 3.2 4.0 4.8 5.6
C i (%0)

Figure 6.6: Plot of x2,.,4, vs 04 for dE/dz =15
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other methods (See section 5.3). But all of these methods use representations
of the data which diﬁ'er from this 2-dimensional analytic‘represente,tion. In fact
the way we measure the value of o, depends slightly on the values ofv Ttz and
Omin and vice versa. We cannot determine these parameters simultaneously.
Also, the various measuremeﬁts contain different systematic errors. For in-
stance, 0., is determined by Bhabha scattering (e* e~ — e* ¢™) and so does not
‘contain any systematics due to the multi-track environment of hadronic events.
Hence it is useful to determine the best values of the parameters of the analytic
model using the analytic model itself if possible.

One possible method would be to create the equiva.lent histograms to the his-
‘tograms one forms from the data which measure the quantities experimentally. -

For example, consider o.,. As the reader will see in section 6.3, we deter-

mine Ocou by plOttlng 1n(pmea.su.rezd/ pea:pected) V8 (dE/ dw)measured where DPexpected =

Tr~Y((dE/dz)measured)- Tr~'(dE/dz) is the inverse of the function Tr(p), ie.
Tr-! determines the expected momentum for a given energy loss. If one mea-
sures the width in momentum in the 1/3? region of the plot, one measures the
momentum measurement error and hence principally o... (See figure 6.11).

But we can form the same plot in the analytic model because we predict the
weight of each entry in the dE/dz vs Inp plot (see figure 5.7). This plot can
obviously serve as a check but there is a.far more powerful method which can
also determine the best global parameters simultaneously.

Let us fix Ni(p) and vary the parameters of the analytic model. Near the

best values for the parameters of the model[78,79],

n (PM - PP)? (PM - POY(PM - P})

=1 i<y

where P, is the ;th parameter, P? is the value of this parameter which minimizes

x%, PM is the M th cet of parameters, X2(PM,..., PM) is the value of x? which
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h

corresponds to this set of parameters, and Cj; is the correlation between the it
-th

and ;" parameters.

Gi§¢n different sets of parameters and x?, one could determine the n+ ﬁ(ﬁ;—ll-{-
1 different unknowns in equation 6.20 or one could fit the best curve in parameter
space v;/hich best describes the set of x?. We choose the later method because the
X?fs are only parabolic near the minimum in x? space and hence any determina-
tion of the parameters by inversion is likely to be faulty. Also fitting circumvents
the problem of extracting the P?’s. If one inverfs, one must determine the coef-

ficients of

Y = A1P12+"'+AnP12+B12P1P2+"'+Bn—1nPn—1Pn

+Ci P+ -+ CoPa+ D. (6.21)

As one can see, in order to determine the P?’s, one must complete the square of

this equation.

We do pay a price for fitting. We must attach an error to each data point in
order to fit a hyperparabolic curve to a set of points. But attaching an error to a
x%is an ﬁnsatisfactory if not a meaningless dperatioﬁ. However we operationally
handled this problem by attaching a small error (1.0) to each x® and fitting a
hyperparabolic curve. We then reattached a smaller error (0.1) to each x? and
refitted this set of points. If the fits didn’t differ by much, the solution was called

stable and we used the values found by the fit for the parameters.

If the solution was not stable, we examined the set of x*’s. Usually a non-
stable solution meant that near some P?, the x? were not very parabolic. We

eliminated any trouble points and refit.
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6.3 Resolution

It is possible to determine the resolution parameters from the data by other
means beside thé 2-dimensional analytic representation. The important param-
eters which must be determined are the truncated mean measurement error o4,
multiple scattering error o.,,, and the vertex momentum measurement error
Outz. The following table shows the method by which each of these quantities

was measured.

o4 | Pions at minimum ionization

Ocou | Pions, Kaons and Protons in the 1 /B?
region of dE /dx vs Inp.

0y | Bhabha sample

6.3.1 Energy loss measurement error

We use a momentum band which straddles pions at minimum ionization in
the TPC in order to determine o4, the energy loss measurement error. It is
—0.8 < Inp £ —-0.6. In figure 5.7, we can see 2 bands which correspond to pi-
ons and electrons. The beginning of electron, kaon crossover also begins in this
momentum slice. We see there is a clear separation between the pions and the
electrons plus kaons.

Figure 6.7 shows the projection onto the y axis of R vs In p where

— (dE/dw)measure _ (dE/dx)
- (dE'/dx)gxpecte: - (dE/dx)g - (6.22)

Rm

and (dE/dz)f is the expected dE/dz for a pion with momentum p. We define

the energy loss resolution function as

1 —(Ry(pm)—Rp)?
Rg(Rk(pm),RM,O"R) = \/27&716 2oR } (623)
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Figure 6.7: Projection of dE/dr vs lnp onto the dE/dr axis for
—0.8<Inp < -0.6.

a)

[on)

&

o
T

600 [

400

Number of Tracks

- B
200 200
0 .8 — _1..0 . 1.2 0.8 1.0 1.2

L

(dE/dx)/(dE/dx)

Figure 6.8: Fit of R for pions at minimum ionization. Figure a uses the resolution
function R. Figure b uses the weighted sum over wires, the resolution fii1ion

R.
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where k is e*, u*, 7%, K* and p,p Ri(pm) is the expected Ry for a particle with
measured momentum p,, and o is the energy loss measurement error for R. In
Figure 6.8a we isolate a pion sample by requiring 0.8 < R < L1 Overplottéd
onto this plot is a gaussian fit to the above resolution function. The best it

values for the average of R and the measurement error of this quantity were

(R) = 0.99922 4 0.00050
or = 0.03730+ 0.00041

for experiment 11 (all relevant information about the different experiments are

shown in table 5.3). The measurement error o is made up of several components.

, 2 2
a.min2 dE/dx(p) (dE/dx)mm + AR + 012, i:;, ,

""E"R"'\l R Bl dz)g (@Ejdz)y T 12 (6.24)

where 0" is the measurement error of R at minimum ionization, o, is the
momentum resolution, AR is the variation of R over the momentum range
—0.8 < lnp < —0.6 and Ap is the momentum width of the of the momentum

range. The term N
AR
12

represents the contribution to the width due to the fact that the particles are
measured at a range of R’s. If one assumes the particles are equally distributed
over the R range, one can estimate this width by the standard deviation of a
square over the range. The term

,ATR
% AZp

represents the contribution to the width because dE/dx varies over the momen-
tum bin.

The most important term,

min2 AE/dz(p) (dE[/dx)min
* (dE/da)p (dE[de)g
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was derived by assuming the measurement error in dE /dz, scales according to
the square root of dE/dz[53]. To first order, the dE/dz resolution ~ 1/1/Ng
where N, is the number of electrons detected in the TPC. The scaling law holds

since dE/dz « N,. Table 6.6 summarizes 03" for all experiments and Monte

Carlos that we used.

Exper-
iment Centroid - 1 opin Tail=T  x?/DOF
E1l1 - —8.5+ 5.0 x 107* | 3.726 + 0.041 x 1072 1.0 2.73
—1.13+0.52 x 1073 | 3.864 3 0.050 x 1072 1.482 &+ 0.060 1.99
E12 —9.1+6.0 x 107* | 3.608 & 0.049 x 102 1.0 1.43
—1.024+ 0.61 x 10™3 | 3.704 &£ 0.057 x 102 | 1.447 £ 0.073 0.94
E1l+ [~1.094+0.32 x 1073 | 3.722 £ 0.027 x 10~ 1.0 4.85
E12 | -1.28+0.33 x 1073 | 3.884 4 0.033 x 10~% | 1.541 £ 0.036 1.96
E62 3.9+3.4x107%]3.759 4+ 0.028 x 1072 1.0 4.28
3.44+3.4x107*|3.95540.035 x 1072 | 1.569 + 0.038 1.57

Cut at 0.5%

E11 —7.54+5.0x 107% | 3.715 4 0.040 x 102 1.0 2.34
~1.134+0.52 x 102 | 3.813 £ 0.048 x 1072 | 1.417 + 0.060 1.75
E12 —9.4+4.5x107%[3.580 4 0.049 x 10~? 1.0 1.15
—1.06 + 0.61 x 1073 | 3.655 & 0.062 x 10~2% | 1.369 & 0.062 0.87
E11+ [ —1.08+0.33 x 1073 | 3.710 & 0.027 x 10~? 1.0 3.35
" E12 [ -1.21+£0.33 x 1073 | 3.808 £ 0.031 x 10~2 | 1.443 + 0.039 1.11
E62 3.84+3.4x107%[3.730 £ 0.027 x 10~ 1.0 ‘ 2.64
3.4+3.4x10"*|3.840 £0.037 x 1072 | 1.421 4 0.047 1.17

Table 6.6: Summary of dE/dz resolution for all experiments and Monte Carlos.
Please see text for explanation of results. Number of wires hit > 80, A < 60°.

Also we expect the dE/dz resolution to scale with the number of wires used
in determining the truncated mean. Figure 6.9 is a plot of the oz Vs Nyires Where
Nyires Was the number of wires used in the truncated mean for pions at minimum

ionization. The function which was overplotted was

mm(Nunres) = \/N 183 tet. (625)
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Figure 6.9: Variation of dE/dz resolution with Nyres in Experiment 11.

Experiment o3 c

- El1 3.009 £ 0.031 x 102 0.0+4.4x 1073
E12 2.964 + 0.087 x 10~2 8.8+4.2x 1078
E114E12 |2.61140.070 x 1072 | 1.72+0.15 x 1072
E62 2.903 £ 0.091 x 10~2 | 1.28 +0.29 x 102

Table 6.7: Summary of dE/dz resolution for all experiments and Monte Carlos.
This table lists the fitted variation in the dE/dz resolution vs Number of wires
hit. Number of wires hit > 30, A < 60°. -
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Table 6.7 summarizes the fits for this variation for all relevant experiments.
We can then define a new resolution function which is simply the weighted
sum over the number of wires used in the determination\of the truncated mean

times the resolution function for that number of wires:

R;(Rk(pm)7 RM) Sf) = Z W(Nwires)Rg(Rk(pm)a RM, Sf X a%in(Nwires)) .
Nyires
: (6.26)
The fit using this resolution function is shown in figure 6.8b. We maintained the

shape of 03" but allowed for an arbitrary scale factor Sy. This factor was fit to

be ~ 1.05 to 1.10. Table 6.8 gives the fits using this resolution function.

| Experiment Centroid - 1 Sy  Tail=T  x%*/DOF
Enl ~8.5+5.0x107*| 1.048+0.011 1.0 2.40
~1.134+0.52x 1073| 1.079+0.014 | 1.427 £ 0.065 1.98
E12 -1.28+0.43 x 107°| 1.024+0.010 1.0 1.92
—1.290+0.43 x 1073 | 1.054+0.011 | 1.474 £ 0.051 0.91
El114+E12 | -1.104+0.33 x 1072 | 1.0515 + 0.0076 1.0 ‘ 4.29
—1.27+0.33 x 1072 | 1.0924 £+ 0.0091 | 1.519 £ 0.038 2.08
E62 3.9+3.4x107*|1.0315 £ 0.0077 1.0 3.60
3.4+3.4x107*|1.0779 £ 0.0096 | 1.528 + 0.040 1.56

Cut at .5%
Ell —8.44+50x10"*| 1.041+£0.011 1.0 1.69
—-9.8+5.1x107*| 1.056+0.013 |1.299 & 0.072 1.51
E12 —1.28 +0.43 x 107® | 1.0203 £ 0.0096 1.0 1.45
~1.29+0.43 x 103 | 1.041+0.011 | 1.399 + 0.055 0.62
E11+E12 |-1.1140.33 x 1073 | 1.0268 £ 0.0074 1.0 2.44
- | =1.2140.33 x 1073 | 1.0490 £ 0.0087 | 1.392 + 0.043 1.11
E62 '3.8+3.4 x107*{1.0263 £ 0.0075 1.0 2.70
3.4+ 3.4x107*|1.0564 £+ 0.0099 | 1.423 £ 0.046 1.33

Table 6.8: Summary of dE/dz resolution for all experiments and Monte Car-
los using the variation of %" with number of wires hit. Note that in
general using the sum over wires improves the representation of the data.
Number of wires hit > 80, A < 60°.

If one examines the x?’s, we notice that resolution function R, gives a better
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representation of the data than R,. However it could be argued that neither

representation is particularly good. If we cut data where

JZ o By(Ri(pm), R, 0%™) < 05% , <0
IZ Ry(Ri(pm), Rasyop™) < 05% , >0 Vk=1...5

(or replace R, with R;) we find the x?/DOF drops from around ~ 2 to ~ 1 (see
figure 6.10a for R,, figure 6.10c for R, and table 6.6 fér the fits and summary
of this result). We conclude that while weighting a sum over the number of
wires produces an excellent representation of pions at minimum, there are still
problems at the order of one percent.

We can improve the representation -by adding a slight non-gaussian tail to

the resolution function. If we define
1 To e-@3?/2To)? _ —(=-F)*/2(c/T)? i
T -1 (z-o)

(and R') where T is a constant to be fit, we can include some of the behavior of

R(Z, x', o, T) =

(6.27)

the tails. If T equals 1 then R = R,. The results of fitting with this resolution
function are aiso found in table 6.6 and the plot for R can be found in figure 6.10b
and for R/, figure 6.10d. The different fitted T parameters are listed in the
column labeled Tail. We notice that the x2/DOF drop by about a factor of two
by including the “Tail”. Also, part of the “Tail” in R is due to a different number

of wires being hit all with different sigma’s.

6.3.2 Multiple Scattering Error

We can use a similar procedure to the one we used to determine the energy
loss measurement error, to determine the multiple scattering error, oo,. This is
because in the 1/4? region of the dE/dz vs In p plot, over small ranges in dE/dz,
there is a small variation in Inp. | |

" In analogy with equation 6.22, we define P as

P =lnpn/Tr-N((dE/d2)) . (6.28)
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Figure 6.10: Fit of R for pions at minimum ionization. Figures a and b use the
resolution function R. We add the slightly non-gaussian tail in figure b. Figures
¢ and d use the weighted sum over wires , resolution function R’. In figure d we
add the slight non—gaussian tail to R'.

expected
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where Tr;1((dE /dz)as) is the expected momentum for a pion of measured energy

loss (dE/dz)m[81]. We use the logarithm because

5pm = Pm \/(pm,a'vta:)2 + agou/ﬂz

by equation 6.10. In the limit of small measured momentum py,

a.
£ = Ucou/ﬂ

m

Hence AP will approximately be the same in the 1/32 région of the dE/dz plot
for different particles at the same dE/dz (same 8) 2.

The width op is in analogy with equation 6.24

AP A?P
— A2 2 -
op = J"” t T YR (6.29)
where
A?P
12

represents the addition to the width due to the finite bin width in P and
0 A2p .
e e
AE[dz
represents the contribution of the changing momenta over the dE/dz bin.
One should also notice that since dE/dz is solely a function of § = pm/m,
that the average of P over a dE/dz range should be m/m,. This follows directly
from

Tr>

1 _
r =N X My

But at the same energy loss, 7 is the same for all particle species. Hence the
centroid of the P distribution should be the same 5 multiplied by the mass of

the particle in question.

2 Actually, this approximation begins to break down for momenta appropriate for the 1/ 62 of
protons because p,, X g4z becomes large
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dE/dx KeV/cm | dE/dz KeV/cm Tr;Y(dE/dz) GeV
183 - 19.0 18.65 0.1544
19.0 - 20.0 19.50 0.1469
200 - 22.0 21.00 0.1363
22.0 - 240 23.00 0.1253
240 - 27.0 25.50 0.1147
27.0 - 30.0 28.50 0.1050

Table 6.9: List of dE/dx slices used for fitting o7

Figure 6.11a shows the scatter plot of P vs dE/dz for experiment 11. We see
the bands for 7%, K*, p,p along with a vertical band for e*. We only consider
dE/dz > 18.3, which effectively cuts away from the electron band. We take slices -
in dE /dz according to the following table. We then compute o# for each slice and
fit the set of them to the assumed variation of & with momentum. When fitting
the best 04 for each dE/dz slice, one must also allow the centroid to be different
from m/m,. Since the number of particles produced varies over the momentum
range corresponding to the dE/dz slice, the average dE/dz is not the average of
the low and high edges of the slice. This hleans the average momentum expected

for the pion will not be

T+~ ((dE/dz))

because we have calculated (dE/dz) by averaging the low and high edges of the
slice. We correct for this effect by allowing the centroid to be multiplied by a
factor close to 1.0. Typically this factor was in the range of .99 to 1.01. Another
reason why the centroid is not where we expected is that there is a systematic

error ~ 0.1% in inverting dE/dz.

As an example, table 6.10 is a compilation of the best fits for o4 in experiment
11. We plot the function op vs Tr~)(dE/dz) in figures 6.12a, b and c. Figure a

is for pions, b for kaons and ¢ for protons. Overplotted onto the kaon and proton
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Figure 6.12: 04 vs p experiment 11. a) pions, b) kaons, and c) protons.
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aé x 102

dE /dx Range ™ K P
18.3 — 19.0 9.27 + 0.65 85+1.2| 10.3+1.7
19.0 - 20.0 {10.3140.87 8.8+1.5 8.8+1.2
20.0 — 22.0 9.87+0.65(8.12+ 0.88 | 9.06 + 0.74
22.0 - 24.0 8.98 + 0.65 9.0+1.3]|8.144+0.77
24.0 - 27.0 104+1.2| 10.3+16| 10.3%+1.1
27.0 - 30.0 13.7+ 4.5 9.1+£1.5]|9.084+0.94

Table 6.10: Compilation of 04 in experiment 11.

Experiment oy, Ocou X 102 x2/DOF
El1 0.035 5.72 4 0.22 0.47
E12- 0.035 5.57+0.14 2.18

E11+E12 | 0.035 | 5.533 £ 0.093 1.49
E62 0.025 | 4.431 £+ 0.070 1.98

Table 6.11: Table of multiple scattering errors for all Experiments and Monte
Carlos. Number of wires hit > 80 and A\ < 60°.

plot is the best fit using kaon and proton data together. Pions were not included
because at these low momenta, there is appreciable 7 — u decay contamination.
Monte Carlo studies indicate that the effect on &,‘3 is between 7 and 14% of sigma
itself. We fixed 0,4, because we don’t quite have enough lever arm and statistics
to fit this parameter using this restricted range of momenta. Thereis a sﬁmma_ry

of this fit for all relevant experiments in table 6.11.

If we examine the fit to o4 in figure 6.13 for the Monte Carlo, we notice that
the form of o, is not correct. We correct o, to be the same form as the Monte
Carlo when we are analyziﬁg Monte Carlo data. We made this correction by

plotting

Apg = (pm(TPC) = pa(TPC))/ps(TPC)
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Figure 6.13: o2 vs Inp for Experiment 62 (TPCLUND Monte Carlo)

vs pg(TPC) where
pc(TPC) = pc(MC) — Pioss(pc(MC), my)

and pg(MC) is the Monte Carlo generated momentum and Pjos(pe(MC), mi)
is the expected mémentum loss of a particle of mass m going thru the material
in front of the TPC (see section 6.4.2 for a discussion of Py,,,). The sigma of this
- distribution is op/p=6ln p. |

We fit the best o7

J . and U.{t,—, using the form for o, given in equation 6.10.

Then we define a correction

n k |
Cor;(P) = (1 B ap(iifoluaz)t{]t\:)/p) (630)

Finally, we fit a polynomial, Polycor:, to the set of data points defined above

for each k € e, u, 7, K,protons. An example of a fit is in figure 6.14. WWhen we
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Figure 6.14: Fit of Polycor} for 4kG.

use the analytic method,

A*Inp = (1 — Polycorf) x -@;(—qﬁe;’a—”z)- (6.31)

where 0, and o, are parameters which are fit using the method of section 6.2.2

for Monte Carlo experiments.

6.3.3 Vertex Momentum Measurement Error

The last resolution parameter to be determined from the data is the vertex
momentum measurement error, d,;;. This parameter was measured by using
Bhabhas in the data. Howéver, the Monte Carlo allows us to generate a single
particle at a particular momentum for which the tracking of the detector can Be

simulated.

' Oyt In the Data

Bhabhas were selected by requiring
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e Two well measured showers conéistent with having been initiated by elec-
trons or photons. Details on what cuts a shower must pass to be considered
having been initiated by electromagnetic energy can be found elsewhere[46].
Note, however, that showers produced within 60mrad are merged together.
This is because of interactions of electrons or photons with the Outer Drift
Chamber(ODC) or the magnet coil. On average these interactions spread

out an electromagnetic shower by about this much.

o We required the electrons to be back to back.

AX < 3 milliradians(mr)
Ap < 6mr
A < 45°

The first two cuts eliminate background from electrons which bremsstrah-
lunged. The cut on the dip angle insures that the electrons were in the

Hexagonal Calorimeter (HEX).
The results of this selection are seen in figure 6.15. We plot
Sign of electron charge x 1/Momentum

in this plot for tracks selected by these criteria. We use 1/Momentum because
the measured curvature of a track is the quantity which has gaussian errors and
is always defined. The quantity 1/Momentum is proportional to curvature.

The non—gaussizin tails in figure 6.15(82] are from electrons which bremsstrah-
lunged. We only use the shaded region in our fit of the peaks to avoid biasing
the fit with this background. The following table shows the result of this fit for

experiment 11.

Experiment = Ap/p?sinf
11 < 3.2%/GeV

Using Bhabha events is not the optimal way to determine the vertex mo-

mentum resolution for multi-hadron events. This is because we will have more
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Figure 6.16: Inp measured for 1000 kaons generated at 14.5 GeV and tracked
using 4kG TPCLUND '

tracké to match an event vertex in ¢g events and the TPC has a slight degrada-
tion tracking multi-track events. To get a more realistic idea of the momentum
resolution, we examine all tracks found for a series of runs. The details of the
method can be found in references [83] and [84]. The following table summarizes

the results for experiments 11 and 12.

Experiment Bias Ovtz

11+12 [ (=0.5+0.2)% | (3.6 +0.2)% GeV/c

0.z in the Monte Carlo

The LUND Monte Carlo generator allow us to generate a single particle between
two chosen momenta. If one makes the difference in the momenta very much
smaller than the average momentum, this will effectively generate a monoener-

getic beam of particles.

We generated 1000 kaons at 4.49, 5.48, 6.06, 7.04, 10.00 and 14.50 GeV.
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Figure 6.17: Fit of 6Inp using 4kG detector simulation for momenta greater
than 4 GeV.

We tracked these kaon samples using the detector simulation TPCLUND. A
track was accepted if it passed the track selection criteria detailed in section 5.2.
Figure 6.16 shows the measured Inp for kaons generated in the 14.50 GeV run
and tracked in a 4kG magnetic field with TPCLUND. Using equation 6.10 and
setting 0., = 0.045 we can determine o, by fitting the variation of the width

of In p,, to the form in equation 6.10. Figure 6.17 shows the 4kG fit.

Oytxr

Magnetic Field o, Fit p = 14.5 GeV/c only
4kG ] 0.045 | 0.0253 £ 0.0003 |  0.0234 £ 0.001

Table 6.12: List of vertex momenta found in 4kG Monte Carlo simulation.
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6.4 Analysis of dE/dz vs Inp plot

We must improve our toy model in several important areas in order to be able to

analyze the TPC data produced in the experiment or simulated by TPCLUND.

1. Remove the approximation that we can decompose the probability into the

product of two independent integrals as in equation 6.16.

2. Add detector and physics effects. This includes acceptance, # — p decay

and energy loss in the material in front of the TPC.

3. Determine the Resolution constants for the 2-dimensional representation.

The remainder of this chapter is devoted to discussing these issues.

6.4.1 Accurate analytic probability calculation

The problem of making an accurate analytic model of the TPC is nof only a
physics issue but also one of computer science. To put it simply, what is the
most efficient way to integrate over a fine two dimensional grid?

We want the bin sizes along the z and y axes to be on the order of sigma
along the axis. This implies that the bin size along the dE/dzr axis should be
on the order of 0.44 KeV/cm. We actually used a bin size along this axis of half
this, 0.256 KeV/cm. We have a much harder problem along the z axis. The
error in measuring Inp at low momentum is on the order of o, = 0.06 in the
4kG running and 0.02 in the 13kG running. However at high momentum the
measurement error in In p is o, X p. This corresponds to a %':3 of 0.3 in the 4kG
running and about 0.04 in the 13kG running at a momentum of 8.0 GeV. We
chose the bin size along the In p axis to be 0.1 which is a reasonable compromise
with space requirements.

We are interested in the range of momenta between Inp = —2.5andInp = 2.5

and the range of dE/dz between 10.0 KeV/cm and 32.0 KeV/cm. This implies



177

that we need about fifty momentum bins and about one hundred dE /dz bins. Ac-
tually we need more bins because>of the edge problem discussed in section 6.2.1.
We must smear from more bins than we are interested in because we have to
put a finite limit on the grid. No particles are produced in the analytic model
above and below the grid limits. The high momentum limit is not unreasonable
because we must conserve the momentum and energy of the initial interaction,

but the lower limit is artificial. We chose to expand the grid to sixty momentum

bins and one hundred twenty five dE /dz bins.

Next we must consider how to do the integration of equation 6.4. Our first
approximation is to consider the dE/dz in a momentum bin to be the value for
dE /dz of a particular particle species at the center of a bin in Inp. Unfortunately,
at low momentum, in one Inp bin of 0.1, the dE/ dz vs 1 curve drops thru many
dE /dz bins. We will get horrible results if we approximate the dE/dz of a bin as
above. The solution to this problem is to introduce what we call a mini bin. A
mini bin is contained in a momentum bin but the dE/dz for that particle only
travels thru one dE/dz bin. Pions, for example, need about 300 mini bins over

the grid we have constructed but protons in contrast only need 125 mini bins.

In figure 6.18 we show the projection onto the dE/dz axis of TPCLUND
data and our prediction. In figure 6.18a we don’t use mini bins. One observes
bumps which have the width of the dE/dz resolution. Clearly this is due to
assuming the dE/dz in a bin is the dE/dz for a particle at the middle of a Inp

bin. Figure 6.18 b includes mini bins.

If we assume the number of mini bins is 200 for each charged particle, then
smearing must be computed to 125 x 60 = 7500 bins for each of 200 x 5 =
1000 mini bins. This rather daunting number of 7.5 million smears need to be
computed each iteration used in computing the minimum in X2eeudo SPace. In

computing the minimum, it takes on the order of 1500 iterations to minimize the
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Figure 6.18: Projection onto dE/dz axis of predicted dE/dz vs In p plot for the

1/B? region. a) no mini bins b) with mini bins. Experiment 62 TPCLUND data
where 0., = .045.

x? in the CERN -MINUIT program. Obviously, without some simplification, this
would be a ’extremely time consuming operation even with a super computer.
The first assumption, is to approximate a uniform distribution of particles in
a mini bin. This approximation allows us to compute the smearing from each
mini bin to the rest of the grid only once. If one examines equation 6.2, one sees
that without this approximation, we must recompute the smearing grid each

time. But with this approximation, EXp(#', ') can be decomposed into

Bieoli,i) = % [ Np)dp x Probu(i —i's)
iemini bins’*€* _
= Y Prob(i— i) /,, _ Ni(p)dp (6.32)

iemini bins ‘
where k refers to each particle species. Since only Ni(p) varies on each iteration
of MINUIT, the smearing probability Prob;, need only be computed once.

Now we need to reduce the number of points to which we smear. Most of

this grid is empty as can be seen in figure 5.7. One obvious way to remove the
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unwanted grid points is to reqﬁife more than a minimum amount of smearing to
a grid point before we use that point. .We assume there is one particle per mini
bin. Only if |
Eroo(@,i)= 3 Probi(i — i'j') > smear_bin (6.33)
iemini bins '
where smear_bin is a constant, do we smear this particle to the 7’ j grid point.
This approximation reduces the number of total smears by a factor of 50. |

Finally, we don’t want bins where we will predict a negligible number of
particles, to be used in the calculation of x2,.,4,. We follow the same idea as
the above smearing cut except we sum over all particles k. Then if this sum is
greater than some small constant x2 ., we use this grid point in the calculation
of ngeudo'

One might ask, why not have MINUIT determine the best values of the
resolution parameters? The program MINUIT hunts for minimums in x? space
b.y taking the gradient of equation 6.20[85). It gets more accurate results because
it has a better algorithm to determine the correlations between terms. However |
there is a catch. First, MINUIT takes a number of iterations proportional to the

number of terms in equation 6.20. The number of terms equals

n(n +1) +

5 1

Number of Terms =n +

where n is the number of parameters we need to fit for the spectrum. Hence if
we add k resolution parameters to fit by MINUIT, the number of iterations to

obtain the spectrum will increase proportional to

N(n+k)2
~

Hence our method of taking a restricted number of points and constructing a
small grid while less accurate, will require far fewer iterations to obtain our

resolution parameters and our spectrum.
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On top of this effect, it takes about fifteen minutes of CPU time to compute
the smearing probabilities Prob; on the VAX 11/780 (about three minutes on a
VAX 8600 series computer). By comparison, it takes only three seconds to com-
pute EXp(4', ') for a fixed smearing grid. Hence by determining the resolution
parameters in a crude way, the amount of computer time required for the entire

problem will drop by an order of magnitude or so.

6.4.2 Detector considerations

To make an accurate representation of the data, we must correct for detector

and physics effects.

Acceptance

The most serious detector effect is the inability to detect all the particles produced
in an ete” interaction. We correct for the acceptance of our detector by use of
the LUND generator and the TPCLUND detector simulator. The acceptance of
the detector for particle species k is defined as

Number of k£ Detected in TPCLUND

k _
Acc(p) = Number of k£ Generated in LUND at momentum p '

(6.34)

The reason why we defined the acceptance of the detector at the vertex mo-
mentum p is because there is a considerable amount of material in front of the
TPC (please see section 3.1). Hence the momentum we detect in the TPC is
less than the momentum the pafticle was created with at the vertex. Notice this

definition of acceptance includes Monte Carlo estimates for

e geometrical acceptance,

e losses of particles (primarily pions) due to interactions with the material

in front of the TPC,

e production of particles (primarily pfotons) by nuclear interactions,



181
e decays in flight of pions and kaons and

o decays of higher mass resonances into pions, kaons and protons.

Energy Loss in Material in front of the TPC

We know by the theory of energy loss as detailed in section 4, that the energy
lost in a given material by particles of the same plus or minus charge should be a
function of only the velocity 8 of the particle. We can translate this dependence

on f to a sole dependence on the more convenient 7 = p/m since

n=p/y1-5.

We calculated the effect of the material in front of the TPC by pldtting the
energy measured in the TPC minus the energy a particle was generated with
in the TPCLUND Monte Carlo vs Inn for all the different charged particles. It
should be noted that the energy lost by pions is consistent with the energy lost
by kaons in the detector simulation. However low n protons and kaons have
inconsistent energy losses in the beam pipe in the same simulation.

The reason for the inconsistency between the low 7 kaons and protons is that
a large number of low momentum protons are produced in inelastic interactions
between pions and the material in front of the TPC. Hence, the protons pro-
duced in this manner on average traverse less material than hadrons produced
in the primary interaction. Therefore we expect that the energy lost by protons
is slightly less than pions and kaons because these particles are not produced co-
piously in beam pipe interactions. The TPCLUND Monte Caﬂo simulates this
effect and therefore the lower energy loss experienced by protons in the detector
simulation merely reflects this.

We group the 7% and K* data together to fit the energy lost by pioné and

kaons in front of the TPC. We make a separate fit for protons and as a practical
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matter use this fit for anti—protons too. For all particles, the range in Inn was
divided into two parts: A low n region where 7 < 7min Where 1y, is the value of 5
at minimum ionization (7mi» = 3.71) and a high 5 region. There is no relativistic
rise in the Monte Carlo and therefore the energy lost by particles whose n > Npin
was fit to a constant. In this regioﬁ we estimate the energy lost by particles
detected by the TPC to be on the order of 8.9 MeV.

The approximation that there is no relativistic rise is not bad because af the
energies where 1 > Nmin, the error in determining the energy by this approxima-

tion is
6E;,ss 0.005 < 0.005 < 1.5x 1073
E E nm m )

Even this is an overestimate because the largest deviations of the energy lost
by particles passing thru material in front of the TPC would occur at momenta

much larger than the momentum at minimum ionization in the material.

m — pu decay

We must rely on the LUND Monte Carlo and the detector simulation TPCLUND
to calculate the effect of @ — u decay. There will be several effects of 7 —

decay:
1. a momentum shift,
2. worse momentum resolution, and

3. a small shift in the average energy loss in the TPC from what we would

have expected for a muon.

We expect that in the rest frame of the pion.

P* — P™ = 0.21(E, cos§* — P™) -~ (6.35)
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Figure 6.19: The momentum shift of the detected muon in 7 — p decay.

where E, is the energy of the pion and cos§* is the angle between the line of
flight of the pion in the lab frame and the direction of the muon in the rest frame
of the pion. If we average the above quantity over all angles, (cos6*) =~ 0 3.

Hence we expect

(P* — P™) = —0.21(P") .

We plot (Py; — PZ)/ P& vs In P§ in figure 6.19 where Py is the momentum
of the muon measured in the TPCLUND detector simulator and P is the pion

momentum generated in the LUND Monte Carlo. We find for momenta such

that In P§ >~ —2.0,

(P,t}—Pg;>_ —-0.229 + 0.011 InPZ>-2.0 4kG
Pz /T | -0.207 + 0.0087 InP%>-1.8 13kG

just as expected by equation 6.35. However this relation seems to be violated
at momenta less than In P§ <~ —2.0. This effect is an acceptance effect. At

PZ = 135 MeV, we expect to lose about 25 MeV in the material i1y front of the

31t is not exactly zero because of acceptance holes
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Figure 6.20: The broadening of the momentum resolution in 7 — p decay.

TPC. The muon loses another 29 MeV in the decay itself of # — p. Hence if a
135 MeV pion is created in the interaction, on average we expect to measure a
85 MeV muon in the TPC. Particles of this momentum rarely make it into the
TPC. Therefore only muons from the decay of 135 MeV pions statistically biased

toward higher momenta will be seen in the detector.

'~ Also the muon from 7 — i decay will not be measured as well as we would
expect. When we find a set of tracks in the detector, we constrain all of these
tracks to come from a single point in space (the primary interaction point). The
exception to this rule is when we are looking for secondaries. However in 7 — u
decay, we cannot look for “V’s” because we don’t detect the neutrino. But
since pions decay some distance from the primary interaction (c7 for the pion is
780 cm), constraining the muon detected in the TPC to the vertex will result in
an error. This error leads to a broadening of the momentum resolution for the

detected track.
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To calculate this effect, we plot (Pyy — P§)/op(PExp) vs In P% in figure 6.20

where Pgyp is the expected pion momentum in the TPC:
Pixp = PG — Puoss(PG,mx)

where Piyss( PE, mz) is the expected momentum which would be lost in the ma-
terial in front of the TPC. It is calculated from the Energy lost in the obvious

way

Pous(pym) = p— \[(\fp? + 2 = Buou(pym)t —m2.  (6.36)

Basically we see that the momentum resolution of the muon is about twice as bad
as we would have expected for a pion that would not have decayed to a muon.

Finally, the pion may decay to a muon inside the TPC. Since there is so little
Q in the interaction, the muon will travel in nearly the same direction as the
pion. Our tracking algorithm will assume that all the points belong to the same
track with perhaps a little larger than usual scatter at the decay point. When
we go to “hang” wires onto the track, some of the wires will have an dE/dz .
consistent with a pion and some will have a dE/dz consistent with a muon with
29 MeV less energy. This implies that the overall dE/dz of the track will be
slightly higher than we would expect for a muon traversing the TPC. Hence, on
average the muon dE /dz will be slightly shifted to a higher value. We can allow
for this effect by allowing the “mass” of muons from 7 decay to be corrected by
some small amount. |

We show this effect in figure 6.21 in the detector simulation. Plotted in this -
figure are In Py, /Tr;1((dE/dz)p) vs (dE/dz)p. We explained in section 6.3.2
that the centroid of this distribution should be Inm,/m,. If we fit figure 6.21 to

a constant we find

In( Jmy) = —0.2239 4+ 0.0070 4kG
MMr—u/Ma) =1 _0.2952 £ 0.0050 13kG
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Figure 6.21: The dE/dz of muons from 7 — p decay.

which corresponds to a 7 — u “mass” of

o _[1L1+35 4kG
™4 =1 103.5+£18 13kG

in the detector simulation.

Momentum Bias

It is possible that the detector will have a systematic shift between the measured
momentum and what the momentum actually was in the detector. We allow for
this possibility by including a momentum bias. All measured momenta will be

shifted by this correction.

Corrections

We chose to maintain the shape determined by the detector simulation of all

corrections. However, we allowed a multiplicative constant to change the scale
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of all corrections. Symbolically, our corrections usually have the form

Cori = (1 = s f(Dutz, mk)) (6.37)

-where f is the shape of the correction as determined by the Monte Carlo detector
simulation and s is a scale factor. There are two exceptions: The energy lost by

particles in the material in front of the TPC was just multiplied by a scale factor
Elost =S Elolwg?(put:c, mk)

The momentum bias and the mass correction for # — pu have no scale factors
s (or s = 1). The following table gives the corrections and the order of each

polynomial. We fix the factor s by using the method outlined in section 6.2.2.

Correction Degree Scale
p = p(l — Bias) 0 N
Prou =P (1 — $fpru) _ 4 Y
0-1’(7r - I’L) = sa'p (putz - -Plost(pvta:’ mr)) 0 Y
Masy =my, (1= froy) 0 N
Elost =S fE,o,t 4 Y

Putting it all together

The number of particles we expect in a grid bin i’ j’ must be modified by the
corrections we have mentioned in this section.

NI =3

k=1 il P

IN,;(p) dp Acc*(I)Probk (3,1) Proby(i — i'5")  (6.38)
€

where N is the number of particles expected to be found in grid bin ¢’ j’, ¢ and

(z,1) is the probability for particle &

[ refer to the mini momentum bins, Probf ,
to lose momentum p; — p;, Acc and Prob; were described earlier. Particle 6 is

defined as © — u decay. Probf,,(i,1) is given by

¥ oo | 1 Pi— P = Ploss(pi,mi)
Prob;,,(3,1) = { 0 pi — Pt # Pross(Piymi)
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where P, is given by equation 6.36. We need to modify Prob; in trivial ways
because of # — u decay and the momentum bias. Finally, particle 7 — pu, is

defined in terms of the spectrum of pions. So the spectrum Ny is defined as

Ne(p) = Nx(p)

and the acceptance of m — p decay is

Number of 7 — u decay detected in TPCLUND

A =
cc(6) Number of 7 generated in LUND

6.4.3 Determining Resolution Parameters

The determination of the probability of measuring a particle at a particular
energy loss dE/dr and momentum p’ for a particle traveling thru the TPC at
momentum p is the most crucial aspect of the two dimensional method. This
presents less of a problem for the detector—simulated data. We know everything
about simulated data. Hence, we can know precisely the resolution inside the
- Monte Carlo. Experimental data presents us with more unknowns.

We use the x? method presented in section 6.2.2 in order to determine the
resolution pérameters for both the detector-simulated data and the experimental
data. We of course move from the toy model to the more complete description of
TPC data given in equation 6.38. However the multiple scattering error, o, the
- vertex momentum error, oy, the dE/dz resolution, o4, the “Tail” parameter,
the momentum bias, and the scale factors for the energy loss and # — p decay
were all fixed by the x? method.

Our procedure is to form a grid of five points for each parameter. The pseudo
x?is formed at each point and written to disk. If P, is the value of the parameter
and AP, is the statistical error on the value of the parameter, the five points
used are:

Pg:l:zAPo, Po:tAPQ andPo.
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Afterwards, a global fit using equation 6.20 is made which results in a new set
of resolution parameters. These new resolution parameters and their errors are
then used as a starting point for another iteration. The reason we need more than
one iteration is that the parabolic form is merely an approximation for how the
x? varies near the best values of the resolution parameters. Additionally every
new set of resolution parameters slightly changes the bins accepted for use in the
- comparison of the data to the fit for a given spectrum. We continue iterating
the resolution parameters until the x2/DOF reaches a minimum value. At this
point, the set of resolution parameters is taken as the best values and used in

the fitting.

One of the major uncertainties in using the x? method to determine the
resolution parameters is the value of the underlying spectrum, Ni(p). Ouf object
is to find this spectrum in the case of the experimental data . One worry is that
after determining a set of resolution parameters with an ix;itia,l spectrum, we find
that our spectrum fitted with those resolution parameters would give a different

set of resolution parameters.

The detector-simulated data presents no problem because we know the un-
derlying generating distributions of particles. Needless to say that is nof true
in the case of the experimental data. We solved the problém by the method
of relazation. That is, we set the initial set of resolution parameters for the
experimental data using the LUND as the initial spectrum. We then fit the
experimental d;ata using this initial set of resolution parameters. Wé then used
the fitted spectrum to redetermine the resolution parameters. We then repeated
the entire procedure until all resolution parameters determined in two successive
iterations were consistent with one another (i.e. within statistical errors of one

another).

We remark that only two iterations were required before the consistency con-



190

dition was met. The resolution parameters found using LUND as the underlying
spectrum are feasonably close to the final parameter values. Table 6.14 lists
the initial and final values of the resolution parameters for experiments 11 and
12. Table 6.13 lists the values of resolution parameters found for the detector—
simulated data. The column labeled “systematic error” is an estimate of the
systematic error in using the x? method to determine the‘ résolution parameters
and the actual parameter. It is merely the difference between the values of the
resolution parameters found for detector-simulated data by the x? technique and
using other methods as shown in section 6.3. We note that the systematic error
in determining the resolution parameter is generally larger than the statistical
error in each of the resolution parameters. |
Finally, the systematic errors for determining the # — u parameters are
large. The pion spectrum under ~ 200 MéV/c is predominantly 7 — p decay.

Therefore, we do not report the pion spectrum for momenta under 200 MeV/c.

Systematic
Parameter Best Value Expected Error
Ocou 4.504 + 0.071 x 102 | 4.431 x 1072 { 0.073 x 10~
Ot 3.17+0.27x 1072 | 2,53 x 1072 | 0.64 x 1072
oq | 4.081+0.014 x 1072 | 3.730 x 10~2 | 0.351 x 102
Tail 1.656 £+ 0.014 1.421 0.235
Eloss 1.020 £ 0.007 1.00 0.02

Table 6.13: Resolution Parameters found in the Detector-Simulated Data



Parameter Initial Final
E11
Ocou 5.56 + 0.17 x 10~2 5.94 + 0.20 x 1072
Outz 4,24 +0.23 x 1072 ~ 4.06 +£0.23 x 1072
04 3.904 +0.024 x 102 | 3.8961 + 0.0047 x 102
Tail 1.510 £ 0.031 1.544 4+ 0.013
Eloss 0.882 £+ 0.051 0.6760 £ 0.017
E12

UCO“
COutr
04
Tail
Eloss

5.88 4 0.10 x 10~2
4.01 £0.18 x 1072
3.9061 £ 0.0071 x 10~2
1.4918 £ 0.0094
0.8773 &+ 0.0039

6.01 +0.16 x 10~
3.67 £0.23 x 1072
3.9211 £ 0.0079 x 102
1.515 4+ 0.012
0.8765 + 0.0029

Table 6.14: List of Resolution Parameters found for the experiments
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Chapter 7

Results and Conclusion

We are now prepared to analyze data and present results on the cross section of
charged hadrons in 3-jet events. The chapter is organized as follows: first we will
present the testing of the method, then will present the inclusive cross section of
charged hadrons in the entire experimental data sample. We will then present

the testing and results for 3—jet events.

7.1 Testing the method

The only way to check the method is to generate detector-simulated data via
TPCLUND. Recall that TPCLUND produces a set of measured tracks for a given
generated ete™ annihilation event. We can then use the dE / dz vs lnp plot as
the “Data” to analyze using the two dimensional method. We then compare
the fitted spectrum to the generated spectrum used for the detector simulator.
We choose LUND as the generator for the simulated data although we could
use other fragmentation models as the generators. However, LUND-generated
data using TPCLUND as the detector simulator has been tuned to match our
data[39].

We use the resolution parameters determined for the detector—simulated data
(see the previous section). We first check how well the Monte Carlo generated

event sample can be fit. We select hadronic events in the detector- simulated
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data using the same cuts as in the real data. Out of 40,060 LUND—generated
ete~ annihilation multi—hadxionic events, 26,000 events pass the event selection
cuts (please see chapter 5). We then must chose a functional form to represent
the differential cross section, do/dE where. E is the energy of the particle.

We will now make the assumption that scaling holds true and so we expect

f(A,n) = (%) - 4p=2" (11)

as detailed in chapter 2. This equation holds true for each hadronic particle
species, so A and n are parameters which need to be fit for each charged hadron
separately. In equation 7.1, z = E;/E, where E}, is the energy of the hadron and
E, is the energy of the initiating parton. Also S equals the usual p,/E}; where
pr, is the hadron’s momentum.

Obviously, the fitted spectrum should not depend on the function chosen.
However there are some functions which must be excluded. Recall that TPC
data has regions of ambiguity between charged particles called crossover regions.

Functions which rapidly change in this region cannot be used. That is

af(pl,pZ) .. )
Bp; .

should not be large in the crossover region for any parameters u'séd ih the fit
of the cross section. Otherwise the parameters for the pa.rﬁcles involved in the
cross over region can fluctuate wildly.

In the cross over regions only the sum of the two particle species is constrained.
For instance, we used the sum of exponentials as the functional form for the cross
section for each of the hadrons. When we fit the detector— simulated data from
the Monte Carlo, we got too many kaons and too few protons in the kaon—proton
cross—over region.

The determination of the differential cross section in the crossover region.is

subject to the following very restrictive assumption:
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The differential cross section in the crossover region is a smooth
function connected to the regions outside of the momentum (or en-

ergy) interval of the crossover region.

In other words, the cross section outside of crossover region determines the value
of the cross section inside the crossover region. Since the crossover regions are

small, this should not be much of a problem. However, '

e the values of the cross section inside the crossover region could conceivably

be very far off, but

e The sum of the cross sections of the two particle species in the crossover

region should be correct in the crossover region.

The two particle species most affected by the crossover regions are the kaons
and the protons. The crossover region for the kaon and proton occurs at mo-
mentum ~ 3 GeV. But our measurement error on the momentum at this point
is rather substantial

6—pz12%.

p
This means the kaon proton (KP) crossover region will be extended. Additionally,

kaons and protons are produced far less prodigiously than pions. Therefore, we
not only display the spectrum for kaons and protons separately but also the sum
of kaons and protons.

Finally, it is nécessary to add some additional terms to the differential cross
section when we fit the entire data sample. There are two reasons for this. First,
many of the final state hadrons are the results of decays of higher mass hadrons.
For instance the LUND Monte Carlo predicts that 80% of the final state pions are
actually the result of decays. Second, the entire event sample contains partons

at many parton energies. Most hadronic events have two very energetic partons
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recoiling against each other at one half the center of mass energy. We implicitly
assume mono—energetic partons by using the form in equation 7.1.

We added one term to the kaon and proton cross sections:

do do
dE

—_—= | — 2 .

IE >0+C'/E - (7.2)
where C is a parameter to be fit and F is the energy of the hadron and (do/dE),
is from equation 7.1. Notice that the correction to the cross section, C/E?, goes
~as 1/E? and is therefore only prominent at low energies.

We needed to add an additional term for the pions

do do 2
iE = (E)O+C/E + Dexp(—nkE) (7.3)

where D and n are parameters to be fit. The new term dies exponentially in E.
Therefore the high energy behavior of the scaling cross section is approximately
preserved by this functional form for all charged hadron cross sections. Addi-
tionally, the correction terms do not vary appreciably in the crossover regions.
Electrons and muons are not fit in this way. Electrons are mostly the result
of conversions of photons in the material in front of the TPC. High momentum
muons are from the decays of heavy quarks but they are so swamped by the
number of pions they can be ignored. To fit the lepton species we use the ex-
pected momentum spectrunﬁ' of each lepton species from the Monte Carlo (LUND
generator with the TPCLUND detector simulator). We scale the spectra by the
ratio between the number of hadronic events in the Monte Carlo and the num-
ber in the experiment. We then allow the scale of the electrons to be fit by the
two dimensional method. The scale of the muons is fixed to one. When we fit
detector-simulated data we expect the scale of the electrons to be consistent with
one. Of course, fitting the actual experimental data may not give us a number

consistent with one because the Monte Carlo is only good to 10% to 20%.
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Before we list the comparison between the generated data and two dimen-
sional fit to the detector simulation of this data, we will discuss the concept of
hadronic fractions. The fraction of a particular hadron (pion, kaon or proton)

at a particular momentum is defined as

Ni(p)
> Ni(p)

h==,K,p

fu(p) = (7.4)

where Nj(p) is the number of hadrons h at momentum p. The advantage of this
quantity over the actual spectrum is that the acceptance appears in both the
numerator and the denominator of this expression. Since the acceptance for all
charged hadrons is about the same, to first order there will be a no systematic er-
ror in this quantity from the uncertainty in the acceptance. Low energy protons
are the only exception. A large number of protons (not anti-protons) with ener-
gies less than ~ 1.0 GeV are produced by pion interactions with the aluminum
beam pipe. Hence, there is a larger uncertainty in the number of low energy
protons due to the systematic uncertainty in the acceptance than in the number
of low energy kaons and pions. We will di§cuss this further in section 7.2.1. |
Table 7.1 then gives the results of using the detector-simulated data to test
the two dimensional method. The “LUND” column is the fit of the LUND-
generated data itself. The “2-D fit” column is the result of using the two di-
mensional method to fit the parameters using detector-simulated data. Notice
that equation 6.38 includes the acceptance correction. Therefore this fit is the
most likely underlying generating spectrum for each of the hadrons. The sys-
tematic error column lists the difference between the fitted spectrum and the
actual LUND-generated spectrum in percent. Finally, the systematic error in
the fractions column gives the error between the hadronic fraction measured and
the actual hadronic fractions generated. Since fractions themselves are equiva-
lent to percentages, the “Error Fractions” column gives the absolute error. not

the percentage error.



197

, Systematic Error
Parameter LUND 2D-Fit Spectrum(%) Fraction
m
A 0.250 0.219 +0.008
n 3.318 2.973 £0.078
C —3.964 x 1073 | —2.956 & 0.088 x 102 3.5 0.005
D 0.722 0.777 £ 0.021
i 1.807 1.634 £ 0.023
K
A 7.46 x 1072 7.384+0.29 x 1072
n 2.69 2.60+0.10 3.7 0.004
C —-38 x1073 | =35 +1.6 x10~° |
P
A 3.58 x 1072 2.35+ 0.44 x 10?2
n 2.97 - 2.83+0.32 20 0.005
C 2.45 x 1072 2.724+0.34 x 1073

Table 7.1: Comparison between the generated data and two dimensional fit to
the detector—simulated data (E62).

7.2 Inclusive Cross Sections in the Entire Data
Sample

Once we have determined the resolution parameters in the data, we can use the
method to fit the inclusive cross sections of charged hadrons in the experimental

data. Figure 7.1a shows the 90% Confidence Level (CL) limits on the inclusive

scaling cross section

1 dn
Botot dz
where o1 is the total hadronic cross section, o}, is the cross section for charged
pions, kaons or protons, z is defined as the energy of the hadron E, divided by
twice the beam energy Fpeam, ie. = = Ej/2Eycam. Figure 7.1b shows the 90%
CL limit on the hadronic fractions. We add together the experiments 11 and 12

for the purposes of these figures.
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Figure 7.1: Results of E114+12. a) Scaling cross sections in z, b) Hadronic
fractions in momentum. The Shaded area represents the 90% CL limits from
this measurement.
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We compare our limits to the prediction of LUND for pions, kaons and pro-
tons. We used 100, 000 simulated hadronic events for the LUND prediction. No-
tice that the LUND predictions and the measurements are in good agreement for
both the pions and the kaons, but that the proton measurement is systematically
lower than the LUND prediction at high z (high momentum). The disagreement

while small is certainly appreciable as table 7.3 shows.

Figure 7.2 shows the 90% CL limits on dN/dIn p for pions, kaons, protons and‘
kaons plus protons. Note that while protons have the same slight disagreement
with LUND as reflected in the scaling cross section and the fractions, kaons plus
protons is consistent with LUND. This must mute our conclusion that LUND is
inconsistent with the data. Kaoﬁs and protons are not well separated in dE/dz.
| Since the KP crossover region is at relatively high momentum, this separation is
extended in momentum. Therefore kaons plus protons is better measured than
protons separately. However since there are a factor of two fewer protons than
kaons the kaon plus proton measurement may be consistent with LUND and
still have protons separately inconsistent. Additionally, our simulations do not
indicate that protons will be badly measured. Our estimate of the systematic

error in the proton measurement is included in the overall systematic error (see

table 7.1).

Table 7.2 gives the list of fitted parameters for E11 and E12 separately along
with the weighted sum of the two experiments[78]. The fitted parameters for pi-
ons and kaons are consistent in experiments 11 and 12 but the fitted parameters
for protons are not. The fitted proton spectra for the two experiments are con-
sistent. This is because we do not detect enough protons to fix the high energy
behavior of the proton cross section. This allows the form C/E? to accommo-
date the entire spectrum albeit at large errors. Notice that even in experiment

12 where we fit a a value for A and n in (do/dz)o, we find the data is consistent
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with A = 0.

Table 7.3 lists x?’s comparisons between LUND and the measured scdling
cross sections, dNy(p)/dp and the fractions. We take the error on each momentum
(or z) bin as the sum (in quadrature) of the statistical and systematic error
on the fitted value. Table 7.4 lists the bins in £ and momenta used for the
comparisons[71]. The binning in z was chosen to reflect the decrease in numbers
of particles with rising z. Also, the error in the momentum increases at large p so
the bin sizes used in the fraction comparison increase at largé momentum. Some
of the momentum bins are chosen to isolate the cross over regions|[71]. As an
example, the momentum bin from 1.0 GeV/c to 1.35 GeV/c (0.0 £ Inp £0.3)

isolates the pion, kaon crossover region.

We also compare this result to previous measurements by TASSO[32] at three
different center of mass energies. Figure 7.3 shows the comparison of this mea-
surement with the TASSO pion cross section, figure 7.4 the comparison to the
TASSO kaon cross section and figure 7.5 the comparison to the TASSO proton
cross section. We notice that there is reasonable. agreement between TASSO
and our limits. However, TASSO measures a more copious production of low
momentum kaons than this measurement would allow. Also the scaling cross
section for protons seems to be different at different energies. The proton scaling
cross section measured by TASSO at 34 GeV is consistent with this measure-
ment. However there is a mild disagreement between the TASSO proton cross
sections measured at 14 GeV, 22 GeV and 34 GeV. Part of the problem could be
statistics. The 14 GeV and the 22 GeV measurements used only ~ 2500 hadronic
events. The 34 GeV meé,surements used ~ 20000 hadronic events. Additionally,
the hadronic multiplicity rises logarithmically with Energy. Therefore. the lower
energy measurements contain a factor of ~ 20 fewer protons than thc 34 GeV

measurement.
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Par-
ameter E1l1 E12
Electron
| S. | 1.054 +£0015 +0.093 | 1016 +£0.013 +£0.064 |
A Pion
A 0.1803 + 0.0092 =+0.015 0.1505 + 0.0057 =+ 0.021
n 3.76 +0.12 + 0.32 3.399 +£0.090 +0.35
C —0.0251 +0.0011 +0.0024 | —0.02126 + 0.00082 + 0.0021
D 0.423 +0.025 =£+0.074 0.468 + 0.018 4+ 0.062
n 1.852 +0.060 +0.12 1.745 +0.036 +0.11
Kaon
A 0.049 4 0.025 <£0.0098 0.0485 + 0.0021 < 0.010
n 2.63 +0.15 +0.35 2.79 £0.12 +0.30
C —0.0051 £ 0.0014 .£20.0051 | —0.0049 4+ 0.0011 4+ 0.0055
Proton _
A 0.00042 4+ 0.00059 4 0.0012 0.0087 + 0.0026 =+ 0.014
n 0.0 2.95 +0.58 + 1.8
c 0.026 =+ 0.0011 4 0.0041 0.018 £ 0.0020 -+ 0.0087
E11+E12
Electron
Se 1.0325 +0.0098 +0.11
Pion
A 0.1587 +0.0048 +0.026
n 3.53 +0.072 +0.47
C —0.02261 4+ 0.00066 + 0.0032
D 0.452 +0.015 <£0.096
n 1.772 +0.031 +0.17
Kaon
A 0.0485 =+ 0.0021 +0.014
n 2.72 +0.092 +0.46
C —0.0050 =+ 0.00088 +0.0075
Table 7.2:

(E11+E12).

List of fitted parameters for E11, E12 and the weighted sum



Experiment T K K+P
1/(eB)do/dx
El1 42.0/37 | 10.9/31 | 80.3/26 | 4.3/26
E12 18.3/37 | 3.1/31 | 20.6/26 | 2.2/26
E11+E12 | 10.4/37| 7.5/31 | 51.9/26 | 2.6/26
dN/dlnp .
Ell 44.5/31 | 11.0/27 | 80.6/22 | 4.3/18
E12 18.7/31 | 3.1/27|20.6/22 | 2.2/18
E11+E12 2.1/3110.1/27 | 61.4/22 | 3.8/18
Fractions
E1l1 4.8/15 | 11.2/15 | 25.4/12 —
E12 0.5/15 | 11.4/15 | 3.9/12 | —
El114E12 3.0/15| 6.5/15| 8.8/12 —
Table 7.3: The x2/DOF comparisons between LUND and this result.

Binning
1/(oB)do/dz

0,00z <001 0.10<£<0.12 0.30<2<0.33
0.01 £z <0.02 012<2<0.14 0.3352<0.36
: : 0.36 < z < 0.39
0.08 <z <0.09 026<z2<028 [(039<z<0.44
0.09<z<0.10 0.28 <z <0.30 044 <z <049

 Fractions
—16<Inp<-14]| 03<Inp<-02]07<Inp<038
—14<lnp<-12|-02<lnp<-01]08<lnp<1.0
-12<Inp<-09]-01<lnp< 00}10<Inp<13
—09<lhp<-07| 00<Inp< 03]13<Inp<16
—0.7<Inp < -0.5 0.3<lnp< 05|16<Inp<L20

~05<lnp<-0.3

0.5<Ilnp< 0.7

dN(lnp)/dlnp

—-16<lnp<20,Alnp=.1

Table 7.4:

203

List of bins used for X2 comparisons of LUND to this measurement.
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The limits also include systematic errors from this measurement. We shall

now discuss the elements of the systematic error determination.

7.2.1 Systematic Error Determination in Data

There are several sources of systematic error in the determination of the inclu-
sive cross section: the resolution function, the acceptance, analysis cuts and the
method itself. We simply varied the relevant quantities over the maximum range
in order to determine the systematic error caused by each. The systematic error
of the method itself was the difference between the fit of LUND using the “2-D”
method and what was generated by LUND itéelf. See table 7.1 for the values we

use for the systematic error.

The Resolution Function

The x* method of determining the parameters also gives the statistical error and
the correlation between the various resolution parameters. Recall that x? space
in the vicinity of the best values of the resolution parameters can be described

by the following equation
P — P?

X =x¢+ 1 —p%pr—15..)V | P2 P2 (7.5)
where p; is the value of the parameter, p? is the fitted best value of the parameter -
and V is the correlation matrix for the parameters [78]. Recall also that this
equation can also be used to describe any function of the parameters near the
best fitted parameters (cf. reference [78,79], equation 6.18).

Symbolically, we can write function f at p;,ps,... near the best fitted values

of the parameters as

. 6f af APlaf/alh
f=f@0,03%,..)+(z=Ap1, =—Aps,...)V | Ap20f/ps | (7.6)
op1 Opz .

pk=p2,k=1,2,...
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In particular, this expression applies to the number of particles in every mo-
mentum (or x) bin. The only parameters which were allowed to vary during the
fit Weré those describing the spectra. Hence, the statistical error only reflects the
uncertéinty in a spectrum due to the uncertainty in the parameters pertaining to
all charged particles. There are other parameters on which the answer depends
which are not allowed to vary during the fit. In particular the resolution param-
eters, the acceptance and the analysis cuts are not allowed to change during the
fit.

We determine the systematic error in the spectrum by using equation  7.6.
To determine ON/8py, we refit the spectra with different values of py. We used
pr £ Api as the different parameter values where Ap; is the one sigma error on
parameter p; including the systematic error on that parameter. The resolution>
parameters fit in this way are the multiple scattering error, o, the vertex

momentum measurement error, oy, the dE /dz resolution, o4, and the dE/dz

- resolution function “Tail” parameter.

The energy loss and momentum bias were handled slightly differently. We
simply set the multiplicative energy loss factor to one and the momentum bias
to zero for the systematic error due to the uncertainty in measuring these two
parameters. This overestimates the systematic error due to the uncertainty in

the energy loss and momentum bias parameters.

dE/dz

The expected energy loss curve for a particle at a given 8v is only known to
70.5%‘[53]. Knowledge of this curve is crucial because Kaon-Proton separation
in dE/dz is not as large as 7K or 7P dE/dz separation. Compounding the
problem is the relatively small number of kaons and protons produced in an

ete~ annihilation event. Therefore we must see how the answer varic- with
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changes in the dE/dz curve as a function of n.

The systematic error due to uncertainty in the dE/dz curve was fixed by
multiplying the curve by 10.5%. That is, we maintained the shape of the curve
but increased and decreased its value by 0.5%. This is an overestimate of the error
due to this uncertainty because only the high 8+ part of the curve is uncertain

by this amount. The rest of the curve is known to better than one half percent.

Acceptance

We used 40K LUND-generated hadronic events in order to determine the ac-
ceptance. We allowed the acceptances to vary by £1.3¢ bin by bin in order to
determine the 90% confidence level error. All particles should have about the
same acceptance because acceptance is predominately determined by geometry.
Hence the acceptances as calculated by the Monte Carlo for each of the hadrons
are about the same. Therefore, all hadronic acceptances were increased and
decreased simultaneously when we computed the systematic error.

The acceptances rise rapidly from zero, leveling out at about 0.33. The rapid
rise from zero of the acceptance begins at the highest value of energy loss (dE/dz) |
that we use in the analysié. The acceptances at higher momenta are not as well
known as at the lower momenta because there are not as many high momentum
as low energy hadrons generated due to phase space.

The only exception is low momentum protons. We have frequently mentioned
that low momentum protons are produced by interactions of pions with the the
aluminum beam pipe. We determiﬁe the systematic error due to our inability
to determine the interaction cross section by calculating the cross sections for
negative particles only and multiplying them by two.

Additionally, the‘Monte Carlo with the detector simulator produces about
a 10% deficit in the total number of particles produced between 200 MeV and
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410 MeV. We cannot determine if the uncertainty is due to the LUND generator
or the TPCLUND detector simulator. Therefore an additional 10% uncertainty is
added for the pion acceptance in this region. We reason that pions and electrons
are the only particles detected in this momentum range. The worse possible case
for the determination of the pion cross section is that the entire uncertainty is
due to the pions only.

Table 7.5 shows the contribution of all sources of systematic error to the
uncertainty in the fractions. The table shows the average contribution to the
systematic error in the fractions due to 'each of its components. It should be
used a;s a guide to the sensitivity of our result to uncertainties in resolution, the
enefgy loss curve, acceptancé and energy loss by particles in the beam pipe. This
table should only be used és a guide because each momentum bin is affected by
the systematic error sources differently. In general, the highest momentum bin
has the lé;gest s;ysterhatic error (See figure 7.1b for instaﬁce). This is because
the mémentum resolution, ép/p, in this momentum bin is on the ofder of 30%.
This is far a,nd away the momentum bin with the worst momentum resolution

used in this measurement.

- Systematic Error Source
‘Particle Res  Eloss/Bias dE /dz  Acc

™ 0.0059 0.0006 0.0140 | 0.0115
K 0.0051 0.0006 0.0134 | 0.0089
P 0.0027 0.0004 0.0056 | 0.0105

Table 7.5: Average uncertainty of Fraction due to systematic error source,
El11+E12.

Analysis cuts

We use only two analysis cuts in our data. These cuts are used to remove ~ 1%

tails of our resolution function. The cuts were
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1. the value at which to stop calculating our momentum and energy loss res-

olution, and

2. the minimum number of particles expected in a dE/dz vs Inp bin if the
momentum spectrum for e, g, 7, K and protons were flat and were equal

to one particle per momentum bin.

We nominally set the first cut to 0.5% and the later cut to 0.5%. The systematic
error was determined by changing both of the cuts to 1.0%.
The fitted parameters change by a far smaller value than the systematic errors

due to resolution or the acceptance when we change these two analysis cuts.

7.3 3-Jet Events

The stage is now set for the presentation of the main results of this thesis: the
inclusive cross sections of charged hadrons in three jet events.

The previous sections laid out the procedure we used to determine the inclu-
sive cross sections for the entire data sample. We apply the same procedure to the
three jet event sample. However there are several additional systematic effects

we must take into consideration when we analyze the three jet event sample.

Fit used for 3—jet sample

The ideal way to analyze the three jet event sample would be to fit the underlying
z spectra for the various charged particle species. We have seen in chapter 2
and the results from TASSO reproduced earlier in this chapter that the most
important characteristic of the inclusive cross sections is scaling. Unfortunately,

we face two problems:

1. Experimentally, we can only reconstruct the jet energies and measure a

particle’s momentum and energy loss. Hence, when we fit a cross section,
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we can use the jet energy to form a prediction that can be compared to
the momentum and energy loss spectra. If we were fitting a scaling cross
section, for instance, we can predict the number of particles at a certain
momentum by convoluting ~the jet energy spectrum with the scaling cross
section. We could change the parameters of the crosé section until we found
the best Ir}atch between the fitted momentum spectrum and the measured
spectrum. Yet, as we have stated several times in this thesis, most pions
and many kaons and protons detected by the TPC are the result of decays.
There is no simple relationship which can describe the connection between
the initial parton energy and the final state hadron momenta if decays are
involved. Therefore the convolution mentioned above will not provide a
good description of the data and certainly will not yield the ﬁnderlying z

spectrum of the primary hadrons produced during fragmentation.

2. The jet energies are known only to 10% at best. Therefore any convolution

involving jet energies will only be good to 10% too.

We are reduced to measuring the momentum spectra of the hadrons for each
jet individually. This will not allow us to compare the quark and gluon jets
directly. We will only be able to make comparisons indirectly thru models of
fragmentation. Fragmentation models (we focus on LUND here) pi‘edict hadronic

momentum spectra for given z fragmentation functions.

Form of the Fitting Function

We use the same form for the hadronic momentum spectra for each of the jets
in the three jet sample as we used when we fit the entire hadronic event sample
(equations 7.1, 7.2 and 7.3). However we no longer have monoenergetic partons

initiating each of the jets.
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First, let us recall the definition of jet #1, #2 and #3 from section 5.4:
E, > E; > E3 where E; is the reconstructed energy of jet #i. We wish to place
each of the jets on an equal footing. One possibility is to set E, to the average
energy of the partons for each of the jets, Eavg. This has the drawback that
approximately one half of the initiating partons actually have an energy larger
than Esve. Since (do/dE), goes to zero as z goes to ome, (do/dE), will not
describe the pérticles of momentum greater than Fayg in a jet. Therefore we
choose to set Eq_ to E. where E is defined to be the energy at which only 10% of
the initiating partons have an energy greater than this value. To determine E.,

We simply determine the energy at which
Ec
/ N(E;)dE; /Ntotar, = VALUE
0

where N(E;) is the jet energy distribution, NtotaL is the total number of events
and VALUE is an arbitrarily chosen number between zero and one.

We should emphasize that the particular choice of E, is not critical. The
fitted (do/dE), will not be the fundamental fragmentation function since we are
not properly taking into consideration the different energy partons within a jet.

We modified the functional form of the pion inclusive cross section. We

changed (do/dE), to

(d%)o _ Aﬂ(_l:zi).’i (1+B(1-2))

where B is a constant to be fit[86]. This additional term somewhat accounts for
the softening of the pion spectrum due to decays of heavier resonances.
Another difference between the functional forms used in fitting the three jet
sample and the entire hadronic event sample is that we fixed D to zero for jet
#3 (see equation 7.3). When we left D for jet #3 free, the fit put contributions

from the term D exp (—nE}4) to zero by driving n and D to a very large numbers,
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~ 10! with very large errors. This precluded the fit from determining reasonable
errors on the other parameters. -

To save computer time we did not fit the hadronic spectra for all three jets.
Instead we only fit the momentum spectra of jets #1 and #3. We used the
Monte Carlo to determine the proportion of quarks and gluons as the initiating
parton in each of the jets. That is

Jet; = S>> P(i,k) x Frag(k)
k=Q,G
where P(i,k) is the probability that jet ¢ has k as the initiating partons, k being
either quark or gluon. Since P(i,Q) + P(¢,G) = 1 and there are three jets, we
can invert the equation and set one jet as the linear combination of the other
two.

According to the LUND Monte Carlo, jet #1 is initiated by a quark about
90% of the time, jet #2 is initiated by a quark about 80% of the time. Jet #3 is
initiated by a gluon about 70% of the time. Since jet #2 is usually initiated by
a quark, we chose to fit jets #1 and #3. Jet #2 is then approximately 80% jet
#1 and 20% jet #3.

Finally, we did not use the same momentum range Vto fit the momentum
spectrum as we did with the entire event sample. This is because pions were not
represented very well by this form in the Monte Carlo. If we set

VE} +m}’

E,

z =

where E}, is the hadron’s energy and mi is a parameter to be fit for each jet we
could fit the pion spectra from 80 MeV/c to 7.4 GeV/c in the Monte Carlo well.
The fit for the parameter m: was on the order of 300 MeV in the Monte Carlo.
The results when we fit the data are shown in table 7.6. We do not quotr an

error on this parameter because the fit was unreliable with m; free.



215

my( MeV)
Jet LUND E11+412
41| 312 404

#2 | 257 348
#3| 206 191

Table 7.6: Fitted values for m,; in LUND and Experiments 11 plus 12.

The only spectrum affected by the inclusion of m; is the pion spectrum. The
reason m, is required for the pion spectrum is ‘proba.bly decays. The energy
threshold at which we observe a pion is not the mass of the pion in a decay. It
is increased because of the minimum momentum transferred to the pion by the
decay of the higher mass resonance. This is effectively accounted for by adding
m; to the definition of z. Kaons and protons are not affected because fewer kaons

“and protons are produced as a result of decays and the masses of the kaons and
protons are, in general, much higher than the minimum energy transferred to

these particles in a decay.

We circumvent this problem by fitting only particles at momenta higher than
500 MeV /c. We chose 500 MeV /c because m; is fit to be this order of magnitude.
Thus, by fitting particles of momenta larger than 500 MeV/c, we can fix m; to
zero. The average difference between the spectrum with m; free and m; set to
zero for momenta larger than 500 MeV/c was less than 2.0% in all cases and less

than 1.0% in the case of pions and kaons.

Additional Systematic effects

We used the same method as outlined in section 7.2.1 to determine the systematic
error on"the measurement of the three jet inclusive cross sections. Additionally,

there are several different systematic errors we must account for.



216

1. We assumed the second jet can be described as a linear combination of

jets #1 and #3. We allowed the coefficient of jet #1 to increase to 90%
and decrease to 70% when we determined the systematic effect of using this
assumption. On average, the momentum spectrum changed by less than the

statistical error on the spectrum when we changed the linear combination

which forms jet #2.

We used a cut of 500 MeV on the momentum visible in the jet when we
determined the jet structure of the events. We determined the effect of
this cut by requiring the visible momentum in a jet to be 1.5 GeV. We
redetermined the acceptances and refit. Please see table 5.3 for the differ-
ences between using 500 MeV and 1.5 GeV as the visible energy cut. We
then determined the systematic error due to the momentum visible cut by
scaling the 1.5 GeV answer. The scale is set to the ratio of the number of
three jet events using the 500 MeV /c momentum visible cut to the number
of three jet events using the 1.5 GeV/c momentum visible cut. We then
can compare the shapes of the hadrénic spectra using the two cuts. The
shape of the momentum spectrum of the kaons and protons changed only
within statistical errors when this cut was varied. The shape of the low mo-
mentum spectrum of the pions in the three jets changed slightly more than
the statistical error. This is not unexpected because we throw out more

low momentum particles than high momentum particles if we raise this cut.

Moreover, all hadronic fractions changed by less than the statistical error

when we changed the visible energy cut.

The effect of the production of low momentum protons in the beam pipe was
determined by a different procedure. We lose one half of the statistics when
we use only negative particles. Therefore, the determination of the cross

sections for pions and kaons also suffers. For each particular species, the
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number of negative particles resulting from an ete™ annihilation should be
the same as the number of corresponding positive particles by iso-spin in-
variance; baryon number, strangeness and charge conservation in the strong -
interaction. Therefore, the fraction of anti-protons determined by solely
using the negative ‘par'ticle sample should be the same as the fraction of
protons plus anti-protons in the total sample. However, because the ma-
terial in front of the detector is made of atoms (not an anti-atom to be
found), inelastic interactioﬁs of particlés emanating from the annihilation
event with the material primarily results in protons or electrons. Rarely
will an anti-proton be produced. Hence the difference between two times
the cross section for anti-protons and the cross section for protons plus
anti—protons for rﬁomenta less than 1.0 GeV/c is a measure of the system-
atic error due to uncertainties in the cross section for the production of
protons in the beam pipe. The difference between the proton fraction and

the proton plus anti-proton fraction averages 0.005 for momenta less than

1.0 GeV/e.

. The effect on the momentum spectrum due to the choice of E; must be con-
sidered. Obviously increasing E. decreases z and should therefore ‘increase
the value of n in (do/dE),. But the fitted momentum épectrum should not
change. We set E, to several different values. We also used.two different
jet energy spectra to determine the average parton energy. First, we can
use the jet energy spectrum as determined from the data. Second, ihitial
state radiation changes the center of mass of the ete™ interaction. We can
account for this effect by using the Monte-Carlo generated parton energy

distribution instead of the jet energy spectrum from the data.

The effect of using different E.’s proved.to be negligible. The momentum

spectrum changed by less than one perceht for each of the different E.’s
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shown in table 7.7.

E.( GeV)
JET Eavg SIGMA 85% 90% 95%

Use Generated Parton Energy
from LUND Monte Carlo

#1 12.5 1.2 13.8 | 139 | 14.1
#2 10.5 1.7 123 | 12.7 | 13.3 |
#3 5.1 21| 75| 79| 83

Use Jet Energies Determined
in Experimental Data

#1 | 120 24| — [136] —
#2 | 11.2 15| — [132]| —
#3 5.4 22| — | 83| —

Table 7.7: List of E.’s for different values of the percentage of total jets with
energy less than E..

7.3.1 3—-Jet Results and Discussion

We now present the results for the fit of the three jet speétra. Figures 7.6, 7.7
and 7.8 show the limits on the hadronic fractions of the three jets from this work.
Figures 7.9, 7.10 shqw the limits on the momenta spectra for the hadrons in jets
#1 and #3

Table 7.9 shows the values of the fitted parameters for jets #1 and #3 along
with the systematic error on each of the parameters. Table 7.8 shows the x?/DOF
for the momentum spectra and the fractions. Table 7.10 shows the estimate
and breakdown of the systematic errors. The “Res” éolumn is the contribution
of the uncertainty in the resolution parameters to the systematic error in the
spectra. The “Dedx” column is the contribution of the uncertainty in thé Energy
loss function to the systematic error, “Acc” refers to acceptance, “Qper” is the

contribution of the 10% error in the quark percentage in each of the three jets,
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Figure 7.6: The Charged hadronic fractions in Jet #1. The shaded regions are
the 90% CL limits from this work.
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Figure 7.7: The Charged hadronic fractions in Jet #2. The shaded regions are
the 90% CL limits from this work.
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Figure 7.8: The Charged hadronic fractions in Jet #3. The shaded regions are
the 90% CL limits from this work.
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Figure 7.9: The Charged hadronic momenta spectra. for Jet #1. The solid his-
togram is the LUND prediction. The shaded regions are the 90% CL limits from
this work.
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Figure 7.10: The Charged hadronic momenta spectra for Jet #3. The solid
histogram is the LUND prediction. The shaded regions are the 90% CL limits
from this work.
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“Ech15” represents changing the visible momentum in a jet cut to 1.5 GeV,
“Nob” refers to.fixing B to zero and “Stat” is the statistical error. We note that

nearly all of the systematic errors are less than the statistical error.

Jet T K P K+P

dN/dlnp

#1[3.9/10] 3.4/18] 3.0/16]2.1/10
#2(2.0/10 | 3.6/18| 5.9/16 | 0.6/10
#3(6.6/10 | 6.4/18 | 21.5/15 | 2.1/9

Fractions

#1]1.3/12] 44/12] 16/11| —
#210.6/12 | 15.4/12 | 33.5/12 | —
#3(3.0/15 | 28.7/12 | 28.0/11 | —

Table 7.8: The x?/DOF comparisons between LUND and this result.

~ We see that the proton fraction in jet #3 is overestimated by LUND. The

x%/DOF for the proton fraction in the third jet is a high 28.0/11. This is also
reflected in the increased x?/DOF of the proton momentum spectrum in the
third jet of 21.5/15. We also notice that even in jet #1, LUND is systematically
higher than this nieasurement, but the statistical and systematic errors are so
large that LUND is still consistent with the number of protons we measure in jet
#1.

Recall that LUND also slightly overestimates the proton cross section for the
entire event sample. The casiest explanation for both discrepancies is that the
high « fragmentation of protons in LUND is incorrect.

Most hadronic events are formed from the fragmentation of two partons re-
coiiing apart from one another at 14.5 GeV/c each. In this case, z ~ 0.4 corre-
sponds to 6.0 GeV/c. But our momentum resolution is very much degraded at

this momentum. Therefore, there are relatively large systematic error< on the



Par Jet #1 Jet #3
Electron :
I S. 1 0.722 £+0.064 £0.084 0.516 & 0.073 & 0.048
Pion
A 5.544 +0.057 +1.14 3.396 4+ 0.041 4+ 0.45
n 3.247 £0.068 £0.27 3.658 + 0.076 4 0.27
B 2.6877 4 0.0032 £ 0.57 2.59 +£1.95 +£0.15
C | -0.18 +0.20 +0.40 0.047 +0.022 £ 0.065
D 3.7 +1.7 + 3.6 —
n 1.84 +0.30 4+0.48 —
Kaon
A 6.30 +£0.84 +£1.2 473 +0.80 +0.69
n 3.32 £0.30 +£0.40 3.07 £0.26 +0.29
C | -0.078 £0.036 +0.039| —0.1174 0.049 4 0.046.
Proton :
A 1.6 +14 +1.8 3.0 £1.0 +0.6
n 42 421 +29 54 +16 =+0.6
C 0.128 +0.067 +0.096 0.039 &£ 0.020 £ 0.047

Table 7.9: List of fitted parameters for Jets #1 and #3.
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Systematic error source (%)
Particle Res Dedx Acc Qper Echl5 Nob Stat
| Jet #1 |
s 1.3 09| 85 3.2 65| 03| 24
K 3.7 451194 1.9 30| 0.1] 6.8
P 4.3 1.9 23.9 2.6 72( 051111
Jet #2

™ 1.4 08| 8.7 3.3 73| 0.4 22
K 34 4.3 119.9 1.9 40| 01| 5.9
P 3.9 1.9124.0 2.1 66| 05| 9.8

Jet #3
™ 1.1 1.3 | 12.8 0.3 81| 13| 6.1
K 3.5 5.4 | 28.6 1.6 11.0] 14| 134
P 4.2 2.0 | 31.2 2.6 85| 0.8]17.3

Table 7.10: The average percentage error on the fitted spectrum due to the above
systematic error sources.

measured proton fraction for momenta greater than ~ 3 — 4 GeV/c. Without
the degradation of the momentum resolution at large momenta, the disagreement
between LUND and the 90% CL limit established by this measurement of the

proton fraction would be worse.

The third jet in a three jet event does not suffer this problem. Since the
initiating parton is of lower energy ( Eavg ~ 5.0 GeV), z on the order of 0.4
corresponds to a momentum of about 2.0 — 3.0 GeV/c. The momentum error
on this range of momenta is relatively small and hence the systematic effects are
reduced. This is why the disagreement between LUND and the measured proton
fractions in the third jet is more definitive than in the case of the overall data

sample.

More speculatively, we consider the behaviour of the charged hadron cross

section at high z. We first note that the high z behaviour of all hadrons can be
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approximately be described as

. do 3
im 7, *(1-2)

in both the three jet sample and the overall hadronic event sample. However,
we do not correctly account for thev different energy partons which make up the
jets in the three jet sample. Instead we fix an arbitrary constant, E., define z as
E1./E. and then fit the momentum spectra. As we stated in the previous section,
the fitted momentum spectra do not change with E.. But, the parameters of
the cross section do change. The power n (of the term (1 — z)") must increase
with increasing E, in order that the measured momenta spectra remain constant.
One can see in Table 7.11 that value of n in fact does increase as E, is set to

larger values. We see that jets 1 and 3 are consistent with one another. However,

Jo® N(E;)dE; /NtotaL
85% 90% 95%

-
Jet #1 | 3.04| 3.14] 3.28

Jet #3 | 3.37| 3.65| 3.94
An 0.33| 0.51| 0.66

K

Jet #1] 3.21| 3.30| 3.42
Jet #3 | 2.85| 3.09| 3.3
An | -036|—021]| —0.11

P

Jet #1 | 4.08| 4.15 4.28
Jet #3 | 5.09| 5.46 5.82
An 1.01 1.31 1.54

Table 7.11: List of n’s for Jet 1 and Jet 3. Statistical and Systematic errors on
each n should be about the same as listed in table of parameters.

over the range of E_’s, the difference between the proton n’s for jets 1 and 3 is -
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over one. This hints that the quark and gluon jets may have a different proton
inclusive cross section. This is in agreement with the theoretical expectation that
the gluon jet should be softer than the quark jet by a factor of (1 — 2)[27]. Such
an effect would be more visible in the proton than in the pi and K meson‘inclusive
cross sections. This is because of the smaller amount of momentum transferred
to the protons from the decay of heavier baryons than would be transferred to
the pi and K mesons from the decay of a higher mass resonance. Hence, the z of
the final state proton is close to that of the initiating baryon thereby preserving
any fragmentation effects.

However, we simply do not have the statistics to reach a conclusive answer

on this topic. The high z behaviour of the jets 1 and 3 is statistically consistent.

7.4 Conclusions

We have measured the inclusive cross sections of charged hadrons in all hadronic
events and in three jet events. We found that the high z behavior of do/dz is

approximately
(1-2)°

z

for all charged hadrons where z = E}/E;, E}, being the hadronic energy and E,
is the parton energy. We also see that the high z behavior of kaons and pions
in jets one and three are consistent. There is a hint that protons have different
behaviours in jets one and three.

Finally, LUND slightly overestimates the number of protons in the overall
hadronic data sample and clearly overestimates the number of protons in jet
three. This result is tempered by the problem of separating kaons and protons.
The number of kaons plus protons is better measured than the protons. The

LUND prediction for kaons plus protons is consistent with this measurement.
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