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ABSTRACT

A new technique for calculating hydraulic properties of unsaturated fractured for-
mations is proposed as an alternative to the common approach involving steady-state
analysis of multi-rate gas injection tests. This method is based on graphical analysis of
unsteady-state pressure-time data from an injection-falloff test sequence. Both gas and
water injection testing are considered. Flow in a horizontal fracture of limited lateral
extent, bounded above and below by an impermeable matrix, and intersected by a
cylindrical borehole is described by two analytical models developed in this study. The
first model corresponds to the early-time infinite acting radial flow period, and the
second to the late-time linear flow period. Interpretive equations are derived for comput-
ing fracture conductivity and volumetric aperture from early-time pressure data, and
fracture width from late-time pressure data. Effects of fracture inclination and gravity
are studied numerically and found to be practically negligible for gas as well as water
injection. Two simulated injection-falloff tests are analyzed using the suggested pro-

cedure. Results are found to be in good agreement with simulator input values.



Introduction

The possibility of siting high-level nuclear waste repositories in unsaturated frac-
tured formations has generated interest in developing characterization procedures for
such media. Fractures are high-conductivity flow channels ‘forming a network of con-
duits through which fluid(s) can flow. From a hydrogeologic standpoint, the properties
of major interest in these systems are fracture conductivity, spacing, orientation and
aperture. For plane fractures of limited extent in the lateral direction, the width is also

an important parameter.

Hydraulic properties of fractures such as conductivity and aperture are usually
measured in an indirect manner, with some type of flow test. The most common
approach involves injecting gas into a packed-off section of a borehole which intersects
the fracture(s) of interest. Gas is injected at a series of flow rates, and the stabilized
pressure corresponding to each rate is measured. Permeability (or equivalently,
hydraulic conductivity) is calculated from the appropriate steady-state solution of the
pressure diffusion equation (Montazer, 1982; Trautz, 1986). Such a solution typically
relates mass rate q,, to the pressure drop between the injection borehole and some obser-
vation point expressed as Ap? through a constant of proportionality which includes con-
ductivity.

Montazer (1982) conducted an extensive experimental study of in-situ permeability
measurements using such techniques and identified three major effects which affect the
injection test response. These are (a) the Klinkenberg effect (Klinkenberg, 1941), (b)
interference effects and (c) the unsaturated nature of the rock. The Klinkenberg effect
refers to the slippage between gas molecules and pore walls at low pressures, which
fesults in an apparent increase in permeability. This pressure dependence can be
accounted for by measuring permeability at a range of pressure, and then extrapolating
the linear pressure-permeability trend to infinite pressure so as to obtain the liquid per-
méability. Montazer (1982) found that it was necessary to conduct multi-rate injection

tests in order to calculate the absolute (liquid) permeability because of this phenomenon.



He also observed that the pressure-permeability relationship may exhibit non-linearities
because pressure gradients from one rate may interfere with new gradients which are
created when rates are changed. These may be compounded by capillary and slip effects,

which arise due to unsaturated conditions in the fracture.

Trautz (1984) used steady-state gas injection tests to measure gas conductivities of
fractures in an unsaturated igneous rock. He developed equations for computing per-
meability from flow tests in elliptical flow situations which are created when plane
inclined fractures intersect vertical cylindrical boreholes. He observed that non-linear

effects may be created under unsaturated conditions because of water blockage.

In this study, we explore the alternative approach of using unsteady-state pressure
data from injection and falloff tests. This method involves injecting a fluid into a forma-
tion for a period of time, and then shutting the borehole to allow pressure to falloff.
Graphical analysis of transient pfessure-time data yields formation permeability, dis-
tance to linear barriers (such as lateral fracture boundaries) and formation pressure at
initial conditions. Such techniques have been widely used for estimating hydraulic pro-
perties of saturated groundwater aquifers (Witherspoon et al., 1967), oil and gas reser-

voirs (Earlougher, 1977) and geothermal systems (Grant et al., 1982).

There are several advantages of using transient testing methods when compared to
steady-state techniques. A steady-state test has to be conducted at several rates, and
stabilized pressures measured at the injection well and an observation well for each rate.
Care has to be taken so that non-linear effects do not dominate the test when rates are
changed. The onset of stabilization (i.e., steady-state conditions) can only be estimated
crudely. Moreover, geometrical parameters such as volumetric (tracer) aperture and

fracture width cannot be estimated form steady-state testing alone.

It is important to distinguish between the hydraulic aperture h and the volumetric
aperture h,,. The former is estimated from a relationship between permeability and

permeability-thickness (transmissivity) and aperture (see Appendix C).
(kh) = 8.3 x 10° b (1)

whereas the volumetric aperture is obtained from material balance considerations.



qt = nr’¢Ash,, (1)

If the fracture is visualized as a system containing several sections of varying apertures,
the hydraulic aperture can be thought of as a parameter representing the effective con-
ductance, whereas the volumetric aperture represents the average pore space for fluid

flow.

This report deals with the development of analytical models which describe pres-
sure behavior in unsaturated fractures during injection-falloff. Interpretive e ~ations are
derived for computing fracture properties from analysis of pressure-time da‘ AMects of
fracture inclination and gravity are investigated. Example analyses of simulated

injection-falloff tests are presented.

Mathematical Model

In this section we describe the physical system of interest and state the assump-
tions made in formulating the mathematical model. Based on the solution to this model,
we then derive equations for analyzing injection and falloff pressure data. The basic

premises of this discussion are as follows.

(a) - Flow takes place in a plane natural fracture which is inclined at some angle to
the horizontal, and intersected by a cylindrical borehole (Fig 1). In our
theoretical treatment, we assume that the fracture is horizontal andvgravity
eﬂeqts are negligible. The effects of fracture inclination and gravity will be

investigated numerically, and discussed later.

(b) The fracture has constant width and aperture, and is bounded above and
below by an impermeable matrix. Initially, the fracture is unsaturated, i.e., it
contains a two-phase mixture of water and air. Following Perrine (1956), we
assume that single-phase flow equations can be used to describe two-phase
flow conditions if the total mobility (sum of the individual phase mobilities) is

substituted for single-phase mobility, where mobility X\ = k/p.

(¢) During injection, the injected fluid displaces the formation fluids in a piston-

like manner and a sharp moving front develops in the system. The presence



of this moving front creates a mobility contrast between the inner (invaded)
and the outer (uninvaded) zones. The moving front, which separates these
two zones, moves at a constant areal velocity during the injection period.
Upon the completion of injection (i.e., during the falloff period) the front is

stationary.
(d) Wellbore storage and skin effects are neglected.

It is useful to conceptualize the temporal development of flow in the fracture during
injection. At early times, before either the pressure or the saturation front has reached
the lateral boundaries of the fracture, flow will be radial. The boundary between the
two fluid zone will move in the form of radially concentric circles during this period.
Once the effect of the lateral boundaries have been felt, the flow regime will gradually
change from radial to linear. At late times, the borehole will behave like a plane source
and both preésure and saturation fronts will move in a linear fashion. This corresponds
to a linear flow period (see Fig. 1(b)). The existence of such distinct flow regimes at
early and late times suggests that two separate solutions may be superimposed to
describe the flow behavior approximately. Based on this rationale, we have developed an
interpretation model which combines the early-time radial flow solution with the late-

time linear flow solution.

~All derivations in this section will be presented for the case of gas injection. How-
ever, the final solution will be expressed in dimensionless form, and hence should apply
to liquid systems (i.e., water injection) as well when appropriate dimensionless variables
are defined and used. In deriving the flow equations, it will be assumed that the gas is
ideal. Furthermore, an average pressure p will be used to convert derivative of p to
derivatives of p? so that the flow equations are linearized. The proper choice of P is dis-

cussed 1n a later section.



Early-time Radial Flow

The partial differential equations governing the pressurevresponse during this
period, together with initial and boundary conditions, and the method of solution are
given.in Appendix A. Here, we present the results in dimensionless form, and derive
v‘vorking equations. All equations are written in consistent darcy (CGS) units. Similar
solutions, for liquid flow in composite media, have been given by Ramey (1970) and

Woodward and Thambynayagam (1983).

(a) Injection Pressure Response
The dimensionless wellbore during injection is given by

mAh 1. { 1
= i k) ¢

Pwbp =

2 4ty

M Ei [_Q - exp [_g(l;Dl] 1 Ei[—ﬁ] (3)
2 4 2 4

4

At early times, when tp>10, the log approximation to the exponential integral holds,

i.e., Ei(-x) = In(yx), and Eq. (3) reduces to
PwD = [% In(tp) + 0.405} +8 (4)

This is identical to the line-source solution in an infinite radial system (Earlougher,
1977), but with an additional dimensionless pressure drop or skin caused by the moving
front, expressed as

S — %Ei[—%)—] -exp[—@] —%Ei [—%] (5)

Substituting for dimensionless variables, one obtains from Eq. (4)

2 a_ LISIGp f| ¢ S+0.405
—-pl = = — +1 4 22 6
Pt = Pi b e T e (6)

Ty

Eq. (6) suggests that a graph of pJ against log (t) should produce a straight line with

slope
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from which the mobility thickness A\;h of the inner zone can be calculated. Moreover, if
the skin due to the moving front is known, the inner zone diffusivity can be calculated

from -

2
Pwr

pze 25 | o352 m
Lo |7 T 1as1 ' !

Tw
log n; = o~ (8)

(b) Falloff Pressure Response

The falloff response can be computed from the injection response using superposi-

tion. Defining a dimensionless shut-in pressure

ﬂ'k]h

Pps = (P& — Pi%) = Pup (tpp + Atp) — pyp(Atp) (9)

and substituting from Eq. (3), we have
| - 1 M .. aDt,p a(1-D)typ
— LEif——L ) Mg 2w ) 21D
PDs 2 [ 4(tpD+At’D) ] 2 ! [ 4(t’pD+AtD) ] eXp [ 4(tpD+AtD)
| t Dt
Sl o (Ll + Mgl - 2200
2 4(t,p+ Aty 2 1Aty 2 40ty
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1Aty 2

(10)
Consider the fall-off response for t,p, >> Atp. Eq. (10) can than be simplified to

pps = ~ Ei [——J—]_lEi [-—L—]+MEi —%]'exp [_ﬂz;l)l]

2 A(t,p+Atp) | 2

aDt 1-D)t.p ) t
12l ML D | _ exp _u L gl 2o (11)
2 1| 2 1Aty |2 1Aty

Furthermore, if the log approximation to the exponential integral applies, Eq. (11)




reduces to
1 t’pD + AtD ]

= =] S -} 4S8 12
Pps 2 n [ Atp ( )

This can be rewritten in terms of real variables as

2 2 _ 1151qp J, tp, + At S

- pf = oMb + 13
Pws = Pi b | o | T Ac 1.151 (13)

Thus, a conventional Horner graph (Horner, 1951) of p2 versus log (tp, + At)/(At)

should also yield a straight line of slope

_ 1.151qp

= 14
my Thgh ( )

from which A\h can be calculated. Also, by extrapolating to a Horner time ratio of

unity, one can compute

* 2 mIS

2
2y M 15
Pys P+ TTED (15)

The group in the right is needed to evaluate the inner zone diffusivity 5, from Eq. (8).

The semi-log straight line, defined by Eq. (12), will end when

at D
Ei 4 0 16
Bk (15
For practical purposes, this implies
at D
Ei|-—2— |=010=Ei' (1.5 17
[ 4AtD] i (1.5) (17)

which can be rearranged to give

a = 6 . (18)

TR

where {(tp—l—At)/(At)} is the time at which the early-time Horner straight line approx-

imately ends. Now, from Eq. (A.39)
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since the diffusivity #n, is evaluated from Eq. (8), the volumetric fracture aperture h,

can be estimated from

hoy=—= ——9 20
vol 7ra¢As771 ( )

Thus, Egs. (7) or (14), (8) and (20) provide a simple scheme for calculating the mobility-
thickness of the inner zone, the diffusivity of the inner zone and the fracture aperture
respectively. Since the viscosity of the injected fluid will be known, the permeability-
thickness k;h of the inner zone can be estimated from the mobility thickness A\;h. The

hydraulic aperture can then be calculated from Eq. (1).

At late time, if Atp>>t,p and both are large such that the log approximation

holds, Eq. (10) simplifies to

M tpp + Atp
= || 22— 21
Pps 2 ﬂ[ Atp (21)
or, in terms of real variables,
2 2 1151qp bp+At
- pi 22
Pws = P mAsh At (22)

This indicates that the intermediate (middle-time) fall-off data will produce a Horner

straight line of slope

__ 1.151qp

== 23
2 ﬂ')\gh ( )

from which the mobility thickness of the outer zone can be calculated.

Late-Time Linear Flow

Appendix B outlines the formulation of the linear moving-front problem, and its

approximate solution. The later time injection pressure is given by

* t N
Pwp = 2M+, / -% o (29)
Us



or, in terms of real variables

1.128
PA - P = bl?p \/ ot (25)
Xg

The falloff response, using superposition, is obtained as

* 2M * * *
Pps — —\/7}—_1)— {\/ tpD+AtD - \[At}D} (26)

or, in terms of actual parameters,

1.128 ——
pl - pit = )\bl?p \/ {\/"’p‘*’At‘VAt} - (27)

These solutions can be used to calculate the fracture width b if outer zone properties X,
and 7 can be estimated. From Eq. (25) and (27), we see that cartesian graphs of injec-
tion pressure p.; versus injection time t, or falloff pressure p.% versus the time group
\/m - \/(T), will yield a straight line with intercept equal to the square of the ini-
tial pressure, and slope

1.128 4 /72
N bh

m; = (28)

The fracture width b can then be calculated from this equation.

Linearization of Gas Flow Equations

The p? formulation is one way of linearizing the non-linear gas flow equations, pro-
vided the pressure level and pressure changes are small. A proper value of p then needs
to be selected to calculate fracture properties using their interpretive equations derived

“in the previous section. In order to determine the proper average, three injection tests
for the same system but with different injection rates were simulated. The numerical
tool used was TOUGH (Pruess, 1985), a program to simulate two-phase two-component
flow of water and air. The objective was to find the appropriate p (and corresponding 7
and 7) for which the permeability calculated from the slope of the injection semi-log

graph is approximately equal to the simulator input value.
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Table 1
Summary of Permeability Calculations
Linearization of Gas Flow Equation Example

9dm m P P q 7 k
Case (kg/s) (atm/==) (atm) (kg/cc) (cc/s) (cp) (darcy)
1 2.48 x 107° 0.273 1.019 1.26 x 1078 19.7 0.018 4.86
2 2.48 x 1074 0.274 1.301 1.66 x 1078 149.7 0.0185 4.82
3 1.48 x 1072 0.270 2992 370x10°% 6700  0.021 5.65

System Data: p; (Pa) = 10°%, T(°C) = 10, k (darcy) = 5, h(cm) = 1, r,, (cm) = 10, Sgi = 0.97,
Syi = 0.03. ,
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Table 2
Effect of Fracture Inclination on Wellbore
Pressure Reponse During Gas Injection
ow ow

t ’ (a=0") (=30°)
(sec) (10°Pa) (10°Pa)
1 1.13169 1.13169

2 1.21904 1.21904

16 1.28812 1.28812
64 1.35045 1.35038
128 1.38225 1.38189
512 1.46716 1.46509
1280 1.56263 1.55912
2304 1.65107 1.64696
3154 1.70961 v 1.70607

System: p; (Pa) = 10°, T(°C) = 10, K (darcy) = 5, h (ecm) = 1, ry, (cm) = 10, 54 =
0.97, s,,; = 0.03.
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Table 3
Effect of Gravity on Wellbore
Pressure Response During Water Injection
Q= 1.4 x 102 kg/s qm = 4 x 10~ kg/s an = 4 x 1072 kg/s
5
Pw (10° Pa) Pwr (10° Pa) Py (10° Pa)
t ' t t

(sec) a=0° =60 ° (sec) a=0° a==30° (sec) a=0° a=60°
15 1.00217 1.00216 18 1.00590 1.00589 10 2.02106 2.02105
31 1.00248 1.00247 23 1.00688 1.00687 24 2.80513 2.80512
63 1.00276 1.00276 55 1.02631 1.02625 60 3.73703 3.73702
127 1.00314 1.00313 111 1.09659 1.09648 108 4.33621 4.33592
319 1.01865 1.01855 275 1.17773 1.17758 236 4.99936 4.99856
735 1.04822 1.04811 625 1.27140 1.27119 620 6.21492 6.20643
1220 1.06508 1.06490 1140 1.32618 1.32520 1004 6.88306 6.85386
4350 1.11757 1.11450 2419 1.38797 1.38299 2284 6.8836 6.85386
5482 1.46581 1.45895 5868 7.81970 7.81672
8000 1.13589 1.12905 10000 1.49809 1.48723 10476 8.37960 8.18227

Other Data: k = 5D, gt = 1.3 ¢p, ¢ = 0.50, p; = 10° Pa, r,, = 10 cm, h = 1 ¢cm, b = 10 m,
Swi = 0.03, T = 10°C, p = 10% kg/m®
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Table 4 -
Model Validation

System Data

p; (Pa)
T(°C)
k (darcy)
h

r, (cm)
Sgi

Swi

Air-injection Test Parameters

qp (gas)
tP
Atmax

Water-Injection Test Parameters

q,, (water)
b
JAN

10°
10

1(cm) "
10

0.50
0.50

4.96 x 107 kg/s
300 sec
3300 sec

4x 103 kg/s
20000 sec
180000 sec
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Figures 2 through 4 show injection pressure responses corresponding to the three
different injection rates. By examining these graphs, we found that the proper average
pressure is the average during the infinite acting radial flow period (corresponding to the
semi-log straight line). As long as pressure changes are below approximately 2 atm., this
rule gives quite good answers. However, for greater rates and hence large pressure
changes (e.g., Fig. 4), the well response becomes nonlinear and continuously changes
slope on the semi-log graph. If a semi-log straight line is nevertheless drawn throu.gh the
point of inflection (point A on Fig. 4), and the corresponding pressure chosen as the
average pressure, errors larger than 10% may be expected in permeability calculations.

Table 1 summarizes permeability calculations for the three different cases studied.

Effects of Fracture Inclination

When flow in an inclined fracture is modeled, two additional factors need to be con-
sidered. Because of the altered flow geometry (cylindrical borehole and inclined frac-
ture), early-time flow may no longer be radial, as in a horizontal fracture. Moreover, the
influence of gravity forces vis-a-vis viscous forces has to be taken into account. These

effects are discussed below.

Modifications in Flow Geometry

When an inclined fracture is intersected by a cylindrical borehole (as in Fig. la),
the resulting conic section is an ellipse and the flow geometry is elliptical rather than
radial. Trautz (1984) derived steady-state elliptical flow solution to compute gas conduc-
tivity in natural fractures which are inclined and used these to interpret data from field
tests. However, in his extensive study on transient flow in elliptical systems, Kucuk
(1978) showed that any elliptical flow system can be converted to an equivalent radial
system after a certain dimensionless time tp,, which is graphed in Figure 5 as a function

of a/b, the ratio of the semi-major axis of the ellipse to the semi-minor axis. Here

—E— == sec o (29)
0.5(%+1)
rv', = rytana¢ ——— (30)
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where o is the inclination of the fracture with respect to the horizontal, and r, is the
actual wellbore radius. For most practical situations, the onset of radial flow occurs at
very early times. As an example, for the case of air injection, if k = 5 darcy, p =1

atm, p = .018 ¢p, # = 0.50, r, = 10 ¢cm, and « = 60",

a/b = 2, tp, = 20 (Fig. 5), r,, = 15 cm (Eq. 30), t = 8 sec (Eq. 31). Thus, after
about eight seconds of injection, the system will behave like a radial flow system for all
practical purposes. Hence, it is reasonable to assume that elliptical flow eﬁ‘ects‘ can be

modeled by radial flow equations for all times of interest.

Gravitational Effects

In highly unsaturated fractures (i.e., with very low water saturations) which are
inclined, the initial (static) pressure distribution will be nearly uniform because of negli-
gible gravitational potential of gas. Once injection begins, the amount of injected fluid

going updip and downdip can be approximated by:

ap PErySina
q = —T\;h 32
P ' { a(lnr) ~ 1.0133 x 10° } (32)
dp P, Sina )
q = —mA\1h - 33
down ' { 3(inr)  1.0133 x 10° } (35)

In the case of gas injection, the gravitational component will usually be much smaller
than the flow rate induced pressure gradient, since the density of gas is very small. This
will result in almost equal amounts being injected updip and downdip, and consequently

gravity effects on the pressure transient response will be negligible.

An injection test was simulated using TOUGH (Pruess, 1985) to study the effects of
gravity when gas is used as the injection fluid in an inclined fracture. Table 2 lists the
system data and the injection response for this case, as well as that for the correspond-
ing horizontal fracture case. The maximum difference in observed pressures was less

than 1%, indicating that gravitational effects were negligible. This is consistent with the
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expected behavior as discussed above.

For the case of water injection, the dynamic distribution of fluids in updip and
downdip directions will depend on the relative magnitudes of the pressure gradient and
the gravitational terms. Since the pressure gradient is affected by the injection rate, one
would expect gravity effects to be dominant primarily at low rates (small pressure gra-
dients). We simulated water injectioﬁ tests at three different rates to investigate this
phenomenon. Table 3 lists system data, and pressure responses for the various cases

studied.

In all the cases, the difference in the inclined and horizontal fractured system
behavior was observed to be very small. This is believed to be due to large flow rate
induced pressure gradients created in the system. In fact, calculation of this pressure
gradient showed that it was at least two orders of magnitude higher than the gravita-
tional term even for the smallest rate. A practical implication is that in most situations
where fractures are included, even small rates will lead to large pressure gradients in the
system (because of small apertures) which will dominate the gravitational effects. Hence,
errors in analyzing transient pressure data from inclined fractures using interpretative

equations derived for horizontal fractures will usually be small.

Model Verification

Two simulated injection-falloff test sequences were analyzed using the methods
developed in this study as a verification exercise. Pressure-time data for an air-injection
test and a water-injection test were simulated with TOUGH (Pruess, 1985). Because of
the symmetry in the system, flow in one quarter of the fracture (Fig. 1b) was simulated.
In order to obtain reasonable resolution in the near-wellbore region, a radial grid was
used till a distance of 5 m. Further away from the well rectangular elements were used
to a total system dimension of 674.5 m. This system size was sufficient so that the
effects of outer boundary would not be felt during the simulation period of interest.
Such a hybrid grid arrangement is facilitated by the integral finite difference formulation

(IFDM) used in TOUGH. Grid spacing was logarithmic for accurate modeling of
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transient pressure response. A total of 65 elements was used in the flow domain.

Conventional Steady-State Analysis of Injection Test Data

For comparative purposes, we include an analysis of the injection test pressure data
using steady-state equations. Cartesian graphs of pressure time data are given in Fig. 6
and 7. Following Montazer (1982), we write the steady-state flow equation for gas injec-
tion as

qm#RT  In(re/ry)
kh = 22
oM (Pw — Pe)

(34)

where R is the universal gas constant, M the molecular weight of the gas, T the absolute
temperature, p, the steady-state injection pressure, and p, the boundary pressure at
radius r,. Similarly, the equation for water injection is

Im# ln(re/rw)

kh —
2mp  (Pw—Pe)

(35)

However, these equations cannot be used to calculate the permeability-thickness
product from single-well test data since r, and p, are unknown. Even if p, is assumed to
be equal to the initial fracture pressure p;, the problem of properly estimating the radius

of investigation r, still remains.

We assumed r, values of 10, 100 and 1000 m for the water injection case (Fig. 7),
which yield kh estimates of 6.1, 9.1 and 12.2 D-cm respectively. Excepting the first
value, the rest compare poorly with the actual value of 5 D-cm. The important point to
be noted here is that for a single-well test, there is no reasonable way of guessing r, and
hence no way of calculating the conductivity. Moreover, other parameters such as the
fracture width and volumetric aperture cannot be calculated even if the fracture conduc-
tivity is known. A transient test analysis, on the other hand, uses almost all of the
early-time data (as opposed to only the steady state pressure), and requires a minimum
number of assumptions in computing fracture properties of interest. This is demon-

strated below.
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Air Injection-Falloff Test Analysis

The injection test data, early time falloff data and late time falloff data are graphed
in Fig. (8) through (10). The mobility thickness of the inner zone is obtained from the
slope of the injection period semi-log straight line (or the falloff Horner semi-log straight

line), Fig. (8) or (9)

1.151qp
my

Mh = = 200 D-cm/cp

The actual mobility-thickness, corresponding to an assumed average saturation of 0.555

in the invaded zone, is 210 D-cm/cp.

From the intercepts of these semi-log graphs

*
Pt =p%@{4%=ﬂ};=L%1Mm2
I‘W
* mls
pv?s = pi2 + ﬁ = 0.993 a,t‘,m2
the inner zone diffusivity is calculated as
2 |* o ff
Pwt | — Pws 0.352[111 cm2
Ny = 10** — 805
my ‘ S

The simulator input value for this case is 820 cm?/s.

The Horner time ratio at which the early-time semi-log straight line ends during

falloff is

tp At
At

] =~ 10.5

The front velocity ratio a can be calculated from

2 — 6 o063

{(tp+At)/At} 1

which leads to an estimation of the volumetric aperture
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q

h,y—= ————=09cm
vol mapAsn,

This compares well with the actual value of 1 em.

The middle-time portion on the Horner graph does not produce a straight line,
from which the properties of the outer zone could have been calculated. This is prob-
ably due to a near unity mobility ratio between the inner and outer zones, and the effect
of the fracture lateral boundaries being felt. The average air saturation in the inner
zone is 0.555, which is fairly close to the initial value of 0.50. Thus, a moving front has

not really developed in the system.

The late time falloff data fall on a straight line on a square-root of time graph (Fig.
10), as is to be expected for the linear flow geometry. The intercept is equal to the

square of the initial pressure 10° Pa, which is the same as the simulator input value.

From the slope of this straight line, the fracture width can be estimated if the
mobility-thickness and diffusivity corresponding to the outer zone are known. However,
since saturation changes are small, these parameters can be assumed to be roughly equal

to the inner zone values. The fracture width is then calculated

1.128qp

b ~
m3)\1h

v = 9.6m

This compares well with the actual value of 10 m.

Water Injection-Falloff Test Analysis

The simulated pressure data are graphed in Fig. (11) through (14). The method of
analysis is essentially the same as in the previous case, with only the substitution of
appropriate dimensionless variables to develop the proper interpretive equations. See

Table 4 for a definition of dimensionless variables for the liquid injection case.

From the slope of the early injection and falloff semilog graphs (Fig. 11 and 12) we

obtain
m; = 0.212 atm/~

from which the mobility-thickness of the inner zone is calculated as
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1.151q
27wm,

Ah = = 3.5 D-cm/cp

The corresponding simulator input value is 3.8 D-cm/cp.

From the intercepts of the early-time straight lines,
par = 1.135 atm
Pys = —0.0247 atm

The inner zone diffusivity is then given by

* *

-0.352 m

N = 10** { P Pus ! } = 1.3 x10° cm?/s
my

This is comparable to the simulator input value of 1.5 x 10% cm?/s.

The time at which the early-time straight ends on the falloff graph is

*%

] ~ 1.8 x 10°

tp+At
At

The front velocity ratio 1s then calculated as

6
(t+AL) | .
At -

The volumetric (tracer) aperture may now be estimated as

~ 3.3 x 10°

By = ——— = 1.18
vol mpAsan,; em

This compares well with the actual value of 1 c¢m.
The middle-time region of the fall-off graph (Fig. 13) yields a straight line with
slope
my = 3.26 x 107 atm/~>
from which the mobility of the outer zone is given as

__ 1.151q

Aoh
2 2mm,

= 224.8 D-cm/cp
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The actual value, corresponding to the initial unsaturated conditions, is 207 D-cm/cp.

The late-time fall-off data fall on a straight line on a square-root time graph (Fig.
14). The intercept is equal to the initial pressure 10° Pa, which is the same as the simu-

lator input value. The slope of this straight line is

atm

vsec

ms = 2.14 x 107

The fracture width can be estimated from this value if the outer zone diffusivity is

known. This is estimated to be

(b
Ne = #h

CIII2

= 444

Based on this estimate, the fracture width is calculated as
| P
m3(\h) T

Discussion

It has been shown that the simple model proposed in this study gives reasonable
values for many parameters of interest in fractured, unsaturated rocks. The air-injection
example was approximately a unit-mobility ratio displacement case, resulting in the for-
mation of a diffuse front. This caused problems in estimating the volumetric aperture,
which could be resolved only by assuming an average value of gas saturation in the
invaded zone. Such information will usually not be available. However, for highly unsa-
turated fractures, the problem is equivalent to single-phase gas flow, and conventional
pressure analysis methods (e.g., Witherspoon et al., 1967; Earlougher, 1977) can be used

to estimate fracture conductivity and width.

The assumption of a sharp moving front (i.e., piston-like displacement) will gen-
erally be true only if the invaded zone mobility is significantly less than the uninvaded
zone mobility, as in the example of water injection in an unsaturated fracture containing
water and air. The moving front can then be easily seen on the transient pressure

response. If the original saturation is known, the volumetric aperture can be estimated
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from the time at which the early-time falloff semi-log straight line ends.

If the fracture width is small, boundary effects will be felt early and may obscure
the middle-time portion in the falloff data. In that case, the volumetric (tracer) aperture

cannot be calculated by the method suggested in this study.

For thin fractures (which is commonly the case), even small injection rates will
cause pressure gradients which are large compared to gravitational terms. This is an
important observation since it facilitates the use horizontal fracture system equations to
interpret inclined fracture system pressure data. Another significant finding is that the
duration of elliptical flow in inclined fracture-borehole geometries is very short, and
hence early-time flow may be assumed to be purely radial at all times.

One problem with gas (or air) injection is that the system response may be non-
linear if pressure changes are not small. This requires a proper selection of the injection
rate, so that pressure levels do not exceed 2-3 atmospheres. However, air injection is
preferable from a practical standpoint as it leaves the formation mostly undisturbed.
This may be an important consideration if the ultimate objective is to use the formation

as a hazardous waste repository.

Conclusions
1.  Analytical models for analyzing gas and water injection-falloff tests in unsa-
turated fractured formations have been developed. Interpretive equations to

estimate fracture conductivity, width and aperture from graphical analysis of

transient pressure-time data have been derived.

2.  Effects of fracture inclination and gravity have been investigated numerically,

and found to be negligible both for gas and water injection tests.

3. Two simulated injection tests have been interpreted using the methods

presented, the results of which compare favorably with simulator input values.

4. The method of analysis suggested in this work is an alternative to conven-

tional multi-rate gas injection tests for measuring fracture properties. Unlike
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the steady-state tests, our procedure uses much of the unsteady-state data,
and has the potential of providing information regarding geometrical charac-

teristics such as fracture width and aperture.
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Nomenclature

a front velocity ratio

b fracture width (cm)

D diffusivity ratio

h hydraulic fracture aperture (cm)
hyg volumetric fracture aperture (cm)

k permeability (Darcy)

m semi-log straight line slope (atm/ =<)
M mobility ratio

p initial fracture pressure (atm)

Pwt injection well flowing pressure (atm)
Pws injection well shut-in pressure (atm)
q volumetric injection rate (cc/s)

Am mass injection rate (kg/s)

r radial distance (cm)

I'y wellbore radius (cm)

Ip distance to front (radial flow) (cm)
As saturation change in invaded zone
tp injection time (sec)

At shut-in time (sec)

X linear distance (cm)

X¢ distance to front (linear flow) (cm)

Greek Symbols

o fracture inclination (degrees)
/) density (kg/cc)

¢ porosity

© viscosity (cp)

7 diffusivity (cm?/s)

mobility (darcy-cm/cp)
constant, 1.780072

Other Expressions

(e o]
Ei(-x)  exponential integral, Ei(-x) = - [ e™du/u
X
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Appendix A

Transient Pressure Response During Radial Flow

In this section, we present an analytical model describing the pressure response dur-
ing the movement of a radial saturation front. Flow in the inner (invaded) and outer

(uninvaded) zones is governed by the diffusivity equation

( 3 2
1 9 [ opf 1 9Opi
1 9 = = Al
r Or kr or | n, Ot (A1a)
[ dps ) aps
19 Pp | _ 1 %P2 (A.1b)
r Or or | Ny Ot

Here, subscripts 1 and 2 refer to the inner and outer zones respectively. Diffusivity 7 is

defined as

Phig
M2 = (A2)
¢
and the mobility X is defined as
k
A = = (A.3)
P2
Initially, the system is in pressure equilibrium
plz(ryo) = p22(rr0) - pi2 (A4)
A line source well is injecting at a constant rate at the inner boundary
mhh opy
r =q (A.5)
P Or r—0
The outer boundary is undisturbed at all times
ps (00,6) = p;° (A.6)

At the moving front, both pressure and flux are continuous
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pZ (rpt) = p(ret) (A7)

3pf Bpf
A = A A8
1 [ aI‘ ]l‘r ? [ '8]‘ re . ( )

The movement of the front is assumed to be piston-like, i.e., the front is modeled as a

plane of constant saturation separating the injected fluid from the in-situ fluid. From

material balance considerations
qt = mr?h,9As {A.9)

This implies that the movement of the front is such that ri?/t is a constant. The set of
equations (A.1) through (A.9) will be solved using Boltzman’s transformation. We define

two new variables

r2
= (A.10)
4n,t
2
T
= A1l
— (A
Substituting in Eq. (A.1), we obtain
dQPl2 dpl2
+ —(1+y) =0 A.12
2 ™ (1+y) (A.12)
d2P22 sz2
+ —(14x) =20 A.13
o g (1) (A13)
Associated initial and boundary conditions are
pf = pf = pi® as y,x—o00 (A.14)
lim oy 4P _ _ _ap (A.15)
y—0 dy T\ h
t -
p’ = ps at — = ! (A.16)
T
dp; dps
Ay LR,k 2 (A.17)
dy ¥t dX Xt

Now integrating Eq. (A.12)
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The constant ¢, can be evaluated by substituting ¥q. (A.18) in (A.15). This gives

¢ = - 3P
277')\1}1
and
dpl2 _ gp €7

y
2, 4P ¥ 4o
Pi W {‘ yteo
where
I‘f2 ¢
yf == = =
ymb ym
Equation (A.21) can be rearranged as
ey

_ [ee]
2 qp
— +
b1 270\ h yf

The exponential integral is defined as

Then Eq. (23) gives

Pl =+ 50 {Ei(—y) - Ei(—yf)} + ¢

(A.18)

(A.19)

(A.20) -

(A.21)

(A.23)

(A.24)

(A.25)

In order to evaluate c,, the pressure in the invaded zone p, has to be estimated.

Integrating Eq. (A.13),

dpd cze ™

dx X
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Applying the boundary condition of Eq. (A.17), one obtains

C3 = — 2:;)2}1 exp {— (}’r - Xf)}

2
r :
where x; ! = Substituting for ¢, in (A.28) and integrating
)
2 q9p €
= expd—-(yr—x¢) V-] —dx+e¢
P2 27Aoh P { (ve r)} { X 4
or,

ps =+ 2:;\)2}1 exp {— (ye - Xf)} - Ei(—x) + ¢4

Application of Eq. (A.14) gives
Cqy = pi2

Thus, the pressure in the outer zone is given by

Py = + 2;’;)211 exp {— (ye - Xr)} - Ei(—x)

Recall, from Eq. (A.16),

b

pi’ = ps when — =¢
Iy

Thus, from Eq. (A.25) and (A.31),

Co = + 2:;)2}1 exp { - (yr - Xf)} - Ei(—x)

Hence, the pressure in the inner zone is given by

pl - p = 27?)1‘)1}’ {Ei(—Y) - Ei(—yr)}

- 27?;)211 exp {+ (yr - Xr)} Ei(—x)

The wellbore being the observation point of interest, one obtains

(A.28)

(A.30)

(A31) .

(A.32)

(A.33)
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o _pr @ fgf ) g
Put = Pi 2m\;h o gt

+ 3P I e Ei rr (A.34)
cexp { — - -Ei | - .
27xoh P Bt pngb pngt
We now define the followng dimensionless variables
m\h
Pwp = (P»fr - Pi2] — (A.35)
qp
t
tp = "—12 (A.36)
rW
A
= (A.37)
A
_n (A.38)
2
a=[—9 | [L1 C (A39)
71'hvol¢’13S m

Substituting in Eq. (A.34) we obtain the dimensionless injection pressure response at the

wellbore

g2

As pointed out earlier, similiar solutions have been derived for liquid flow in composite

media by Ramey (1970) and Woodward and Thambynayagan (1983).
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Appendix B

Pressure Transient Behavior for the Linear Flow Period

In this appendix, we present an analytical model describing the pressure response

during the movement of a linear front. As in the radial flow case, the diffusivity equa-

tion governs flow in both the inner (invaded) and outer (uninvaded) zones:

32}312 __1_ 3P12
ax? 7 Ot

32P22 1 3P22
ax? Ny Ot

Initially, the system is in pressure equilibrium:
pi (x,0) = pF(x,0) = p;?
A plane source is injecting at a constant rate at the inner boundary:

A;bh 6p12
2p ox

-4
2

x—0

The outer boundary is undisturbed at all times:

pF(co,t) = p;?

At the moving boundary, both fluid flux and pressure are continuous:

5P12

8]) 2
)\2 2
ax

A =
! Xe ax

Xt

P (Xpt) = ps’ (xpt)

The front moves as a plane, which is expressed by the material balance condition

qt} = beh vol¢AS

(B.1a)

(B.1b)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

These equations are converted into dimensionless form through the use of the following

dimensionless variables.
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. Ah
pp = —— [p2 - pi2] (B.8)
qp
* t
X
= — B.11
XD b | ( )

Mobility ratio M and diffusivity ratio D are defined to be the same as those for the -

radial case. This leads to the following non-dimensional set of equations

d’pp; _ 9pp1

= B.12
Ixg dtp (B.12)
’pp 3rp
P2 _ p 2222 (B.13)
aXD2 atD
PD1 (XD,O) = Ppo (XD,O] =0 (B.14)
a *
PoL _ (B.15)
dXD
Pb1 (oo,tl;] =0 (B.16)
dpp dpp
M Pp1 __ 9Pp2 (B.17)
BXD X 6xD X
Pp1 [Xm,tg] = pp» [Xm;to*] (B.18)
The time-dependence is eliminated through the use of the Laplace transformation
to
Pp [xD,l] = fETl Pp (XD,T] dr (B.19)
0
where [ is the Laplace space parameter. This yields
d’*pp .
PD1 _ 52, (B.20a)

dxZ
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__ ¥

d2PD2

o I DPps (B.20b)
Pp1 [XfD;l] = Pp2 (fozl) (B‘Ql)_

o] - 2|

Be (001) = 0 (B.23)

(;ilil Xp—0 o ll (B.24)

The general solution for Eq. (B.20) is

Ppr = A, exp [xD\/l_] + B; exp (— Xp \/l—] (B.25a)

Ppe = A, exp [xD\/l_D_] + B, exp [— xD\/m] (B.25b)

In order to satisfy Eq. (B.23), A, = 0, and hence
Pbe = By exp (— xp V1 D] (B.26)

Substituting Egs. (B.25a) in (B.24),

d_*
Pp1 = A VI - exp [xd\/l—) -B,VI exp(—xD\/T] Yoo T 1 (B.27)
de Xp—o - !
1
A, =B, - — B.28
1 1 l\/T ( )
Substituting back in Eq. (B.25), and rearranging
. exp [ xpV1
Pp1 = By {exp (XD\/I_) + exp (-—XD\/I-] } - —-—g\/l_—] (B.29)
Using Eqs. (B.29) and (B:26) in Eq. (B.22), we obtain
M{Bl [\/l_ exp (xm \/l—] - VI exp (-xm \/l_]]
v exp(xﬂ)\/l_]
- = - ‘B —xp VD B.30
T VD - By exp (—xp VD) (B.30)
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which can be rearranged as

o (1) (1)

+ B, {\/E exp[—xm\/.l;] } = M exp (xm \/l—) (B.31)
Similarly, Eq. (B.21) results in

o) o (o)

- B, {13/2 exp [—xm \/ﬁ] } == exp (xm \/1_] | (B.32)

Equations (B.31) and (B.32) can be solved simultaneously to obtain the constants By and

B,, which are

e [xﬂ)\/l_] (M+\/I3]

B, B (B.33)
B, _ exp (xm \/m] (ZM] (B34)

By

where
B, — [3/2 {exp (fo \/l_] [M+ \/5) — exp (—xm \/l_] [M— \/]3)} (B.35)

The dimensionless pressures 51)*1 and ﬁgg are then given by

o M+vD
Pp1 = (B.36)

13/2exp[xD\/l_]{1— 11\\44;{% . exp(2xD\/l_]}

1+ M-VD exp(?xD\/l_]~exp(-2fo\/l—]}

2Mexp [xm\/l_D]

Ppz = (B.37)

ey (s T){ (34 VD e (507 ) - (M- o (507 |
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At the borehole (which is the primary observation point), Eq. (B.36) reduces to

. {1+ 1\1\//{[_,\//1]:)5 exp(~2xm\/1_]}
Pp1 (XDZO]ZE‘:D—_— ‘ x
e (20T |

(B.39)

M+vD

Since linear flow takes place only at late-times, it is useful to derive a long-time

approximation from Eq. (B.38). This is given by

1o M-VD

+

Lim o+ M+vD M (B.39)

=0T ef MDD |
M+vD

Equation (B.39) is easily inverted to yield

ponl5) = T = V5 - B0)
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Appendix C

Relation between Fracture Perineability and Aperture

A relation between effective fracture permeability and aperture can be derived from
hydrodynamical considerations (Muskat, 1982). A fracture of width h may be considered
equivalent to an open linear channel of equal width for viscous flow conditions, the car-

rying capacity of such a linear channel, per unit pressure gradient, s given by

A— 20 C
= s (C.1)

where Q is the thruput and p the viscosity. By equating this expression with Darcy’s

law, the equivalent permeability of the fracture, in cm?, is given as
___ h?
k= T (C.2)

where h is in cm. Converting permeability to darcies, and multiplying both sides by h,

one obtains
Kh = 8.3 X 10% h® , (C.3)

which is the same as Eq. (1) of the main text.
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Figure 1. Schematic of physical system: (a) cross-sectional view, (b) plan view.
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Figure 4. Linearization of gas flow equations - injection pressure data, case 3.
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Figure 5. Dimensionless times for the onset of radial flow in elliptical flow systems
(after Kucuk, 1978).
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Figure 7. Cartesian graph of water injection test pressurc response.
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Figure 8. Semi-log graph of air injection test pressure response.
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