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Abstract:

We consider excited nuclear matter at densities somewhat below the
saturation density. The system is described in terms of excitable nuclear
fragments embedded in a nucleon vapor. With a view towards applica-
tions to medium-energy nuclear collisions, we propose a specific factoriza-
tion of the total partition function by which the individual quasifragments
can be formally separated from the vapor: a given nucleon is considered
part of a particular fragment to the extent that it is reflected back from
the nuclear surface when attempting to leave the domain occupied by that
fragment. This prescription leads to a mass-dependent limiting nuclear -
temperature. A number of other prescriptions used in the past are also
examined and compared. '
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1 Introduction

Statistical concepts play a central role in our understanding of the outcome of nu-
clear collisions. In low-energy collisions the transient systems formed evolve slowly
and their excitation energy remains well below their binding energy, so that stan-
dard statisitcal evaporation models can be employed to describe the deexcitation
process. As the energy is raised to medium energies, many-fragment final states
grow abundant. Statistical methods are frequently applied in this regime to consider
the production of several complex fragments. At still higher energies some simplicity
is again achieved: the final states contain predominantly simple particles (nucleons
and pions), and statistical “fireball” models can be utilized. This schematic summary
serves to exhibit the fact that different scenarios prevail at different energies and that
relative simplicity in the model description can be achieved when care is taken to
identify the physically significant degrees of freedom.

Historically, the statistical description of nuclear collisions at medium energies
evolved from phase-space calculations of exploding fireballs at relativistic energies
(1,2]. Naturally, the primary degrees of freedom considered were those associated
with the most abundantly produced simple particles, nucleons and pions, and the
production of complex, excitable fragments was treated as a correction. Later on,
the grand-canonical formulation was generalized to incorporate the simultaneous pro-
duction of several complex and excitable fragments [3]. From the opposite starting
point, Friedman and Lynch treated the disassembly of a hot nuclear source within
the standard sequential-evaporation model developed for deexcitation processes at
lower, relatively moderate temperatures [4]. The compound-nucleus aspects have
also been emphasized by Moretto [5,6]. Nuclear collisions at medium and high en-
ergies are expected to exhibit both explosive and evaporative characteristics, due to
the dynamical separation of the collision system into sources of qualitatively differ-
ent degrees of excitation (“participants” and “spectators”). Therefore, to the extent
that the high- and low-energy aspects of the process can be separated, one may apply
either explosion or evaporation models to the appropriate parts of the problem [7,8].

The two opposite extremes, ezplosion at high energies and evaporation at low
energies, should emerge as the appropriate limits of a more general statistical disas-
sembly theory. Through the past several years, considerable progress has been made
towards this goal, the most recent accomplishment being the formulation of a micro-
canonical model for interacting fragments embedded in a nucleon vapor [9]. Although
this model provides a well-founded formal framework for statistical studies of sub-
saturation nuclear matter, several specific ingredients remain to be improved before
“realistic” calculations would be meaningful, including the interaction between the
fragments, the dependence of their binding energy on temperature, isospin effects,
and the formal separation of the fragments from the vapor. In the present work we
address this latter problem. Thus, we focus our attention on subsaturation nuclear
matter at medium energies (where the temperature is typically of the order of ten
MeV). An important property of such systems is their tendency to form clusters and



it is natural to formulate a model in terms of such individual (but interacting) clus-
ters. Accordingly, the most relevant variables are the masses, positions, and momenta
of distinct complez fragments, together with their degree of intrinsic excitation, and
the positions and momenta of individual vapor nucleons. We focus particularly on
the description of a single such cluster, a quasifragment, embedded in a hot vapor of
nucleons. Such a quasifragment can be regarded as a generalization of the concept
of an ordinary atomic nucleus at low temperatures (where the coupling to the vapor
is unimportant). ' :

The quantitative importance of incorporating unstable excited states into statisti-
cal models for nuclear disassembly is brought out by experimental evidence indicating
that metastable composite fragments are formed abundantly in nuclear collisions at
medium energies [10,11]. In our previous treatment of nuclear disassembly (8], a
particular unstable fragment state was included in the final phase space provided
its (estimated) half-life exceeded the time characterizing the breakup process. A
similar prescription was also employed in the exact microcanonical model of nuclear
disassembly [9]. Although such life-time arguments are intuitively appealing in the
context of a disassembling source, their relevance is less clear for the treatment of
static problems, e.g. excited infinite nuclear matter at subsaturation densities. It is
therefore desirable to seek a better foundation for the description of highly excited
nuclear states, applicable to both static and dynamical scenarios. This is also prac-
tically important for the implementation of event generators developed to provide
samples of multi-fragment final states of medium-energy nuclear collisions [12]. Fur-

.thermore, microscopic dynamical simulations (e.g. [13,14,15,16]) also encounter the
problem when seeking to give a realistic description of the final nuclear fragments.

A consistent treatment of the metastable fragment states can only be achieved if
a nucleon vapor is included in the calculation [9,17,18,19,20]. Therefore, we discuss a
hot nucleus embedded in a vapor of nucleons. By the generalized Levinson’s Theorem
[21], the total partition function of the entire system is invariant to the partitioning
of the levels between the nucleus and the vapor, in the independent-particle ideal-
ization. However, as mentioned above, in practice it is important to calculate the
yields of different fragment types, and the final (post-evaporation) species distribu-
tion is sensitive to how this separation is made. The separation is also relevant to
the question of the liquid-vapor phase transition in nuclear matter [22,23]. Similar
questions were also discussed in the context of astrophysical applications [17,24] and
in the framework of Hartree-Fock calculations [25].

In Section 2 we provide the formal background basis for our treatment of a hot
nucleus embedded in a vapor of nucleons. Then, in Section 3, we study an individual
quasifragment on the basis of the single-particle approximation. Starting from the
Fermi-gas single-particle level density, we calculate the mean excitation energy (and
its dispersion) of nuclei embedded in the vapor, as a function of the imposed tem-
perature. We study different prescriptions for the inclusion of excited levels in the
intrinsic partition function of the quasifragment and we obtain an effective nuclear
temperature, facilitating comparisons with various previously employed prescriptions.



In Section 4 we study effective many-body level densities and the different approx-
imations involved in deriving them. The Appendix treats a simple one-dimensional
example exhibiting some characteristic features of the vapor-nucleus system.

2 Hot Subsaturation Nuclear Matter

- Our present studies are directed towards nuclear matter at densities near (but below)
the saturation density (~0.17 fm~3) and at excitations comparable to the nuclear
binding energy (~10 MeV per nucleon). Under such circumstances, the system will
typically appear as an assembly of clusters, quasifragments, interspersed with free
nucleons, the vapor. For simplicity, we shall base our analysis below on the single-
particle idealization, according to which the states of the many-body system can be
generated by repeated excitation of individual particles. Note that in general the
particles can be thought of as quasi-particles [26]. In this sense, the single-particle
idealization is less restrictive than may appear at first sight.

The grand-canonical ensemble is well suited for the statistical description of nu-
clear fragments in equilibrium with a nucleon vapor. In the single-particle idealiza-
tion, it is possible to express the total partition function Z in terms of the density of
single-particle states, g(¢) [27],

In Z(a, B) = / g(e) In[l +e~*%] de . (1)
Here 3 is the inverse of the imposed temperature 7 and « is related to the chemical
potential 4 by a = —8u.

The mean number of nucleons in the system and its mean energy are then given

by

_ O6lmzZ g(e)

< A >= - aa - 1 +eﬁ(°"‘) de ’ (2)
_ OlnZ _ g(e) e

<E>= 8 =) Treren €. (3)

The requirement that the system contain a specified number of nucleons on the mean
yields an implicit equation for the chemical potential u(r), which can be readily solved
by iteration. The second equation then yields the mean excitation energy per nucleon
as a function of the imposed temperature 7. (The ground-state energy is obtained
by evaluating (3) for 7 = 0.) It should be noted that this manner of calculating the
energy of the system is only approximate, since in general the many-body energy
is not the sum of individual-particle energies; the proper realm of applicability of
the method is to relatively low-lying excitations, which can be considered as built of
nearly independent (quasi)particle excitations.

2.1 General considerations

Before proceeding with our analysis of the multifragment situation, we wish to ad-
dress briefly the relevance of Levinson’s Theorem [21,28] in the framework of the
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simpler scenario provided by a single nucleus embedded in the vapor of nucleons. In
the Appendix, a further simplified situation is analyzed in greater detail. Let go(e)
be the density of single-particle states for a constant potential V = 0, i.e. in the
absence of fragments. Now introduce a potential well into the potential V and let
the corresponding modified density of single-particle states be gy(e). We first note
that the induced change can be written in the form

80(9 = 0v(9) = 0o() = LCE+ DBe =) + 222+ DD (g

Here the first sum expresses the addition of the bound levels (e,; < 0) of the well,
each being characterized by its orbital angular momentum ¢ and its radial quantum
number n. The second sum expresses the change in the density of unbound states in
terms of the phase shifts §,(¢). It should be noted that this latter term is negative
for most values of the energy ¢, since the phase shift exhibits an overall decrease as
the energy is raised (in fact, 6,(¢) — 0 as € — 00). In particular, the total number of
single-particle states remains unchanged by the modification of V,

AN = / Ag(e)de = 3(20 + 1)N, + %Z(% +1)(6(c0) — 60)) =0 . (5)
: f4 £

This statement is a generalization of Levinson’s Theorem [21,28], which was used in
(5) in the form stating that the phase shift at zero energy equals 7 times the number
of bound states, §,(0) = =N, [29].

A key issue in the present study is how to partition the single-particle states
between the quasifragment and the vapor. For the discussion of this problem it
is useful to adopt a semiclassical picture in which any single-particle state can be
associated with definite regions of space. The modification in the effective single-
particle potential V', the formation of the nuclear potential well, is confined to near the
domain occupied by the nuclear fragment, Q4 ~ %Ri, and leaves the environment
unchanged. The same must be the case for the associated single-particle states. If
the dependence of g(e) on the total volume Q is known, it is easy to express the
contribution g5 (€) from nucleons located outside the fragment domain,

3>() = 2049 _ gd09) ©)

where = Q — Q4. While it appears reasonable to associate these states with

the vapor, the classification of nucleons situated within the domain occupied by the

fragment is less clear. At the low-energy end it is obvious that the bound levels are

associated with the fragment. Conversely, at the highest energies, where the presence

of the potential well is barely discernible, it appears most reasonable to associate the

states with the vapor. There is probably no unique way to resolve this problem and
the specific criterion we have adopted is based on physical arguments.

One might at first be tempted to identify the change Ag(e) in (4) as the density

of single-particle states associated with the quasifragment. However, this suggestion
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appears somewhat unphysical, considering the fact exhibited above (see eq. (5)) that
the contribution of Ag(€) to AN is negative for € > 0.

A more attractive (yet simple) possibility is to associate the bound single-particle
levels e, with the fragment and let the second term in (4) represent the compensating
depletion of the vapor states. This amounts to saying that the quasifragment is built
out of all many-body states with bound single-particle excitations. (This prescription
leads to the “cool” limit considered in some detail in Section 3.) Such many-body
states are expected to be fairly long-lived, since residual configuration mixing is
required to promote a single nucleon to an unbound orbital from which it may escape.

However, as has been clear since the general understanding of the compund nu-
cleus was achieved, even unbound nucleon orbitals may have considerable longevity
due to their quantal reflection from the nuclear surface [30]. (This is demonstrated
e.g. by a recent experiment [11], observing the decay of the ground state of °Li
into a proton plus an a-particle.) It is with this feature in mind that we propose
that the many-body states to be associated with the nucleus are those generated by
metastable single-particle orbitals, the degree of metastability being determined by
the associated reflection coefficient (see Section 3.2 for details).

2.2 Identification of the nuclear level density

Let us now consider a system of several (non-overlapping) quasifragments immersed
in a nucleon vapor, such as hot nuclear matter at subsaturation densities is expected,
to typically appear. As an approximation to an infinite system, let us impose periodic
boundary conditions and confine our considerations to the volume 2 of an elementary
cell. If no fragments are present, the effective single-particle potential is constant and
the corresponding density of single-particle states, go(€), is that of a Fermi-Dirac gas
of nucleons. The presence of quasifragments in the system is felt by the individual
nucleons as a modification of the effective single-particle Hamiltonian in the domains
of the fragments (roughly speaking, each fragment generates its own potential well).
The induced change in the density of single-particle states is Ag(e) = g(e) — go(e).
(In the case of a single quasifragment Ag(e) is given by (4).)

To the extent that the fragments do not overlap, the change Ag(e) can be decom-
posed uniquely into contributions from the N individual quasifragments,

N
9(€) = go(€) + Ag(e) = go(€) + >_ Aga(e) . (7)

n=1

Here Aga(e) is the change effected by the introduction of fragment number n and it
can be written in the form

AG(©) % ga(€) ~ Qg an(e) Q

The first term, gn(€), is the density of single-particle states associated with the frag-
ment n when its potential well is artificially extended upwards so that no continuum



states occur. The second term subtracts the part of the original level density go(e)
stemming from single-particle states located within the domain of the fragment, £,..
The precise definition of the fragment volumes is of course somewhat uncertain, but
since the total partition function Z is independent of the definition of §,, this uncer-
tainty is expected to have little practical importance; we shall use §, = 4 R3, where
R, is the equivalent sharp radius of a nucleus with the mass number A,,.

As mentioned earlier, the level density g.(€) must be split so that only its lower-
energy part Ju(€) is to be associated with the fragment while its higher-energy part
gn(€) should be associated with the vapor. This separation is made in the present work
by invoking the average reflection and transmission coefficients for single-particle
states at a given energy, R,(¢) and T,(¢) (see Section 3 for details),

gn(e) = gn(e)Rn(e) + gn(e)Tn(e) = gn(€) + gn(e) . (9)

Thus, in summary, the density of single-particle states for the total system is decom-
posed as follows,
N v
g(e) = gvapor(e) + E §n(€) N (10)
n=1

where the part associated with the nucleon vapor is

~ 0 N
gvapor(e) = Q'_g(e) + Z gn(e) ’ (11)
anN =
with @ =Q-3%,Q, being the volume outside of the N fragments.

The partition function Z for the total system then factorizes correspondingly,
Z = Zyapor HnN=1 Z,, where

InZ, = / Ga(€)In[1 + e=~#<|de (12)

is the intrinsic partition function associated with fragment n and Z,,,0r is given
analogously in terms of gvapor(€). It should be noted that the total partition function
Z is independent of the particular way in which the partition of gn(€) is made (as is
evident from (1)), as long as the single-particle idealization is maintained. It might
therefore seem unnecessary to make that partition. However, the partition of g,(¢)
is important in two repsects:

1) The single-particle idealization is only an approximation and ignores many-
body aspects responsible for the fragment formation. In previous treatments of the
nucleus-vapor problem the fragment itself has been included only as a modification
of the mean field, whereas we are attempting to include it dynamically by way of
incorporating its overall motion as a degree of freedom. Whether a nucleon moving in
the domain of the quasifragment should be considered part of that fragment depends
on to what extent it is likely to share its momentum with the fragment, and this
property is closely related to its reflection coefficient: if it is reflected back into
the interior it is more likely to ultimately equilibrate with the fragment whereas its
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_ready transmission will leave the fragment rather unaffected. It is also important
to recall that the potential well representing the fragments arises from the nucleonic
interaction itself, and the corresponding overcounting of degrees of freedom needs to
be corrected for in a more refined treatment.

2) Our motivation for studying subsaturation nuclear matter is the insight it
may give into the nuclear disassembly processes occurring in the course of medium-
energy nuclear collisions. In this context the properties of idealized infinite matter
at equilibrium are related to the explosive break-up by means of a transition-state
assumption, so that the idealized results are assumed to describe the finite nuclear
source at its freeze-out stage. Subsequent to this stage, the primary highly excited
quasifragments will undergo sequential decay processes which generally decrease their
mass and charge. This effect is known to be quantitatively important and depends
on the degree of excitation of the quasifragments, a property directly related to §.(e).
Thus, for the practical applications of our model it is essential to address the problem
of how to partition the level density between vapor and fragment(s).

3 Single-Particle Level Densities

In this Section we consider a single quasifragment. Its mean mass is A and its density
of single-particle states is §a(¢), from which the fragment’s partition function Z, can
be calculated according to eq. (12). The excitation spectrum of the quasifragment
can be characterized in terms of a moment expansion. Most significant is the mean
excitation energy per nucleon in the fragment,

1
£= z(< E>-E,)). (13)

Here < E >= —0InZ,/d is the mean energy and E, is the mean energy for 7 = 0.
A convenient measure of the dispersion of the distribution around the mean value is

given by
2
g 2 1 OAECEA
p—— -— Aa' = —{(0 —_————)
[ A ]A=Ao [ 8] A=Ap AO( EE )

(14)
JAA

Here the covariance between A and E is given by o4z = 8%InZ,/dadB and the
variances 04 = 044 and 0} = ogg are given analogously. The quantity in (14) is the
variance in energy for a fixed mass number. Accordingly, the spurious contribution to
the energy variance arising from the grand-canonical fluctuation in mass number has
been subtracted (last term on teh right). The division by Ag is made for convenience
and ensures that the quantity becomes a constant in the macroscopic limit, just as
€ does.

We will now investigate how different physical assumptions affect the mean exci-
tation energy of the fragment (13) and its reduced variance (14).



3.1 Limits and phenomenological formulae

As a starting point, we consider the Fermi-gas single-particle level density:

34 /e—V\7 34 /e \?
= — = —_— = AA o , 1
ghot(€) oTr ( Tr ) oTr (Tp) Grot(€) (15)

where Tr & 37 MeV is the Fermi kinetic energy and V ~ —45 MeV is the value
of the constant potential in the nuclear interior. For later convenience, the single-
particle energy relative to the bottom of the well, € = € — V, has been introduced.
In the rightmost equation we have exhibited the simple A-dependence of the Fermi-
gas single-particle level density. The use of the reduced level density j(e) makes the
results independent of the mass number of the fragment, when surface effects are
neglected. (This simple scaling law will be broken by introducing a mass-dependent
definition of the fraction of single-particle levels that should be associated with the
nucleus, as is the case when the average reflection coefficient suggested in Section 2
is used.) The Fermi-gas level density (15) describes an idealized scenario in which
the fragment is surrounded by an infinitely high potential wall (isolated nucleus).
Thus, the escape of nucleons into the vapor is disregarded and the maximum possible
amount of excitation energy is stored in the nucleus. Therefore, we will denote this
extreme situation the “hot” limit.

Another natural reference situation is the ‘cool’ scenario, mentioned in Section 2.1,
in which any unbound single-particle state is part of the vapor so that the many-body
states associated with the quasifragment are those built out of bound single-particle
states, )

— 2

gcool(e) = ’2% (6_11;1/') 0(-6) . (16)
The truncation function 8 guarantees that only levels with ¢ < 0 contribute to the
quasifragment. It should be recognized that this “cool” scenario accomodates quite
highly excited nuclei by traditional standards, since excitations as high as ~ 8 MeV
per nucleon can be built from bound single-particle states. (A more truly ‘cold’
situation would arise if only bound many-body states were incorporated, as in the
original discussion of nuclear disassembly [3]).

The physical situation of present interest is expected to be bracketed by the above
two limits, since some fragments will be produced with one or more individual par-
ticles excited above the separation energy [24]. Several approximate methods can
be used to represent this scenario. We will first examine several phenomenological
prescriptions for truncating the single-particle level density, in analogy with prescrip-
tions used in the literature to truncate the many-particle level densities (see Section
4). We focus particularly on prescriptions using an exponential cutoff,

»

e 3 (€N
050 = g7 (32) e oo, (1)
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or a Gaussian cutoff,

~eff _ 3 € 3 —e2 /212
i) = 57 (7)€ 8(=0) (18)
In both (17) and (18), the cutoff-parameter 79 is the width of the modulation function.
As a function of the imposed temperature 7, fig. 1 displays the mean excitation
energy per nucleon, &, as given by (13), and the square root of the reduced vari-
ance (14), for the hot and cool scenarios as well as the above two phenomenological
prescriptions. It can be seen from the figure that the exponential and Gaussian cut-
offs are approximately equivalent with each other, although the ‘Gaussian’ curves lie
somewhat above the ‘exponential’ ones for the temperatures considered. Figure 1 of-
fers a convenient possibility for introducing an effective intrinsic nuclear temperature
Tef- This quantity can be defined as that temperature for which the mean excitation
energy, as calculated in the hot scenario, comes out the same as that arrived at when
using the truncated level density at the actual temperature: E(hots Tet) = E(gest, T)-
Since gnot > ge, the effective temperature r.g is always smaller than the imposed
temperature 7, and it approaches 7o when 7 >> 7,. Thus, as discussed in Ref. [9], 7o
can be interpreted as a limiting temperature, the maximum temperature attainable
by the excited nucleus. Hartree-Fock calculations at finite temperature are known to
exhibit a limiting temperature [31]. In Fig. 1. we show results with 7o = 100 MeV
to demonstrate the convergence to the hot scenario, and with 7, = 12 MeV, chosen
as an illustrative value for the expected limiting temperature.

3.2 Cutoff with the reflection coefficient

In this Section, we develop a ‘parameter-free’ approximate method for defining an
appropriate effective single-particle level density. For this, we utilize the quantum-
mechanical reflection coefficient for a nucleon in a given single-particle orbital and
demand that a given orbital be classified as belonging to the fragment with a prob-
ability equal to its associated reflection coefficient.

In order to estimate the reflection coefficient, we use the parabolic approximation
near the top of the effective nuclear potential

Vo h?
ey R —"
Here we have employed the usual WKB replacement, £(£+1) — (£+ 3)? [32]. Further-
more, Cv = Ry (1 - (bv/Rv)?) is the central potential radius with by 2 1.2 fm for the
diffuseness of the potential. For the potential radius Ry we use Ry = R,+s—-d/R,,
where R, = roA'/? and we employ the parameter values ry = 1.15 fm, s = 0.82 fm,
and d = 0.56 fm? [33]. _

The transmission coefficient of the ¢*® partial wave can be expressed in the
parabolic approximation as [34]

Vea(r) =

(e+35) . (19)

1
1+ e—2mee

Ti(e) = (20)
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where the relative energy in excess of the barrier is

e — Vea(rlyp)

= — 21
€¢ hwg ’ ( )
with the characteristic frequency w, determined by
d&*Veg
mwlz = _F(rfop) . (22)

In egs. (21) and (22) rf,, denotes the location of the maximum of the effective radial
potential for the ¢! partial wave. With R, = 1 — Ty, the average reflection coefficient
for orbitals near a given energy ¢ is then given by

R(e) = l'"z“(ze +1)Re(e) /lmf(ze +1), | (23)
=0 £=0

where £nax is the maximum value of angular momentum for which the effective po-
tential has a minimum. The ensuing effective single-particle level density is then

37O = 7= (57 R (24)

Figure 2 shows the mean excitation energy per nucleon as calculated using the
effective level density (24) for mass numbers A = 40 (dashed line) and for A = 100
(dots). For comparison we include the hot and cool scenarios and the results ob-
tained with an exponential cutoff with 7o = 12 MeV. The truncation in terms of the
reflection coefficient introduces a natural A-dependence: a larger nucleus (having a
smaller surface-to-volume ratio) holds more energy per nucleon at a given temper-
ature, until this behavior saturates in the limit A — oo. For heavier nuclei, the
limiting temperature is 10-12 MeV, while the limiting temperature comes out to be
around 8 MeV for the lighter nuclei, which are relatively adundant in the scenarios of
interest. Thus, for parctical applications the reflection-coefficient prescription can be
well approximated by e.g. an exponential cutoff with 7o &~ 8 MeV. These values are
roughly consistent with the limiting temperatures obtained in Hartree-Fock calcula-
tions [25], where mostly heavier nuclei are considered. Observe, however, that the

limiting temperature is decreasing as a function of the mass number in the calculation
of ref. (25].

4 Many-Body Level Densities

In this Section the mean excitation energy and its dispersion will be calculated start-
ing from various many-body level densities. The many-body level density p(A, E*) can
be obtained from the partition function by way of an inverse Laplace transformation
[27]. For a given p(A, E*), it is useful to define the following moments,

T, = [(B") p(A,E") e dE", - (25)
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where p=0, 1, 2. These moments can be evaluated approximately by the stationary-
phase method, which yields the equations

Oln p(A, E*) P _
=55 L.=E,, - 0

for the saddle-point energies E;. We note that the partition function is given by
Z = Iy. Moreover, the mean excitation energy is < E* >= I; /T, and its variance
is 0. = I;/Ty— < E* >2. These quantities have also been calculated by direct
numerical integration. In addition, we developed a semi-analytic approximation along
the lines of ref. [27], and compared the results to the ones obtained in the saddle-
point approximation. Although these methods improve somewhat on the results
obtained in the saddle-point approximation (particularly at lower temperatures), in
the following we present the saddle-point results, due to their clarity. The other
approximations developed have been used to check the results of the saddle-point
calculations.

4.1 Fermi-gas level density

Using the saddle-point approximation in calculating p(4, E*), Bohr and Mottelson
[27] obtain for the many-body level density

1 = ok 1 o[22 34 E']i‘
A E*) = e2leoa(V+TR)E®T _ - 2%y ; 27
A4 E) = Tre VASE" (27)
where in the rightmost equation it has been used that the density of single-particle
states in a Fermi gas is given by g4(Tr) = 34/2Tr at the Fermi surface (see eq.
(15)).
It is customary to express the exponent in (27) in the form 2(as E*)!/? with the
level-density parameter

a‘4=-6—ﬁ=;. (28)

For the nuclear Fermi gas, eq = 4Tr/7? ~ 16 MeV, whereas for finite nuclei a smaller
value, ep & 8-10 MeV, is required to reproduce the available experimental information
[35]. The level-density parameter (28) is derived for a single-particle gas in a sharp-
surface potential well. The effect of the nuclear surface diffuseness is significant and
accounts to a large degree for the observed values [36]. In addition, correlation effects
play an important role [37]. Although the level-density parameter can be considered
temperature dependent [38], we adopt the standard form (28) for simplicity.

It is straightforward to calculate the mean excitation energy per nucleon and its
reduced dispersion from the level density (27) in the saddle-point approximation (26).
These quantities are shown in Fig. 3 as a function of the temperature for A = 20, 40
and 100 (dots, short dashes and long dashes, respectively), together with the results
of the full calculation ((13) and (14)) with the ‘hot’ single-particle level density (15).
It should be noted that the formal applicability of the saddle-point approximation

11



requires A > 4eg/T. We see from Fig. 3 that the standard approximation (27) is
appropriate for sufficiently heavy systems in the temperature range 2 MeV < 7 <
10 MeV. For higher temperatures the saddle-point approximation overestimates the
mean excitation energy and its dispersion. For smaller systems the approximation
(in particular for the dispersion) breaks down at low temperatures.

4.2 FREESCO level density

Based on the realization that the essential energy-dependence of the level density
(for sufficiently high energies) comes through the exponential in (27), the simpler
expression without the preexponential energy dependence,

p(A,E*) = C XV (29)

is also frequently used in practice [35]. This form has the additional advantage of
being well-behaved at very low excitations. Alternatively, the singularity of the level
density (27) can be removed analytically by subtracting the ground-state contribu-
tion before using the saddle-point approximation [39]. We will now use the simple
expression (29) for the calculation of the moments (25). The value of the constant
C is immaterial for this purpose.

To account for the large surface-to-volume ratio of the light nuclei, the simpli-
fied level density (29) was further modified in ref. [7], where a surface correction
to the level-density parameter (28) was introduced. In the standard version of the
FREESCO event generator {12] the modified many-body level density

p(A,E*) = ky A7P 2VAAET (30)
ag=(1- k,A-%)ﬁ ,
€o

is employed with the parameter values k; = 0.2 MeV~!, p = %, k2 = 0.8, and ¢g = 8
MeV. Although these parameters have been adjusted to reproduce available data on
light nuclei, the formula (30) is expected to be only a crude approximation.

We now examine the approximations (29) and (30), treating e, as an adjustable
parameter. Figure 4 displays the mean excitation energy per nucleon calculated with
the level densities (29) and (30) in the saddle-point approximation. Short dashes and
long dashes represent the result of the calculation using (29) with eo = 8, 16 MeV,
respectively. Alternating long-short dashes and the dotted line correspond to (30)
with eo = 8, 16 MeV, respectively. It is seen that (30) with e, = 16 MeV yields
the best reproduction of the results of the full calculation based on the Fermi-gas
single-particle level density (solid line). (Note that in actual applications all of these
many-body level densities will be modulated with a truncation factor, as discussed
in Section 3.)

The level density (30) with eo = 8 MeV, as used in FREESCO, seriously over-
estimates the mean excitation energy and its dispersion at temperatures of 10-15
MeV. Some of this overestimation can be compensated for by the cutoff procedure.
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However, (30) with e = 8 MeV remains unsatisfactory for two reasons: (i) the level-
density parameter should approach that of a Fermi gas when A — oo, and (ii) as
demonstrated on the basis of the leptodermous expansion in ref. [36], the presence
of the nuclear surface is expected to increase (rather than decrease) the density of
many-body levels.

Motivated by the above shortcomings, we have developed an improved version of
the FREESCO level density based on ref. [36]. The simplest semi-empirical formula
with surface correction in ref. [36] suggests the values ey = 14.61 MeV and k, = —4
in (30) for spherical nuclei. The mean excitation energy per nucleon obtained with
this prescription for A = 40 is displayed by the alternating long-short dashes in
Fig. 5. We show the results of the full calculation based on the single-particle
level density (solid line), and the many-body calculations with eg = 16 MeV in the
form (29) (long dashes) and in the FREESCO level density (30) (dotted line) for
comparison. We see that the simple semi-empirical formula of [36] with its original
parameters overestimates the mean excitation energy and its dispersion. Adjusting
the parameters to e = 16 MeV and k, = —1 (short dashes) brings the results closer
to the results of other models. This prescription then has the proper limit as A — oo
and the desired behaviour of the surface correction.

4.3 Effective many-body level densities

As we have seen in Section 3, both an exponential and a Gaussian cutoff provide
fairly good representations of the effective single-particle level density obtained by
modulating with the average reflection coefficient R(¢). A Gaussian modulation
factor is used on the many-body level densities in the standard version of FREESCO,
while an exponential cutoff was introduced in ref. [9]. In this section we compare
these two prescriptions within the framework of the event generator.

Figure 6 displays a histogram of the total mean excitation energy in a quasifrag-
ment as a function of its mass number, as distributed after the'first grand-canonical
iteration in FREESCO (see ref. (8] for details). The different prescriptions for the
modulating factor are denoted by different degree of shading of the vertical bars.
As in the standard version of FREESCO [12), the lower states of the fragments are
explicitely included in the calculation. (In particular, note the excited state of *He
at 20.3 MeV.) For higher excitations, where the experimental information is scarce,
we use the level density (30), appropriately modulated by a truncation factor. The
bar in the foreground of fig. 6 represents the Gaussian cutoff used in FREESCO:

peH(A, E-) — p(A, Et) e—(E‘_B)Z/Z‘rg 9(B _ Et) , (31)

with the level density as in (27), B being the lowest barrier against light-particle
emission, and a mass-dependent cutoff parametrized as 7o = 8(v/A — 3 — 1) MeV for
mass numbers A > 4. The second and third bars in Fig. 6 correspond to a simple
exponential cutoff,

p (A, E*) = p(A,E*) e~ E*-B)/m g(B _ E*) | (32)

13



N

with 70 = 8, 16 MeV, respectively. We conclude from this figure that a limiting
temperature of 8 MeV provides a better representation of the results obtained with
the Gaussian cutoff. It may be even more physically acceptable to introduce a mass-
dependence of the limiting temperature in (32). We do not develop such an approx-
imation in the present paper due to the arbitrariness associated with the procedure.

5 Concluding Remarks

In the present paper, we have addressed the description of hot subsaturation nuclear
matter, such as may be produced in nuclear collisions at medium energies. The sta-
tistical treatment of such systems is conveniently formulated in terms of excitable
quasifragments embedded in a nucleon vapor. At the high temperatures of inter-
est, for which the excitation of the system is comparable to its binding energy, the
metastable fragments must be considered in conjunction with a surrounding nucleon
vapor. (Although this problem is well known from astrophysically motivated studies,
the astrophysical temperatures and densities are considerably lower.)

We have formulated a parameter-free method for making a formal split of the
partition function into a factor associated with the vapor and one factor for each
quasifragment. This method can be characterized roughly by saying that a particular
nucleon, situated within the interior of a fragment, is considered as part of that
fragment if it is reflected back into the fragment’s interior when reaching its surface.
This prescription yields a mass-dependent limiting nuclear temperature, decreasing
from 10-12 MeV for heavy nuclei to around 8 MeV for A ~ 10. Various other,
commonly employed prescriptions for treating a single quasifragment have also been
studied and compared.

The present study seeks to clarify certain aspects of the multifragmentation prob-
lem. Other, related aspects, for example the temperature dependence of the nuclear
binding energy and the interaction between the quasifragments, also need to be clar-
ified before a satisfactory multifragment model is at hand [23]. Moreover, it should
be kept in mind that statistical considerations have to be augmented with more dy-
namical models (e.g. with respect to instabilities in hot nuclear matter [40], or about
the time-dependence of the nuclear temperature [41]) in order to provide a more
comprehensive description of medium-energy nuclear collisions.

We wish to acknowledge instructive discussions with P. Bonche, S.E. Koonin, S.
Pratt, and P.J. Siemens. This work was supported by the Director, Office of En-
ergy Research, Division of Nuclear Physics of the Office of High-Energy and Nuclear
Physics of the U.S. Department of Energy under Contract DE-AC03- 768F00098 and
Grant DE-FG02-86ER40251.
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Appendix: Schematic analysis of s-wave scattering

In this Appendix we analyze a schematic model in order to illustrate our discussion
in the main body of the text. We consider s-wave scattering from a finite, spherical
square well inside which the potential has the value V < 0. The sharp well has the
radius R and the entire system is enclosed in a larger sphere of radius Ry. Due to
the spherical symmetry, the problem effectively reduces to one dimension. Below we
shall analyze this problem by semiclassical means.

For a particle with a given positive energy € > 0, the local wave number follows
from energy conservation,

2 2
e=2h_mkg=:—mk2+v, (1)

where k is the wave number inside the well (r < R) and ko is the wave number outside
(r > R). We note that the above relation implies dk/dko = ko/k. The eigenstates in
the system are determined by the demand that the phase change from the origin to
the outer boundary be an integer multiple of =,

ko(Ro - R)+ kR= N= . (2)
From this relation the density of states can readily be obtained,
dN m Ro— R R
g(€) - de - 7I’ﬁ2( kO + F) . (3)

In the absence of a well, corresponding to V' = 0, the density of states is given by
go(€) = (m/nh?)(Ro/ko). Consequently, the change in level density caused by the
introduction of the potential well is given by

_ m_ 1 1 1d
Ag(e) = g(e) — go(e) = e ~pR= 18 (4)
In the last relation we have introduced the phase shift
6(€) = [ko(Ro — R) + kR] — koRo = (k — ko)R , (5)

which is independent of Ry. We note that §(e) > 0, whereas dé(¢)/de < 0.
A wave function for a given single-particle orbital is of the form
¥(r <R) = aVv2sin(kr) (6)
$(r > R) = aoV2sin(kor + 8(e))
For our present semiclassical analysis it is more convenient to think of the wave

functions as plane waves. The local amplitudes a and ao are determined by the
requirements of normalization and continuity (i.e. the current density is conserved),

(Ro— R)a2+ Ra® = 1, (7N
alky = a’k, (8)
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respectively. The local density of pa.rticles is then
k

r R = n n n 0 n oy 9
pr <R) = 3 fad® +§f =L T RE T AR R%f 9
k

Here f, is the occupancy of a particular orbital n, and for r < R we have included
the contribution from the bound states (enumerated by negative values of n for
convenience). If the single-particle orbitals are filled up to a specified (Fermi) energy
er = (h*/2m)k% > 0, we have

or>B) = [Tdeg(ad = [ ko 1= Z(1- DI - 21~ D)
= - dk0="7;"=Po, (11)

where py is the density for V =0,
F 1 1 rkr kr
Po —'[) de go(é)—ﬁo- = ;/0 dko = 7 . (12)

Thus the density outside the potential well is unaffected by the introduction of the
well, as intuition would suggest. The density within the domain of the well can be
calculated in a similar manner,

€ N,
pr<R) = [Tdeg(e)al+H

R
1 rkr R R
=2/ dkou——u— IR - g2y (13)
_ k"" No_k+—k... k__k+_
= ‘/ dko ‘/,,_ dt g == tT=T =

Here, in the last line we have introduced the local wave number k_ for a particle
at zero energy, mki + V = 0, and used that the number of bound states, Ny, is
determined by the condition k- R = Now. Thus, the level density inside the domain
of the well is equal to that of a Fermi gas in a constant potential of depth V, as one
would expect.

In a semiclassical picture, the single-particle states can be considered as localized
in phase-space. The contribution to level density g(e) from elementary states located

outside the well is given by

m Ro R
o5(6) = (Ro= R)5-0(6) = (Ra - Rzan(@) = 2= Bgo() = LRE gy
These states should all be considered as part of the vapor. The remaining part is
m R
9(6) = 9() ~ 95(6) = 5. (15)
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It can be split into contributions from single-particle states that are to be considered
as part of the vapor and from those that are part of the “nucleus” by use of the
reflection and transmission coefficients, as discussed in Section 2. It should be noted
that the result (15) is exactly what would have resulted from considering a Fermi gas
confined strictly within the well, i.e. by putting Ry = R.

For the following discussion, a general (unbound) orbital is denoted a global or-
bital, since it satisfies the condition of phase match (2) relevant to the entire container.
As the energy is gradually raised, there will occasionally be a local phase match, i.e.
the phase accumulated from the origin to the boundary of the well is a multiple of
7, kR = nw. Such orbitals shall be referred to as local. (Generally, local and global
matches will not occur simultaneously, but this is unimportant for our present dis-
cussion; one may, for example, identify the local orbital as that global orbital which
has the best local match.) By comparing the global and local matching conditions,

it is readily seen that
dN  Ro—R Rk N & i
an = ko FE™ R ko
Here the last relation holds when Ry > R and in that case there is a local state for
each k/ko global states. In a given energy interval de there are dN = g(e)de global
states and of these .

(16)

_dn ., RR—R R_ m R—-R R, mR
dn = N = gl + 717 =l ot glde= ey

de 17

are then also local states. This is the exact same number as what would result if
we were instead to artificially confine the well (i.e. put Ry = R), since in that case
the number of states contained within the same energy interval would be g.(¢)de =
(m/mh?*)(R/k)de. This result shows that considering those global states that are also -
local is equivalent to considering all the states in the artificially confined well. (Only
those states with ¢ > 0 should be considered, of course, or alternatively, the class of
local states should be redefined so as to include also the bound states.)

The above analyzes serve to illustrate how the various points of view regarding
the problem are mutually consistent. For simplicity, we have relied on semiclassical
considerations. In a more rigorous treatment the orbitals should be represented by
standing waves of the form (6). The matching conditions are then trancendental and
the resulting formulae are less transparent. However, the qualitative features remain
the same.
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Figure Captions

Fig. 1: The mean excitation energy per nucleon in a quasifragment £, as given by (13)
(a), and the square root of the reduced variance (14) (b), as functions of the imposed
temperature 7, for the hot and cool scenarios (full curve and long dashes, respectively),
with an exponential cut-off (17) (using widths 79 of 100 MeV and 12 MeV, short dashes
and dash-dots, respectively), and with a gaussian cutoff (18) (again, using 100 MeV
and 12 MeV for the width, alternating long-short dashes and dotted line, respectively).
The plotted quantities are independent of the mass number A.

Fig. 2: Mean energy per nucleon in a quasifragment &, as given by (13) as a function
of the imposed temperature 7, for the hot and cool scenarios (full curve and long
dashes, respectively), and with various modulating factors. Modulating the Fermi-
gas level density with the average reflection coefficient R4(¢) yields the dashed and
dotted curves, corresponding to A = 40 and A = 100, respectively. The results of the
exponential modulation using a width of 12 MeV are included from the previous figure
for comparision. The dash-dotted curve corresponds to using the reflection coefficient
appropriate to a diffuse, flat potential (for which the centrifugal force is ignored).

Fig. 3: Mean energy per nucleon in a quasifragment & (a), and the square root of the reduced
variance as given by (14) (b), as functions of the imposed temperature r, calculated
on the basis of the many-body level density (27) in the saddle-point approximation for
A = 20 (dots), A = 40 (short dashes), and A = 100 (long dashes). The results of the
calculation with the hot scenario based on the single-particle level density is included
for comparison (full line).

Fig. 4: Mean energy per nucleon in a quasifragment £ as a function of the imposed tem-
perature 7, calculated with the level densities (29) and (30). Short dashes and long
dashes represent the results of the calculation using (29) with ey = 8,16 MeV, re-
spectively. Alternating long-short dashes and the dotted line correspond to (30) with
eo = 8,16 MeV, respectively. The result of the full calculation based on the Fermi-gas
single-particle level density is included for comparison (solid line).

Fig. 5: Mean energy per nucleon in a quasifragment £ as a function of the imposed tem-
perature 7 for A = 40, calculated on the basis of ref, [36], with several values of the
parameters, as explained in the text.

Fig. 6: Total mean excitation energy in quasifragments as a function of the mass number
A for the disassembly of a source with total mass and charge A¢ = 40, Zy = 20, and
excitation energy ¢ = 20 MeV, with different modulating factors. The darkest vertical
bars in the foreground represent the standard (mass-dependent) Gaussian cutoff (see
text), used in the FREESCO event generator and fitted to available data. The second
and the third bars correspond to exponential cutoffs with ey = 8,16 MeV, respectively.
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