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Abstract

The chromo-dielectric mechanism of absolute confinement is studied in the nontopo-
logical soliton model. The model Lagrangian is chirally invariant, since it contains no
direct coupling between the quarks and the scalar field. The static chromo-electric gluon
propagator is calculated in medium in the one-loop approximation, and the ultraviolet
divergence in the self-energy of fixed quarks is regulated by a form factor. Effective quark-
scalar coupling emerges through the self-energy of the quarks in the dielectric medium,
which is a function of the scalar field.

The description of hadrons in terms of qu#rk-soiiton models [1-3] will continue to play
an important role in our understanding of hadronic properties at least until these properties
can be calculated in QCD with great accuracy. In the Friedberg-Lee nontopological soliton
model (1], cbnﬁnement is effected by a color-dielectric function k(o) and through a direct
coupling term g(o)¥tp between the scalar field o and the quarks. The coupling g(c) acts as
an effective mass for the quarks in the region of confinement, and breaks chiral invariance
even for massless quarks. Various attempts have been made to derive the chromo-dielectric

properties of the system and the effective quark-sigma coupling within the framework of the
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nontopological soliton model [4-6]; see also [7]. A qualitatively similar approach is provided
by the dual superconductivity model [8-10].
The starting point of chromo-dielectric soliton models is the covariant, gauge-invariant

Lagrangian density
o A 1, | PN
L = P[iv,0* —m - gs‘y,,EA“ —g(a)]v+ 56“03“0 -U(o) - ZK,(U)FM,F“ (1)

where 9 is the Dirac field, m is the current quark mass matrix, U(o) is a fourth-order
polynomial in the chiral singlet scalar field ¢ with an absolute minimum at o,, and F),, is
the gauge field tensor; the color and flavor indices have been suppressed for simplicity. In the
original Friedberg-Lee model [1] x(0) = 1, k(o,) = 0, and the coupling is linear in the o-field,
g(0) = goo. Nielsen and Patkéds [4] assume the form k(o) = (1 — 0/0,)%, and gess(0) =
gok~1/4. Bayer, Forkel and Weise [6] use various forms for k with g.ss(c) = goox~1/2. For

our numerical calculations, we set
k(o) = 1+ O(z)z"[nz — (n + 1)], (2)

with z = o/0,. The form (2) is a simple generalization of the expression used in Ref. [11]
(where n = 3), and satisfies the conditions imposed [1] on the function (o), and also the
necessary condition [11} k(o) = 0. (The pérticular choice of n does not influence the results
strongly.)

In the present work we focus on the chromo-dielectric confinement mechanism. We assume
that the model contains no direct quark-sigma coupling, so that the entire burden of confine-
ment rests on the color-dielectric function k(o). Confinement is the result of nonperturbative
gluon self-interactions. Once the gluons are confined, no' further mechanism is required to
confine the quarks, as we shall show. This idea is not entirely .new, and has been discussed
by several authors before [12,13], but, to our knowledge, has never been implemented.

One of the main virtues of this approach to confinement is that, for massless quarks, the
model is chirally invariant. Evaluation of the quark chromo-electric self-energy leads to an
effective quark-sigma coupling, which, in the case of a short-range cutoff, can be expressed
as a local function of k(o). The effective coupling we derive has a form different from the

ones used by others [1],[4-6,14], but such differences can be absorbed into the functional form



of k(o). Although the effective coupling breaks chiral invariance of the baryon, this must
be restored by the emergence of a ma,ssless_Nambu-Goldstone bosoﬁ (pion) cogpled to the
baryon [15]. Furthermore, this pién Qill have to be formed from the fundamental degrees of
freedom introduced; that is, the pion will be a confined quark-antiquark pair to lowest order.

We first review how a chromo-dielectric function n(a.) which decreases sufficiently rapidly
as r — oo leads to absolute color confinement. The self-ene;gy of a fixed (i.e. massive) quark
in an MIT-type cavity is then calculated and it is shown that the numerical result is close
to the one obtained in Refs. [16,17] for light quarks in the MIT bag model. Encouraged by
this result, we next consider the self-energy of a fixed quark in a smooth chromo-dielectric
medium in the one-loop approximation, in order to obtain the form of the effective coupling
as a function of (7). Finaily, we illustrate the properties of the soliton states obtained
selfcons1stently with the derived effective coupling.

Consider, for simplicity, a spherically symmetric static charge den51ty, Q 63(7). Assume
that kK — 0 as r — 0o at least as rapidly as r~1. The chromo-electrostatic field equations are

then thé familiar
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Here, however, all quantities are operators in color space. From Gauss’s law we find imme-
diately that

- Q . )
b= arrt (4)

where 7 is a unit vector in the direction of 7. The energy is

_§/dTD.E 2/ n(r T k(r)’ (5)

where, in the last equation we have used spherical symmetry. The divergence at the lower
limit of integration is associated with the usual self-energy problem. However, the integral also
diverges at the upper limit if Kk — 0 at least as rapidly as r~!. Then the energy is infinite unless
the total internal charge vanishes. The argument does not depend on spherical symmetry.

Any net charge gives rise to a D-field that falls off at large distances as r—2. Therefore the



charge within i:he ‘cavity’ must be in a color singlet state. This simple argumént indicates
that the dielectric properties of the cavity and vacuum assure absolute color confinement: an
isolated structure not in a color singlet state has inﬁniteb energy. -
By Gauss’s law, the field energy, &, associated with a charge distribution, is equal to 1/2
the integral of the charge distribution times the potential. Thus, for the self-energy of a qua,i'k .
fixed at 7, we find (using the color charge operator g,A/2 and tas = g,/(47r) and taking into

account <A - A>= 16/3), that
11 | |
Eaas(r) = 5 <(300?> Jim G(7,7") = e lim G(7, 7). (6)
T =T F!af L :

We now consider a fixed quark at an arbitrary point in an MIT-type cavity of radius R,
with dielectric constant x = 1 inside and k = € outside. Eventually we want the limit € — 0.

The static chromo-electric Green’s function is

o ) (1 - )L+ 1) '
G(7,T ZPg(cos0) [ Tt %21_21 (e(Z +)§) ", ] < R. (7N
A calculation of the self-energy (6) gives |
== 1 L P S WO R Y 8
self(r) as Z + R R2 — 12 Og( r / ) . ( )

The first term on the RHS of (8) is to be identified with the usual self-energy of an isolated
~ quark in a medium of k = 1. The second term in (8) is a monopole (£ = 0) contribution
arising from the second term of (7). It is independent of position but becomes infinite as
€ — 0. It is cancelled by mutual interaction with other quarks in the cavity if the total color
wave function is in a singlet state. The remaining terms (£ > 1) in (8) are finite as ¢ — FO ‘
and are summed to give the terms in square brackets. Note that as r — R, these yield
20,/2(R — ) corresponding to the interaction of a quark with an image charge of the same
sign [12]. |

Since the self-energy appears as a mass term for the quark, the term in square brackets

in Eq. (8) can be identified as a scalar confinement potential

2as r2

Veons(r) = 2 —log(1 = r?/R?%)| . (9)



‘It is worth mentioning that even though the single quark potential (9) is more strongly
confining than linear, one gets a linear confinement potential when the confinement region is

allowed to deform [18]. A calculation of the expecta.tioﬁ value of Vions
/ "Z’OVcon,wadar y (10)

for the lowest s/, quark state in the MIT bag model yields the value 0.932a,/ R, compared

“with the results of Goldhaber, Hansson and Jaffe [16,17], who obtained 0.903c,/R for light
quarks. The similarity in the numerical results indicates that it may be reasonable to use the
massive quark potenti_a,l results for light quarks. This is because confinement imparts to the
quarks an effective mass.

Let us now turn to the general case of a smooth (7). The quark self-energy diagram in
the one-loop approximation is depicted in Fig. 1a. For an infinitely massive quark, the quark
propagator shrinks to a delta function, Fig. 1b. In the Abelian approximation, the self-energy
of a fixed quark is given by (6). The infrared, or long range, divergence in this quantity is
associated with color confinement, as was discussed above. An infrared regularization (e.g.
kK — € > 0 as r — oo) permits the calculation, for example, of fissioning bags, where quarks
confined to separated sections must be in singlet states (the results are independent of € in
the limit € — 0).

There is also an ultraviolet divergence in the Abelian approximation, although we know
that QCD is free of such divergences because of asymptotic freedom. To remedy this problem
it is not sufficient to subtract the free (k = 1) self-energy. The term in the self-energy which
diverges when 7/ — 7 depends on k(7). The divergence is thus spatially depéndent and
cannot be removed by renormalization of the quark mass.

In order to regularize the short distance behavior, a form factor f(|7— 7"|) is introduced.
(The function f(r) is normalized to unity; [ d% f(r) = 1.) For example, if we choose

e-r2/a?

f(r)= ey (11)

then the divergent term lim, .o 2a,/3xr is replaced by

4o,

T (12

2 1
sau [drf(r)/r =



The divergence is proportional to a~! when ¢ — 0 and would be linear in a momentum cut-
off. If the quark is described by a finite mass Dirac propagator, as in QED, the divergence is
logarithmic. In either case we expect the self-energy to be dominated by a term proportional
to 1/k. We now show this in detail for a fixed quark in the case of sphericél symmetfy using
the Gaussian form factor (11).

We consider

2 —|F=7'2/a?
Eself(r) - 593 / d31'IG(T-‘., F,)S_W_ ’ (13)
where [11] '
- (22 + 1) fe(r<)ge(r>) - '
G(7,7) = W Z w(ge, ) Py(cosrr’). (14)

Here, f; and g, are the solutions of the differential equation

a2 €(£+1) 1 2 Yooy, | [ frN
i S e {10 < o

that are regular at » = 0 and r — oo, respectively; w{g, f} = gf' — ¢’'f is the Wronskian.
Substitution into (13) gives

47ra_., oo /2yt 1 fe(r)ge(rs) 1 d e“""F'P/“zPe(z)

(2 +1 /
( 1) rrt Je()R(r)  w(ge, fo) J-1 ? a3r3/2 ’ ,(16)

Eself =

——
where z = cosrr/. We evaluate

e~(r2+r7)/a?

a3713/2

1 !
or [ el Pe) = e e fa), (1)
-1

where i4(2) is the modified spherical Bessel function of the first kind [19]:

. T Y S
te(2) = \/E‘I‘_’_l/z(z) =1 l_u(z z), (18)
with the limiting forms
, 22+ 1D for z — 0,
ie(2) = { e*[2z for z = 0. (19)

Then

Z 2E+1) [ 14 c 0 Vge(rs) e (2rr [a?) . (20)

w(ge, fe) J r/K(r")

Esets(r) = 3a 371'1/2 K(r
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For the spherically symmetric case under consideration, we define the effective potential
to be the expression above, up to a (finite) mass renormalization term. Since only energy
differences have physical meaning for a single quark, and our potential is flat in the interior,
the self-energy FE,ei(r) mi.nus Eseg(r = 0), is calculated. We first estimate the effective
coupling, and then evaluate it numerically.

The behavior of ¢¢(z) divided by its limiting form e*/2z is displayed in Fig. 2 as a function
of £ for several values of the argument 2. For sufficiently small values of the argument, i,(2)
decreases rapidly as a function of £. To obtain a qualitative understanding of the behavior

of the effective potential, we set
2ze %i(2) = 0L, - £), - (21)

where
=€tz (22)

with £ a number of the order of unity. Then

’ (1‘) 2 _l-_f\/ 22":7"/a2 (2[ + 1) dr’fl(r<)ge(r>) e_(,._,.f)z/az
E,f ,/n(r purd w(ge, fe) \/K(r') 71724 .

For a small compared to the characteristic distance of the variation in s, we can treat the

(23)

Gaussian factor as a §-function:

£V2r/a
Buas(M)™ G 3 g o). (24

Finally, since the cut-off in £ is very large for small a, we can use the asymptotic forms for

fe and g¢, which give

fe(r)gdr) T '
w(ge, fo)  (2L+1)° (25)

so that we obtain

£V2

TOR (26)

2
Eself(") ~ 303

Comparison with Eq. (12) suggests that £ = /2/7.



On the basis of Eqgs. (12) and (26) we take the asymptotic (a — 0) effective quark-sigma

coupling to be

1
ge11(0) = 900, [ = 1] - (27)
with the identification
4o,
900y = 3/7a’ (28)

The term —1 in the brackets is the mass renormalization of the quarks: ges¢(o) vanishes for
o = 0, where k = 1. The quantity o, has been introduced in (27) to display the dimensionality
of the effective coupling and to facilitate comparison with earlier work [1,4,6].

| We present here numerical calculations of E.e¢(7), as given by Eq. (20), using an assumed

. chromo-dielectric function
1

w(r) = 14 e(=R)/s>

(29)

for R = 1.0 fm and s = 0.3 fm. The results are displayed in Fig. 3 for three values of the form
factor width a (with the value at the origin subtracted). The asymptotic (a — 0) effective
coupling (27) is also shown, as is x(r) (right scale). It can be seen that the confinement
potential rises more rap%dly with decreasing value of the width a, and the results of the
form-factor calculation approach the result of the é-function approximation, gesy.

The effective selfconsistent nucleon (3 quarks) mean fleld equations can be summarized

by the following coupled nonlinear integro-differential equations:

[«i 7+6(m + () - 3“}}) ~ v =0, BEY)
~V%0 + U'(c}) +2¢24/(0) [ / SG(7,7) |¢v(r')|2d3r']2 =0, @

where E,.s is given by (20) and G(7,7') by (14). The term 4a,/(3y/7a) is the quark mass

renormalization. The energy of the nucleon is
£ =3¢ =26 [ WEPCE T PF(F - 7 )drds’. (32

We here present the results of a simpler calculation, using the asymptotic for the self-

energy, i.e. we solve
(@ 5+ B(m + gess(0)) — €] =0 (33)

8



¢ -

~V20 +U'(0) + 39 Ho)p =0 S (34)

with m = 0 and k(o) as given in (2) with n = 3. For
3 g4

g o° .
s test B, (35)

U(o) = a%?- +b
the parameter values a = 7.212 fm~2, b = —805.64 fm~!, ¢ = 10,000. and B = 0.2793
fm—* = 55 MeV/fm3. have been used [20]. This gives o, = 0.2222 fm~! for the vacuum value
of the o-field. .

Fig. 4 illustrates thebpropertie_s of the selfconsistent bag states with the coupling (27).
The upper and lower components (u(r) and v(r)) of the quark wave function of the lowest
energy are plotted together with the sigma field and the effective coupling g.ss. Observe
the rapid rise of the potential. The corresponding eigenvalue is ¢ = 0.36 GeV, while the
total energy of the three-quark system is 1.46 GeV. (This value does not include the recoil
correction discussed in Ref. [21].) The glueball mass [2] is v/U"(0,) = 1.71 GeV.

We have shown in this note how confinement is brought about by the self-energy of a
quark in a chromo-dielectric medium. Upon introducing a form factor to regularize the
short distance behavior, the result can be formulated in terms of an absolute confinement
potential. (In QCD, asymptotic freedom guarantees that there is no need to introduce a short-
distance cutoff.) We wish to emphasize that the g.ss calculated here is to be regarded as
a useful approximation for spherical, color-singlet systems. More generally, for nonspherical
systems, and to make color-confinement explicit, one must use the self-consistent propagator,
as described in Ref. [11] to calculate E,y according to Eq. (13), or with another form factor.

The actual calculation of the self-energy was carried out in the one-loop approximation, in
the limit of fixed quarks. The computational problem is substantially more difficult for light
quarks, and is being pursued by Tang and Williams [22]. However, qualitatively similar resﬁlts
are expectéd on the basis of a comparison to the results of calculations for light quarks in the
MIT bag model [16,17]. Our model Lagrangian contains no direct quark-sigma coupling, and
is chirally invariant for massless quarks. Chiral invariance is broken by the effective coupling,
and should be restored, in a full theory, by a Goldstone boson. The question of how such a

boson is dynamically generated in the model, is left for further investigation.
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Figure Captions

Fig. 1: (a) The quark self-energy diagram in the one-loop approximation. (b) The quark

self-energy diagram in the one-loop approximation for a fixed (infinitely massive) quark.

Fig. 2: The normalized modified spherical Bessel function as a function of the order for

several values of the argument.

Fig. 3: The regularized self-energy (with the value at the origin subtracted) for several
choices of the width of the form factor and the asymptotic effective coupling (solid
line). The chromo-dielectric function is also shown (short dashes, right scale). The
self-energy for a = 0.125 fm was obtained by shifting the result calculated with R = 0.5

fm to assure convergence.

Fig. 4: Properties of the selfconsistent bag states with the asymptotic effective coupling.
The upper (u) and lower (v) components of the quark wave function and the effec-
tive coupling (gesys, right scale) are plotted. The shape of the o-field is indicated for

completeness (arbitrary units).
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