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Abstract 

The (p,t) reaction on deformed nuclei has been computed with the 

inclusion of indirect transitions that go through intermediate rotational 

states; The indirect transitions are almost as large as the direct for the 

2+ state and their inclusion is essential to bring about agreement with the 

+ 
shape andmagni tude of the, differential cross-section. For the 4 state some 

of the indirect transitions are even 'stronger than the'direct one. The 

sensitivity of the reaction to 84 and 86 terms in the shape has beeninvesti

gated and found to be weak; 

I I 
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1. Introduction 

The mechanism involved in a nuclear reaction is pictured in one of two' 

ways. Either a compound nucleus is formed involving the rapid sharing of the 

incident energy through many cOllisions,'followed by its eventual decay when 

sufficient energy again becomes concentrated on one or several particles that 

they can escape, or a single reaction takes place in which only those nucleons 

are involved which are needed to change the target ground state into a nearby 

and closely related final state. The latter reaction, referred to as a direct 

one, has proved enormously valuable in nuclear spectroscopy since Butler first 

postulated it to explain the forward peaked angular distributions populating 

low-lying states in (d,p) reactions. That all nuclear reactions should fit so 

neatly into one or the other of these very different categories, does seem 

implausible however. It has been known for some time that the excitation of 

intermediate states in inelastic scattering is important for deformed nuclei, 

though not so important for vibrational nuclei, except for any state whose 

structure forbids' or inhibits its direct production in a single interaction 

(such as 2-phonon states). In the last several years we have been investigating 

the question of whether higher order processes in nucleon transfer reactions 

1-8 are important ). The processes which we expect are most important are those 

in which an excited state is produced by an inelastic collision and is followed 

by the transfer reaction to the final. state, together with these interactions 

in reverse order. Such processes, when important, will involve inelastic 

transitions to states which are enhanced, and the final states for which the 

multiple~step processes are important will be those which have a conside~able 

fraction of their parentage based on such collective excited states. Thus the 

Ii 
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spectroscopy of a different class of states is opened up, namely those whose 

main parent ina collective state as compared to those up till now most exten-

si~ely studied, which have the target ground state as main parent. Naturally 

. the former states, on average, to appear higher in the energy spectrum, but 

since the theoretical analysis has until now assumed that any direct reaction 

proceeds in a single step, undoubtedly many analyses have yielded misleading 

information . 

. On way of handling such reactions was suggested by Penny and ,Satchler9), 

and is a straightforward (though computationally difficult') generalization of 

the usual DWBA. We have formulated the source termmethodl ) which has c6mpu-

tational and conceptual advantages, but which is physically eCluivalent 

: '. Ourcalculati?ns of the (p, t) reaction on vibrational nuclei suggested 

that relative cross sections could be changed by almost a factor of two when 

such multiple-step processes are included
4 ). However, the angular distributions 

in'that work;Ji=re not strongly altered from the usual direct transition, and so 

it was. difficult to confirm the result by experiment, since the structure of 

the nuclei involved is not so well known that it can be isolated from the 

reaction mechanism. In (d,p) reactions on deformed nuclei, large effects, up 

to a factor ten, were found for weakly excited states5). The experimental data 

in these cases was not so extensive as to allow a detailed test of the theory, 

but was sufficient to indicate that the size of the effect is about right. 

Very recently we reported what we consider to be the firmest evidence for strong 

higher-order processes in direct reactions, and the way in which the higher-

order processes interfere with the single-step direct transition to bring ~bout 
. . 

agreement with experiment is strong evidence of the correctness of the reaction 

me chariism6 ). 

~.' 
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In this publication we present more details on that work together with 

more extensive and refined calculations. The reaction under discussion is the 

(p,t) reaction on deformed nuclei. The inelastic excitation of rotational 

states can be very accurately described in terms of a macroscopic picture in 

which the nucleus is allowed to have a shape defined in terms of several mul ti-

'( 4 6)10 11 ' pole deformation constants SA A = 2" '). The rationale is the following: 

Since the intrinsic structure is not altered by inelastic transitions between 

members of a rotational band, the nucleus can be thought of as being the source 

of, a deformed field in which the exterior particle scatters. Since only the 

ground state rotational members will be treated, this field must be an optical 

potential because all of the other many open channels are omitted from the 

explicit treatment. The optical potential is a phenomenological representation 

of a quite definitely defined, though incalculable theoretical construct, which 

allows one to solve the scattering problem in a subspace of the open channels, 

in this case the ground state rotational levels. 

/ 

Although the inelastic transitions can be treated by the above macro-

scopic picture, an explicit description of the intrinsic structure of the 

nucleus is needed to describe the (p, t) transitions,. Since the higher-order 

transitions will generally involve a different multipole in the (p,t) reaction 

than the direct transition, it is important to treat the intri~sic structure, 

which determines the relative strength of these multipoles, with as high a 

degree of accuracy as is feasible. For the intrinsic state we adopt a BCS 

vacuum ,state of quasiparticles. The quasiparticles in this case are constructed 

from Nilsson-like states. However since the form of the .rave function i'n the 

surface and asymptotic regions is very important in reactions, we do not use 
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Nilsson's oscillator wave functions but instead generate. the single-particle 

states by solving the deformed Woods-Saxon problem, which B:gain is characterized 

in terms of deformation constants SA (A ~ 2,4,6). 

The reader not inter.ested in the technical details of the calculation 

can skip the next three sections. Section 2 describes the coupled equations 

used.to treat simultaneously inela'stic transition and (p,t) reactions. The 

intrinsic structure of, rotational states ·and the (p, t) transfer amplitudes are 

discussed. in sec . .3. Because the 'nuclear shape enters in the potentials 

describing three types of particles in this problem, a way of handling the 

I .\ 
deformation so as to yield a consistant representation of the multipolefields . 

for all particles has to be arrived at, and this is discussed in sec. 4. In 

sec. ~ it is established that in some cases the higher-order processes are 

stronger than the direct one usually treated. In sec. 6 and 7 we deal in detail 

. with two reactions at opposite ends of the rare earth region (i.e. for both 

positive and nega~iveB4 nuclear shapes). In particular it is demonstrated 

that the higher-order ~rocesses are crucial in,obtaining agreement with the 

data for (p,t) reactions on deformed nuclei. Indeed for higher spin states, 

trey dominate the direct transition. 
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I 

2. Coupled Eguations for Inelastic Scattering and Two-Nucleon Transfer 

In other publications we have described our method for treating 

simultaneously, inelastic processes and the two-nucleon transfer reactionsl ,3). 

Here we shall set down the basic equations for the purpose of discussing their 

ingredients which are particular to the rotational nuclei treated in this work. 

In addition to the direct production of the final state in a (p,t) reaction, 

these equations allow for its indirect production through all the inelastic 

and reaction transitions connecting the states in both nuclei. The inelastic 

processes are treated to all orders, but the reactions, which are weaker, are 

. . t· 12 ) treated only in ~irst order. Th~s accounts for the asymmetry ~n our equa ~ons . 

The reaction we treat here is 

p + (A + 2) ~ t+ A 

For the proton channels these equations are, for each channel p 

(T - E ) vTII(r) + ~ 
p p p L~ 

pi 

vTII (r) vTIII(r) = 0 
ppl , P 

where matrix elements are taken with respect to the channel wave functions 

cP ·I(r,A + 2) = pTI 1M 

[~~ s j (r,o) <l>J{A + 2)jI 
P P P P 

Here! is a spin orbit function and <l> is a nuclear wave function. 

side, pis used to denote the collection of quantum numbers 

p-~sjJ 
P P P P 

On the left 

In addition V is a complex deformed optical potential which is a parametrization 

of an effective interaction which enters the problem because of the truncation 

to a finite system, in this case the lOW-lying rotational states IO ). 
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The equations describing the final partition of the system are 

(4 ) 

p 

Here P .t is a source term representing the appearance in chanriel t of triton 
.. p, 

due to a transfer reaction in ch8.nnel p; If this is evaluated under the 

assumptions13 ) usually made in two-nucleon· transfer theory, it may be written 

··3 
as ) 

, 

'IT I(R) A + 2 D )~ 
I ~,t(R) 71'1 A 

R) = A
3
(p,t) vp (A + 2. Pp t, A 0 3 , . 

3 

3 +1-1/2-3 (" A A A A A \1/2 9,. 3 ~t ) I . j jt9, 9,t3 3 
A

3
(p,t) = (-) p 12 12 12 p 

4 ' I 0 0 'IT J' 

(t it J} ( jp jt 3\ x ~j: J
p 

1/2 l3t 
3, I J p 

(6) 

In the above equ~tion DO is a constant which effects the overall normalizat,ion 

of the (p,t) cross sections, but not their relative values. The functions 

.~ t 
u' are dis·cussed in, the next section and are intimately connected with the 

3 

internal'structure of the nuclei, while v is a solution to the system (1). 
p 

The system of eqs. (1) and (4) must be solved for each parity 71' and 

angular momentum I, up to some maximum value which ;yields convergence in the 

cross sections. The boundary conditions which are to be imposed on the solutions 

have been specified elsewhere, as has.the construction of the scattering 

·amplitude.from the S-matrix elements which are obtained from the asymptotic 

behavior ofw
t 

1 ,3) . 
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As mentioned in the introduction, the inelastic transitions which 

enter this calculation through the rnatrix elements of a complex optical potential 

V in (1) and (4) are treated as macroscopic excitations of a rigid rotor. The 

matrix elements of V with respect to the channel functions ¢p or ¢t (eq. 2) 

can be calculate'd as a straightforward extensi,on from spin 0 to spin 1/2 

projectiles along the lines given in ref. 10 for spin O . 
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3~ Nuclear Structure andtheTwo~Nucleon Transfer Amplitudes 

·We adopt the Bohr-Mottelson adiabatic hypothesis in order to write the 

wave function for the ground band members of (A + 2) as 

J 
n P X (A + 2) 

MO 0 

and a similar function for (A). Here J = 2J + 1, nJ is a rotational function, 

and X (A + 2) is the intrinsic wave function which describes the motion of the 
.0 

nucleons inside the deformednuc~~us. 

The (p;t) transitions between various rotational states of (A + 2) arid 

(A) are determined by the structure of the intrinsic states of these nuclei, 

and this information can be m,?st compactly expressed through a set of parentage 

factorsl~,. These are the amplitudes for fl.nding in the state, J p of the nucleus 

(A + 2), a neutron pair in the single-particle states a and b with angular 

momenta coupled to LSJ, given that the remaining A nucleons are in a state of 

motion corresponding to the state J t of the nucleus (A). These parentage 

amplitudes can be expressed as3 ) 

(8) 

Here d+ creates a particle in the state whose quantum numbers w,e denote by a. 
a 

Using the wave functions, eq. (7), and. transforming the pair creation operator into 

,the intrinsic frame, we find 

J JJ . . 
S(ab)LSJ(Jp ' J t ) = (1 + O~b)-1/2 (_)J. C ~ 0 ot (Xo(A + 2)1 [d: a;]is~rIXo(A) ) 

(9 ) 

fI' 
J 
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Note the factorization into a Clebsch-Gordan coefficient depending on the 

spins of the particular members of the bands and, a matrix element depending 

only on the intrinsic structure of the two nuclei. Accordingly we define the 

intrinsic parentage factors as 

intr 
6(ab)LSJ 

= (1 + <5 )-1/2 < X (A + 2) I [d+ cL+] intr Ix (A) ) 
, ab 0 ' a ~D LSJ 0 

Of course, the intrinsic structure of the nuclei determines the 

(10) 

strength of the various mul t,ipoles of the transfer, as eq. (10) expresses. 

Considerable care must therefore be taken in constructing the intrinsic wave 

functions if these strengths are to be correctly described. We use BCS wave 

functions to describe the intrinsic wave ,functions X. The single-particle 
o 

wave functions from which X is constructed are eigenfunctions of a deformed 
0, 

Woods-Saxon potential having a shape defined by three deformation parameters 

One is free to choose the single particle representation a,b as a 

matter of co~venience. The harmonic oscillator forms a very convenient 

, representation because of the existence of the Talmi-Moshinsky transformation 

to relative and center of mass coordinates. Therefore we use this representation, 

so that a = n ~. In any case one can construct from the above amplitudes, a 
a a 

set of two-neutron wave functions ~ whose physical significance can be inferred 

~. from the definition given above for S: 

(ll ) 
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Here 1jJ is a single-particle wave function of the chosen representation. 
-a -

However, only that part of the motion of the two neutrons described by '¥ 

which overlaps with 'the triton internal wave function is effective in the (p,tl) 

reaction. Employing a Gaussian form for the tri t()n wave function as in ref. 13, J-

the relevant projection is 

(12) 

where ulO is the IS oscillator function defined there, andX,o is a singlet 

spin function. 

According to eq. (9) and (10 )-, the projected wave functions. for the 

transition connecting the state J t to J
p

' which appear in the source term 

eq. ,( 5) are 

The physical significance of the projected wave functionS,\lJ(R) is 

the following. They describe how the center of mass of the neutron pair moves 

in the intrinsic state of the nucleus (A + 2) when their correlation in spin 

and space corresponds to what it is in the triton (lS), given that the remaining 

A nucleons are ina state of motion corresponding to the-intrinsic structure 

-of (A). 

If the cross section,for the direct transition from the ground state 

to the rotational state of spin J were computed in the DWBA,they would occur 

in the familiar _ matrix element 
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(14 ) 

where the usual zero-range interaction has been employed. 

For the reaction 176Yb (p,t)174Yb the p~Ojected functions u
J 

are 

shown in fig. 1 for the lowest four multipoles. In fact all even multipoles 

exist, but as can be seen, the higher ones become smaller, (We have computed 

them up to J = 12 and include all these in thecalcUlations~ The J = 12 may 
. . . + 

contribute, for example, to the transfer between the two 6 members of the 

two nuclei). 

This calculation was done in the followi:gg approximate way. The shape 

of 176Yb was taken from the alpha s'cattering analysis. The single-particle 

wave functions_in a Woods-Saxon potential having this shape were computed. 

The same wave functions were used for 174Yb . The BeS vacua of quasiparticles 

was computed in each nucleus from the resulting spectrum with a pairing force 

of appropriate strength, as we discuss later. The parentage aniplitudes were 

computed from the innocent looking expression, eq. (10), and the projected 

wave functions then computed from eq. (12) as described in more d.etail in the 

appendix. 

Taking into account that the region of greatest importance in the 

(p,t) reaction is in the region r ~ 7F (because of the absorption), the main 

features to note are that theJ = a transition is the most probable with the 

t·· others decreasing in importance as J increases. This can be understood since 

these functions express the amplitude that all of the rotational motion is 

carried by the transferred pair, and this ought to become less likely as J 

increases. 
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4 .. Consistent Treatment '.of the Nuclear.Shapes 

The shpae of a Ill.uuber of rare earth' riucleihave been determined 

through a careful analysis of alpha inelastic scattering
ll

). The nuclei were 

treated as rigid rotors which interact with the alpha particle through a 

deformed optical potential, whese shape was specified by 

6 

L (15) 

y=2 

a 
The deformation constants BA must be subjected to some interpretation before 

being used for other purposes because they are asseciated with the optical 

potential radius R .We consider the inelastic experiments to have determined 
a 

the strengths of the multipole fields relative to each other since the deferma-

tionalwaysoccurs together with the nuclear size in the product ,RS in the 

expression of the multipoles of the deformed field
lO

). 

The present problem involves the interaction of three different types' 

of particles with the nucleus , the triton, prot en and bound neutren, and thus 

involves three different optical potentials. It is not clear, either from 

experiment or theory, whether the nucleus appears to have the same "shape" to 

each particle. In any case, there is an underlying nuclear shape defined by 

the'shape of the mass density, 

6 

L (16) 

A=2 

(Here c ,is merely a constant which depends upon SA and insures that· the volUnie 

e.ontained by the deformea shape R( e) equals that of the s'phere of radius R
p

.) 

" 

. " 
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We use for the mass density radius, R , values determined by Myers from a - p 

Thomas-Fermi treatment of the nucleus in which agreement between the charge 

density and electron scattering experiments was reqUired
14 ). 

The deformation constants for the density, SA' were scaled from tabu-

1 t d 1 "th 1 h 1" 11) d" t' a e va ues ln e a p a ana YS1S accor lng 0 

cR S = R Sa (17) 
pI.. a A 

Then we write the radius of the optical potential for particle k (k = p, t, or n) 

as 

~(e) = r + cR 
k P 

(18 ) 

That is to say, to the density radius of the nucleus we add a constant r
k

, 

which can be thought of as an effective interaction radius for the scattered 

particle, due to the nature of the effective interaction and the finite size 

of the particle and it is chosen so that r
k 

+ Rp equals the optical model 

radius for particle k, listed in Table 2. (We note parenthetically that 

R ~ 1.12 A1 / 3.) The radii of both real and imaginary parts are treated in 
p 

this way. 

Our view is that the deformation of the potential felt by a particle 

in the vicinity of a deformed nucleus has as its origin the shape of the mass 

distribution of the nucleus. This is a plausible assumption which is not 

likely to be far from the trutll. The values of the radius and shape parameters 

are listed in Table 1. 



/ -14- LBL-248 

5. Indirect Transitions are Important 

In figs. 2 and 3 we show the, (p, t) cross sections for two nuclei. One 

is the 
, . 15· . ···16 

spherlcal nuc,leus Pb ) and the other the deformed nucleus -Yb ). The proton 

ener~y is close to the same in both nuclei,and the differential cross section 

to the 0+ are similar both in experiment and calculation. 
+ However, the 2 

experimental cross section in the deformed nucleus i's markedly different from 

the corresponding calculations ~nd the results in Pb and in this sense is anomalous. 

The reason for this result is that in the deformed nucleus the two 

indirect transitions that go through the 2+ in the target nucleus, and the 

0+ in the final nucleus are as strong as the direct first-order transition 

treated.by the DWBA as was shown in our earlier publication6). The interference 

among the three major contributions to the cross section is destructive and 

results in the reduction in the observed cross section as compa.red to the 

direct transi tion, and a strongly altered angular distribution. 

The cross sections that would result from these three routes are ... 

shown in fig. 4 if each alone were operative, illustrating the surprising 

fact that the direct route is not stronger than the two indirect ones shown. 

In the complete calculation shown in fig. 5 it is seen that the interference 

brings about the agreement with the "anomalous" observed cross section. That 

the complete cross section results from the interference of three amplitudes of 

, 

comparable strength, each different from experiment but which, when interfering', bring 

about the agreement shown, we consider· to be very convincing evidence of the 

validity of these calculations, and is a decisive statement as to the importance 

that second order transfer processes can assume. 



. ' 

I u 

-15- LBL-248 

To see whether this is an energy-dependent effect we have repeated 

the calculation at 55 MeV and see in' fig. 6 again that the direct route does 

not dominate the two most favoured indirect ones. The interference again 

reduces the final cross section shown by the dotted curve. 
/ 

+ In the case of the 4 state, there are many routes of comparable 

magnitude,'which follows from the fact that the strength of the various multi-

pole transitions in both inelastic and reaction channels (see fig. 1) falloff 

as the multipole increases. Thus, for example, 0 ~ 2 ~ 4 and 0 ~ 4 ~ 4
t p p t p p 

are comparable because the dominate multipoles involved are J = 2 and 2 in the 

first case and 4, and 0 in the second case. The J = 2 is stronger than the 

4 4+ 
J = but weaker than the J = O. Cross sections for the state corresponding 

to some of the individual routes 5Lre shown in fig. 7. Note that the direct 

transition is much weaker than the indirect ones. Again, comparing with fig. 5, 

we see that there is a destructive interference which,reduces the cross section 

that would correspond to the direct transition alone. Fig. 8 'shows that the 

above discussion holds also at 55 MeV. 

+ 
For the 0 state the higher-order routes are weaker than the direct, 

corresponding to the fact that the direct transition is monopole, while the 

others involve higher multipoles (see fig. 2). The other routes reduce the 

final cross section, but do not strongly modify the shape characteristic of 

the direct one . 
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176 6. -The Yb (p, t) Reaction 

The . calculations repqrted in the prev.ious sect~on use t;v~r~g~\Pl'!:!);ton_ 

Clptical model parameters,' interpolated in mass and en~rgy from the study of 

Becchettiand Greenlees
18

). While these 'parameters reproduce the inelastic 

proton, data for Yb fairly well, as seen in- fig~ 9, another set which yields 

the improved fit shown is used throughout the remainder of this paper (except 

where noted) and are given in Table 2. It turns out that these latter .yield 

also bett er result s for the (p, t) react ion. 

- 20 
For triton parameters we have used those of Flynn at al. ) based on 

an analysis at E = 20 MeV a~d extrapolated in energy according to the reasonable 

guess below. 

V = 167 - 0.33 (E:-20) MeV 

-W = 37.5 - 127.4 (N-Z). MeV 
A 

W
D 

= 0' 

rV = 1.16, r = 1.498 F 
W 

~ = .752, ~= .817 F 

For the Coulomb radius we choose to use My-erls 'l'h0l!las-Fermi formulas-which 

yield r '" 1.123 and reproduce the charge radii observed.in electron scattering14 ). c . . . 

At this point we state our philosophy concerning optical model parameters 

to be ~sed in a coupled-channel/calculation. It is supported both by our under

standing of the structure of the optical potentiallO ), and experfence21 ). Both 

spherical and deformed nuclei ,contain in common, intrinsic particle excited states • ~ 

which are not identical, but which in their multiplicity at higher excita-

tion, will contribute rather similarly to the optical potential. Were it not 
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for the rotational states of the deformed nucleus, the one-channel optical 

potential for nearby spherical and deformed nuclei .,ould therefore· be similar. How-

ever, the strongly coupled rotational states cause large changes in the one-channel 

optical potential of nearby spherical and deformed nuclei 21). However, when the 

rotations are treated explicitly in a coupled-channel treatment, then it is 

expected, and indeed born out in practice 21), that since now in both cases the 

optical potential must take care only of the intrinsic excitations and 

reactions that are roughly common to both spherical 'and deformed nuclei 

(especially since the optical potential is dominated by the high-energy region 

of dense states), the same, or a very similar optical potential should apply 

to both a spherical nucleus and a neighbouring deformed one in which the 

rotations are treated explicitly. For this reason we use, in our coupled-

channel calculations, optical parameters that are characteristic of spherical 

nuclei. 

In an effort to diminish the number of parameters, the calculation 

reported in sec. 5 employed pairing gaps obtained by the Nilsson-Prior prescrip

tion 22) yielding!J. = .55 and .6 MeV for 176Yb and 174
Yb . That prescription may 

n 

fail in case of low density of single-particle levels. A proposed gap in the 

176 neutron spectrum at Yb may suggest the use of a!J. that is smaller than 
n 

predicted by the Nilsson-Prior formula. In order to accommodate this evidence 

and at the same time obtain a smooth transition to the more neutron deficient 

Yb-isotopes we used in the calculation presented 

for 176Yb and!J. = 0.575 MeV for 174Yb . 
n 

A complete calculation of the l76Yb (p', t) 

in this section!J. = 0.36 MeV 
n 

reaction which now includes 

the 6+ state and the new optic and gap parameters is shown in fig. 10 where the 
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agreement is rather good for all states. We emphasize that the cross sections 
, 

are plotted according to their relative values so that we have achieved agree-

ment in both magnitude and angular distribution. The deformation constants 

13
2

, 134 '~6 are based on those obtained in an analysis of a-elastic scattering 

as discussed in sec. 4. 

(p,t) reaction is a good means of determining 134' 

a-i~elastic scatteringll ), we set 134 ::: 136 = 0 "and 

choose a value for 13 2 which yields the same quadrupole moment as for the calcu-

To determine if the 

as has been established for 

lation of fig. 10 with all three values for 134 fin~te. This choice for 132 

insures that the 2 + inelastic cross section will be about the same in both 

cases. 'I'h;e resulting (p, tJ ~~o'ss sections are .. s~?~in.rig~ 11.!3-I1dw~. $~e thai; 
.. . + 
while. the details of the 4 cross section are altered, the magnitude is about 

the same thus negating the procedure used by Kubo et al. 17 ) based on a comparison 

+ + . of the relative 0 and 4 lntegrated cross sections. It is clear from figs. 10 

and 11 that the (p,t) cross sections are not especially sensitive to higher-

order deformations as contrasted with a-inelastic scattering which is highly 

sensitive. Figure 12 makes the same comparison at 55 ~1eV (these calculations 

18 are based on the optical parameters of Bechetti and Greenlees ) . We reach 

the same conclusion as for the lower energy. 

In the BeS calculation of the nuclear ground state structure, there is 

an arbitrariousness associated with the number of levels to be used. All the 

above calculations used 20 levels. We have also done a calculation using 40 

levels, and with a pairing strength adjusted to yield the same gap as for the 

20-level case. The effect on the (p,t) cross section, shown in fig. 13, is 

that the 0+ and 2+ states are give~ too IDuchstrength compared to the 4+ and 6+ 

'. 
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(the same overall normalization is used as for fig. 10). The relative strength 

in different multipoles thus roughly determines the number of levels over 
.. .. 

which the assumption of a constant pairing strength is valid. This conclusion 

has not been reached in the literature before, based on other kinds of data. ,. 

To contrast the excellent agreement shown in fig. 10, where all 

inelastic and transfer transitions are included, we show in fig. 14 two DWBA 

calculations, which include just the direct transitions from the target ground 

state. The solid curves represent the standard type of DWBA calculatiori.- in 

the sense that the optical parameters were adjusted so that they reproduced 

the elastic proton and triton cross sections computed in the coupled-channel .i 

calculations. That is to say, we are using the coupled-channel elastic cross 

sections in lieu of data. However, as seen in fig. 9, the proton data is 

repr9duced. It was then necessary to use an overall normalization for the 

reaction that is three. times smaller than used in the complete calculation of 

fig. 10, corresponding to the fact, already emphasized, that the higher-order 

processes acting with the direct, reduce the cross sections. We have to 

consider it fortuitous that the °4/°0 ratio comel? out roughly correctly, since 

this is not true of 0/00 or °6/°0 , thus again speaking against the procedure 

used by other authors to extract '\ from the (p,t) cross section Oil the basis 

of a DWBA calculation of this ratio17 ,19). In fact as seen in fig. 7, the 

direct route, on which their analysis was based, has a smaller amplitude than 

the higher-order' ones. The dashed curves correspond to the same optical para-

meters as used in the complete coupled-channel calculation of fig. 10 and again 

illustrates the unreliability of the DWBA calculation with another set of 

parameters as contrasted with the complete calculation. 
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7. Another Example: 154Sm(p,t) 

Whereas Yb has a negative value for B4, we now study a reaction, 

154
sm(p,t) in which the nuclei have positive f\. Again the intrinsic nuclear 

state was obtained as described in sec. 3, with pairing gaps of 1.022 and 

0.997 MeV for 154Sm and 152Sm. Again we exhibit in fig. 15 two DWBA calculations 

with overall normalization (i.e. e,ach set of curves has a common normaliz,ation) 

chosen to rQughly agree with the data. It is 2.5 times smaller than the com-

plete calculation discussed next, again corresponding to the fact that the 

higher-order processes reduce the cross sections that would result from the 

direct transitions acting alone. We see that the relative cross sections to 

+ '+ . , 
the 2 ,and 4 states are very badly reproduced as are the angular distributions. 

In contrast, the complete calculations which includes the higher-order processes, 

is shown in fig. 16, and now the relative cross sections 'and angular distri

butions are very well reproduced. The angular' distribution for the 2+ state 

has been great-ly altered from the shape of the direct route, by the other routes. 

As before, to test whether there is a sensitivity to 64 , we have set 

S4 = B6 = 0 and adjusted B2 so that the quadrupole moment and thus the strength 

of the 2 + inelastic transition is about the same as in the complete calculation 

of fig. 16. These results are shown in fig. 17. While there is some change in 

angular distribution , it is clear from a comparison of the figures that this 

reaction is not nearly so sensitive to the value B4 as the a.-inelastic scatter~ng, 

and as for Yb, we find that the behavior of the relative integrated cross sections 

°4/°
0 

with respect to 64 as predicted by Kubo et al. 17 ) would not yield accurate 

values B4• 

.-, 
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8 .. Summary 

We have computed the effects of higher-order processes on the (p,t) 

reaction on deformed nuclei. There is much evidence from various sources that 

the rotational model provides a good description of these nuclei. This implies 

the existance of an intrinsic state ·from which all two-nucleon transfer ampli-

tudes to the ground band of the neighboring nucleus can be computed. This is 

in contrast to spherical nuclei where the various states of different spin are 

independent of each other. We may thus have a high degree of' confidence that 

relative cross sections can be computed correctly if the reaction mechanism is 

properly treated. This indeed turns out to be the case where, with an accuracy 

, sectl'ons to the 0+, 2+, 4+ and 6+ unprecedented in reaction theory, the cross 

members of the ground band are reproduced. However, this comes about only \ 

because the many higher-order routes of producing these states were included 

in the calculation. Especially for the higher spins, the higher-order processes 

were more important than the first-order ones, traditionally treated by the DWBA. 

+ In some cases, and most dramatically for the 2 state, the interference among 

the various ways of producing a state, strongly alters the cross section com-

puted in DWBA. In both cases we studied, i.e. in a nucleus near both ends of 

the rare earth region (i.e. both positive and negative 134) and at two different 

energies, the interference was destructive but of different magnitude for each 

state in a given nucleus, and also different in the two nuclei for the same 
-. 

spin state. The interference of the various routes, which was between amplitudes 

of comparable magnitude, did however bring about the remarkable agreement 

mentioned, and is the strongest confirmation that higher-order processes in 

transfer reactions are of importance for a correct description, and that they 
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can be computed.with satisfactory accuracy. This success supports the conclu:

sions that we reached elsewhere
4) for spherical nuclei, wh~re however direct 

confirmation from experiment was.not possible, both because of the lack of 

data, and the fact that the nuclear structure information was more tenuous. 

We claim therefore on the basis of this work that we have demonstrated that our 

calculation of higher-~rder processes is correct, and on the basis of that 

other work, that they are important in spherical nuclei, though less dramatic 

in producing changes in angular distributions computed for the direct transition. 
\ 

Naive con~iderations had led earlier to the conclusion that second-

order processes must be weak unless the first-order is nearly forbidden. In 

l ' 6) , an ear ler letter ,however, we pOlnted out that the probability for m~tiple-

step processes is given by the product of conditional probabilities and not 

disjoint probabilities vThichwas the basis of earlier argUments against 

multiple-step processes. The reader is referred to that letter for details. 

The most notable features of the DWBA calculations are that the 

relative cross. sections are grossly incorrect and for several states, most 

+ notably the 2 , so was the angular distribution. We understand that the reason 

for 'this is that the higher-order processes play such an important role and 

indeed for some states ar'e stronger than the direct one treated by the DWBA. 

The question may occur to some readers whether there is a prescription by which 

the optical model parameters in the DWBA calculation could be modified so as to 

retrieve agreement. We are convinced that the answer is negative. The inter-

ference is of different magnitude for different states and alters angular 

distribution's drastically in some cases and(not in others . The underlying 

theory of the optical potential moreover offers no hope. It is a construct 
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which can reproduce on anyone channel (in practice the elastic) the effects 

of all the others. This then determines it~ and it has no meaning outside this 

one channel space , if strong coupling effects are explicitly acting. 

We emphasize that at each step of the ,calculation we made the physically 

reasonable choices of parameters and had we not been rewarded with success~ we 

would not have known what else to try. 

Contrary to suggestions made' elsewherel7 ~l9) ~ it seems to us that the 

(p~t) reaction is not a good way of determining higher multipoles in the nuclear 

shape. This suggestion was made on the assumption that the reaction could be 

des,cribed by its direct transition alone. 'As we have seen~ the direct transition 

+ to the 4 state~ from which it might be hoped to determine 84 is smaller than 

many of the higher-order processes. The higher-order processes~ since they go 

through an intermediate state~ involve~ dominantly~ lower multipbles than the 

direct. Thus 'sensitivity to higher multipoles in the shape is weak. 
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Appendix 

In this work we obtained the solutions to the single-particle 

Hamiltonian containing a deformed Woods-Saxon potential given by 

,v V /'[1 ~ r - R(e) = 0 exp a (A.l) 

with R C e) defined by eq,. (18). They are obtained by diagonali zing the 

Hamiltonian on an Harmoni~ Oscillator basis having an extent N= 2(n-l) + 2 ~ 15 

which provides a very accurate description in the surface and out into the tail 

region. More particularly, the basis functions'are expressed in the uncou:pled 

scheme 

(A.2 ) 

n2AI:., 

for the kIth eigenfunction having projection ~ on the nuclear symmetry axis. 

Here I n2A) is the oscillator function and spherical harmonic and 11/21:.) the 

spin function. The multipole fields of the potential (A.l) are computed as in, 

ref. 10 to 8th order in the deformation constants 8
2

, 8
4

, 86 , and multipoles up 

to 8 are retained. 

Having obtained the eigenfunctions and eigenvalues in this way, the 

BeS ground state of quasiparticles is generated using, for most of our calcu-

lations 20 levels, in the vicinity of the Fermi level. The transformation 

between the particles <\~ and quasiparticles is expressed as 

where Uand V (defined as positive) ares()lutions of the BeS equations. After 

a cumbersome calculation, the projected wave functions' of eq. (12) can be written 

as 
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where u
NJ 

is a harmonic oscillator function as defined in ref. 13 and GNJOJ ' 

the structure amplitude for S = 0 transf7r, is given by 

( vONJ . J I nR,n ' R, , . J ) , , 

and exists only for J = even. The prime on the sum indicates that nR, and n'R,' 

do not repeat each other, while the overlap ~v involving the triton and nuclear 

size parameters is defined in ref. 13. The bracket ( I ) is a ~1oshinsky trans-

formation and V is fixed by the value of the other indices in it. 
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Table 1. 

·r 132 134 136 
r 13 134 136 p c 2 

176Yb a 1.124 0.295 -0.0517 -0.0064 1.125 0.328 -0.0635 ~0.Q07 

b 1.124 0.2819 0 0 1.125 0.318 0 0 

154Sm a 1.118 0.29 0.058 -0.019 1.122 0.359 0 0 

b 1.118 0.3048 0 0 1.122 0.359 0 0 

152
Sm a 1.117 0.266 0.052 -0.013 1.123 0.314 0 0 

radii rp The mass and charge and r are taken from ref. 14. The deformation constahtsunder 
c 

"a" are scaled from ref. n according to eq. (17) for reasons discussed there. Under "b" we list 

+ 
a value of 13

2 
with 13

4 
= 13

6 
= 0 which yields about the'same strength for the 2 inelastic transi-

tion as the parameters listed Under "a". 
174 . 176 

The deformations of Yb are so close to Yb that 

they were taken, the same. Since the calculation using parameters -"b" was taken to illustrate 

sensitivity or lack of it to S~ and 13
6

, for 152Sm, the same parameters as listed under 15
4

Sm "a" 

were used for the calculation of type "b" . 

• • , ' 

I 
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. Il6Yb (p, t) Form factors 

0:: 

-0.1 

Q2L-__ ~ __ ~~L-~L-~ __ ~ __ ~--~--~--~· 

o 2 4 6 8 10 
R (Fermi) 

.XBL718-4182 

Fig. 1. The projected wave fUnctions cir form factor that show the 
strength (determined mainly by the surface region) of the various 
multipolesfor transferring a pair of particles bet/'leen ground 
state members of the rot~tional nuclei 176Yb and 174Yb. 
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201 Pb (p t t ) 

• 

-blq 
"'0 "'0 

o 30 60 ·90 120 150 180 
Angle (c.m.) 

XBL719-4323 

Fig. 2. Angular distributions to the lowest 'states in 206pb at 
22 MeV. The calculated DWBA cross sections are adjusted in 
magnitude relative to the ground state by 15% for the 2+ and 
20% for the 4+ state. 
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176Yb(p,t) 

' .. 
• 

• • • 

60 

, . 

Ep =19MeV 

90 
e c.m. 

120 

LBL-248 

150 

XBL7IS-4IS3 

180 

Fig. 3. DWBA cross ,sections normalized to the ground state leading 
to members of the ground band. Optic parameters were adjusted 
to reproduce the elastic cross sections for proton and triton 
obtained in the coupled-channel. calculations reported subse
quently (see Table 2). 
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176Yb( p, t) Ep = 19 MeV 

• • • • 
• 
• • 
• 

4+ 

2+, 

0+ 

30 
\ 

• • 
• 

• • • 

60 

• 

90 
8 c.m. 

120 

XBL 718-4194 

180 

Fig. 4. Cross sections for the 2+ state that correspond to the 
individual transfer processes shown. Note that. the direct and 
indirect routes are comparable in magnitude. The normalization 
is the same as used in the complete calculation of fig. 5, which 
means that these routes each s:>verestimate the cross section and 
interfere destructively to produce the final result. 
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Ep =19Mev cc 

2+ 

• • • • 

• ••• ••• 
4+ •• ., 

'. 

-Minnesota data 

,30 60 90 
8 c.m. 

150"180 

XBL7010-4069 

Fig. 5. , Cross sections for members of the ground band Qf 17.4Yb . 
Calculations include all transi tionsconnecting all three states 
in both nuclei. The 0+ curve was normalized to the data and the 
same normalization was used for the other two. 
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176Yb (p,t) Ep = 55 MeV 
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Fig. 6. Cross, sections at 55 MeV for the 2+ state that correspond to 
the individual transfer processes shown. ,The, dotted curve is the 
resultant complete calculation, which since, it is smaller than the 
others, shows that the interferences among the various processes 
is destructive. , 
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Fig. 7. Cross sections for the 4+ state at '19 MeV corresponding to 
several of the many individual transfer processes. 
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Fig. 8. Same caption as for fig. 7 but for 55 MeV. The. dotted curve 
is the complete calculation containing the coherent contribution 
from all routes feeding the 4+ state. 
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~ . 176 
Fig. 9. Elastic and inelastic proton cross se.ctions on Yb at 

19 MeV. Thesblfd lines are parameters due to Hintz and the 
dashed are average parameters of Becchetti and Greenlees (see 
Table 2). 
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Fig. 10. Complete calculation for the ground band memb.e~s .of 174Yb 
produced in the (p,t) reaction. Calculations include all inelastic 
and reaction transitions connecting all four states in. both nuclei. 
The 0+ is normalized to the data and the same normalization was used 
for the others. The experimental values B

2
, B

4
, B6 were used as 

discussed in the text. 



c 
o .--' U 

~ 
,(/) 

(/) 

-40 ... 

176Yb (p, t) Ep =19MeV 

o .. U 10 1 L--__ -~. ~-:.:""";.:--__ -------..!.-
• • 

. ' 
• 

1 

e c.m. 

LBL-248 

180 

X BL 718-4190 

Fig. 11. ,Computed cross sections corresponding to B4 = B6 = 0 and 
~. ad~usted~o, give the same q~a~r~po1e moment as for fie;~ 10. 
'l'filS lllustrates ,the w,eak sensltl Vl tyto 'B4 and B6• 

/ .'." 

.' 

) I 
i 



c 
o 

e_ 
~ 

u 
Q) 
(J) 

(J) 
(J) 

o 
~ o 

o 

I' 
"'? 

15 

" , 
I 

-41- LBL-24B 

, 1~6Yb(p,t) E =55MeV 

30 45 
a c.m. 

60 75 

XBL718-4184 

90 

Fig. 12. Compares at 55 MeV the effect of.S4 and S6 on the (p,t) reacti?n. 
Tne dotted curve corresponds to experlmental values of S2' 84, S6 and 
the solid curve to S4 = S6 = 0 and S2 adjusted to yield the same 
quadrupole moment as prevlously. 
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Fig. 13. The structUre of the intrinsi,c stat,e.is here computed, using 
401ev:els around, the Fermi surface as compare(L,wJ.th fig. 10 where 
20 levels were ,used. The same normalization is used for the curves 
of ,both figures, 
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Fig. 14. Two DWBA calculations are shown. ,The,solid curve corresponds 
to proton and triton parameters adjusted to reproduce the elastic 
cross sections of the coupled-channel calculation (shown for protons 
in fig. 9). The dashed curve uses the same parameters as for the 
coupled-channel calculation. The two sets of curves have the same 
normalization, which is reduced by a factor of three from the complete 
calculation shown in fi . 10. 
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Fig. 15 .:Two DWBA calculations are shown. The solid. curvec,orresp.onds 
to protein .and triton parameters adjusted to reproduce the elastic 
cross sections of. the coupled~channel calculation. The two sets 
of curves have the same normalization, which is reduced by a factor 
of 2.5 from the complete calculation shown in fig. 16. 
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Ep =19 MeV 
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Fig. 16. Complete calculation for the ground band members. o.f 152Sm 
produced in the (p,t) reaction. Calculations include .all inelastic 
and reaction transitions connecting all four states in both nuclei. 
The 0+ is normalized to the data and the same normalization was used 
for the others. The experimental values of B2 , B4, B6 were used as 
discussed in the text. 
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. Fl.g ~ .17. . Compare with fig. 16 where h:r Sl+ = S6. = 0 an~' S adj~s~ed 
to Yle1d about the same strength In the 2+·1ne1ast:).c transltlon. 
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