
r ._ .0 

, 

... - ,', 

LBL-24967 ~ ~ 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

SEP2'71989 

LIBRARY Ai\lD 
DOCUMENTS SECTION 

The Applicability of Expert Systems to Risk Analysis 
for Waste Disposal Problems 

D. Billaux, M. Uszynski, and S.M. Benson 

March 1988 
./ 

I 
I 
~ I, 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



LBL-24967 

The Applicability of Expert Systems to Risk Analysis 

for Waste Disposal Problems 

D. Billaux, M. Uszynski and S. M. Benson 

Earth Sciences Division 
Lawrence Berkeley Laboratory 

1 Cyclotron Road 
Berkeley, California 94720 

March 1988 

This work was supported by the Repository and Technology Program of the Office of 
Civilian Radioactive Waste Management of the U. S. Department of Energy under 

Contract No. DE-AC03-76SF00098. 



• 

)' 

- iii -

Abstract 

Expert-systems are a new type of computer programs in which knowledge is explicitly 

represented. An expert system has three main parts: (1) a database for storing axioms and 

rules of inference called the knowledge-base; (2) an algorithm for constructing proofs. called 

the inference engine; and (3) a user interface. The content of the system data base at any time 

can be separated into facts. which depend on the case considered; rules of inferences; and rela­

tions between facts. The way inferences and relations between facts interplay in the data base 

defines the various representations of knowledge which can be used. The possibilities and lim­

its of expert systems are mainly due to the way they treat knowledge. They are much easier to 

maintain. more accessible to people. and can document the conclusions they reach. But an 

expert system cannot create new knowledge. and because of the "logical-like" representation 

of knowledge it cannot reproduce easily common sense or analogous reasoning. 

In the field of nuclear waste disposal. expert systems can be of help during the study of a 

site for licensing. or during the operation of the transport. conditioning. and underground 

storage activities. During the study of a site. expert systems can help planning the field inves­

tigations. interpreting results from these investigations. or perfonning risk assessment studies. 

During the operation of the storage plant, expert systems can help for industrial management, 

management of individual waste canisters from power plant to the underground storage. 

management of monitoring and warning systems. 

WES. (Well-test analysis Expert System) is a prototype built to show what can be 

achieved using expert systems in a crucial area of the nuclear waste storage program. The 

inputs to WES are principally the results of pumping tests. The output consists of both a con­

ceptual model of the underground flow system. and the values of the parameters needed to 

properly characterize this particular type of flow system. Contrary to classical curve-fitting 

softwares. WES achieves its goal not by sophisticated numerical algorithms. but by trying to 

mimic the behavior of an expert well-test data analyst. It uses a highly structured data base. 

and is able to generate and manipulate hypothetical conclusions. 



-v-

Table of Contents 

List of Figures ............................................................................................................................... vii 

1.0 INTRODUCI10N ................................................................................................................. 1 

2.0 EXPERT SYSTEMS ............................................................................................................. 3 

2.1 What is an Expert System? ........................................................................................ 3 

2.1.1 The Knowledge Base .................................................................................... 4 

2.1.2 Constructing Proofs ....................................................................................... 10 

2.1.3 Interfacing with the User ............................................................................... 11 

2.1.4 Possibilities and Limits of Expert Systems .................................................. 13 

2.2 Examples of Expert Systems .................... ~................................................................. 14 

2.2.1 The R1/XCON System .................................................................................. 14 

2.2.2 The Serum Protein Diagnostic PrOgram ....................................................... 15 

2.3 Development of an Expert System ............................................................................. 18 

2.4 Criteria for Selecting Problems .................................................................................. 19 

2.5 Application to Nuclear Waste Disposal .................................................................... 20 

3.0 WES. THE WELL TEST ANALYSIS EXPERT SYSTEM ............................................... 23 

3.1 General Description .................................................................................................... 23 

3.2 Data Structure and Organization ................................................................................ 25 

3.2.1 Data Structure ................................................................................................ 25 

3.2.2 Hypothetical Worlds ...................................................................................... 28 

3.3 Rule Architecture and Runtime Behavior ................................................................. 29 

3.3.1 Data Extraction .............................................................................................. 29 

3.3.2 Graphics ......................................................................................................... 31 

3.3.3 Data Filtering ................................................................................................. 31 

3.3.4 Pressure Derivative ........................................................................................ 33 

3.3.5 Aggregated Description of Curves ............................................................... 33 

3.3.6 Generation of Possible Models ..................................................................... 34 

3.3.7 Selection of One or More Models ................................................................ 34 



- vi -

3.4 Numerical Algorithms ................................................................................................ 35 

3.4.1 Derivatives ................ ;.................................................................................... 35 

3.4.2 Straight Lines ................................................................................................. 36 

3.4.3 Humps ............................................................................................................. 36 

3.5 Implementation: the ART Programming Tool ......................................................... 39 
,. 

3.6 Possible Extensions ..................................................................................................... 40 

3.6.1 Extending the Analysis of the Present Problem .......................................... 40 

3.6.2 Extending to a Larger Problem ..................................................................... 40 

4.0 REFERENCES ...................................................................................................................... 43 

APPENDIX - Listing of the Program .......................................................................................... 45 

• 



- vii-

List of Figures 

Figure 2-1. Simplest possible data organization: facts, with no struc- 6 
' .. ture. 
''; 

Figure 2-2. Hierarchized facts. 7 

Figure 2-3. Frames. 8 

Figure 2-4. Examples of gauges using active values, from the ART 9 
manual (Gayton, 1986). 

Figure 2-5. Basic concepts for chaining and search, after Harmon 12 
and King (1985). 

Figure 2-6. Instrument output from a scanning densitometer, after 17 
Weiss and Kulikowski (1984), adapted by Harmon and 
King (1985). 

Figure 3-1. Object architecture for wells in WES. 26 

Figure 3-2. Execution steps. 30 

Figure 3-3. Example screen during a run of WES. 32 

Figure 3.4. Notations for computing derivatives. 37 



- 1 -

1.0 INTRODUCTION 

Expert systems are software tools which can handle problems where no algorithmic solu-

tion can be defined, or where algorithms perform poorly due to, for example, a high number of 

possibilities ("combinatorial explosion"). These techniques have been used successfully in 

various fields, such as in medical diagnosis, or molecule definition in organic chemistry by 

searching for physically possible configurations of a molecule given its global chemical for-

mula. Also expert systems are being used in the interpretation of geochemical surveys by 

codifying the knowledge of human experts into a set of rules from which the software will be 

able to make the same inferences these people do, thus putting some of their knowledge at the 

disposal of many others. 

One essential feature of expert systems is the fact that the set of rules used for a given 

application, i.e. the knowledge in that field, is separated from the mechanism which chooses 
-. 

what rules apply to a given data set, i.e. the inference mechanism. Thus, the set of rules is 

much easier to modify or expand than the underlying assumptions in any classical program. 

One first fixes an architecture by choosing the type of representation of knowledge and facts, 

the inference mechanism and the formalism for the rules which are best suited to the particular 

problem. One can then build the set of rules gradually, beginning with a subset of the general 

problem, and increasing the scope of the system gradually until it encompasses the whole field 

for which it was made. 

Expert systems can help solve some of the problems that are or will be posed in the 

nuclear waste disposal effort, during the study of a site for its licensing, or during the operation 

of the transport. conditioning. and burying activities. On a given site. the predesign of the 

repository may be helped by a design-support expert system. and the preliminary characteriza­

tion studies may be optimized by a planning expert system. During the detailed study of a 

site, expert systems can be helpful on many different topics. First they can help planning the 
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field investigations. Second they can be used for interpretation of field data: geochemistry, 

water tests, geophysics. Finally they can be very helpful for risk assessment studies. Scenario 

generation and analysis of consequences for example are two areas in which expert-systems 

can help. During scenario generation, an expert-system can be used to efficiently discard 

unwanted scenarios as early as possible. Also, generating scenarios requires the generation of 

many interrelated parameters. Checking the consistency of the whole set of parameters together 

with the soudness of the scenario can be done by a design expert-system. During the operation 

of the storage plant, expert systems can help for industrial management, management of indivi­

dual waste canisters from power plant to burying, management of monitoring and warning sys­

tems. 

This report investigates the specificity of expert system tools in view of their application 

to nuclear waste disposal and related activities. The nature of expert systems and their unique 

characteristics are first discussed, and several examples are given. The trial and error process 

used for building them is then outlined. The type of problems they can solve is emphasized. 

We have chosen one problem, well test interpretation, as an example and begun the develop­

ment of a prototype system. Upon completion, this program will interpret the pressure versus 

time curve obtained during a pumping test in order to draw conclusions about the type of 

hydrologic regime underground and provide an estimate of the relevant hydraulic parameters. 

The current state of this effort is described, and a listing of the program in LISP and ART 

languages is given in the appendix. 

• 
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2.0 EXPERT SYSTEMS 

A general ovelView of expert systems is presented below. Numerous text books are avail­

able on this subject, and some are cited in the reference list if a more in-depth description is 

needed. 

2.1 What is an Expert System? 

An expert system (Bobrow et al., 1986) is a computer program that applies substantial 

knowledge of specific areas of expertise to the problem-solving process. It is characterized by 

narrow specialization and competence. The main difference between an expert system and a 

classical computer program is that an expert system uses technology for the explicit representa­

tion of knowledge. In fact, these programs are often called knowledge based systems. 

How much competence must such a system show in order to deselVe the "expert" 

qualification? There is no clear-cut answer to this question. Acting like an expert means produc­

ing high quality results in a minimal time, by taking advantage of tricks of the trade. In particular, 

rules of thumb generally enable the expert to jump quickly to a small number of reasonable 

hypotheses, instead of searching blindly through large numbers of hypotheses. Also, expertise 

can be judged by how it degrades when approaching the boundary of its domain, what is called 

the robustness of its knowledge. An expert does not fail altogether when confronted with a prob­

lem slightly outside his domain, but his performance degrades smoothly. 

An expert system has three main parts (Denning, 1985): (1) a database for storing axioms 

and rules of inference called the knowledge-base; (2) an algorithm for constructing proofs, called 

the inference engine; (3) a user interface. 
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2.1.1 The Knowledge Base 

The knowledge contained in the data base can be of two types, shallow and deep. Shallow 

systems do not resort to general principles in order to draw conclusions. They generally arrive to 

their conclusion in a small number of steps. On the other end, deep systems derive their conclu­

sions from knowledge of a model of the phenomena in their domain. Their proofs will tend to be 

longer, but they will be more likely to exhibit robustness in the sense explained above. Shallow 

systems are faster because they possess a knowledge that is already fine-tuned to the problems 

they are supposed to tackle. The tradeoffis more rigidity, since the fine-tuning is relevant only for 

a narrow area. Deep systems are more robust because they contain a knowledge which is 

expressed in more general terms. When designing an expert system, a balance must be kept 

between these two extremes, in order to achieve sufficient speed together with some flexibility. 

The content of the system data base at any time can be separated into factual knowledge 

and inferential and relational knowledge. 

Factual knowledge is basically a statement of facts, and depends on the case considered, 

i.e. "there is a hump of height x on the curve", A simple way of representing such facts is the 

Object-Attribute-Value triplet In our example, the triplet would be Object: "hump", Attribute: 

"height", value: "x", 

Inferential knowledge states how conclusions can be reached from the facts in the data 

base, i.e, "a hump in the beginning may mean there is well-bore storage", This is often 

represented by rules, A rule is simply constituted of a left-hand-side in which a certain number of 

conditions are enumerated, and a right hand side in which some actions are stated. The left­

hand-side conditions are called premises, and the actions on the right-hand-side generally consist 

of performing changes in the data base, most times in the factual part of the data base, Contrary 

to the factual knowledge, the inferential knowledge is generally static: it does not depend upon 

the case under study, and is always present in the database, 

Relational knowledge represents what relationships there are between the facts in the data 

base, For example "a hump is one of several possible features of a well-test curve"links the fact 
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"hump" and the fact "well-test curve". It may either be incorporated by structuring the facts in 

the data base, or be partially translated into inference knowledge. Structuring the facts in the data 

base results in a simpler set of rules, and when large amounts of data are processed it makes the 

facts more tractable. But more computational overhead is put on the computer. Both the inferen­

tial knowledge and the relational knowledge are the actual formalization of the human expert's 

knowledge. The way inferences and relations between facts interplay in the data base defines the 

various representations of knowledge which can be used. 

If the relational knowledge is not used directly, the factual part of the data base is merely a 

collection of facts stated independently of each other (Figure 2-1). All the knowledge of the 

expert is stated in the shape of rules. This means that for example similar facts which represent a 

characteristic common to a whole group of objects must be stated for each object. 

The relations between facts may be used to structure the data base, with all the inferences 

still based on rules. This time, a characteristic is assessed only once for a class of objects, and 

these objects are assessed as being part of the class. Any fact is stored only at the relevant degree 

of generality, and is inherited by all objects spawned below it (Figure 2-2). The facts pertaining 

to a given object are called its "slots". 

In the description of objects at various levels of generality described above, all the inferen­

tial knowledge is still written in the shape of rules. In the "frame" representation of knowledge 

however, part of the inferences are made directly by the objects. This is achieved by defining 

objects as collections of slots as above, and by allowing any given slot of an object to be attached 

to facts or procedures, or both (Figure 2-3). Then for example, when a value is needed from a slot 

attached to a procedure, the procedure is executed to return the needed value. Or when the value 

of a slot containing a fact is changed, it may trigger a procedure used for instance to update a 

graphical representation (gauge or dial, etc .. , Figure 2-4). This particular slot is then called an 

"active value". If this kind of programming is extended to include most or all of the inferential 

knowledge in the object structure, then the programming style obtained is called "object­

oriented programming". 
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Fido dog t-----IIFido is a dog." 

Fido Color Brown t-----"Fido's color is brown." 

Dog Mammal t-----"A dog is a mammaL" 

Fido Mammal t-----"Fido is a mammal." 

Tommy Dog t-----"Tommy is a dog." 

Tommy Color Grey t-----"Tommy's color is grey." 

Tommy Mammal t-----"Tommy is a mammaL" 

XBL 882-10082 

Figure 2-1. Simplest possible data organization: facts. with no structure. 
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Mammal 

- is an animal 
- has bones 
- has instance {Dog 

/ 
Dog 

- is a mammal 
- barks 

Object "Dog" 

- has instances {Fido, Tommy 

Fido Tommy 

- is a dog 
- color brown 

- is a dog 
- color grey 

- birthdate .... - birthdate .... 

The facts that fido "is a mammal", "barks", "is an animal", "has bones", 
do not have to be stored, since they are inherited from objects higher in 
the hierarchy. 

XBL 882-10083 
Figure 2-2. Hierarchized facts. 
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Dog 

- is a mammal When new 
- barks instance is added, 
- has instances {Fido, Tommy --'-----"i draw new dog 
- ......... . 

Fido 

- is a dog 
- color brown 
- birthdate .... 
- age -----4------~ 

Figure 2-3. Frames. 

on screen. 

Compute 
age from 

present date 
and birthdate. 

XBL 882-10084 
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Figure 2-4. Examples of gauges using active values, from the ART manual (Clayton. 1986). 
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2.1.2 Constructing Proofs 

In order for a system to reason, it must be able to infer new facts from the facts already in 

the data base. Two control mechanisms are commonly used. If forward chaining is used, the 

system looks for the rules whose premises are matched by facts in the data base. Among these 

rules, one rule is chosen. Then this rule is "fired", which means that the consequence part of the 

rule is executed and the data base is changed accordingly. Then the system examines the rules 

again. The process of choosing the rule which will be fired among all rules that have their prem­

ises verified is called "conflict resolution". This control mechanism is sometimes also called 

data driven control. 

On the other hand, a backward chaining inference engine starts with a goal and tries to 

find which conditions must be verified for this goal to be reached. A goal here is simply a given 

state of part of the data base. It can be just the presence of a given fact or of a collection of facts, 

i.e. "There is well-bore storage." Backward chaining thus involves scanning the rules and 

selecting the ones whose right-hand-side actions achieve the goal. If part of their premises are 

not verified, then these non-verified premises become sub-goals and the process is repeated until 

either a way to verify the goal is found or a conflict between a sub-goal and the state of the data 

base is reached, in which case the particular goal is discarded. Note that several different goals 

can be started with, and which one succeeds may be the outcome of the program. Backward 

chaining also involves conflict resolution, since at any step of the reasoning process, several rules 

may have the desired effect. This type of inference control is also called goal directed control. 

The difference between forward chaining and backward chaining can be summarized as fol­

lows. When using forward chaining, one repeatedly asks the question: "where can this data lead 

me?" and the paths of reasoning explored are all the changes of the data base from the initial one 

which are permitted by the body of rules. On the contrary, when using backward chaining, one 

keeps asking the question: "how can I reach this - or these - particular conclusion(s) from the 

data base" and the paths of reasoning explored are all the possible states'of the data base which­

would lead to the desired conclusion(s) through changes permitted by the body of rules. Note 

.. 
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that backward and forward chaining are not incompatible. In fact many recent expert systems 

tend to use both control strategies, in order to take advantage of their complementary qualities. 

These qualities stem logically from their definitions. If there is not too much data to start with, 

but there are many possible different conclusions, then a forward chaining control starting from 

the limited initial data will be efficient. But if there is a lot of data then chaining backward from 

a few lik~ly hypotheses will be more efficient. 

From the discussion above, (.'De can sense that drawing inferences can be simply stated as 

searching in all the possible states of the data base for one which would satisfy a set of condi­

tions defined both by the initial data entered and the rules for transforming this data. Backward 

and forward chaining specify in which "direction" the search task is implemented. Once this 

direction is chosen, the way the search is performed is still open. Two simple strategies are the 

depth- first search and the breadth- first search. 

In a depth-first search, a path of reasoning is followed to its ultimate consequences befQre 

another path is considered. In a breadth-first search, each possible path of reasoning is fol­

lowed one step at a time, so that all possible paths are searched simultaneously. Thus depth 

first-search dives deeply into the search graph, whereas breadth-first search descends uniformly 

across all possibilities. In the same manner as backward and forward chaining can be combined, 

a search does not have to be purely depth- or breadth-first. In the implementation of an example 

system described in section 4, the search is generally depth first, but with the possibility of 

searching several different paths of reasoning at the same time. This amounts to giving some 

"breadth" to the search. Figure 2-5 summarizes the basic concepts of backward and forward 

chaining, and of depth- and breadth- first searches. 

2.1.3 Interfacing with the User 

In many existing expert systems, the part of the program which requires the largest amount 

of computer memory, and also the longest development effort is not the knowledge base or the 

inference engine. In fact sometimes even adding up these two parts of the system does not come 

to the size of the user interface. In this respect, expert systems just continue a general trend in 
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A 
Backward Chaining 

Conclusions 
(goals) 

Conclusions 
(goals) 

B 
Forward Chaining 

Conclusions 
~--(goals) 

Conclusions 
(goals) 

XBL 882-10087 

Figure 2-5. Basic concepts for chaining and search, after Hannon and King (1985). 
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programming towards user-friendliness. Because many view expert systems as endeavors to 

mimic "human" characteristics with a machine, people expect these programs to conduct dialo-

gue with them in as natural a way as possible. This means representing data and results on the 

computer screen or a printout in the same fashion as an expert in the field would chose to 

represent it 

2.1.4 Possibilities and Limits of Expert Systems 

The possibilities and limits of expert systems are mainly due to the way they treat 

knowledge. The explicit representation of knowledge makes these programs much less cryptic 

than classical ones, and therefore much easier to maintain or modify. The formalization of 

knowledge makes the expertise available to more people, and also provides the possibility of 

multi-disciplinary systems. A third important quality of the knowledge representation is its tran-

sparency: the decision process for any given run of the program can be integrally documented 

and traced back. 

Present-day expert systems have two limitations which are likely to stay for some time. 

First, an expert system cannot create new knowledge. Not only do we need to be able to solve a 

problem, but also we need to know how we solve it, in order to be able to design an expert sys-

tern for that particular problem. The second limitation is that because of their "logical-like" 

representation of knowledge expert systems cannot reproduce properly common sense or analo-

gous reasoning. 
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2.2 Examples of Expert Systems 

The two examples described below are very different in terms of size, of number of users, 

of development time. Rl/XCON is widely regarded as one of the most successful systems built 

yet. It is run on a mainframe computer and used by the Digital Equipment Corporation to 

configure VAX and PDP-II computers. The second example is the Serum Protein Diagnostic 

Program. This system interprets the results of a laboratory test, serum protein electrophoresis. 

The program was translated into microprocessor assembly language, then this program was put 

on a chip interfaced with an instrument performing the test. In this way, the instrument provides 

not only numerical results but also an interpretation consisting of a few sentences. The instru-

ment and the accompanying expert system are now widely disseminated. 

2.2.1 The R1/XCON System 

The Rl project was started in 1978 by John McDermott at Carnegie-Mellon University and 

the Digital Equipment Corporation (DEC). The process of building this system has been 

described extensively by McDermott (McDermott, 1980, 1981) and others (Bachant and McDer-

mott, 1984). 

DEC does not market preconfigured systems; instead, it offers a customer a wide selection 

of components to choose from. In 1979, for example, some 420 components were associated with 

a VAX-Iln80. Thus, most of the systems DEC sells are one-of-a-kind systems (Harmon and 

King, 1985). The input to the system is the customer order. RI/XCON determines what if any 

substitutions and additions are needed to make the order consistent and complete. It then designs 

the layout of the various components and outputs a set of diagrams showing the spatial and logi-

cal relationships between the components. These diagrams are used by the technicians who 

assemble the system. 

Three previous attempts by DEC to automate the processing of customers orders for VAX 

computers had failed. These three earlier attempts had been built using standard programming 

technology. The major problem had been the difficulty of changing the system as additional 
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knowledge was gained. 

Rl/XCON is a rule-based system, where premises test such things as the state of the 

problem-solving process, availability of components, and connections between the components 

in the configuration. After a year of work, the prototype contained about 750 rules. It was sub­

jected to a formal evaluation and acceptance test during which it was asked to configure the 50 

most recent orders DEC had received at the time. Errors were found in twelve configurations. 

After the rules responsible for these errors were changed Rl/xCON reconfigured correctly the 50 

orders. It was at that time considered expert enough to be used routinely. But after the program 

was installed in the working environment at DEC and began to configure computers, a major 

effort was needed to bring it to a satisfactory level of expertise. In fact, the program grew to about 

3500 rules. These new iules were needed for the following reasons, listed in order of the number 

of rules added: (1) refine the knowledge to correct errors made by the early system; (2) extend the 

knowledge to the cOI1figuration of another much more complex computer, the PDP 11 line; (3) 

have the system perform a more complete task (more detailed configuration); and (4) improve 

output. 

One can sense from this case that in the building of a major system, the development of a 

prototype is hardly the end of the story. In fact R I/XCON still undergoes changes and updates. 

The maintenance cost of this system is quite high. But given a classical program, maintenance 

would have simply been impossible. 

2.2.2 The Serum Protein Diagnostic Program 

By contrast with the large project described above, this code is aimed at solving a much 

more limited problem. It was built by S. M. Weiss and C. A. Kulikowski, of Rutgers University, 

and is described in detail in their later book (Weiss and Kulikowski, 1984). This illustrates an 

interesting approach to gaining acceptance of a small expert system by the end-users. Weiss and 

Kulikowski analyze the preforrnance of earlier large scale medical systems, and show that 

although many of them passed successfully clinical experiences, few are in routine clinical use. 

This is due to both technical and social factors. One of them is the slow rate of manual 
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interactive data entry. This can be alleviated when most of the data can be input directly from a 

medical instrument. Also, they argue that an interpretation program posted between the raw out­

put of a medical instrument and the user is more likely to be accepted because it is seen as an 

extension of the instrument itself. And the hardware cost is minimal since most modem instru­

ments are already microprocessor controlled, and the microprocessor could be used to host the 

interpretive program. 

Serum protein electrophoresis is performed by a scanning densitometer. The output of the 

instrument is a curve with several peaks. For each of these peaks, the densitometer computes the 

area under the curve. A few items (patient identification, age, some features of the curve) are 

entered manually. From these, the system deduces an interpretive analysis which is printed 

together with the curve and numerical output and consists of a few lines (Figure 2-6). The 

different conclusions were ordered carefully and rules were added to suppress the display of 

redundant statements, i.e. conclusions which are useful in the reasoning but are covered by other 

statements. 

Using a specialized expert system shell, EXPERT, geared towards classification problems, 

Weiss and Kulikowski were able to produce the system in the course of six months. The final pro­

duct had 82 rules covering all common cases encountered by a scanning densitometer. The pro­

cess of model design was the following: 

• building of the prototype using EXPERT and a mainframe computer 

• testing using several hundred cases 

• refinement of the system by the expert 

• new cycle of testing and review by a panel of independent experts 

• test of the final model on the mainframe 

• automatic translation of the EXPERT model to a specialized program and a micropro­

cessor assembly language program 

• interfacing of the assembly language model with the instrument. This was done by the 

.~ 
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company manufacturing the instrument (Helena Laboratories). 

The microprocessor version of the system could theoretically have been coded directly in 

assembly language. However, the extensive testing and revision process the model underwent 

during its elaboration would have been impossible in practice. The experts testing the model on 

an expert system shell can use the tools that the shell offers to investigate the logic of the system 

and understand exactly how the program is making its judgements. Once they are satisfied, the 

completed knowledge base and a simplified inference engine translated into a lower-level form 

enable the spreading of the software and its effective use by the community it was intended for. 

2.3 Development of an Expert System 

As can well be seen from the two examples above, developing an expert system is a trial 

and error process. This process can be divided into several phases (Hayes-Roth et al .• 1983). 

(1) Identification of the participants, problem characteristics, resources. and goals. Most 

expert system attempts involve a single domain expert and a single knowledge engineer at least 

in the early stages, but many more participants may be involved in the testing procedure. Problem 

identification includes the definition of main subproblems, the definition of the inputs to the pro-

gram and of the characteristics of a solution. 

(2) Conceptualization. Through repeated interaction between the expert and the knowledge 

engineer, the key concepts and relations are made explicit, and diagramed. The vocabulary for 

the field is made explicit The hierarchy between concepts is studied. 

(3) Prototyping. This phase can be divided in two steps. First the problem is formalized, by 

defining the hypothesis space, the underlying model of the process, and the characteristics and 

structure of the data. This way partial specifications for the prototype knowledge base are 

obtained. The second step is the actual implementation of the prototype using a given tool. At " '. 
this stage, inconsistencies are likely to be found and must be resolved. Also, some experiments 

on user interface may be started then. 

(4) Testing and redefinition. Once the prototype works from start to finish on the first exam-
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pIes, new examples should be added and the various parts of the system are likely to undergo 

numerous changes. In fact, earlier versions may be discarded altogether if needed. Building a 

friendly and natural user interface is critical to the later acceptance of the program. This phase 

should also include exposing other experts to the program and responding to their views. 

2.4 Criteria for Selecting Problems 

Due to their qualities and flaws, and also due to the way they are built, expert systems do 

best in some types of problems, and are likely to perfonn poorly in some others. A non­

exhaustive list of the "good" problems would be (Hayes-Roth et al., 1983) interpretation, or 

inferring situation descriptions from observables; prediction, or inferring likely consequences of 

given situations; diagnosis, or inferring system malfunctions from observables; design, or 

configuring objects under .constraints; planning, or designing actions; monitoring, or comparing 

observations to plan vulnerabilities; debugging, or prescribing remedies for malfunctions; repair, 

or executing a plan to administer a prescribed remedy; and instruction, or "diagnosing", 

"debugging" and "repairing" student behavior. RI-XCON is a design system, and the Serum 

protein electophoresis interpreter is an interpretation system. In fact most existing expert systems 

fall into one of the three areas of interpretation, diagnosis or design. Other examples of problems 

developed in some of these fields include the following systems: 

• DENDRAL is used to interpret physical measurements on an unknown chemical and 

build plausible molecular structures for it 

• PROSPECfOR interprets soil and geological deposit data to assess to possibility of 

finding a mineral resource in a given area. 

• CADUCEUS and MYCIN are both medical diagnosis systems. 

• PRIDE is an expert system developed at Xerox to assist engineers designing paper 

transports inside copying machines. 

Given a problem of a type listed above, other criteria for chosing an application stem 

mostly from common sense. The value of solving the problem should be high enough to justify 
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the cost of software development (from a few person-months for simple systems to several 

person-years for a very sophisticated one). Test cases should be available in significant number. 

In fact, trying to build a set of test cases early provides insights about the feasibility of the pro­

ject. The difficulty of the task should be such that any expert completes it in a range of a few 

hours of reasoning. A thirty-minutes task is most likely not to be worth the effort, and a two 

weeks long task is probably too wide in scope, except if it consists in a number of iterations of a 

shorter task. Critical to the suceess of an expert system is the choice of a "good" expert. Not only 

should the expert have mastered his field, but also he should have a strong interest in building the 

program. 

2.5 Application to Nuclear Waste Disposal 

The possibilities for the application of expert-systems to nuclear waste disposal have been 

investigated by conducting interviews with people concerned by the programmation of nuclear 

waste disposal: 

• Edward Patera Repository Technology and Transportation Division, DOE Chi­
cago Operations 

• R. Laughon Office of Nuclear Waste Isolation Battelle Laboratories, Argonne, 
Illinois 

• Paul Gnirk RE/SPEC Inc., Rapid City, South Dakota 

• Bernard Come Nuclear Waste Disposal Division, DG XU: Dl - Commission of 
the European Communities 

• Jean Pierre Olivier Head, Radiation Protection and Waste Management Division, 
OECD Nuclear Energy Agency 

As can be concluded from paragraph 2.4, the contribution of expert systems cannot be the 

development of one large all-encompassing "Nuclear waste" expert system. In fact, given the 

present state of the art an attempt to build any general purpose expert-system is very likely to 

fail. One can more realistically view expert systems as tools of limited scope able to tackle well 

bounded problems in an efficient and tractable way. 

Expert systems can be of help during the study of a site, or-during the.operation of the tran-._ 

sport, conditioning and burying activities. 

". 
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During the study of a site, expert systems can be helpful on many different topics. First 

they can help planning field investigation. Second, they can be used for the interpretation of field 

data, in either geochemistry, hydrology, or geophysics. For example, a code built upon the proto­

type WES presented below would provide a standardized interpretation of pumping tests in 

well bores. Such an interpretation consists of information about the geometry of the underground 

system parts. In order to predict the behavior of the system, one must use these data in a numeri­

cal model. Expert-systems can be used as user interfaces for the complex codes that perform the 

modeling. Used together with test-interpretation codes, such interfaces would provide a formal­

ized approach to the building of a numerical model from experimental results. Finally, expert­

systems can be very helpful for risk assessment studies. Scenario generation and analysis of 

consequences for example are two areas in which expert-systems can help. During scenario gen­

eration, a simple expert-system can be used to difficiently discard unwanted scenarios as early as 

possible. This would automatically provide documentation on the rationale for discarding any 

trial scenario. Also, generating scenarios requires the generation of many interrelated parame­

ters. Checking the corisistency of the whole set of parameters together with the soundness of the 

scenario can be done by a design type expert system. 

During the operation of the storage plant, expert-systems can help for industrial manage­

ment, management of individual waste canisters from power plant to burying, and most of all for 

management of monitoring and warning systems. Such mOnitoring and warning systems could 

be fed at their starting point with the results of the modeling and scenario studies performed dur­

ing the design phase, and assess in real time the difference between the predicted and real 

behavior. 
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3.0 WES, THE WELL TEST ANALYSIS EXPERT SYSTEM 

WES, (Well-test analysis Expert System) is intended as an example of what can be 

achieved using expert systems in some crucial areas of the nuclear waste storage program. This 

program is by no means a finished system. As will be seen below, it currently solves a small part 

of the different kinds of problems for which it is conceived. However, this prototype· should pro­

vide a good insight into the complexity of the expert system building task, and into the versatility 

of the tools that are now available for this purpose. 

3.1 General Description 

The purpose of this expert system is, in general terms, to produce information about the 

hydraulic characteristics of the subsurface. Specifically, the output of one run of WES. consists 

of both a conceptual model which describes the nature of the ground water flow system, and an 

estimate of the parameters needed to properly characterize this flow system. These conclusion 

are reached through the interpretation of pumping test data. During such tests, the hydrogeologic 

regime is pertUrbed by pumping water in or out of a well, and the response of the underground 

flow system to the perturbation is generally monitored over a long length of time, yielding curves 

of pressure versus time. 

When an expert works on the interpretation of pumping tests, he looks for unique charac­

teristics, or "signatures" on one or several representations of the pressure-time data. Classical 

representations include semilog and loglog curves, and a newer method uses a pressure deriva­

tive curve. Well known types of hydrogeologic systems have different signatures on these curves, 

such as straight lines, humps, etc. The task of the expert is therefore to draw the curves, recog­

nize these features and draw conclusions from them. An expert is likely to follow several com­

patible or mutually exclusive hypotheses in his or her search for a conceptual model, until he or 

she is convinced that one coherent group of hypotheses is more likely than the others. 
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The guiding principle in the design ofWES has been hot only to try to reproduce the results 

obtained by the expert, but also to try to mimic the way the expert reaches a conclusion. The 

input data are principally the test results, which consist of data points representing the variations 

of water pressure versus time. The analysis is conducted using the semilog and loglog represen­

tations of these input data, and the pressure derivative method (Bourdet et al., 1984). The advan­

tage of this newer method is that the signatures of different types of geologic features are more 

readily discerned than with conventional analysis methods. One disadvantage is that usually, 

pressure derivative plots tend to have more random noise than the original data. 

In its present state the system can accommodate only a single testing well and a drawdown 

phase (a constant How rate following a zero How period), but it will be extended to handle a 

buildup phase (zero How period coming after a constant How rate period), or more generally a 

multiple How rate pumping phase, as well as situations where there is a pumping well and possi­

bly more than one observation well. 

Currently, the system possesses knowledge about only a limited set of conceptual models: 

two general types of reservoirs (homogeneous and double-porosity), a wellbore-storage effect or 

a fractured well effect, both of which may distort the response in the early part of the data set, and 

three different boundary configurations: infinite system (no boundary), closed system (no How 

boundary) or a constant pressure boundary. Certain assumptions are also implicitly made, such as 

constant How rate, and constant atmospheric pressure. 

The system is written in ART (Automated Reasoning Tool from Inference Corp., Clayton 

(1984)). ART provides an easy interface to LISP (LISt Processing language, a widely used 

ani ficial intelligence computer language), so part of the system is written in LISP. 

The following sections describe respectively the data structure, the architecture of the sys­

tem, the various algorithms used for computing derivatives or extract global characteristics of 

curves, some implementation details relative to ART, and propositions for extensions in different 

directions. 

'. 
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The system uses an frame-oriented approach to structure its data and any conclusion or 

intermediate result reached during execution. The basic architecture of objects refers to wells and 

characteristics of wells, but objects are also used for graphics to represent windows opened on 

the screen, curves, mouse-sensitive icons (areas in windows where clicking the mouse has a 

specified meaning), etc. This use of objects to represent almost any piece of data offers a lot of 

flexibility and simplifies programming. 

The object architecture relative to wells is shown in Figure 3-1. Before execution, only 

generic objects such as "well" or "well-semilog" are defined, along with all the slots that may 

be used to characterize these objects. These generic objects are basically empty structures that 

reproduce our relational knowledge. At execution time, any well-test the program studies (Le. 

Lm40) is viewed by the program as a specific instance of the generic object "well". The specific 

object created by WES (Le. "Lm40") is called the parent of all the objects describing the 

knowledge of the system about this particular well-test. WES then creates these other "Lm40-

xxx" objects as instances- of the other generic objects if needed during the run. For example, 

"Lm40-semilog", an instance of the generic object "well-semilog", is created if a semilog 

analysis is performed on well-test Lm40. "Lm40-semilog" is a replica of "well-semilog", but 

the empty slots in the generic object have been replaced by the specific characteristics ofLm40. 

Relations connecting the different objects are created for any specific well-test, Le. Lm40. 

These particular facts allow the user or the program to link informations relative to a specific 

well-test. For example, the relation semilog links the parent object "Lm40" to the object con­

taining informatio.n about the semilog curve "Lm40-semilog". Each relation has an inverse rela­

tion (in this case semilog-ot). Note that the generic parent object "well" is itself linked by an 

"is-a" relation to the object "instantiated-window-icon". This relation and this exotically named 

object are provided by ART and used here to initialize the graphic interface. 
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The generic objects may have several different instances simultaneously. Each time a new 

well is considered for analysis, a new specific parent object is created. For each well-test under 

study, parts of the generic object structure are duplicated into specific objects when needed for 

the analysis. Knowledge is kept in these specific objects, therefore avoiding any confusion 

between the different well-tests. 

Specific objects are created from the five different generic objects: well, well-semilog, 

well-loglog, well-derivative, and well-model. The main slots of these five generic objects are 

shown in Table 3-1. These slots are always empty, and only the slots of the corresponding 

speci fic objects will be filled at run time. Note that a slot may contain either some characteristic, 

Le. pressure; a relation pointing to another object, Le. semilog; or a procedure, Le. window 

(standing for "open a window"). 

Table 3·1: Main slots of the generic objects 

Well Well-semilog Well-loglog Well-derivative Well-model 

initial-time semilog-of loglog-of derivative'-of model-of 
initial-pressure straight-line straight-line model reservoir 
time semilog-curve loglog-curve time wellbore-storage 
pressure semilog-icons loglog-icons p-derivative fractured 
semilog p-d-derivative boundary 
loglog straight-line early 
derivative hump intermediate 
model derivative-curve late 
x-scale derivative-icons 
y-scale 
initial-curve 
common-icons 
window 

Initial knowledge is stored in the parent object for a given well. This parent object is an 

instance of the generic object well. It consists of the time and pressure data, the dimensions of 

the display window, and the links to the four other main objects associated· with this particular 

well. 

Well-semilog contains knowledge about the semilog curve, such as straight lines. Well-

loglog contains the same knowledge for the log-log curve. Well-derivative contains the pressure 
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derivative, the second order derivative, and characteristics of the pressure derivative curve, such 

as straight lines and humps. 

Well-model is the object that contains symbolic assertions about the well, that is, deduc-

tions reached by the system according to the different characteristics of the semilog, log-log and 

derivative plots. Reservoir describes the overall behavior of the medium. It can take the values 

homogeneous or double-porosity. Boundary describes the boundary behavior of the system. Its 

values can be no~flow, infinite or constant pressure. The attributes wellbore-storage and frac-

tured contain only "true" or "false" depending on the occurrence of such phenomena. 

These five objects contain also graphic-related attributes. In ART, all graphics (windows, 

lines, rectangles, text, ... ) are also represented by objects and attributes. For example, a line object 

will have attributes such as origin, endpoint, thickness, etc. The attributes in Table 3-1 ending in 

-curve or -icons point to such objects. 

3.2.2 Hypothetical Worlds 

During the analysis, an expert is likely to follow several alternative interpretations, until he 

or she is eventually convinced that one is more likely than the others. The analysis may also 

end-up in a dead-lock, the expert concluding that more information is needed to reach a reliable 

conclusion. 

WES models this kind of behavior by generating hypotheses about the actual model. These 

hypotheses are kept in separate "worlds". Each of these hypothetical worlds is the state of the 

data base resulting from one hypothesis, or one group of compatible hypotheses. The program 

maintains these worlds simultaneously, and rules of inference can be activated independently in 

each of them depending on the facts present in the particular state of the data base. Compatible 

hypotheses can be grouped together. For example, an hypothesis based on the early part of the ". 

data set can be grouped with an hypothesis on the intermediate part and an hypothesis on the late 

part, to form a complete hypothesis. The rules generating hypotheses are fairly weak, and as 

soon as there is a slight chance for a particular model to be true, the corresponding hypothesis is 
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generated. This is the way the system takes care of the inherent imprecision of the theory. 

The basic data architecture is common to all the subsequent hypothetical worlds generated 

by the system. Typically, attributes in an instance of the well-model object will have different 

values in different hypothetical worlds. In one particular hypothetical world, each of those attri­

butes can only have one value. For example, the boundary attribute cannot have values no-flow 

and infinite in the same world, but can take those two values in two different worlds. 

This concept of hypothetical worlds is achieved by making use of the more general concept 

of viewpoints available in ART. The system uses one level of viewpoints, and each viewpoint 

represents one hypothetical world. 

3.3 Rule Architecture and Runtime Behavior 

Even though this is a rule based system, in which the How of control should be by nature 

opportunistic, the system always proceeds sequentially through a number of steps. Within each of 

these steps, several rules are executable at the same time, depending on whether their left-hand­

side (or "if" part) conditions are satisfied by facts in the current state of the system or not. The 

choice of the particular rule to be fired, or conflict resolution, is implemented in ART language. 

The rules do not refer to a specific well, but rather can be executed "simultaneously" for 

more than one well so that parallel analysis of many wells is possible. In the long term, this 

feature will be useful for performing the analysis of multiple-well tests, i.e. tests in which water 

is pumped in or from a single well and several other wells are used for observation. 

The difTcrent steps during the analysis of a single well are shown in Figure 3-2. 

3.3.1 Data Extraction 

The initial data is stored in a file. This data is composed of readings of pressure at different 

times. Time is represented in hours, minutes and seconds, and pressure in psi. Different units 

can also be used, but data will always be converted to seconds and psi. 
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Figure 3-2. Execution steps. 
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3.3.2 Graphics 

Once the user has chosen to conduct an analysis on a specific well and as soon as the data 

set is read from disc, WES prompts for a window, which will be used for curve drawing, and for 

interactions between the user and the system. The user must then use the mouse to define the 

position and size of the window. One window is created for each well on which the user wants to 

perform an analysis. This window contains five mouse-clickable icons, which are: initial, 

filtered, semilog, loglog and derivative. The reasoning process on a specific well is started by 

clicking on the filtered icons in its window with the left button. After that, the five icons have 

the same function of displaying the corresponding curve inside the window. Also, by clicking 

with the mouse's right button. one can superimpose graphical representations of straight lines and 

humps (see Section 3.3.5) on the semilog,loglog and derivative plots (Figure 3-3). 

3.3.3 Data Filtering 

Since data sets can be very different in size and may sometimes contain a lot of data points, 

the system first filters the initial data set and selects a specified number of data points. This 

number is fixed by the user before execution. One data point on the filtered plot is the result of 

an averaging on the irutial plot From our experience so far, a" good" number of data points 

could be somewhere between fifty and a hundred. Too few data points are likely to hide some 

meaningful shapes, and too many slow down the execution and give noisy data to the reasoning 

phase of the analysis. 

The abscissa for all the curves used in the analysis is the log of time. Therefore the system 

keeps a constant number of data points in each log cycle on the time scale. Since pressure data is 

generally recorded at fairly constant time intervals. the density of data points on a log scale 

increases dramatically with the time. The filtering process thus results often in a drastic reduc­

tion of the number of late data points, whereas the system keeps most the data points in the early 

part of the initial curve. 

Besides discarding too numerous data points the filtering phase smoothes the data in order 
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to avoid undesirable and meaningless noise. 

3.3.4 Pressure Derivative 

Most of the expertise used by WES to find conceptual models is applied to the pressure 

derivative curve. During this numerical step, WES computes the pressure derivative curve, 

which will thus serve as a basis for a large part of the interpretation. The program also computes 

the second order derivative and checks the validity of the first order derivative. Since the test 

under analysis is a drawdown, the pressure is always diminishing, thus the derivative must 

always be negative. In case the system finds a positive pressure derivative at some particular 

time, a warning message is displayed and the value is set to 0, or rather to -0.01, which is the big­

gest negative number that the system can admit All negative numbers with an absolute value 

lower than -0.01 are also set back to -0.01. 

The fact that there is a positive pressure derivative at some particul.ar time is not normal 

and could have several different causes, such as deficient equipment, aunospheric pressure 

changes, non constant flow rate, etc. A logical step in such a case is to prompt the user for evi­

dence of one of these various causes, and then if possible correct the curve using this new evi­

dence. This analysis is not done by the prototype at this stage of development. 

The algorithm used for computing derivatives is described in Section 3.4.1. 

3.3.5 Aggregated Description of Curves 

A human expert conducts his analysis by looking at global characteristics of curves. Well 

known models, like homogeneous and infinite systems, have different signatures on the deriva­

tive. log-log and semilog plots. This step in the execution of the program looks for signatures 

such as straight lines. up or down humps or values of slopes on the three different plots. 

On the derivative plot, straight lines, humps, maxima and minima are searched for. The 

second order derivative gives the value of the slope at each point on the derivative curve. On 

semilog and log-log plots. only straight lines are computed in advance. When needed however. 

derivatives of those particular plots can be computed. Note that the slopes on the semilog plot 
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are already known since they correspond to the values on the derivative plot 

Straight line~ are characterized by two points and a slope. Humps are defined by a word 

(hill or valley) telling whether the hump is positive or negative, a starting point, a maximum or a 

minimum, and an ending point. The algorithms used to extract the straight lines and humps from 

the curves are described in Section 3.4. 

3.3.6 Generation of Possible Models 

Partial conceptual models are generated from the descriptions of curves in terms of straight 

lines and humps. Rules try to represent the decision criteria used by the experts. An example of 

such a rule is: 

If there is a hill hump followed by a horizontal straight line on the derivative plot, 

then generate the hypothesis of a homogeneous and infinite system. 

These rules can generate hypotheses based on small parts of the pressure versus time curve, 

for example wellbore storage from early time data, or the type of boundary from the late part of 

the curve. Those partial hypotheses can then be grouped together to form a complete model, 

such as wellbore storage in a homogeneous medium with a no flow boundary. The program can 

only group compatible partial models. For example, grouping an infinite system with a no flow 

boundary is not allowed. These incompatible hypotheses are kept separate in different hypotheti­

cal worlds. 

3.3.7 Selection. of One or More Models 

In the present state of the program, all possible complete models are simply printed on the 

screen. A complete model is a model which gives at least the type of medium (homogeneous or 

double-porosity) and the kind of boundary (infinite, no-flow or constant-pressure). The early 

time characteristics, wellbore storage or fractured formation ncar the well, are optional. In the 

current implementation of WES, the same model may be printed more than once in some 

instances. It means that the system reached the same conclusion by two or more paths of reason­

ing. A model that appears more than once is thus more likely to be true than a model printed 

". 
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only once. 

In some cases, for some data sets, no models are proposed. It means either that the exper-

tise present in the system is not sufficient to analyze this particular case or that this data set has 

some abnonnal shape, due to some external event 

3.4 Numerical Algorithms 

This section describes the algorithms used for computing derivatives and extracting straight 

lines and humps. These algorithms are implemented as LISP functions callable from ART. 

3.4.1 Derivatives 

Various algorithms have been tested for computing the pressure derivative. The derivative 

is taken with respect to the log of time. One of the main inconveniences of the pressure deriva-

tive approach is that it cannot be measured directly but rather must be computed from discrete 

data. A good algorithm must preseIVe all the meaningful response of the system while removing 

all or most of the noisy parts. The algorithm that is used currently is inspired from the one 

described in Bourdet et al. (1984) and corresponds to algorithm B in Clark et al. (1985). It may 

still be improved but it gives the best results among all the ones that have been tested. The LISP 

function that implements this algorithm is called derivative-logtime. 

The algorithm computes the weighted mean of the slopes between the point under study 

and a point preceding it,_and between the point under study and a point following it The two 

points are not the points closest to the point of interest, but instead are defined by skipping 

several points to go from the point under study to the two points where we will take the slope. 

Since all the points are equally spaced on a log scale, this amounts in our case to using slopes at 

constant inteIVals from the point of interest. In the example on Figure 3-4 this number is 3. It is 

the number currently used by the system. 

Using the notations in Fib'Ure 3-4, the slope p' is then given by: 

AQi ilt2 + ilp2 iltl 
p,=~il=t~1 ____ -=il=t2~_ 

ilt I +ilt2 
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3.4.2 Straight Lines 

The algorithm for extracting straight lines from a curve is based on the value of the slope p' 

at each point. Thus, for the semilog, the pressure derivative is used, and for the pressure deriva-

tive, the second order derivative is used. The second order derivative p" is computed in the same 

way as the first order. The exact formula is: 

d log d p 
dlogt p" = __ _"__ __ L.. 

dlogt 

The algorithm is: 

1 

2 

i=O 

j=i+l 

I !:Pk'i 
.f I , i~<j :::;; error 1 I Pj - j-i 

I I 

then line = [lj, tj ] 

j=j+l 

if end then goto 3 else goto 2 

else if length(line) > 1/4 log cycle then return line 

i=j 

goto 1 

3 iflength(line) > 1/4 log cycle then return line 

The formula in step 2 of the algorithm above states that a data point will belong to the straight 

line under consideration if and only if its derivative is equal, within a given tolerance, to the 

average of the derivatives at all the points already included in the straight line. 

3.4.3 Humps 

Humps are identified on the derivative plot only. The algorithm used here- wasChosen 

because it is not overly sensitive to small peaks, and it disregards shapes shorter than a quarter of 

a log cycle. As in the straight line algorithm, the minimum length of a quarter of a log cycle is a 
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Figure 3-4. Notations for computing derivatives. 
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parameter defined in ART and can be reset before each execution. 

The following algorithm recognizes only negative humps (hill humps). The algorithm for 

positive humps is symmetrical to this one and the two are actually implemented as one LISP 

function, which returns whether the hump identified is a hill or a valley hump. Note that on the 

derivative plot, p" represents the slope. The notation [ ] represents an interval on the curve 

defined by its starting and ending times. Lengths are computed as portions of a log-cycle. 

1 

2 

3 

i=O 

if Pi ' ~ 0 then go to 2 else i=i+ 1; go to 1 

j=i 

noise = [ tj' tj ] 

iftj+ 1 exists 
and length(noise) S 1/4 log cycle 

then if Pi" ~ Pj" ~ Pj+l " 

then before-noise = tj 
noise = [ tj' tj ] 
hump = [lj, tj] 
if p('·Pj+ 1 " < 0 then top = tj 

else noise = [ before-noise, tj ] 

endif 

j = j+l 
go to 3 

else iflength (hump) ~ 3/4 log cycle 
and length ([ 1;. ,top]) ~ 1/4 log cycle 
and length ([ top, tj]) ~ 1/4 log cycle 

then return hump: 1;., tj' top 

if tj+l does not exist then stop 

endif 

i =j 

go to 1 

start of hill hump must have positive slope 

start of a hump 

initialize II noisy" interval to zero length 

some It noise" admitted within the hump 

if "hilI" curvature 

reinitialize beginning of noise for latter use 
reinitialize "noiS1" interval to zero length 
extend hump to [initial point, current point] interval 
if slope changes sign. we are at the maximum 

extend noisy interval to [before-noise, current] 

increment current time 

if hump long enough 
if part before the extremum long enough 
if part after the extremum long enough 

specify hump by [start, end, maximum] 

end of the curve 

reinitialize search for start of hump 

In the current implementation, the length of a hump must be at least 3 quarters of a log cycle, and 

the length on each side of the extremum must be at least one quarte.r.. of_a log_cycle. 
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3.5 Implementation: the ART Programmirig Tool 

WES is written in ART, the Automated Reasoning Tool from Inference Corp. The main 

advantages of ART for building this kind of expert system are: 

(1) its object oriented representation of data, which allows to conduct many analyses at 

the same time without interference between the analysis; 

(2) its sophisticated pattern recognition algorithm, which allows complex conditions and 

variables in the left hand side of rules; 

(3) the viewpoint mechanism for reasoning with hypotheses; 

(4) its coupling with LISP, which was necessary for the numerical part of the problem. 

Although the viewpoint structure is satisfactory for representing hypotheses and reasoning 

with them, it is not certain that it will be sufficient in the future to tackle all the subtleties of well 

testing. The problem with this domain is the inherent imprecision of the theory. Many times dur­

ing the development of the system, it was necessary to define numerical thresholds. The crisp 

values given to those thresholds give the system a kind of rigidity which does not exist in the 

human expert's mind. 

The version of ART that was used is version 3.1 on a Sun 280. The listing of the program 

is given in the appendix. It has four different parts, which correspond to four different fIles. The 

first one defines the object hierarchy and the graphics interface for curves and icons. The second 

part computes derivatives and looks for straight lines and humps. The third part proposes some 

models according to some curve characteristics. The last one is written in LISP and contains the 

LISP functions used throughout the program. 
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3.6 Possible Extensions 

3.6.1 Extending the Analysis of the Present Problem 

The present system is in the early stages of development. A lot of work needs to be done in 

the third part of the program, which contains the most expertise of the domain. So far the system 

has limited notions of simple models, like homogeneous or simple double porosity transition and 

some boundary configurations. More models need to be inserted as well as a more complete 

description of the existing ones. • 

In the same respect, little expertise is used currently during the extraction of curve signa­

tures. This part of the processing is presently perfonned as a purely numerical procedure. In fact. 

it is not separate from the analysis part For example, the expert very often knows that a given 

shape is impossible, either in general or in regard with what he already knows about the system. 

The fact that the shape identification procedures are controlled by rules will make is relatively 

easy to reproduce this kind of expertise. Also in the current version, the generation of 

hypotheses is restricted to models. It can very well be extended to pennit the characteristics of 

the curves to be also considered as hypotheses. 

3.6.2 Extending to a Larger Problem 

In the present state of the system, only single wells with a constant flow rate and a draw­

down phase are analyzed. The next step will be to allow a buildup phase and more generally a 

multiple rate pumping phase. The system should be able to reason about these different phases, 

compare results between them, decide which phase is more infonnative than the others, and so 

on. Another step in the development of the system will be to allow more than one observation 

well for a single pumping well. 

The main problem in the analysis is that the data is often very noisy. In order to get rid of 

this noise, more infonnation needs to be known, or at least to be accessible by the system. For 

example, an expert that sees a very strange shape will look at other sources of infonnations like 

atmospheric pressure changes, geologic data, equipment used, and so on, and will try to explain 

'. 
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. those abnonnal shapes. More sophisticated rationales for identifying these types of influences 

are needed before the reasoning procedure can readily be implemented for such cases. 



.. 
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APPENDIX 

- Listing of the Program -

( / 
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;;; -*- mode: ART; Package: ART-USER; Base:10. -*­
;;; file: well/init.art 

, , , 
i; ; 

, , , 
, , , 

This file contains the initial facts and schemata and all the rules 
used for windows and icons definition and drawing. 

The program will use a one level viewpoint structure. This level, 
called "hypothetical" will contain all hypothesis regarding the 
nature of the medium. 

(def-viewpoint-levels hypothetical) 

;;; Initial facts and relations. 

(defrelation data-set (1well) 
"well with available data") 

(defrelation interval-number (1number) 
"number of data points used for the analysis") 

(defrelation abs-d-error (1error) 
"absolute imprecision allowed on the derivatives") 

(defrelation rel-d-error (1rel) 
"relative imprecision allowed on the derivatives") 

(defrelation analyse (1well) 
"well on which the analysis will be conducted" implicit) 

(defrelation p-window (11) 
"width used to compute the derivative") 

(defrelation p-d-window (11) 
"width used to compute the derivative of the p-d") 

(defrelation derivative-function (1function) 
"function used to compute derivatives") 

(defrelation significant-length (1sig-length) 
"length in fraction of a log cycle") 

(deffacts data "Pumping Wells" 
(data-set C3P2.CII) 
(data-set C3P2.CIB) 
(data-set C2P3.CIA) 
(data-set CIP2.Cl) 
(data-set HllB2) 
(data-set SP4) 
(data-set TESTA) 
(data-set SG60) 
(data-set LM40) 
) 

(deffacts parameters "used for curve analysis" 
(interval-number 60) 
(abs-d-error 0.15) 
(rel-d-error 0.20) 
(p-window 3) 
(p-d-window 3) 
(derivative-function derivative-logtime) 
(significant-length 0.25) 
) 

(defschema time 
(instance-of slot) 
(slot-derivation implicit» 

(defschema pressure 
(instance-of slot) 
(slot-derivation implicit» 

(defschema filtered-curve 
(instance-of slot) 
(slot-derivation implicit» 



(defschema semiloq-curve 
(instance-of slot) 
(slot-derivation implicit» 

(defschema loqloq-curve 
(instance-of slot) 
(slot-derivation implicit» 

(defschema derivative 
, (instance-of relation) 

(inverse derivative-of» 

(defschema semiloq 
(instance-of relation) 
(inverse semiloq-of» 

(defschema loqloq 
(instance-of relation) 
(inverse loqloq-of» 

(defschema model 
(instance-of relation) 
(inverse model-of» 

(defschema straiqht-line 
(instance-of slot) 
(slot-how-many multiple-values» 

(defschema hump 
(instance-of slot) 
(slot-how-many multiple-values» 

(defschema examined 
(instance-of slot) 
(slot-how-many multiple-values» 

(defschema derivative-icons 
(instance-of slot) 
(slot-how-many multiple-values» 

(defschema semiloq-icons 
(instance-of slot) 
(slot-how-many multiple-values» 

(defschema loqloq-icons 
(instance-of slot) 
(slot-how-many multiple-values» 

(defschema well 
(initial-time) 
(initial-pressure) 
(time) 
(p'ressure) 
(derivative) 
(~emiloq) 
(loglog) 
(model) 
(i-last-time) 
(i-last-pressure) 
(last-time) 
(first-pressure) 
(last-pressure) 
(x-scale) 
(y-scale) 
(initial-curve) 
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(filtered-curve) 
(common - icons) 
(is-a instantiated-window-icon) 
(display-parameters) 
(window) 
) 

(defschema well-semilog 
(semilog-of) 
(straight-line) 
(semilog-curve) 
(semi log-icons) 
) 

(defschema well-loglog 
(loglog-of) 
(log-derivative) 
(straight-line) 
(loglog-curve) 
(loglog-icons) 
) 

(defschema well-derivative 
(derivative-of) 
(time) 
(p-derivative) 
(examined) 
(p-d-derivative) 
(first-p-derivative) 
(max-p-derivative) 
(min-p-deri vati vel 
(max-p-d-derivative) 
(min-p-d-derivative) 
(straight-line) 
(hump) 

(derivative-curve) 
(derivative-icons) 
) 

(defschema well-model 
(model-of) 
( reservoir) 
(early) 
(intermediate) 
(late) 
(wellbore-storage) 
(fractured) 
(boundary) 
) 

(defrule initial-data 
(data-set 7well) 
(analyse ,?well) 

~> 
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(write-string "Reading data for well ") 
(write-string (string 7well» 
(write-line " ... ") 
(bind 7data (read-from-file 7well» 
(assert (schema ,?well 

(instance-of well) 
(initial-time -(first ?data» 
(initial-pressure m(second '?data» 
(i-last-time ~(third 7data» 
(first-pressure -(fourth 7data» 
(i-last-pressure -(fifth '?data» 
(derivative -(concat '?well'derivative» 
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(semilog =(concat ?well 'semilog» 
(loglog =(concat ?well 'loglog»») 

(write-line "Open a window, please. (Curve display) .") 
(create-window ?well 'graphics) 
(assert (x-scale ?well -(- (window-inside-width ?well) 50») 
(assert. (y-scale ?well =(- (window-ins ide-height ?well) 50») 
) 

(defrule ask-for-analysis 

=> 
(goal (analyse ?well&-??» 

(if (y-or-n-p (concatenate 'string 
"Would you like to proceed with the analysis of well " 
(write-to-string ?well) " ? tI» 

then (write-line "") 
.(assert (analyse ?well») 

(defrule compute-and-draw-initial-curve 
(data-set ?well) 

=> 

(initial-time ?well ?time) 
(initial-pressure ?well ?pressure) 
(first-pressure ?well ?first-p) 
(i-last-pressure ?well ?last-p) 
(i-last-time ?well ?last-t) 
(x-scale ?well ?x) 
(y-scale ?well ?y) 

(bind ?yscale (concat 'yscale ?well» 
(bind ?xscale (concat 'xscale ?well» 
(bind ?curve-i (concat 'curve-i ?well» 
(bind ?text-iO (concat 'text-iO ?well» 
(bind ?text-il (concat 'text-il ?well» 
(bind ?text-i2 (concat 'text-i2 ?well» 
(bind ?text-i3 (concat 'text-i3 ?well» 
(bind ?text-i4 (concat 'text-i4 ?well» 
(bind ?i-but (concat ' i-but ?well» 
(bind ?f-but (concat 'f-but ?well» 
(bind ?s-but (concat 's-but ?well» 
(bind ?l-but (concat 'l-but ?well» 
(bind ?d-but (concat 'd-but ?well» 
(assert (initial-curve ?well (?curve-i ?text-iO ?text-il ?text-i2 

?text-i3 ?text-i4») 
(assert (common-icons ?well (?yscale ?xscale_?i-but ?f-but ?s-but 

?l-but ?d-but») 
(bind ?diff-p (?last-p - ?first-p» 
(bind ?xp (compute-coordinates ?x 0 ?last-t (listS ?time») 
(bind ?yp (compute-coordinates ?y ?first-p ?diff-p (listS ?pressure») 
(assert (schema ?curve-i 

(instance-of open-polygon) 
(alu ior) 
(translate (20 20» 
(x-points -(cond «> (list-length ?xp) 256) 

(nbutlast ?xp . 
(- (list-length ?xp) 256») 

(t ?xp») 
(y-points -(cond «> (list-length ?yp) 256) 

(nbutlast ?yp 

(thickness 1») 

(- (list-length ?yp) 256») 
(t ?yp») 

(assert (schema ?yscale 
(instance-of line) 
(alu iorl. 
(translate (20 20» 
(endpoint (0 ?y» 
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(thickness 1») 
(assert (schema ?text-iO 

(instance-of text) 
(alu ior) 
(translate (0 20» 
(text-string ?first-p) 
(endpoint (10 0» 
(font font-B») 

(assert (schema ?text-i1 
(instance-of text) 
(alu ior) 
(translate (0 a(+ ?y 20») 
(text-string ?last-p) 
(endpoint (10 0» 
(font font-B») 

(assert (schema ?xscale 
(instance-of line) 
(alu ior) 
(translate (20 ~(+ ?y 20») 
(endpoint (?x 0» 
(thickness 1») 

(assert (schema ?text-i2 
(instance-of text) 
(alu ior) 
(translate (20 ~(+ ?y 30») 
(text-string "0") 
(endpoint (10 0» 
(font font-B») 

(assert (schema ?text-i3 
{instance-of text) 
(alu ior) 
(translate (?x -(+ ?y 30») 
(text-string ?last-t) 
(endpoint (10 0» 
(font font-B») 

(assert (schema ?text-i4 
(instance-of text) 
(alu ior) 
(translate (-(I ?x 2) -(+ ?y 35») 
(text-string "psi/s") 
(endpoint (10 0» 
(font font-9») 

(assert (schema ?i-but 
(instance-of text) 
(input «initial) "Display initial curve. It) ) 
(alu ior) 
(contained-in-icon ?well) 
(translate (~(- ?x 60) -(I ?y 2») 
(text-string "initial") 
(endpoint (10 0» 
(font font-6») 

(assert (schema ?f-but 
(instance-of text) 
(input «filtered) "Filter data and start reasoning process on thi 
(alu ior) 
(contained-in-icon ?well) 
(translate (-(- ?x 60) -(+ (I ?y 2) 25») 
(text-string "filtered") 
(endpoint (10 0» 
(font font-6») 

(assert (schema ?s-but 
(instance-of text) 
(input «semilog) "Display semi log curve. L: Alone. R: With straig 
(alu ior) 
(contained-in-icon ?well) 
(translate (-(- ?x 60) -(+ (I ?y 2) 50») 
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(text-string "semilog") 
(endpoint (10 0» 
(font font-6») 

(assert (schema ?l-but 
(instance-of text) 
(input «loglog) "Display loglog curve. L: Alone. R: With straight 
(alu ior) 
(contained-in-icon ?well) 
(translate (~(- ?x 60) ~(+ (/ ?y 2) 75») • 
(text-string "loglog") 
(endpoint (10 0» 
(font font-6») 

(assert (schema ?d-but 
(instance-of text) 
(input «derivative) 

"Display derivative curve. L: Alone. R: With straight line 
(alu ior) 
(contained-in-icon ?well) 
(translate (-(- ?x 60) -(+ (/ ?y 2) 100») 
(text-string "derivative") 
(endpoint (10 0» 
(font font-6») 

(assert (schema ?well 
(contains-icons (?yscale ?xscale ?curve-i ?text-iO 

?text-i1 ?text-i2 ?text-i3 ?text-i4 
?i-but ?f-but ?s-but ?l-but ?d-but»» 

(show-icon ?well ?well) 

(defrule compute-filtered-curve 

=> 

(goal (filtered-curve ?well&-?? ??» 
(not (filtered-curve ?well f»~ 
(time ?well ?time) 
(pressure ?well ?pressure) 
(first-pressure ?well ?first-p) 
(last-pressure ?well ?last-p) 
(last-time ?well ?last-t) 
(x-scale ?well ?x) 
(y-scale ?well 1y) 

(bind ?curve-f (concat 'curve-f ?well» 
(bind ?text-fO (concat 'text-fO ?well» 
(bind ?text-f1 (concat 'text-f1 ?well» 
(bind ?text-f2 (concat 'text-f2 ?well» 
(bind ?text-f3 (concat 'text-f3 ?well» 
(bind ?text-f4 (concat 'text-f4 ?well» 
(assert (filtered-curve ?well (?curve-f ?text-fO ?text-f1 ?text-f2 

?text-f3 ?text-f4 ») 
(bind ?diff-p (?last-p - ?first-p» 
(assert (schema ?curve-f 

(instance-of open-polygon) 
(alu ior) 
(translate (20 20» 
(x-points -(compute-coordinates ?x 0 ?last-t 

(list$ ?time») 
(y-points -(compute-coordinates ?y ?first-p ?diff-p 

(list$ ?pressure») 
(thickness 1») 

(assert (schema ?text-fO 
(instance-of text) 
(alu ior) 
(translate (0 20» 
(text-string ?first-p) 
(endpoint (10 0» 
(font font-a») 

(assert (schema ?text-f1 



(instance-of text) 
(alu ior) 
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(translate (0 -(+ ?y 20») 
(text-string ?last-p) 
(endpoint (10 0» 
(font font-8») 

(assert (schema ?text-f2 
(instance-of text) 
(alu ior) 
(translate (20 ~(+ ?y 30») 
(text-string "0") 
(endpoint (10 0» 
(font font-8») 

(assert (schema ?text-f3 
(instance-of text) 
(alu ior) 
(translate (?x -(+ ?y 30») 
(text-string ?last-t) 
(endpoint (10 0» 
(font font-8») 

(assert (schema ?text-f4 
(instance-of text) 
(alu ior) 
(translate (-(/ ?x 2) -(+ ?y 35») 
(text-string "psi/s") 
(endpoint (10 0» 
(font font-9») 

(defrule compute-semilog-curve 

=> 

(goal (semilog-curve ?well-s&-?? ??» 
(not (semilog-curve ?well-s ?» 
(semilog-of ?well-s ?well) 
(time ?well ?time) 
(pressure ?well ?pressure) 
(first-pressure ?well ?first-p) 
(last-pressure ?well ?last-p) 
(last-time ?well ?last-t) 
(x-scale ?well ?x) 
(y-scale ?well ?y) 

(bind ?curve-s (concat 'curve-s 
(bind ?text-sO (concat 'text-sO 
(bind ?text-s1 (concat 'text-s1 
(bind ?text-s2 (concat 'text-s2 
(bind ?text-s3 (concat 'text-s3 
(bind ?text-s4 (concat 'text-s4 
(bind ?tick-sx (concat 'tick-sx 
(assert (semilog-curve '?well-s 

?well) ) 
?well) ) 
?well) ) 
?well) ) 
?well) ) 
?well) ) 
?well) ) 

(?curve-s 
?text-s3 

?text-sO '?text-sl '?text-s2 
?text-s4 ?tick-sx») 

(bind ?diff-p ('?last-p - (nth$ ?pressure 2») 
(bind ?to 1) 
(bind ?diff-t (ceiling (log ?last-t 10») 
(bind ?pO (- ?first-p (nth$ ?pressure 2») 
(assert (schema ?curve-s 

(instance-of open-polygon) 
(alu ior) 
(translate (20 -(+ ?y 20») 
(x-points -(compute-coordinates ?x (log ?to 10) 

?diff-t 
(log-of-l'ist (cdr (list$ ?time»») 

(y-points -(compute-coordinates ?y ?pO ?diff-p 
(delta· (listS, '?pressure»» 

(thickness 1») 
(assert (schema ?text-sO 
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(instance-of text) 
(alu ior) 
(translate (0 20» 
(text-string =(- ?first-p ?last-p» 
(endpoint (10 0» 
(font font-8») 

(assert (schema ?text-s1 
(instance-of text) 
(alu ior) 
(translate (0 =(+ ?y 20») 
(text-string ?pO) 
(endpoint (10 0» 
(font font-8») 

(assert (schema ?text-s2 
(instance-of text) 
(alu ior) 
(translate (20 =(+ ?y 30») 
(text-string ?to) 
(endpoint (10 0» 
(font font-8») 

(assert (schema ?text-s3 
(instance-of text) 
(alu ior) 
(translate (?x -(+ ?y 30») 
(text-string -(expt 10 ?diff-t» 
(endpoint (10 0» 
(font font-8») 

(assert (schema ?text-s4 
(instance-of text) 
(alu ior) 
(translate (-(/ ?x 2) -(+ 7y 35») 
(text-string "semilog") 
(endpoint (10 0»· 
(font font-9») 

(assert (schema ?tick-sx 
(instance-of tick-marks) 
(alu ior) 
(translate (20 -(+ ?y 20») 
(endpoint (?x 5» 
(direction vertical) 
(interval -(I ?x 7diff-t» 
(thickness 1») 

(defrule compute-loglog-curve 

=> 

(goal (loglog-curve 7well-l&-7? 7?» 
(not (loglog-curve 7well-l 7» 
(loglog-of 7well-l 7well) 
(time 7well 7time) 
(pressure ?well ?pressure) 
(last-time ?well ?last-t) 
(x-scale 7well ?x) 
(y-scale ?well ?y) 

(bind ?curve-l (concat 'curve-l 
(bind 7text-lO (concat 'text-lO 
(bind ?text-l1 (concat 'text-l1 
(bind ?text-l2 (concat 'text-l2 
(bind ?text-l3 (concat 'text-l3 
(bind ?text-l4 (concat 'text-l4 
(bind ?tick-lx (concat 'tick-lx 
(bind ?tick-ly (concat 'tick-ly 

?well) ) 
?well) ) 
?well) ) 
?well) ) 
7well) ) 
?well) ) 
?well) ) 
?well) ) 

(assert (loglog-curve ?well-l (?curve-l 
7text-l3 

(bind ?to 0.01) 
(bind ?diff-t (- (ceiling (log 7last-t 

?text-lO ?text-l1 
?text-l4 ?tick-lx 

10) ) (log 7tO 10) ) ) 

?text-l2 
7tick-ly) ) ) 
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(bind '?pO 0.01) 
(assert (schema '?curve-l 

(assert (schema 

(assert (schema 

(assert (schema 

(assert (schema 

(assert (schema 

(assert (schema 

(assert (schema 

(instance-of open-polygon) 
(alu ior) 
(translate (20 ~(+ '?y 20») 
(x-points ~(compute-coordinates '?x 

(log ,?to 10) 
'?diff-t 
(log-of-list (cdr (list$ '?time»») 

(y-points ~(compute-coordinates '?x 
(log '?pO 10) 
(- '?diff-t) 
(log-delta (list$ '?pressure»» 

(thickness 1») 
'?text-IO 
(instance-of text) 
(alu ior) 
(translate (0 20» 
(text-string 
-(round 

(expt 10 (/ (* '?y (ceiling (log '?last-t 10») '?x»» 
(endpoint (10 0» 
(font font-a») 
'?text-ll 
(instance-of text) 
(alu ior) 
(translate (0 -(+ '?y 20») 
(text-string '?pO) 
(endpoint (10 0» 
(font font-a») 
'?text-12 
(instance-of text) 
(alu ior) 
(translate (20 -(+ '?y 30») 
(text-string '?to) 
(endpoint (10 0» 
(font font-a») 
'?text-13 
(instance-of text) 
(alu ior) 
(translate ('?x -(+ '?y 30») 
(text-string -(expt 10 (ceiling (log '?last-t 10»» 
(endpoint (10 0» 
(font font-a») 
'?text-14 
(instance-of text) 
(alu ior) 
(translate (-(/ ?x 2) -(+ ?y 35») 
(text-string "loglog") 
(endpoint (10 0» 
(font font-9»)' 
?tick-lx 
(instance-of tick-marks) 
(alu ior) 
(translate (20 -(+ ?y 20») 
(endpoint (?x 5» 
(direction vertical) 
(interval a(/ ?x ?diff-t» 
(thickness 1») 
?tick-ly 
(instance-of tick-marks) 
(alu ior) 
(translate (15 -(+ 20 (mod ?y (/ ?x ?diff-t»») 
(endpoint (5 ?y» 
(direction horizontal) 
(interval -(I ?x ?diff-t» 
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(thickness 1») 

(defrule compute-derivative-curve 
(examined ?well-d yes) 
(p-derivative ?well-d ?p-deriv) 
(time ?well-d ?time) 
(derivative-of ?well-d ?well) 
(last-time ?well ?last-t) 
(x-scale ?well ?x) 

=> 
(y-scale ?well ?y) 

(bind ?curve-d (concat 'curve-d ?well» 
(bind ?text-dO (concat 'text-dO ?well» 
(bind ?text-dl (concat 'text-dl ?well» 
(bind ?text-d2 (concat 'text-d2 ?well» 
(bind ?text-d3 (concat 'text-d3 ?well»· 
(bind ?text-d4 (concat 'text-d4 ?well» 
(bind ?tick-dx (concat 'tick-dx ?well» 
(bind ?tick-dy (concat 'tick-dy ?well» 
(assert (derivative-curve ?well-d (?curve-d ?text-dO ?text-d1 ?text-d2 

?text-d3 ?text-d4 ?tick-dx ?tick-dy») 
(bind ?to 0.01) 
(bind ?diff-t (- (ceiling (log ?last-t 10» (log ?to 10») 
(bind ?pO 0.01) 
(assert (schema ?curve-d 

(instance-of open-polygon) 
(alu ior) 
(translate (20 -(+ ?y 20») 
(x-points -(compute-coordinates ?x 

(log ?to 10) 
?diff-t 
(log-of-list (list$ ?time»» 

(y-points -(compute-coordinates ?x 
(log ?pO 10) 
(- ?diff-t) 
(log-of-list (list$ ?p-deriv»» 

(thickness 1») 
(assert (schema ?text-dO 

(instance-of text) 
(alu ior) 
(translate (0 20» 
(text-string 
-(round 

(expt 10 (/ (* ?y (ceiling (log ?last-t 10») ?x»» 
(endpoint (10 0» 
(font font-a») 

(assert (schema ?text-d1 
(instance-of text) 
(alu ior) 
(translate (0 m(+ ?y 20») 
(text-string ?pO) 
(endpoint (10 0» 
(font font-a») 

(assert (schema ?text-d2 
(instance-of text) 
(alu ior) 
(translate (20 m(+ ?y 30») 
(text-string ?to) 
(endpoint (10 0» 
(font font-a») 

(assert (schema ?text-d3 
(instance-of text) 
(alu ior) 
(translate (?x -(+ ?y 30») 
(text-string -(expt 10 (ceiling (log ?last-t 10»» 



(endpoint (10 0» 
(font font-a») 
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(assert (schema ?text-d4 
(instance-of text) 
(alu ior) 
(translate (=(/ ?x 2) =(+ ?y 35») 
(text-string "derivative") 
(endpoint (10 0» 
(font font-9») 

(assert (schema ?tick-dx 
(instance-of tick-marks) 
(alu ior) 
(translate (20 a(+ ?y 20») 
(endpoint (?x 5» 
(direction vertical) 
(interval -(I ?x ?diff-t» 
(thickness 1») 

(assert (schema ?tick-dy 
(instance-of tick-marks) 
(alu ior) 
(translate (15 ~(+ 20 (mod ?y (/ ?x ?diff-t»») 
(endpoint (5 ?y» 
(direction horizontal) 
(interval a(/ ?x ?diff-t» 
(thickness 1») 

(defrule draw-initial-curve 

-> 

?d <- (utterance? ?well.(mouse-click left 1 ? ? (initial») 
(initial-curve ?well ?i-icons) 
(common-icons ?well ?c-icons) 

(retract ?d) 
(binft ?icons (append (list$ ?c-icons) (list$ ?i-icons») 
(modify (schema ?well 

(contains-icons ?icons») 
(show-icon ?well ?well) 

(defrule draw-filtered-curve 

~> 

1d <- (utterance? 1well (mouse-click left 1 ? ? (filtered») 
(filtered-curve ?well ?f-icons) 
(common-icons ?well ?c-icons) 

(retract ?d) 
(bind ?fcons (append (list$ ?c-icons) (list$ ?f-icons») 
(modify (schema ?well 

(contains-icons ?icons») 
(show-icon ?well ?well) 

(defrule draw-semilog-curve 

~> 

?d <- (utterance? ?well (mouse-click left 1 ? ? (semilog») 
(semilog ?well ?well-s) 
(semilog-curve ?well-s ?s-icons) 
(common-icons ?well ?c-icons) 

(retract ?d) 
(bind ?icons (append (list$ ?c-icons) (list$ ?s-icons») 
(modify (schema ?well 

(contains-icons ?icons») 
(show-icon ?well ?well) 

(defrule draw-log log-curve 
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?d <- (utterance? ?well (mouse-click left 1 ? ? (loglog») 
(loglog ?well ?well-l) 
(loglog-curve ?well-l ?l-icons) 
(common-icons ?well ?c-icons) 

(retract ?d) 
(bind ?icons (append (listS ?c-icons) (listS ?l-icons») 
(modify (schema ?well 

(contains-icons ?icons») 
(show-icon ?well ?well) 

(defrule draw-derivative-curve 

=> 

?d <- (utterance? ?well (mouse-click left 1 ? ? (derivative») 
(derivative ?well ?well-d) 
(derivative-curve ?well-d ?d-icons) 
(common-icons ?well ?c-icons) 

(retract ?d) 
(bind ?icons (append (listS ?c-icons) (listS ?d-icons») 
(modify (schema ?well 

(contains-icons ?icons») 
(show-icon ?well ?well) 

(defrule draw-derivative-icons 

:z> 

?d <- (utterance? ?well (mouse-click right 1 ? ? (derivative») 
(derivative ?well ?well-d) 
(exists (derivative-icons ?well-~ ?» 
(derivative-curve ?well-d ?d-curve) 
(common-icons ?well ?c-icons) 

(retract ?d) 
(bind ?d-icons (get-schema-value ?well-d 'derivative-icons» ~ 
(bind ?icons (append (listS ?c-icons) 

(listS ?d-curve) 
(listS ?d-icons») 

(modify (schema ?well 
(contains-icons ?icons») 

(show-icon ?well ?well) 

(defrule draw-semi log-icons 

=> 

?d <- (utterance? ?well (mouse-click right 1 ? ? (semilog») 
(semilog ?well ?well-s) 
(exists - (semilog-icons ?well-s ?» 
(semilog-curve ?well-s ?s-curve) 
(common-icons ?well ?c-icons) 

(retract ?d) 
(bind ?s-icons (get-schema-value ?well-s 'semilog-icons» 
(bind ?icons (append (listS ?c-icons) 

(modify (schema ?well 

(listS ?s-curve) 
(listS ?s-icons») 

(contains-icons ?icons») 
(show-icon ?well ?well) 

(defrule draw-log log-icons 

=-> 

?d <- (utterance? ?well (mouse-click right 1 ? ? (loglog») 
(loglog ?well ?well-l) 
(exists (loglog-icons ?well-d ?» 
(loglog-curve ?well-l ?l-curve) 
(common-icons ?well ?c-icons) 

... 
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(retract '?d) 
(bind '?l-icons (get-schema-value '?well-l 'loglog-icons» 
(bind '?icons (append (list$ '?c-icons) 

(modify (schema '?well 

(list$ '?l-curve) 
(list$ '?l-icons») 

(contains-icons '?icons») 
(show-icon '?well ,?well) 

(defrule tickover 
(declare (salience *minimum-salience*» 

"'> 
(wait 5) 

.(refresh ' tickover) 
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I;; -*- Mode: ART; Package: ART-USER; Base:lO. -*­
I;; file: well/pattern.art 

; ; ; 
, , , 

Rules used to compute the pressure derivative and look for pattern 
in the pressure derivative, semilog and loglog curves 

(defrule filter-data 

=> 

(goal (time ?well&-?? ??» 
(not (time ?well f»~ 
(initial-time ?well ?i-time) 
(initial-pressure ?well ?i-pressure) 
(i-last-time ?well ?last-t) 
(interval-number ?nbr) 
(derivative ?well ?well-d) 

(bind ?data (compute-average (list$ ?i-time) 
(list$ ?i-pressure) 
?last-t 
?nbr) ) 

(bind ?time (copy$ (cdar ?data») 
(assert (schema ?well-d 

(time ?time») 
(assert (schema ?well 

(time'" (first ?data» 
(pressure -(second ?data» 
(last-time -(third ?data» 
(last-pressure ~(fourth ?data»» 

(defrule compute-p-derivative 

~> 

(time ?well ?time) 
(pressure ?well ?pressure) 
(derivative-of ?well-d ?well) 
(p-window ? 1) 
(derivative-function ?func) 

(assert (schema ?well-d 
(p-derivative -(funcall ?func 

(cdr (list$ ?pressure» 
(cdr (list$ ?time» 
11»» 

A "good" pressure derivative curve should not have any positive value 
nor values too close to O. The expertise proceeds only when those 
conditions eire met: 

(defrule examine-p-derivative 
(examined ?well-d positive-p-d) 
(examined ?well-d zero-p-d) 
(derivative-of ?well-d ?well) 

=> 
(bind ?well-m (concat ?well 'model» 
(assert (examined ?well-d yes) 

(model ?well ?well-m» 

(defrule examine-positive-p-derivative 
(p-derivative ?well-d ?p-derivative) 
(test (not (member-if 'plusp (list$ ?p-derivative»» 

(assert (examined ?well-d positive-p-d» 
) 

(defrule examine-zero-p-derivative 
(p-derivative ?well-d ?p-derivative) 

.. 

.',-



=> 
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- 61 -

(test (not (member-if' (lambda (x) (cond «> x -0.01) t) (t nil») 
(listS '?p-derivative»» 

(assert (examined '?well-d zero-p-d» 
) 

positive values are printed on the terminal and changed to -0.01. 
They are considered abnormal. They are given the lowest negative value. 

(defrule positive-p-derivative 

=> 

; ; ; 

. (p-derivative '?well-d '?p-derivative) 
(test (member-if 'plusp (listS '?p-derivative») 
(time '?well-d '?time) 
(derivative-of '?well-d '?well) 

(bind ,?derivative (listS '?p-derivative» 
(for p-d in ,?derivative 

as tp inS '?time 
do 

(cond (> p-d 0) 
(fresh-line) 
(write-string "There is an abnormal positive pressure derivative in well " 
(write-string (string '?well» 
(write-string " at ") 
(write-string (write-to-string (round tp») 
(write-string" seconds: ") 
(write-line (write-to-string p-d» 
(setf (car (member p-d '?derivative» -0.01»» 

(modify (schema '?well-d 
(p-derivative -'?derivative») 

Pressure derivatives too close to 0 are changed to -0.01. This is 
to be coherent when the log is taken. 

(defrule zero-p-derivative 
(p-derivative '?well-d ?p-derivative) 
(examined '?well-d positive-p-d) 
(test (member-if' (lambda (x) (cond «> x -0.01) t) (t nil») 

(listS '?p-derivative») 

(bind ,?derivative (listS ?p-derivative» 
(for p-d in ,?derivative do 

(cond «> p-d -0.01) 
(setf (car (member p-d '?derivative» -0.01»» 

(modify (schema·'?well-d 
(p-derivative -?derivative») 

The derivative of the pressure derivative is in fact the derivative 
of the log of the pressure derivative with respect to the log of time: 

dlog( dP/dlog(t) ) 

dlog(t) 

(defrule compute-p-d-derivative 
(examined ?well-d yes) 
(time ?well-d '?time) 
(p-derivative ?well-d ?p-derivative) 
(p-d-window '?l) 

(derivative-function ?func) 

(assert (schema ?well-d 
(p-d-derivative -(funcall ?func 

(log-of-list (list·S ?p-derivative)·) 
(listS '?time) 
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11»» 

compute the global max and min of the pressure derivative 
and of its derivative 

(defrule min-max-p-derivative 
(examined ?well-d yes) 

=> 

(p-derivative ?well-d ?p-derivative) 
(time ?well-d ?time) 

(bind ?max (eval (append' (min) (listS ?p-derivative»» 
(bind ?min (eval (append' (max) (listS ?p-derivative»» 
(assert (schema ?well-d 

(max-p-derivative (~(nthS ?time 
(1+ (position ?max (listS ?p-derivative»» 

?max) ) 
(min-p-derivative (~(nthS ?time 

(1+ (position ?min (listS ?p-derivative»» 
?min) ).) ) 

(defrule min-max-p-d-derivative 
(examined ?well-d yes) 

=> 

; ; ; 
,. , · , , 

(p-d-derivative ?well-d ?p-d-derivative) 
(time ?well-d ?time) 

(bind ?max (eval (append' (min) (listS ?p-d-derivative»» 
(bind ?min (eval (append' (max) (listS ?p-d-derivative»» 
(assert (schema. ?well-d 

(max-p-d-derivative (-(nthS ?time 
(1+ (position ?max (listS ?p-d-derivative»» 

?max) ) 
(min-p-d-derivative (-(nthS ?time 

(1+ (position ?min (listS ?p-d-derivative»» 
?min) ) ) ) 

looks for straight lines in the pressure derivative. A straight line 
is defined as a constant derivative of the pressure derivative with an 
admissible error and must be longer than the significant-length. 

(defrule derivative-straight-lines 
(examined ?well-d yes) 

=> 

(p-derivative ?well-d ?p-derivative) 
(time ?well-d ?time) 
(p-d-derivative ?well-d ?p-d-derivative) 
(significant-length ?sig-length) 
(abs-d-error ?error) 
(rel-d-error ?rel) 

(bind ?s-lines 
(straight-lines 

(listS ?time) 
(listS ?p-derivative) 
(listS ?p-d-derivative) 
?sig-length 
(max (abs (* (car (average (listS ?p-d-derivative») ?rel» 

?error) ) ) 
(for line in ?s-lines do 

(assert (schema ?well-d 
(straight-line -(seq*S line»») 

· .. Two straight lines next to each other with similar slopes can be 
· .• regrouped into a single strai.ght line. 
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(defrule group-straight-lines 
(declare (salience 100» 

?sl<-(straight-line ?well-d «?ti1 ?pi1) (?tf1 ?pf1) ?sll» 
?s2<-(straight-line 1well-d «?ti2&: (1ti2 > 1ti1) 1pi2) (?tf2 1pf2) 1sl2» 

(max-p-derivative 1well-d 1max-p-d) 
(abs-d-error 1error) 
(test (and « (abs (- 1sl1 1sl2» 1error) 

« (- (log 1ti2 10) (log 1tfl 10» 0 .25) 
:- « (abs (- 1pfl 1pi2» (/ (abs (nthS 1max-p-d 2» 10»» 

(retract 1s1) 
(retract 1s2) 
(assert (straight-line ?well-d 

• 

«1ti1 ?pil) 
(1tf2 1pf2) 
a(1 (- (log (abs 1pf2) 10) 

(log (abs 1pi1) 10» 
(- (log 1tf2 10) 

(log 1ti1 10»»» 

A straight line is computed from left to right. This rule tries 
to expand a straight line in the left direction. It works only for 
the derivative plot. 

(defrule expand-straight-lines-left 
(declare (salience 100» 

'?s<- (straight-line '?well-d «?ti ?pi) (,?tf '?pf) ?sl» 
(abs-d-error terror) 
(not (straight-line 1well-d «?ti1 1pil) 

• 

(?tf1&: (?tf1 < '?ti)&:« (- (log 1ti 10) 
(log 1tfl 10» 

(time 1well-d 1time) 

1pfl) 
1s11) ) ) 

0.2) 

(p-derivative ?well-d '?p-derivative) 
(p-d-derivative 1well-d '?p-d-d) 
(test « (abs (- (nthS 1p-d-d (1- (memberS '?ti '?time») 1sl» 

terror) ) 

(retract ?s) 
(bind 1tO (nthS ?time (1- (memberS 1ti 1time»» 
(bind 1pO (nthS 1p-derivative (1- (memberS 1ti 1time»» 
(assert (straight-line ?well-d «?to 1pO) 

(?tf 1pf) 
a(1 (- (log (abs 1pf) 10) 

(log (abs 1pO) 10» 
(- (log ,?tf 10) 

(log ,?to 10»»» 

looks for humps in the p;essure derivative. Returns the direction 
of the hump (valley or hill), initial time and final time. 
A hump is at least one log cycle long with at least one fourth of 
a log cycle on each side of the extremum. 

(defrule humps 

""> 

(examined '?well-d yes) 
(p-d-derivative ?well-d '?p-d-derivative) 
(p-derivative 1well-d 1p-derivative) 
(time 1well-d 1time) 
(significant-length '?sig-length) 

(bind '?humps (humps (listS 1time) 
(listS 1p-derivative) 
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(listS ?p-d-derivative) 
?sig-length) ) 

(for hump in ?humps do 
(assert (schema ?well-d 

(hump =(seq*S hump»») 

The extremum given by the lisp function "humps" is based on the 
p-d-derivative and may thus not be the exact extremum. These rules 
look one data point before and after and try to find a better one. 

(defrule modify-hump-extremum-valley-Ieft 
(declare (salience 100» 

=> 

?h<-(hump ?well-d (valley (?it ?ip) (?ft ?fp) (?mt ?mp») 
(time ?well-d (S?x ?to ?mt S?» 
(p-derivative ?well-d (S?y ?p-dO ?mp S?» 
(test (and (- (lengthS ?x) (lengthS ?y» 

(> ?p-dO ?mp») 

(retract ?h) 
(assert (hump ?well-d (valley (?it tip) (?ft ?fp) (?to' ?p-dO»» 
) 

(defrule modify-hump-extremum-valley-right 
(declare (salience 100» 

=> 

7h<-(hump ?well-d (valley (7it 7ip) (7ft ?fp) (?mt ?mp») 
(time ?well-d (S?x ?mt ?to S?» 
(p-derivative ?well-d ($?y ?mp ?p-dO $?» 
(test (and (a (lengthS ?x) (~ength$ ?y» 

(> ?p-dO ?mp») 

(retract ?h) 
(assert (hump?well-d (valley (?it tip) (?ft ?fp) (?to ?p-dO»» 
) 

(defrule modify-hump-extremum-hill-Ieft 
(declare (salience 100» 

=> 

?h<-(hump ?well-d (hill (?it tip) (?ft ?fp) (?mt ?mp») 
(time ?well-d (S?x ?to ?mt S?» 
(p-derivative ?well-d (S?y ?p-dO ?mp S?» 
(test (and (- (lengthS ?x) (lengthS ?y» 

« ?p-dO ?mp») 

(retract ?h) 
(assert (hump ?well-d (hill (?it tip) (?ft ?fp) (?to ?p-dO»» 
) -

(defrule modify-hump-extremum-hill-right 
(declare (salience 100» 

=> 

7h<-(hump ?well-d (hill (?it rip) (?ft ?fp) (7mt ?mp») 
(time ?well-d (S?x ?mt ?to $?» 
(p-derivative ?well-d (S?y ?mp ?p-dO $?»' 
(test (and (- (lengthS ?x) (lengthS ?y» 

« ?p-dO ?mp») 

(retract ?h) 
(assert (hump ?well-d (hill (?it ?ip) (7ft 7fp) (?to ?p-dO»» 
) 

A line icon is associated to each straight line and removed when 
the straight line is removed due to recombination or expansion. 

(defrule derivative-straight-line-schema 
(logical (straight-line ?well-d «?it ?ip) (?ft ?fp) ?slope») 
(derivative-of ?well-d ?well) 
(x-scale 7well ?x) 

.... 
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=> 

(y-scale ?well ?y) 
(last-time ?well ?last-t) 
(derivative-curve ?well-d ?) 

- 65-

(bind ?diff-t (- (ceiling (log ?last-t 10» (log 0.01 10») 
(bind ?line-name (concat ?well (gensym») 
(bind ?xo (car (compute-coordinates ?x -2 ?diff-t (list (log ?it 10»») 
(bind ?yo (car (compute-coordinates ?x -2 (- ?diff-t) 

(list (log (abs ?ip) 10»)) 
(bind ?xe (- (car (compute-coordinates ?x -2 ?diff-t 

(list (log ?ft 10»» 
?xo) ) 

(bind ?ye (- (car (compute~coordinates ?x -2 (- ?diff-t) 
(list (log (abs ?fp) 10»» 

?yo» 
(assert (schema ?line-name 

(instance-of line) 
(alu ior) 
(translate (20 =(+ ?y 20») 
(thickness 2) 
(origin (?xo ?yo» 
(endpoint (?xe ?ye»» 

(assert (schema ?well-d 
(derivative-icons ?line-name») 

• 

(defrule semilog-straight-line-schema 

-> 

(logical (straight-line ?well-s «?it ?ip) (?ft ?fp) ?») 
(semilog-of ?well-s ?well) 
(x-scale ?well ?x) 
(y-scale ?well ?y) 
(last-time ?well ?last-t) 
(pressure ?well ?pressure) 
(first-pressure ?well ?first-p) 
(last-pressure ?well ?last-p) 
(semilog-curve ?well-s ?) 

(bind ?diff-t (ceiling (log ?last-t 10») 
(bind ?diff-p l?last-p - (nth$ ?pressure 2») 
(bind ?pO (- ?first-p (nth$ ?pressure 2») 
(bind ?line-name (concat ?well (gensym») 
(bind ?xo (car (compute-coordinates ?x 0 ?diff-t (list (log ?it 10»») 
(bind ?yo (car (compute-coordinates ?y ?pO ?diff-p 

(list (- ?first-p ?ip»») 
(bind ?xe (- (car·(compute-coordinates ?x 0 ?diff-t 

. (list (log ?ft 10»» 
?xo) ) 

(bind ?ye (- (car (compute-coordinates ?y ?pO ?diff-p 

?yo) ) 
(assert (schema ?line-name 

(instance-of line) 
(alu ior) 
(translate (20 a(+ ?y 20») 
(thickness 2) 
(origin (?xo ?yo» 
(endpoint (?xe ?ye»» 

(assert (schema ?well-s 
(semilog-icons ?line-name») 

(list (- ?first-p ?fp»» 

(defrule loglog-straight-line-schema 
(logical (straight-line ?well-l «?it ?ip) (?ft ?fp) ?») 
(loglog-of ?well-l ?well) 
(x-scale ?well ?x) 
(y-scale ?well ?y) 



=> 

(last-time?well ?last-t) 
(first-pressure ?well ?first-p) 
(loglog-curve ?well-l ?) 
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{bind ?diff-t (- (ceiling (log ?last-t 10» (log 0.01 10») 
(bind ?line-name (concat .?well (gensym») 
(bind ?xo (car (compute-coordinates ?x -2 ?diff-t (list (log ?it 10»») 
(bind ?yo (car (compute-coordinates ?x -2 (- ?diff-t) 

(list (log (- ?first-p ?ip) 10»») 
(bind ?xe (- (car (compute-coordinates ?x -2 ?diff-t 

(list (log ?ft 10»» 
?xo) ) 

(bind ?ye (- (car (compute-coordinates ?x -2 (- ?diff-t) 

?yo) ) 
(assert (schema ?line-name 

(instance-of line) 
(alu ior) 

(list (log (- ?first~p ?fp) 10»» 

(translate (20 =(+ ?y 20») 
(thickness 2) 
(origin (?xo ?yo» 
(endpoint (?xe ?ye»» 

(assert (schema ?well-l 
(loglog~icons ?line-name») 

iii A rectangle is associated with each hump. 

(defrule hump-rectangle-schema 
(logical (hump ?well-d (? (?it ?ip) (?ft ?fp) (?mt ?mp»» 
(derivative-of ?well-d ?well) 
(x~scale ?well ?x) 
(y-scale ?well ?y) 
(last-time ?well ?last-t) 
(derivative-curve ?well-d ?) 

(bind ?diff-t (- (.ceiling (log ?last-t 10»· (log 0.01 10») 
(bind ?rect-name (concat ?well (gensym») 
(bind ?xo (car (compute-coordinates ?x -2 ?diff-t (list (log ?it 10»») 
(bind ?yo (car (compute-coordinates ?x -2 (- ?diff-t) 

(log-of-list (list (min ?ip ?mp ?fp»»» 
(bind ?xe (- (car (compute-coordinates ?x -2 ?diff-t 

(list (log ?ft 10»» 
?xo) ) 

(bind ?ye (- (car (compute-coordinates ?x -2 (- ?diff-t) 
. (log-of-list (list (max ?ip ?mp ?fp»») 

?yo) ) 
(assert (schema ?rect-name 

(instance-of rectangle) 
(alu ior) 
(fill clear) 
(translate (20 -(+ ?y 20») 
(thickness 1) 
(origin (7xo ?yo» 
(endpoint (7xe ?ye»» 

(assert (schema ?well-d 
(derivative-icons ?rect-name») 

This rule looks for straight lines on the semilog plot. 
The slope given by the lisp function is only valid for loglog or 
derivative plots. In this case it is recomputed. 

(defrule semilog-straight-lines 
(semilog-of ?well-s ?well) 
(derivative ?well ?well-d) 
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(examined ?well-d yes) 
(t~e ?well ?time) 
(pressure ?well ?pressure) 
(p-derivative ?well-d ?p-derivative) 
(abs-d-error terror) 
(rel-d-error ?rel) 
(derivative-function ?func) 
(significant-length ?sig-length) 

(bind ?s,..lines 
(straight-lines 

(cdr (listS ?t~e» 
(cdr (listS ?pressure» 
(listS ?p-derivative) 
?sig-length 
(max (abs (* (car (average (listS ?p-derivative») ?rel» 

?error» ) 
(for line in ?s-lines do 

(setf (cddr line) (list (/ (- (cadar line) (cadadr line» 
(- (log (caar line) 10) 

(log (caadr line) 10»») 
(assert (schema ?well-s 

(straight-line =(seq*S line»») 

This rule computes the derivative of the log of pressure with respect 
to the log of time. 

(defrule log-derivative 
(loglog-of ?well-l ?well) 
(derivative ?well ?well-d) 
(examined ?well-d yes) 
(time ?well ?t~e) 
(pressure ?well ?pressure) 
(derivative-function ?func) 
(p-window 11) 

(assert (log-derivative ?well-l -(funcall ?func 
(log-delta (listS ?pressure» 
(cdr (listS ?time» 
11) ) ) 

This rule looks for straight lines on the loglog plot. 

(defrule loglog-straight-lines 

.. > 

(loglog-of ?well-l ?well) 
(log-derivative ?well-l ?log-p-d) 
(derivative ?well ?well-d) 
(examined ?well-d yes) 
(time ?well ?time) 
(pressure ?well ?pressure) 
(abs-d-error terror) 
(rel-d-error ?rel) 
(significant-length ?sig-length) 

(bind ?s-lines 
(straight-lines 

(cdr (listS ?time» 
(cdr (listS ?pressure» 
(listS 11og-p-d) 
?sig-length 
(max (abs (* (car (average (listS ?log-p-d») ?rel» terror»~) 

(for line in ?s-lines do 
(assert (schema ?well-l 

(straight-line -(seq*S line»») 
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, , , 
; ; ; 
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-*- Mode: ART; Package: ART-USER; Base:10. 
file: well/model.art 

-*-

iii Rules used to extract a model by generating hypotheses and checking 
iii those hypotheses on other plots (sernilog or loglog). 

iii Locates the end of early-time period by a global or local maximum 

(defrule early-data-global-max 
(max-p-derivative 7well-d (7tm 7max-p-d» 

~ (test « 7tm 1000» 
(derivative-of 7well-d 7well) 
(model 7well ~well-m) 

=> 
(hypothesize (assert (early 7well-m 7tm») 
) 

(defrule early-data-local-max 

=> 

; ; ; 

(max-p-derivative 7well-d (7tm&:(7tm >- 1000) 7» 
(time 7well-d 7time) 
(p-d-derivative 7well-d ($7x 7d1 7d2 $7» 
(test (and (plusp 7d1) 

(rninusp 7d2) 
«(nth$ 7time (+ (length$ 7x) 2» 10000») 

(not (hump 7well-d (hill 7 7 (7th&: «nth$ 7time (+ (length$ 7x) 2» 
- 7th) 7»» 

(derivative-of 7well-d 7well) 
(model 7well 7well-m) 

(bind 710cal-max (nth$ 7time (+ (length$ 7x) 2») 
(hypothesize (assert (early 7well-m -710cal-max») 
) 

If there is a hill hump, whose maximum is different from the 
max-p-derivative and located before it, then, this maximum 
corresponds to the end of the early time period 

(defrule early-data-hump 

=> 

(max-p-derivative 7well-d (7tm 7» 
(hump 7well-d (hill 7 7 (7th&: (7th < ?tm) 7») 
(derivative-of ?well-d 7well) 
(model 7well 7well-m) 

(hypothesize (assert (early ?well-m 7th) U 
) 

If there is a negative slope at the beginning, it means that there is 
no early data, and that the intermediate-time period starts there. 

(defrule no-early-data 

=> 

(p-d-derivative ?well-d (7fpdd&: (?fpdd < 0) $7» 
(time ?well-d (?first-t $7» 
(derivative-of 7well-d ?well) 
(model ?well 7well-m) 

(hypothesize (assert (early ?well-m =7first-t») 
) 

If there is a slope 1 at the beginning of the derivative curve, 
then there is wellbore storage. 

(defrule wellbore-storage-on-derivative 
(examined ?well-d yes) 
(p-d-derivative 7well-d (?p-dl ?p-d2 $?» 
(abs-d-error 7error) 



=> 

; ; ; 
, , , 
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(test « (abs (1- (I (+ ?p-d1 ?p-d2) 2») terror»~ 
(derivative-of ?well-d ?well) 
(model ?well ?well-m) 

(hypothesize (assert (wellbore-storage ?well-m yes») 
) 

If the first two slopes at the beginning of the loglog curve are close 
to 1, then there is wellbore storage. 

(defrule wellbore-storage-on-loglog 

=> 

(loglog-of ?well-l 7well) 
(log-derivative 7well-l (7s11 7s12 $7» 
(model 7well 7well-m) 
(abs-d-error 7error) 
(test « ~abs (1- (I (+ ?sll ?s12) 2») 7error» 

(hypothesize (assert (wellbore-storage ?well-m yes») 
) 

;;; If there is a slope 1/2 at the beginning, then: fractured 

(defrule fractured-on-derivative 
(examined 7well-d yes) 

=> 

(p-d-derivative 7well-d (7p-d1 7p-d2 $7» 
(abs-d-error 7error) 
(test « (abs (- (I (+ ?p-d1 7p-d2) 2) '0.5» 7error» 
(derivative-of 7well-d ?well) 
(model ?well 7well-m) 

(hypothesize (assert (fractured ?well-m yes») 
) 

;;; A 1/2 slope on loglog means fractured system 

(defrule fractured-on-loglog 
(loglog-of ?well-l 7well) 
(log-derivative ?well-l (?sll ?s12 Sf»~ 
(model 7well 7well-m) 
(abs-d-error terror) 
(test « (abs (- (I (+ ?sll ?s12) 2) 0.5» terror»~ 

(hypothesize (assert (fractured ?well-m yes») 
) 

Boundary conditions: If the slope at the end is negative, hypothesize 
there is a pressure maintenance boundary 

(defrule pressure-maintenance-boundary 
(examined ?well-d yes) 

=> 

(p-d-derivative ?well-d ($? ?pddl ?pdd2» 
(test (and « ?pddl 0) 

« ?pdd2 ?pddl») 
(derivative-of ?well-d ?well) 
(model ?well ?well-m) 

(hypothesize (assert (boundary ?well-m pressure-maintenance») 
) 

If the slope at the end is positive, hypothesize there is a closed 
system (no-flow boundary) 

(defrule no-flow-boundary 
(examined ?well-d yes) 
(p-d-derivative ?well-d ($? ?pddl ?pdd2» 

,-

". 

t,. 



=> 

(test (and (> ?pdd1 0) 
(> ?pdd2 ?pdd1») 

(derivative-of ?well-d ?well) 
(model ?well ?well-m) 
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(hypothesize (assert (boundary ?well-m no-flow») 
) 

iii If, after early time, there is a doubling of the slope of the semilog 
i;; curve, it means that there is a no-flow boundary 

(defrule no-flow-on-semilog 
(early ?well-m ?e-time) 
(model-of ?well-m ?well) 
(semilog ?well ?well-s) 
(abs-d-error ?error) 

=> 

" , 
; ; ; 

(straight-line ?well-s «?it1&: ('?it1 > '?e-time) '?) (?ft1 '?) ?sl1» 
(straight-line ?well-s «?it2 ?) '? ?s12» 
(test (and (> ?it2 '?ft1) 

« (abs (- '?s12 (* 2 '?s11») '?error») 

(hypothesize (assert (boundary ?well-m no-flow») 
) 

If there is a horizontal straight line at the end there it is an 
infinite system 

(defrule infinite-system 

=> 

" , 

(examined ?well-d yes) 
(derivative-of ?well-d '?well) 
(last-time ,?well '?last-t) 
(abs-d-error ?error) 
(significant-length ?sig-l) 
(straight-line ?well-d (? (?It '?) ?slope» 
(test (and « (abs ?slope) ?error) 

« (- (log ?last-t 10) (log?lt 10» '?sig-l») 
(model ?well ?well-m) 

(hypothesize (assert (boundary ?well-m infinite») 
) 

If there is a valley hump, followed by either a hill hump or a 
horizontal straight-line then hypothesize double porosity reservoir 

(defrule double-porosity 
(examined '?well-d yes) 
(abs-d-error ?error) 

=> 

(hump ?well-d (valley ('?it1 ?) ? '?» 
(or (hump ?well-d (hill ('?it2&: (?it2 > ?itl) '?) ? ?» 

(straight-line '?well-d «'?it3&: ('?it3 > ?it1) '?) 

?slope&: «abs '?slope) < ?error»» 
(derivative-of ?well-d ?well) 
(model ?well ?well-m) 

(hypothesize (assert (reservoir ?well-m double-porosity») 
) 

If there is a valley hump close to the end of the data set, then 
hypothezise that it is a homogeneous reservoir with a no flow boundary. 

(defrule homogeneous-and-closed-system 
(examined ?well-d yes) 
(significant-length ?sig-l) 
(derivative-of ?well-d ?well) 
(last-time ?well ?last-t) 



=> 

; i ; 
; ; ; 
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(hump ?well-d (valley? (?It ?) 7» 
(test «(- (log ?last-t 10) (log?lt 10» ?sig-l» 

. (model ?well ?well-m) 

(hypothesize (assert (reservoir ?well-m homogeneous) 
(boundary ?well-m no-flow») 

If there is a hill hump followed by a straight line until the end 
of the data set, then hypothesize that it is a homogeneous reservoir 
with an infinite boundary 

(defrule homogeneous-and-infinite-system 
(examined ?well-d yes) 
(significant-length ?sig-l) 
(derivative-of ?well-d ?well) 
(last-time ?well ?last-t) 
(abs-d-error ?error) 

=> 

(hump ?well-d (hill? (?hump-lt ?) f»~ 

(straight-line ?well-d «?line-it ?) (?line-lt ?) ?slope» 
(test (and « ?hump-lt ?line-it) 

« (- (log ?line-it 10) (log ?hump-lt 10» 0 .25) 
« (abs ?slope) ?error) 
« (- (log ?last-t 10) (log ?line-lt 10» ?sig-l») 

(model ?well ?well-m) 

(hypothesize (assert (reservoir ?well-m homogeneous) 
(boundary ?well-m infinite») " 

iii If there is a"hill hump and no valley hump, then hypothesize 
iii homogeneous 

(defrule homogeneous 

""> 

; ; ; 

(hump ?well-d (hill? ? (?th f»~) 
(derivative-of ?well-d ?well) 
(model ?well ?well-m) 
(early ?well-m ?th) 
(not (hump ?well-d (valley? ? f»~) 

(hypothesize (assert (rese"rvoir 7well-m homogeneous») 
) 

These rules merge viewpoints. They aggregate all possibilities for every 
possible combination of facts in the well-model schemata. It also prints 
all possible models for each well 

(defrule find-model-with-wellbore-storage 
(early ?well-m '?) 
(wellbore-storage ?well-m yes) 
(reservoir ?well-m ?type) 
(boundary ?well-m '?bound) 
(model-of ?well-m ?well) 

=> 
(fresh-line) 
(write-string "A possible model for well ") 
(write-string (string '?well» 
(write-string " is a ") 
(write-string (string '?type» 
(write-string" reservoir with wellbore storage and a ") 
(write-string (string ?bound» 
(write-string "boundary.") 
) 

(defrule find-fractured-model 
(early 7well-m 7) 



=> 

(fractured ?well-m yes) 
(reservoir ?well-m ?type) 
(boundary ?well-m ?bound) 
(model-of ?well-m ?well) 
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(fresh-line) 
(write-string 
(write-string 
(write-string 
(write-string 
(write-string 
(write-string 
(write-string 
) 

"A possible model for well ") 
(string ?well» 
" is a ") 
(string ?type» 
" reservoir with a> fractured well and a ") 
(string ?bound» 

" boundary.") 

(defrule find-model 

=> 

(early ?well-m ?) 
(reservoir ?well-m ?type) 
(boundary ?well-m ?bound) 
(not (or (wellbore-storage ?well-m yes) 

(fractured ?well-m yes») 
(model-of ?well-m ?well) 

(fresh-line) 
(write-string "A possible model for well ") 
(write-string (string ?well» 
(write-string " is a ") 
(wrte-string (string ?type» 
(write-string " res~rvoir with a ") 
(write-string (string ?bound» 
(write-string II boundary.") 
) 



; ; ; 

, , , 
; ; ; 
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-*- Mode: LISP; Package: ART-USER; Base:10. -*­
file: well/well.lisp 

Lisp functions used principally for computing derivatives and 
looking for patterns, like straight-lines and humps. 

(defun seconds (data) 
(+ (* 3600 (first data» (* 60 (second data» (third data») 

(defun cone at (name suffix) 

(de fun 

(make-symbol (concatenate 'string (string name) "-" (string suffix»» 

read-from-file (well) 
(let* «file (concatenate 'string "-marc/data/" (string well») 

(stream (open file» 
(units (read stream» 
(time-unit (car units» 
(pressure-unit (cadr units» 
(first-data (read stream» 

• 

(initial-time (* time-unit (seconds first-data») 
(initial-pressure (* pressure-unit (fourth first-data») 
(last-time 0) 
(last-pressure initial-pressure) 
(x-pts (list 0» 
(y-pts (list initial-pressure») 

(do «data (read stream) 
(read stream nil») 

«not data» 
(nconc x-pts (list (setq last-time 

(- (* time-unit (seconds data» 
initial-time»» 

(nconc y-pts (list (setq last-pressure (* pressure-unit 
(fourth data»»» 

(close stream) 
(list x-pts y-pts last-time initial-pressure last-pressure») 

(defun compute-coordinates (scale first diff data-set) 
(mapcar '(lambda (data) (round (* ,scale (/ (- data ,first) ,diff»» 

data-set) ) 

(defun delta (data-set) 
(mapcar '(lambda (data) (- , (car data-set) data» (cdr data-set») 

(defun log-of-list (data-set) 
(mapcar-' (lambda (data) (log (abs data) 10» data-set» 

(defun- log-delta (data-set) 
(mapcar '(lambda (data) (log (- , (car data-set) data) 10» 

(cdr data-set») 

(defun compute-average (i-time i-pressure last-time int-number) 
(let «time '(0» 

(pressure (list (car i-pressure») 
(factor (/ (log last-time 10) int-number» 
(t-ave (» 
(p-ave (») 

(setq i-time (cdr i-time» 
(setq i-pressure (cdr i-pressure» 
(dotimes (iO int-number (list time 

( let « i (1+ i 0) ) ) 
(setq t-ave (» 
(setq p-ave (» 

pressure 
(* 1.0 (car (average t-ave») 
(car (average p-ave»» 

(do «t-data (car i-time) 

" 



~ (defun average (list) 
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(car (setq i-time (cdr i-time»» 
(p-data (car i-pressure) 

(car (setq i-pressure (cdr i-pressure»») 
«or (not t-data) 

(> t-data (+ (expt 10 (* i factor» 0.0000002») 
(setq time (append time (average t-ave») 
(setq pressure (append pressure (average p-ave»» 

(setq t-ave (append t-ave (list t-data») 
(setq p-ave (append p-ave (list p-data»»»» 

(let «1 ,list-length list») 
(cond «.. 1 0) (» 

(t (list (/ (eval (append' (+) list» 1»»» 

(defun w-ave (x y w1 w2) 
(/ (+ (* w1 x) (* w2 y» (+ w1 w2») 

(defun derivative-log-time-B-half (pressure time 1) 
(mapcar '(lambda (pO to) 

(let* «x (position to ',time» 
(ix (max (- x ,1) 0» 
(fx (min (+ x ,1) (1- (length ',time»» 
(ip -(nth ix ',pressure» 
(fp (nth fx ',pressure» 
(it (nth ix ',time» 
(ft (nth fx ',time») 

(cond «- xix) (/ (*to (- fp pO» (- ft to») 
«- x fx) (/ (* to (- pO ip» (- to it») 
(t (* (/ to 2) 

(+ (/ (- pO ip) (- to it» 
(/ (- fp pO) (- ft to»»»» 

pressure time» 

(defun derivative-log-time-B (pressure time 1) 
(mapcar '(lambda (pO to) 

(let* «x (position to ',time» 
(ix (max (- x ,1) 0» 
(fx (min (+ x ,1) (1- (length ',time»» 
(ip (nth ix ',pressure» 
(fp (nth fx ',pressure» 
(it (nth ix ',time» 
(ft (nth fX-4' ,time») 

(cond «- xix) (/ (* to (- fp pO» (- ft to») 
. «- x fx) (/ (* to (- pO ip» (- to it») 

(t (* to (w-ave (/ (- pO ip) (- to it» 
(/ (- fp pO) (- ft to» 
(- ft to) 

pressure time» 

(defun derivative-logtime (pressure time '1) 
(mapcar '(lambda (pO to) 

(- to it»»») 

(let* «long (length ',time» 
(x (position to ',time» 
(ix (cond «- x (1- long» (- long 2» 

«- x (- long 2» (- long 3» 
«- x (- long 3» (- long 5» 
(t (max (- x ,1) 0»» 

(fx (cond « .. x 0) 1) 
«- x 1) 2) 

«- x 2) 4) 
(t (min (+ x ,1) (1- long»») 

(ip (nth ix ',pressure» 
(fp (nth fx ',pressure» 



(ot (log to 10» 
(it (log (nth ix ' ,time) 10» 
(ft (log (nth fx ',time) 10) ) ) 

(cond «= xix) (/ (- fp pO) (- ft ot») 
«= x fx) (/ (- pO ip) (- ot it» ) 
(t (w-ave (/ (- pO ip) (- ot it» 

(/ (- fp pO) (- ft ot» 
(- ft ot) 
(- ot it»»» 

pressure time» 

(defun straight-lines (time p-derivative p-d-derivative sig-length error) 
(let «s-lines (» 

(ti 0) 
(tf 0) 
(pdi' 0) 
(pdf 0) 
(ave 0» 

(do «first (car p-d-derivative) 
(car p-d-derivative») 

«not first) s-lines) 
(setq ti (car time» 
(setq pdi (car p-derivative» 
(setq time (cdr time» 
(setq p-derivative (cdr p-derivative» 
(setq s-line 

(do* «current (car (setq p-d-derivative (cdr p-d-derivative») 
(car (setq p-d-derivative (cdr p-d-derivative».» 

(line (list first) line) 
(ave first (car (average line»» 

«or (not current) 
(> (abs (- current ave» error) 
(> (abs (- ave first» error» 

line) 
(setq line (append line (list current») 
(setq tf (car time» 
(setq pdf (car p-derivative» 
(setq time (cdr time» 
(setq p-derivative (cdr p-derivative»» 

(setq s-lines (append s-lines 
(cond «and (plusp tf) 

(>- (- (log tf 10) (log ti 10» sig-length» 
(list (list (list ti pdi) 

(t ()))) 

(list tf pdf) 
(/ (- (log (abs pdf) 10) 

(log (abs pdi) 10» 
(- (log tf 10) 

(log til 0) ) ) ) ) ) 

(defun humps (time p-derivative p-d-derivative sig-hump) 
(let «humps (» 

(otime (» 
(op-derivative (» 
(op-d-derivative (» 

. (ti () 
(tf () 
(top ()) 

(do «first (car p-d-derivative) 
(car p-d-derivative») 

«not first) humps) 
(setq ti (list (car time) (car p-derivative») 
(setq top () 
(setq humps (append humps 

(do* «current first (car p-d-derivative» 

.. 
'~ 

.., 

t. 
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(after-top 0 (if top (car time) 0» 
(next (car (setq p-d-derivative (cdr p-d-derivative») 

(car (setq p-d-derivative (cdr p-d-derivative»» 
(bef-noise 

current 
(if (or (and (plusp first) 

« current bef-noise) 
(if next « next current) t» 

(and (minusp first) 
(> current bef-noise) 
(if next (> next current) t») 

current bef-noise» 
(noise (list (car time) (car time» 

(if (- current bef-noise) 
(list (car time) (car time» 
(list (car noise) (car time»») 

«or (not next) 
(>- (- (log (cadr noise) 10) (log (car noise) 10» 

sig-hump) ) 
(cond (next (setq time otime) 

(setq p-derivative op-derivative) 
(setq p-d-derivative op-d-derivative») 

(cond «and (plusp after-top) 
(>- (- (log after-top 10) (log (car til 10» 

(* 3 sig-hump» 
top 
(>- (- (log (car top) 10) (log (car til 10» 

sig-hump) 
,(>- (- (log after-top 10) (log (car top) 10» 

sig-hump) ) 
(list (list (cond «plusp first) 'hill) 

(t 'valley» 
ti tf top») 

(t (»» 
(if (and (- after-top 0) 

(/- (signum first) (signum current») 
(setq top (list (car time) (car p-derivative»» 

(setq p-derivative (cdr p-derivative» 
. (setq time (cdr time» 
(cond «and « .. (- (log (cadr noise) 10) (log (car noise) 10» 

(/ sig-hump 2» 
(or' (zerop after-top) 

« .. (- (log after-top 10) (log (car top) 10» 
sig-hump) ) ) 

(setq otime time) 
(setq op-derivative p-derivative) 
(setq op-d-derivative p-d-derivative») 

(if ( .. (car noise) (cadr noise» 
(setq tf (list (car time) (car p-derivative»» 

»»» 
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