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Abstract 

Vacuum renormalization of relativistic nuclear field theory is studied for 
nuclear and neutron star matter in general equilibrium, and neutron stars. It 
is found that when the coupling constants are tightly constrained by the five 
saturation properties of nuclear matter, the binding, density, compression mod­
ulus, symmetry energy and effective nucleon mass, the theory with or without 
vacuum renormalization predicts an equation of state that differs in the two 
cases by only several percent over the entire density range of interest. If the 
effective mass and compression are not controlled, as in some works, the high 
density behavior is markedly different. The mass of a neutron star, even at 
the limiting mass, is not dominated by the dense matter at its center, half 
the mass being contributed by matter at densities less than about 3po. The 
hyperon fraction of the limiting mass star is about 20 percent. 
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1 Introduction 

So far the only known effective relativistic field theory that can describe nuclear 
matter and finite nuclear properties is the scalar-vector-isovector (0", w, P ) theory. 
That it provides a good description of numerous properties of nuclear matter and 
finite nuClei .lends support to its use in deriving the properties of matter at high en­
ergy density, but below the expected transition to a quark-gluon plasma. Although 
it is known how to incorporate vacuum renormalization [1,2], and this has been 
'done in severa~ recent works[3,4], it so far has not been studied systematically in 
a way that preserves the five important properties of nuclear matter at saturation, 
the binding, density, compression modulus, effective mass and symmetry energy. 
Therefore it has not been possible to disentangle the renormalization effects from 
those produced by shifting nuclear matter properties. Moreover, vacuum polariza­
tion in neutron star matter that is in generalized beta equilibrium has not been 
investigated previously, except in the chiral-sigma model[5], which seems incapable 
of describing the normal ground state of finite nuclei, producing instead a bub­
ble configuration [6]. In this paper we undertake such a systematic investigation 
of nuclear and neutron star matter for the 0", w, p theory. This requires the form 
of the theory in which cubic and quartic self-interactions of the scalar field are 
included[7], and renormalized, for they, together with the nucleon interaction with 
the scalar, vector and vector-isovector mesons, permit the five saturation properties 
to be controlled. 

In the following, we shall write down the equations that define the theory, derive 
the coupling constants that produce the five saturation properties of nuclear matter 
for both situations in which vacuum polarization is included or not. We compute the 
equation of state in both cases, for nuclear and for charge neutral matter in general 
beta equilibrium (neutron star matter). The constituent particles of neutron star 
matter are discussed. We compute the masses of neutron stars in both cases, and 
discuss the connection between the limiting star mass and the saturation properties 
of the underlying theory. Additional star properties are calculated, including the 
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redshift, hyperon fraction, gravitational binding and radii. 

2 Theory 

The Lagrangian of the u, w, p theory is, 

£, = ~'l/JB(ifIl81l - mB + guBU - gwBfllwll - ~gpBfIlT3P~)'l/JB 
B 

+ 1(8 u81l u - m 2 ( 2) ~ lw WIlV + 1m2 w wll 
2 Il u 41lV 2 wll 

- ~PIlV' pllV + ~m~PIl' pll - !bmn(gqu)3 - ~C(guU)4 (1) 

The scalar meson is Yukawa coupled to the baryon scalar density and the vector and 
vector-isovector mesons to the baryon current and the isospin current respectively. 
In preparation for application to dense matter we have included, in addition to the 
nucleons, other baryon species, denoted by B, where the sum is overall charge 
states of N, A,~, 3,~, etc. [8,9,10,11]. When the corresponding Euler-Lagrange 
equations are solved by replacing the meson fields by their mean values, and the 
nucleon currents by those generated in the presence of the mean meson fields, one 
obtains the so called mean field approximation (MFA). It is in this approximation 
that nuclear field theory has been typically solved and applied. However, as is 
well known, the presence of matter alters the vacuum, by altering the masses of 
antiparticles. The energy of the filled sea therefore shifts with density. There are 
well known procedures for renormalizing the theory with respect to nucleon, and 
scalar 'and vector mesons[2]. So far it is not know'n how to renormalize the vector­
isovector. meson, and we shall regard as phenomenological the energy contributed 
to asymmetric matter by the coupling of this meson to the isospin current, with 
this coupling chosen to reproduce the empirical symmetry energy coefficient. 

The Dirac equation that follows from Eq.(l), when the meson fields are replaced 
by their mean values, can be solved immediately to yield the eigenvalues for mo­
mentump, 

(2) 

Only the time-like components of the vector fields, and the isospin 3-component of 
the p field have non-vanishing values, on account of the isotropy of nuclear matter 
and electric charge conservation respectively. The energy density can be obtained 
now from the stress-energy tensor (cf. [10]). For uniform nuclear or neutron matter 
in the mean field approximation it is given by 

Ibm (g U)3 + lc(g U)4 + Im2 u 2 _ Im2w2 _ Im2p2 3 nq 4 q 2U 2WO 2p03 

2J B + 1 [kB [ . / ] 2 + ~ 27r2 Jo. gwBWO + gpBPo313B + yp2 + (mB - guBU)2 P dp 

(3) 
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where O',Wo, and P03 are the mean meson fields, kB and JB are the Fermi momentum 
and spin of the charge state of the baryon type B, and k>. are the lepton Fermi 
momenta (electron and muon). For neutron star matter we need to include the 
contributions to the energy of the leptons, the last term in Eq.(3), and incorporate 
in the solutions, the conditions of charge neutrality and chemical equilibrium. These 
complications have been discussed elsewhere[10]. 

With the inclusion of vacuum renormalization energies, the energy density is 
given by 

(4) 

The last two terms represent the contributions from renormalization of the nucleon 
and scalar meson[2], and are given by, 

where 

go-O' x=­
mn 

(5) 

(6) 

(7) 

and mn and mo- are the nucleon and 0' mass. The approximation which includes 
the vacuum renormalization is known as the relativistic Hartree approximation 
(RHA)[2]. 

The field equations can be found either as the solutions of the Euler-Lagrange 
equations, or equivalently, as the values that minimize the energy density at fixed 
baryon density. They are, 

Wo (8) 

P03 (9) 

(10) 

where 13B is the isospin projection of baryon charge state B, and 

(11) 
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is its density. Employing the field equations in Eq.(3), we can write the energy 
density as, 

€MFA !bmn(gqO"? + ~c(gqO")4 + ~m;0"2 + ~m~w5 + ~m;P63 
2JB + 11kB 

/ + L: 2 2 V p2 + (mB - gqBO")2 p2dp 
B 7r 0 

+ L: -; {k>. Vp2 + mlp2dp 
>. 7r Jo 

The pressure is given in RHA by, 

PRHA = PMFA - VN - Vq 

where 

PMFA 

(12) 

(13) 

(14) 

When the field equations are solved subject to the subsidiary constraint of zero 
isospin, one obtains the solution corresponding to uniform nuclear matter. When 
they are solved subject to the constraints of charge neutrality and general equi­
librium, one obtains the solution corresponding to neutron star matter. We shall 
characterize both solutions by the corresponding properties of symmetric matter. 

3 Nuclear and neutron matter 

The five important properties of nuclear matter, mentioned in the introduction, 
can be used to fix the coupling constants gq/mq, gw/mw, gp/mp, and the parameters 
of the scalar self-interactions, b and c. In uniform matter, it is only the ratio of 
coupling constant to mass on which the theory depends, except for the scalar mass, 
which appears independently in the vacuum renormalization energy. For that mass 
we take m q = 600 MeV. The binding, saturation density and symmetry energy 
coefficient are relatively well known[12]. The compression modulus has been the 
subject of considerable debate in the last several years. However a recent analysis 
of a broad body of evidence[13], and recent new experiments on the giant monopole 
resonance[14] both suggest that ]{ ~ 300 MeV. The Landau effective nucleon mass, 
m*rjm = 0.83, has recently been obtained through a careful study of the mean field 
of heavy nuclei, and we fix this property in accord with those findings[15]. The 
scalar effective mass of this theory, m* = m - gqO", is related at saturation by 

(15) 
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Table 1: Nuclear Matter Properties at Saturation. 

po BjA asym K m*jm 
(fm-3 ) (MeV) (MeV) (MeV) 

expt. I .153 -16.3 32.5 300 .78 

this work 
MFA and RHA I .153 -16.3 32.5 300 .78 

Serot - U echi 
MFA .193 -15.75 22.1 540 .557 
RHA .193 -15.75 17.9 471 .718 

Table 2: Nucleon-meson coupling constants. 

(g(7jm(7)2 (gwjmw)2 (gpjm p)2 b c 
fm2 fm2 fm2 

this work (m(7= 600 MeV) 
MFA 
RHA 

9.031 
9.249 

4.733 4.825 .003305 .01529 
4.732 4.823 .005723 .000601 

Serot - U echi (m(7 = 550 MeV) 
MFA I 11.805 8.6359 0 0 o 

o 
K = 471 MeV, m* jm = .557, m(7= 550 MeV 

MFA I 7.697 5.0589 0 -.00427 .08756 
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which yields m;at./m= 0.78. The nuclear properties are listed in Table l. 

We first assess the effect of the vacuum polarization on the binding energy of 
normal nuclear matter, by adjusting the coupling constants so that the saturation 
properties listed in Table 1 are reproduced in both the mean field (MFA) and the 
relativistic Hartree approximation (RHA). The corresponding coupling constants 
are given in Table 2, and the comparison of the two approximations can be seen in 
Fig. 1, for both nuclear matter and pure neutron matter. The equation of state in 
both approximations are surprisingly alike, differing at most by about three percent 
even at ten times nuclear density. This is a very encouraging result, since in the 
many applications of the theory to finite nuclei and neutron stars, the MFA has 
been employed up till now. Next we show in Fig. 2 the separate contributions to the 
equation of state arising from the two-body, as well as the three and four-body terms 
in the energy and the two contributions VN and Vq of the vacuum renormalization. 
Aside from the region near saturation, the three and four-body terms, and the 
vacuum renormalization energies are all rather independent of density. They become 
relatively unimportant compared to the two-body energy at higher density. The 
scalar renormalization energy, Vq , is particularly small. It is noteworthy that in the 
chiral-sigma model all of the corresponding terms are much larger, by a factor of five 
or so, vary more drastically with density and playa decisive role in that theory[5,16]. 
Indeed, without them, that theory does not possess a normal saturation curve[17]. 
Instead the normal state is bifurcated by an abnormal one. It is only with the 
addition of vacuum renormalization effects that this pathology disappears. Even so 
the chiral-sigma model does not have a normal ground state for finite nuclei. Instead 
the ground state is a bubble configuration [6]. It can be regarded as an advantage of 
the 0', w, p model that the vacuum polarization energies are relatively constant, and 
have so little effect when the coupling constants are renormalized so that the five 
saturation properties are reproduced. The implication of the above result is that the 
neglect of vacuum renormalization, which in principle could produce drastic changes 
in the nuclear properties, is unlikely to be very important in many applications to 
finite nuclei and to neutron star structure. 

In a recent paper Serot and Uechi [4] also investigated the effects of vacuum 
renormalization, but they fixed only the saturation energy and density, the com­
pression and effective mass being different in the two cases (see table 1). As a 
consequence of this, the two approximations yield very different results for the 
equation of state at higher density, as shown in Fig. 3. On the other hand, when 
we make the comparison in the case that all five nuclear properties are identical, 
the two approximations again yield equations of state that are insignificantly differ­
ent. The coupling constants in these three cases are shown as the last three entries 
respectively in table 2. The two MFA calculations shown in Fig. 3 are so different 
from each other because both K and m;at. are different. The latter quantity, for 
given binding and saturation density, uniquely specifies the vector coupling constant 
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through, 

EO B ( 9w ) 2 /k 2 *2 -=-+mn = - PO+y O+msat. 
Po A mw 

(16) 

where the Fermi momentum at saturation, ko, is related to the density in the usual 
way, po = 2k3J(37r2 ). (The above relation follows from Eqs. (8,12) and the satu­
ration condition 8(E/p)/8k = 0 evaluated at k = ko.) For fixed K, the equation 
of state becomes stiffer at high density as m;at. decreases, as can be seen from 
the above relation. For fixed m;at.' it becomes stiffer as K increases. These are. 
the reasons why it is important to bring both of these parameters under control, 
through the freedom afforded by the scalar self-interaction terms in Eq.(l). With­
out this control, the application of the theory to neutron star properties or other 
high density phenomena can be misleading. 

The above conclusion is all the more reinforced by an examination of Fig. 4, 
where the effective mass as a function of density is shown for the three sets of 
nuclear properties shown in table 1. 

4 Neutron star matter 

Neutron stars are not pure in neutron. Such a star would be beta unstable in the 
general sense, namely that the higher momentum neutrons have energies above the 
threshold for conversion to protons and leptons, and beyond a certain threshold 
density, they are also above the threshold for conversion to hyperons and associated 
kaons, and possibly to other baryon resonances. Unless there is a phase transition to 
a state of mixed strangeness for baryons, which we have argued is unlikely[10]' the 
kaons will decay, and the energy carried by any photons or neutrinos produced in this 
or any of the other reactions will leak out of the star eventually, in its evolution to 
its ground state. The ground state is therefore one of general equilibrium amongst 
baryons and leptons. It possesses two conserved quantities, baryon number and 
electric charge, the latter being vanishingly small, as required so that the Coulomb 
repulsion will not disrupt the star. The equations that describe such matter in 
this theory, are the three field equations for the mean values of the a, W, p mesons, 
the conditions for charge neutrality and chemical equilibrium for the electron and 
baryon chemical potentials, and the threshold equations for the Fermi momenta of 
the various baryon and lepton species. These comprise a set of self-consistent non­
linear equations in the variables just mentioned. The equations have been described 
elsewhere, and we refer to that reference for details[10]. 

Because the time scale of star collapse is long compared to the weak interaction 
time, which is the scale that governs the development of the hyperon populations, 
the general equilibrium effects are important also for supernovae and the develop­
ment of the proto-neutron star[18]. 

The solution to the above system of equations can be presented as the value 
of the three field variables and two chemical potentials. (We represent the scalar 
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field by the effective nucleon mass m* = m - 90'<7.) We show such solutions for 
the full case of general equilibrium in neutron star matter, which contains nucleons, 
hyperons and leptons in Fig. 5, and in the case that hyperons are absent, a~d beta 
equilibrium exists between neutrons protons and leptons, in Fig. 6. The Fermi 
momenta of the baryons and leptons can be reconstructed from these quantities 
through the equations of ref. [10]. There are two points of special interest. In the 
case that hyperons are absent, the field strength of the (time-like component) of the 
.neutral rho-meson, P03, is a monotonic increasing function of density. Recall that 
the isospin symmetry energy density arising from this meson is 

(17) 

where the p field strength, P03 is given in terms of the isospin projection of the 
various constituents and their densities by Eq.(9). In contrast to the above behavior 
of the p meson field strength in neutron-proton matter, or pure neutron matter, the· 
hyperons cause it to saturate, as revealed in Fig. 5. This happens for two reasons: 
As hyperons become prevalent in the star, they enter in such isospin states that 
tend to reduce the large negative isospin of the dominant population, the neutrons, 
in accord with the above symmetry energy, always consistent with the absolute 
constraint of charge neutrality imposed by the long-range Coulomb force. Second, 
as we discuss later, the hyperons are more weakly coupled to the meson fields than 
are the nucleons. For both reasons, hyperons tend to cause the contribution to the 
symmetry energy of the rho meson to saturate. 

A second feature of interest in Figs. 5 and 6 is the saturation of the electron 
chemical potential, J-Le by the hyperons. This occurs because charge neutrality can 
be achieved more economically among hyperons and nucleons when the electron 
chemical potential becomes of the order of the their mass difference, than among 
nucleons and· additional relativistic leptons. The saturation of J-Le by hyperons in 
neutron star matter has special significance for the possible condensation of neg­
ative pions. When J-Le exceeds the effective mass of the pion in matter!, then the 
negative pion is energetically more favorable for maintaining charge neutrality than 
additional relativistic electrons. This is because pions are bosons, and they can 
all condense in the lowest energy state. In this event, pions saturate J-Le. However, 
from Fig. 5, the hyperons saturate the electron chemical potential at J-Le < 190 MeV. 
Therefore pions cannot condense if their effective mass in matter exceeds this value. 
On the other hand, pions experience a repulsive s-wave and attractive p-wave in­
teraction with nucleons. The attraction in the latter case has to be bought at the 
expense of finite momentum. In neutron-proton beta stable neutral matter, pions 
cause J-Le to saturate at 177 MeV [19]. The smallest plausible value of the pion 
effective mass is its vacuum value. So pions may condense in neutron star matter· 
over a certain finite interval of density for which J-Le would otherwise exceed the pion 

1 We shall refer to the dispersion relation energy, ko = Jm; + k 2 + II(ko, k) evaluated at ko = jle, 

as the effective pion mass 
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effective mass. The interval is of finite extension because as we see in Fig. 5, J..le 
reaches a maximum and then decreases as hyperon populations increase. Assuming, 
as a maximum estimate of the effects of pion condensation, that pions condense at 
their vacuum mass, the solution of the equations for neutron star matter are shown 
in Fig. 7. The plateau region in J..le is caused by the pion condensation which arrests 
the growth of J..le. Of course the use of a single valued pion effective mass is an ap­
proximation, and the use of the vacuum mass provides an estimate of the maximum 
effect of pions in neutron star matter, according to the above discussion. 

The equation of state of stable, charge-neutral, neutron star matter is shown in 
Fig. 8, with and without vacuum renormalization. We also show by way of contrast, 
the equation of state for pure neutron matter, with vacuum renormalization. The 
equation of state for stable neutron star matter lies considerably below that for pure 
neutron matter. This softening is a result of the conversion of energetic nucleons to 
hyperons and the relaxation into an equilibrium population of many baryon species, 
in contrast to the non-equilibrium population of only the neutron in pure neutron 
matter. A study of these results reveals how inappropriate is the idealization of 
pure neutron matter for neutron stars. This is reinforced by an examination of the 
composition of neutron star matter, including the renormalization of the vacuum, 
which is shown in Fig. 9. The threshold for the first hyperon lies little above two 
times nuclear density. In principle other baryon resonances like the delta could also 
be present, but under the assumption of equal coupling of nucleons and deltas 2, they 
do not appear in the density domain of neutron stars. For very low densities, neutron 
star matter is almost pure in neutron. However the electron and proton populations 
rise rapidly, even below nuclear density. These populations are initially equal, as 
a result of the constraint of charge-neutrality. (Excess charge would be blown off 
a star by the Coulomb force, which is so much stronger than the gravitational.) 
At densities still below nuclear density, the increasing chemical potential of the 
electrons makes it favorable for muons to replace electrons at the top of the Fermi 
distribution. At a little more that twice nuclear density, the increasing nucleon 
Fermi energy makes it favorable for the ~- to replace a neutron and lepton at· the 
top of their respective Fermi distributions. Thereafter other thresholds are reached, 
the A, ~o, 3-, and so on. Under the assumption of equal coupling of nucleon 
and delta to the meson fields, the latter does not appear in the density domain of 
neutron stars. This is because the most favored charge state is the ~ -, because it 
can replace a high momentum neutron and electron, but it has isospin projection 
-3/2, the same sign as that of the dominant species, the neutron, but three times 
the magnitude. It is therefore highly isospin unfavored. The lepton populations 
decrease at densities above the hyperon thresholds, as these populations increase. 
Eventually charge neutrality is achieved, mainly among the baryons themselves. 
As we have mentioned before[lO]' this could effect the electrical conductivity of a 
neutron star, and hence the lifetime of its magnetic field and active life as a pulsar. 

2Current available evidence on the effective mass of nucleon and delta in matter is that the 
difference is close to that in vacuum, and that the coupling to the meson fields is therefore similar. 

9 



In the case that the effective pion mass is assumed to equal its vacuum mass, 
they condense in neutron star matter. The populations in this case are shown in 
Fig. 10. The principle difference caused by pion condensation is that because they 
are bosons, they quench the lepton populations, and by altering the manner in 
which charge neutrality can be achieved, rearrange the hyperon populations. At 
sufficiently high density, the pions themselves are quenched by the hyperons. At' 
moderate density above nuclear density, the pions are almost as populous as protons, 
being the principle agent of charge neutralization in that domain. 

Such large hyperon populations in dense neutron star matter are supported 
by the non-relativistic calculations of Panharipande [20] but not by Bethe and 
Johnson [21]. However since these early, works, it has been realized that when 
such calculations based on two-body interactions are carried to convergence, nuclear 
matter saturates at twice the empirical density [22]. Moreover, even though neutron 
stars have dense interiors, and are the most isospin asymmetric objects known, 
the compression modulus and symmetry energy were not listed among the seven 
constraints on the early work [21]. As we show later, about half the mass of the 
heaviest neutron stars is composed of matter in the lower density domain below 
3po, so that such uncertainties as those mentioned are quite important for neutron 
star structure. Moreover, such uncertainties propagate, by continuity, into the high 
density domain. The ordering of thresholds for the higher baryon states in both 
of the above works [20,21] suggests that the symmetry energy at higher density 
becomes small in comparison with that expected from the coupling of baryons to 
the rho-meson, as was discussed elsewhere [10]. 

The equation pf state of neutron star matter in general equilibrium, represented 
as pressure as a function of energy density, is compared in Fig 11 with that of beta 
stable matter involving only neutrons, protons and leptons, and with pure neutron 
matter. Also the case where pions condense is shown. In all cases the vacuum 
renormalization is included. We note that the causal limit, p = €, is respected 
by these relativistic theories, in contrast to theories of matter described in the 
Schroedinger approach. The equation of state is tabulated in table 3 for the case 
of general equilibrium among nucleons, hyperons and leptons and in table 4, when 
pions additionally condense. In the latter case, we need provide the equation of 
state only in the actual range of densities for which the pions appear (see Fig. 10), 
because it is identical to table 3 below and above this range. 

The equations of star structure need to be integrated to p = O. Therefore 
we supplement the high density equation of state of this work by the appropriate 
equation of state of the lower density domains of matter[23,24], as in our previous 
work[10,1l]. 

5 Neutron star structure 

Given an equation of state, such as those discussed in the previous section, a single 
parameter family of neutron stars is implied by Einstein's general theory of rela-
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Table 3: Equation of state of neutron star matter in general equilibrium correspond-
ing to nuclear matter properties listed in table 1 for RHA, and the corresponding 
coupling constants of table 2. (a number 3.5,+14 means 3.5 X 1014

) 

P € P P € P 
fm-3 g/cm3 dynes/cm2 fm- 3 g/cm3 dynes/cm2 

0.010 1.6763 +13 1.3116 +31 0.600 1.1473 +15 1.6501 +35 
0.015 2.5153 +13 1.9342 +31 0.650. 1.2595 +15 1.9514 +35 
0.020 3.3561 +13 2.5705 +31 0.700 1.3744 +15 2.2829 +35 
0.025 4.1940 +13 3.3924 +31 0.750 1.4922 +15 2.6447 +35 
0.030 5.0339 +13 4.6656 +31 0.800 1.6127 +15 3.0294 +35 
0.035 5.8737 +13 6.5215 +31 0.850 1.7359 +15 3.4294 +35 
0.040 6.7140 +13 9.1837 +31 0.900 1.8617 +15 3.8520 +35 
0.045 7.5549 +13 1.2813 +32 0.950 1.9903 +15 4.3002 +35 
0.050 8.3961 +13 1.7653 +32 1.000 2.1216 +15 4.7750 +35 
0.100 1.6858 +14 1.6817 +33 1.050 2.2556 +15 5.2723 +35 
0.150 2.5468 +14 5.9007 +33 1.100 2.3923 +15 5.7736 +35 
0.200 3.4292 +14 1.3489 +34 1.150 2.5315 +15 6.2929 +35 
0.250 4.3379 +14 2.5102 +34 1.200 2:6733 +15 6.8344 +35 
0.300 5.2773 +14 4.1074 +34 1.250 2.8176 +15 7.3990 +35 
0.350 6.2465 +14 5.6734 +34 1.300 2.9646 +15 7.9875 +35 
0.400 7.2422 +14 7.3746 +34 1.350 3.1140 +15 8.6004 +35 
0.450 . 8.2621 +14 9.2393 +34 ·1.400 3.2661 +15 9.2361 +35 
0.500 9.3067 +14 1.1370 +35 1.450 3.4207 +15 9.8958 +35 
0.550 1.0377 +15 1.3788 +35 1.500 3.5778 +15 1.0581 +36 

tivity. For a static, spherically symmetric star these equations take on the special 
form known as the Oppenheimer-Volkoff equations. The central energy density is 
a suitable parameter for characterizing the family of a particular equation of state. 
A general feature of any such family, is that, for stable structures, the mass is 
a monotonic increasing function of central density, until a maximum mass is at­
tained. For higher central densities, the star is unstable to collapse to a black hole; 
no repulsion between baryons, however strong, is sufficient to evade gravitational 
collapse. The maximum mass, known as the limiting mass, is interesting because 
it must exceed that of the most massive neutron star observed. So far there are 
few mass measurements, because they can be performed on binary systems, and 
accurately only under special circumstances. The most massive measurement is for 
4U0900-40, with M = 1.85:g:~8M0' and the most accurate is for PSR1913+16, with 
M = 1.451 ± 0.007M0 [25]. 

We have calculated the families both with and without vacuum polarization. 
Again the coupling constants are those of table 2, which give identical nuclear 

11 



Table 4: Equation of state of neutron star matter in general equilibrium correspond-
ing to nuclear matter properties listed in table 1 for RHA, in the case that pions 
condense at their vacuurp mass. 

p € P P € P 
fm-3 g/cm3 dynes/cm2 fm-3 g/cm3 dynes/cm2 

0.210 3.6081 +14 1.4416 +34 0.760 1.5115 +15 2.8083 +35 
0.300 5.2583 +14 3.3592 +34 0.800 1.6084 +15 3.1269 +35 
0.350 6.2110 +14 5.0146 +34 0.850 1.7321 +15 3.5362 +35 
0.400 7.1933 +14 7.1138 +34 0.900 1.8585 +15 3.9639 +35 
0.450 8.2076 +14 9.5057 +34 0.960 2.0137 +15 4.5073 +35 
0.500 9.2508 +14 1.1842 +35 1.000 2.1194 +15 4.8885 +35 
0.550 1.0321 +15 1.4388 +35 1.050 2.2539 +15 5.3784 +35 
0.600 1.1418 +15 1.7197 +35 1.100 2.3910 +15 5.8719 +35 
0.650 1.2543 +15 2.0284 +35 1.150 2.5306 +15 6.3777 +35 
0.700 1.3696 +15 2.3652 +35 1.200 2.6727 +15 6.9030 +35 

matter properties in both approximations. The effect on neutron star masses is 
shown in Fig. 12 where the MFA and the RHA are compared; the effect is found 
to be negligible, not because the vacuum polarization energies are negligible, but 
because the coupling constants in both cases give the same five saturation properties 
of nuclear matter. Consequently all of our earlier investigations of neutron star 
structure, and in particular the limits that we found to be imposed on the equation 
of state by neutron star masses, stand unchanged. In the remainder of the paper 
we shall show the results only for the RHA (vacuum polarization included). 

The properties of symmetric matter at saturation do not, of course, yield any in­
formation about the hyperon-meson couplings. We investigate first the uncertainty 
associated with this. Moszkowski[26]' using quark counting arguments, suggests 
that these couplings should be reduced over that of nucleons by 

(18) 

On the other hand from ~vidence on hypernuclei, Walker [27] , suggests that x should 
be smaller, around 0.4. No matter what the coupling strength, even if free, hyper­
ons are expected to appear in neutron star matter[28]. We compare three cases in 
Fig. 13. A modest reduction in limiting mass results from the reduction of x from 
universal coupling (x = 1) to the value suggested by Moszkowski. The value sug­
gested by Walker would lead to an even greater participation of hyperons in dense 
matter, with the first threshold occurring at little over twice nuclear density. This 
is because the vector repulsion is more important than the scalar attraction, and 
the weakening of the coupling constants is therefore favorable to hyperons in the 
dense region. We suspect that this last coupling is probably too drastic an estimate 
of the relative hyperon to nucleon couplings to mesons, and shall use Moszkowski's 
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coupling in the remainder of the paper. This is also the coupling employed for the 
calculation of the equations of state shown in Figs. 8 and II. 

N ext for the three equations of state shown in Fig. 11, we show the corresponding 
star masses in Fig. 14. Protons make their appearance in neutron star matter below 
the central density of the lightest neutron stars, so the pure neutron stars and the 
beta stable stars are shifted in mass with respect to each other, with the latter 
being lighter because of the softer equation of state. The first hyperon threshold 
occurs a little above 2po and is plainly visible both in the equation of state (Fig. 11) 
and in the star mass as a function of central density. At the limiting mass, the 
effect of beta equilibrium is a reduction of mass of about !M0 and hyperons cause 
a further reduction of about the same amount. Here we use the hyperon coupling 
suggested by Moszkowski. As shown above, the effect would be even larger were the 
coupling suggested by Walker used. In either case, the effects are larger the smaller 
the compression modulus of symmetric matter[18]. 

It is sometimes claimed that neutron star masses are not sensitive to the density 
domain of normal nuclei, and are therefore insensitive to nuclear matter properties. 
This is manifestly untrue for the lighter stars, since their central densities are not 
high. It is also not true for stars at the limiting mass. Although the cores of 
neutron stars at the limiting mass are dense, the mass of a star is not dominated 
by the central density. The reasons are two: the star is three dimensional and 
relativistic. The consequence is illustrated in Fig. 15. There we show the fraction 
of mass M(p)/M that is composed of matter at densities greater than p. What 
we find is that about 50 % of the mass is composed of matter at densities less 
than 3po while the central density is Pc = 7.2po, so that the limiting mass star 
is dominated neither by low nor high density. Besides, we have explicitly shown 
elsewhere how the limiting star mass depends on such saturation properties as ]{ 
and m;at. [29,13]. This is so, not only because an appreciable portion of the stars 
mass is contributed by matter near saturation density, as shown in the figure, but 
.also because the equation of state is everywhere specified by its coupling constants, 
which determine alike the saturation properties as well as the high density behavior 
of the equation of state. One may argue with the model of nuclear matter but not 
with the inextricable connection of all domains of the equation of state through the 
coupling constants of theory. A disadvantage of equations of state based purely on 
a parameterization is that such a connection is absent. 

We remark at this point on calculations reported by Serot and Uechi[4], who 
find substantial differences in neutron star masses in the two approximations, RHA 
and MFA, in apparent contradiction to our finding. We have reproduced their 
calculations. The differences that they find are not attributable to the vacuum 
renormalization, but to the fact that th~ compression modulus and the nucleon 
effective mass at saturation are uncontrolled in their calculations. In particular, ]{ 
has the values 470 and 540 MeV in the RHA and MFA respectively, while m* /m at 
saturation is respectively 0.718 and 0.557. Both of these differences in saturation 
properties effect the equation of state at high density in the same sense, as discussed 
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earlier. When the MFA calculation is redone with parameters that give the five 
saturation properties corresponding to their RHA, the two compare very closely for 
the nuclear matter equation of state, as was shown in Fig. 3, and also for neutron 

stars, as shown in Fig. 16. 
The calculations in Fig. 16 were carried out for matter in general equilibrium (ie. 

nucleons, deltas, hyperons and leptons), unlike the calculations of Serot and Uechi, 
who restricted their calculation to pure neutron matter. This is why the limiting 
mass is lower than found by them. A comparison with their pure neutron matter 
is shown in Fig. 17. The effect of equilibrium is smaller in this case as compared to 
Fig. 14, in accord with our previous finding[18]' that the importance of equilibrium 
effects are inverse to the compression modulus. 

Serot and Uechi also find that the effect of the rho meson, which introduces an 
explicit symmetry energy, has negligible effect on neutron star masses'. This at first 
seems paradoxical. In their approximation of pure neutron matter, the contribution 
of the p meson to the energy density is quadratic in the baryon density. It is not the 
case, therefore, that the p meson is unimportant to the energy at high density, and 
the gravitational binding will certainly reflect its contribution. The explanation of 
the paradox is that in their calculation in MFA, the nucleon effective mass is very 
small at saturation (O.557m), and becomes rapidly smaller at higher density (see 
Fig 4. Therefore their equation of state passes quickly to one that is dominated by 
the vector mesons (wand p), in which case, although the baryon number content 
at given energy is different, the equation of state with and without the p meson is 
passing to the limit 

1 [( gw ) 2 1 ( g p ) 2] 2 P~--+--P~€ 
2 mw 4 mp 

(19) 

This is near the limit, p = € independent of the presence or absence of the p meson. 
Therefore numerically we do not disagree with their calculations. We simply point 
out that their conclusion is arrived at as the artifact of an effective mass that is too 
small compared to the empirical value cited in table 1. With the higher effective 
mass shown in table 1, we find an effect on the limiting star mass about four times 
larger than theirs. Even so, this is not a large effect, because after all the theory 
is dominated asymptotically by the vector mesons. Moreover, the effect of the rho 
meson is diluted by the hyperons. The A carries no isospin, and therefore does 
not drive the rho meson. Therefore, we agree that the rho meson does not much 
effect the ~imiting mass, though the reasons are different. It does however effect 
the relative baryon populations in the star, and also the gravitational binding of 
a star of given baryon number. The populations of neutron star matter having 
the saturation properties employed by Serot and Uechi, which have too small a 
symmetry energy, is shown in Fig. 18. The large differences between this case and 
that of Fig. 9, is not due to the difference in J{ but to the weaker symmetry energy 
of Serot and Uechi. 
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6 Other neutron star properties 

It is possible as more observational data is gathered, that the gravitational red shift 
and the mass of a gamma ray burster (neutron star) will become available for the 
same star. If the spectral line between 300 and 500 K e V [30,31] can be unambigu­
ously associated with the gravitational redshift of electron-positron annihilation at 
the star's surface, an interesting additional constraint on the equation of state will 
be imposed. We show the gravitational redshift as a function of neutron star mass, 
and the corresponding star radii in Figs. 19 and 20. The surface red shift is de­
fined as the fractional shift in the wave-length of light that is emitted from the star 
surface, 

Z = ~>. = eA(R)/2 - 1 
>. 

where the radial metric function, >'(r), is given by, 

e-A(r)' 1- 871" r t(r)r2dr 
r 1o 

2M 
1- - for r > R . r ' 

(20) 

(21) 

where M is the star mass, R its radius and t(r) is the radial distribution of energy 
density in the star, all of which are obtained as solutions to the Oppenheimer-Volkoff 
equations. 

In Figs. 21 and 22 we show the gravitational binding and baryon number of 
neutron stars as a function of their mass, and in Fig. 23, the fraction of baryons 
that are strange is shown. This attains a value of 20 % for the star at the limiting 
mass. This star, with central density Pc ~ 7.2po, is dominated by hyperons in 
the central core, as can be inferred from Fig. 9. The loss of binding at the lower 
limit of the range of neutron stars, which occurs for M ~0.069M0 and a central 
density of P ~ 0.46po, and the rapid growth in radius as this limit is approached 
from above, correspond to each other. At the upper range of masses, the rapidly 
declining radius, and increasing redshift, binding and strangeness fraction are all 
precursors of the gravitational collapse to a black hole, as the mass approaches the 
limiting mass. This occurs for a central density Pc ~ 7.2po, and the corresponding 
mass is M ~ 1.8M0 . 

7 Summary 

We evaluated the vacuum polarization effects on the equation of state and neu­
tron stars in the a,w,p theory. These effects are not negligible, although they are 
considerably smaller than found for the chiral sigma model[5,32]. However it was 
found that when the coupling constants are renormalized so as to reproduce the five 
saturation properties of nuclear matter in each case, whether or not renormaliza­
tion is carried out, the equation of state and neutron star properties are virtually 
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identical in the two approximations. On the other hand, when only the saturation 
density and binding are controlled as in ref.[4], the equation of state and neutron 
star pr~perties, computed with and without vacuum polarization diverge at higher 
density. Failure to adequately constrain the equation of state at saturation can 
therefore lead to spurious conclusions in applications to dense matter as in neutron 
stars, as well perhaps in applications to nuclear structure, especially for properties 
that depend on ]{ or m*. 

The question of the sensitivity of neutron star masses to the saturation properties 
of the corresponding nuclear matter was studied. First, as discussed above, whether 
the (7, w, p theory yields the same or different equation of state at high density 
when vacuum polarization effects are incorporated, depends on how tightly the 
saturation properties are controlled. So within this theory, which is the only known 
relativistically covariant field theory of matter that can account for both nuclear 
matter and finite nuclei, the saturation properties and the higher density behavior 
are intimately connected. In fact this has to be true of any comprehensive theory 
of matter, since the coupling constants everywhere specify the equation of state. It 
need not be true of parameterizations of the equation of state, for which there is no 
underlying theory. Second, we explicitly demonstrated, that although the density 
of matter at the center of a neutron star is fairly high, pc ~ 7 Po, the mass of a 
star, even at the limiting mass, is not dominated by dense matter. Instead, fully 
one half is contributed by matter at densities less than three times nuclear density. 
This also establishes a dependance of the limiting star mass on the equation of 
state near saturation. 

We calculated a number of additional neutron star properties, that may become 
tests of the theory as more data on neutron stars becomes available. We reempha­
sized the role of equilibrium in neutron star structure and the equation of state. 
The fraction of baryons that are hyperons in the limiting mass star is about 20 
percent, and hyperons are the dominant baryons in the central core. 

Acknowledgements: This work was supported by the Director, Office of En­
ergy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear 
Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098. 

References 

[1] S. A. Chin, Ann. Phys. (N.Y.) 108 (1977) 301. 

[2] B. D. Serot and J. D. Walecka, The Relativistic Nuclear Many-Body Problem, 
in "Advances in Nuclear Physics", eds. J. W. Negele and E. Vogt, (Plenum 
Press N. Y. ), 1986. 

[3] C. J. Horowitz and B. D. Serot, Nucl. Phys. A464 (1987) 613. 

[4] B. D. Serot and H. Uechi, Ann. Phys. (N. Y.) 179 (1987) 272. 

16 



-v 

[5] N. K. Glendenning, Vacuum Renormalization of the Chiral-Sigma Model and 
the Structure of Neutron Stars, (Preprint, LBL-23818, July 7, 1987), Nucl. 
Phys. (in press). 

[6] J. Kunz, D. Masak and U. Post, Phys Lett. 186B (1987) 124. 

[7] J. Boguta and A. R. Bodmer, Nucl. Phys. A292 (1977) 413. 

[8] S. I. A. Garpman, N. K. Glendenning and Y. J. Karant, Nuc. Phys. A322 
(1979) 382. 

[9] N. K. Glendenning, Phys. Lett. 114B (1982) 392. 

[10] N. K. Glendenning, Astrophys. J. 293 (1985) 470. 

[11] N. K. Glendenning, Z. Phys. A 326 (1987) 57. 

[12] P. Moller, W. D. Myers, W. J. Swiatecki and J. Treiner, Atomic Data and 
Nuclear Data Tables, To be published (1988). 

[13] N. K. Glendenning, Equation of State from Nuclear and Astrophysical Evidence 
(Preprint, LBL-24249, November 1987) Phys. Rev. C (in press). 

[14] M. M. Sharma, W. T. A. Borghols, S. Brandenberg, S. Crona,· A. van der 
Woude and M. N. Harakeh, (Preprint KVI-691, Groningen, 1988, Submitted 
to Phys. Rev. C). 

[15] C. H. Johnson, D. J. Horen and C. Mahaux, Unified Description of the Neutron 
- 208Pb Mean Field Between -20 and +165 MeV from the Dispersion Relation 
Constraint, Phys. Rev. C (in press). 

[16] M. Prakash and T. L. Ainsworth, Phys. Rev. C 36 (1987) 346. 

[17] A. K. Kerman and L. D. Miller, in "Second High Energy Heavy Ion Summer 
Study" (1974) LBL-3675. 

[18] N. K. Glendenning, Z. Phys. A, 327 (1987) 295. 

[19] N. K. Glendenning, P. Reeking and V. Ruck, Ann. Phys. (N. Y.) 149 (1983) 
22. 

[20] V. R. Pandharipande, Nucl. Phys. A178 (1971) 123. 

[21] R. A. Bethe and M. Johnson, Nucl. Phys. A230 (1974) 1974. 

[22] B. D. Day and R. B. Wiringa, Phys. Rev. C 32 (1985) 1057. 

[23] J. W. Negele and D. Vautherin, Nucl. Phys. A178 (1973) 123. 

17 



[24] B. K. Harrison and J. A. Wheeler, cited in B. K. Harrison et al. Gravita­
tion Theory and Gravitational Collapse (University of Chicago Press, Chicago, 
1965). 

[25] J. M. Weisenberg and J. H. Taylor, Phys. Rev. Lett. 52 (1984) 1348; 
J. H. Taylor (private communication, April 1987). 

[26] S. A. Moszkowski, Yhys. Rev. D 9 (1974) 1613. 

[27] G. E. Walker, Nucl. Phys. A450 (1986) 287c. 

[28] V. A. Ambartsumyan and G. S. Saakyan, Soviet Ast. - AJ,4 (1960) 187. 

[29] N. K. Glendenning, Phys. Rev. Lett. 57 (1986) 1120. 

[30] E. P. Mazets, S. V. Golenetski, R. L. Aptekar, Y. A. Guran and V. N. Illyinskii, 
Nature 290 (1981) 378. 

[31] E. P. Liang, Astrophys. J. 304 (1986) 682. 

[32] T. L. Ainsworth, E. Baron, G. E. Brown, J. Cooperstein, M. Prakash, Nucl. 
Phys. A464 (1987) 740. 

18 



300 

-> 250 Q) 

~ -... 
200 

c 
0 
>- 150 ..... 
CO 

..0 
..... 100 
Q) 

0-
Ol 50 c 

"'0 
C 0 

CO 

-50 

Knm = 300 MeV 

nuclear matter 

RHA----

MFA -----------

0 0.5 1 1.5 

Baryon density (fm-3 ) 
XBL 883-816 

19 

Figure 1: Binding energy, 
€/ p - m, of nuclear and pure 
neutron matter as a function 
of density, computed with 
and without vacuum renor­
malization, denoted as RHA 
and MFA respectively. The 
corresponding nuclear matter 
properties are listed in Table 
1. 

Figure 2: For nuclear mat­
ter, the separate ,contribu­
tions of the two-, three- and 
four-body terms and the vac­
uum polarization energies. 
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Figure 3: Binding energy in 
RHA and MFA for the two 
sets of nuclear matter proper­
ties used by Serot and U echi 
(see table 1). Also shown is 
the MFA in the case that the 
five saturation properties are 
the same as for RHA. (the 
dashed curve close to solid 
one) 

. Figure 4: Effective nucleon 
mass as a function of density 
with and without vacuum po­
larization (RHA anc~ MFA re­
spectively), for the three sets 
of nuclear properties of .ta­
ble 1 which can be identified 
through K. 
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Figure 5: Solution for neu­
tron star matter for the 
general case of equilibrium 
among n, p, hyperons and 
leptons. The quantities plot­
ted are the m* = m - go-a, 
vector and rho fields, Wo, P03 

and the two chemical poten­
tials for charge, and baryon 
number, /-le, /-In, respectively. 

Figure 6: Similar to Fig. 5, for 
beta equilibrium among n, p 
and leptons. 
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Figure 7: Similar to Fig. 5, for 
general equilibrium among n, 
p, hyperons, pions and lep­
tons. 

Figure 8: Energy per nu­
cleon for neutron star matter 
with and without vacuum po­
larization (RHA and MFA). 
Also shown is pure neutron 
matter in RHA. Properties 
of the corresponding nuclear 
matter are given in Table 1, 
and the coupling constants in 
Table 2. 
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Figure 9: Composition of sta­
ble, charge-neutral (neutron 
star) matter, represented as a 
fraction of baryon density for 
the various components. This 
calculation includes vacuum 
polarization (RHA), whose 
equation of state is shown in 
Fig. 8. 

Figure 10: Composition of 
stable, charge-neutral (neu­
tron star) matter, represented 
as a fraction of baryon den­
sity for the various compo­
nents, under the assumption 
that the effective mass of pi­
ons is their vacuum mass. 
Computed with vacuum po­
larization. 
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Figure 11: Equation of 
state for neutron star mat­
ter in general equilibrium, 
(n+p+H), beta stable mat­
ter in which hyperons are ig­
nored, (n+p), and pure neu­
tron matter, (n). Calcula­
tions include vacuum polar­
ization. Nuclear density IS 

log( EO gm/cm3
) p;j 14.4. 

Figure 12: Neutron star mass 
as function of central density 
computed with and without 
vacuum polarization (RHA 
and MFA) for neutron star 
matter in generalized equilib­
rium (neutrons, protons, hy­
perons and leptons) . 
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Figure 13: Neutron star mass 
as a function of central den­
sity for three choices of hy­
peron coupling (see Eq.18 ). 
Computed in RHA. 

Figure 14: Neutron star mass 
computed for the four equa­
tions of state shown in Fig. 11 
. This shows how pure neu­
tron matter overestimates the 
star mass. 
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Figure 15: Fraction of mass, 
M(p)jM of the limiting mass 
star that is contained in mat­
ter at density greater than p. 

Figure 16: Neutron star 
masses in RHA and MFA. In 
both cases the coupling con­
stants produce a nuclear mat­
ter equation of state with the 
identical saturation proper­
ties, namely those for Serot 
and Uechi (Table 1). Both 
calculations are carried out 
for stable neutron star mat­
ter. 
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Figure 17: Showing effect in 
RHA of generalized stability 
for the Serot-Uechi nuclear 
properties (too small a sym­
metry energy and too large 
compression modulus 

Figure 18: Populations rela­
tive to total baryon density 
for the nuclear matter proper­
ties of Serot and Uechi, com­
puted in RHA. Principle dif­
ference compared to Fig. 9 
is the week symmetry energy 
here. 
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Figure 19: Gravitational red­
shift as a function of neutron 
star mass. 

Figure 20: Neutron starra­
dius as a function of mass. 
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Figure 21: Gravitational 
binding energy as a function 
of neutron star mass. 

Figure 22: Baryon number of 
neutron stars as a function of 
mass. 
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Figure 23: Fraction of 
baryons that are strange as a 
function of neutron star mas. 
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