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VORTEX METHODS FOR SLIGHTLY VISCOUS THREE DIMENSIONAL FLOW 

Dalia Fishelov 

Department of Mathematics and Lawrence Berkeley Laboratory, 

University of California, Berkeley, California 94720 

Abstract. Vortex methods for slightly viscous three dimensional flow are presented. 

Vortex methods have been used extensively for two dimensional problems, though their 

most efficient extension to three dimensional problems is still under investigation. We chose 

to apply a method that evaluates the vorticity by exactly differentiating an approximate 

velocity field . Numerical results are presented for a flow past a semi-infinite plate, and 

they demonstrate three dimensional features of the flow and transition to turbulence. 

Key words: Vortex Methods, Boundary layers, Turbulent Flow. 

AMS(MOS) Subject Cassifications:76D05, 76DIO, 35QIO. 

1. Introduction 

Vortex methods as suggested by Chorin[ll] were applied to various problems to sim

ulate incompressible flows (see [24], [22] for a review). These grid-free methods represent 

complicated flows by concentrating the computational elements in regions where small 

scales phenomena predominate and few elements elsewhere. In addition, vortex methods 

introduce no artificial viscosity, and therefore they are adequate for solving the slightly 
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viscous N avier Stokes equation. 

Vortex methods have been used extensively in the last fifteen years, especially for 

two dimensional flows. Though three dimensional vortex methods have been considered 

inherently difficult, we represent a scheme that involves no elaborate computations and is 

a natural extension of the two dimensional schemes. We applied this method to a three 

dimensional flow past a semi-infinite plate at high Reynolds number. The velocity far 

away from the plate is assumed to be uniform. If one assumes that the flow is indepen

dent of the spanwise variable, the problem is two-dimensional, otherwise the flow is three 

dimensional. Chorin ([10], [11], [12]) solved the two dimensional problem numerically; he 

used computational elements, called blobs, with smoothed kernel. This kernel is obtained 

by convolving the singular kernel, which connects vorticity and velocity, with a smoothing 

function (called a cutoff function). The latter approximates a delta function in the sense 

that a finite number of its moments are identical to those of a delta function. 

A numerical solution to a three dimensional problem was introduced by Chorin ([10], 

1980) and by Leonard ([22],[23], [24]) using different vortex filamen~ methods. In the 

filament method one approximates the initial velocity and vorticity along vortex lines, 

whose tangents are parallel to the vorticity vector. Since circulation is conserved along 

vortex lines, there is no need to update vorticity. Both authors ([10],[24]) stepped the 

N avier-Stokes equations in time by splitting them to the Euler and the heat equations. 

In [23] Leonard introduces one of the earliest vortex methods to solve the inviscid three

dimensional Euler equations lllimerically. In his computations he was able to simulate the 

time development of spotline disturbances in laminar three-dimensional boundary layer. 

He suggested to split the velocity field into a sum of the velocity at infinity and a perturbed 

one, and to track vortex lines and compute their curvatures. He extended his method to 

the viscous case ([24]) using a core spreading technique, in which the core of the filaments 

was changed every time step to satisfy the heat equation. This scheme was proved to 
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approximate the wrong equations, rather than the Navier-Stokes equations ([16]). 

Chorin suggested a different filament method to solve the three-dimensional problem. 

He approximates vortex lines by segments and then, using the Biot-Savart law, he updates 

the endpoints of the segments for the Euler equation every time step. The heat equation 

is approximated in the statistical sense via a random-walk algorithm. Since Chorin uses 

segments to approximate vortex lines, his algorithm involves no elaborate calculations, 

such as evaluation of curvatures. However it is not highly accurate in space. The purpose 

of this paper is to modify Chorin's scheme to gain higher spatial accuracy. 

Following Beale and Majda ([4],[5]) and Anderson ([1],[2]), we achieve higher spa

tial accuracy by generalizing the two dimensional blobs to three-dimensional ones. Vor

ticity as well as blob locations must be updated every time step. Two versions of the 

three-dimensional blob extension were suggested. Beale and Majda suggested to approxi

mate spatial derivatives with finite differences, while Anderson explicitly differentiates the 

smoothed kernel mentioned above. We chose to apply the method of Anderson, since it 

eliminates one source of error, associated with spatial differentiation. The algorithm and 

its accuracy is then similar to the two-dimensional one. The results shown here are the first 

attempt to apply this scheme numerically. Convergence was proved in [3] and [9] for the 

Euler equations. Applying the convergence proofs to our scheme, we show that for smooth 

cutoff functions second order accuracy in space is gained. Higher order space accuracy can 

be achieved by using cutoff functions, in which more moments agree with those of a delta 

function. We were able to resolve three dimensional features of the flow and transition 

to turbulence. The numerical results are in agreement with experimental results shown 

in [19], which suggest that at high Reynolds numbers there exist a large number of small 

hairpins. 

The paper is organized as follows. In section 2 we represent the fundmental equations, 
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in section 3 the numerical scheme, and in section 4 we describe the boundary conditions. 

In section 5 we show that if one uses a smooth cutoff function, second-order space accuracy 

is assured for the Euler equations. The error from the viscous term is discussed as well. 

We also suggest a new way for treating this term. Section 6 represents numerical results 

and section 7 concludes the paper. 

2. Representation of the Problem 

The flow is described by the N avier Stokes equations, formulated for the vorticity e: 

(2.1) 
div u = 0, 

where e = curl u, u = (u,v,w) is the velocity vector, r = (x,y,z) is the position vector 

and ~ = \72 is the Laplace operator. R = U L/v is the Reynolds number, where U and L 

are typical velocity and length, respectively, and v is the viscosity. 

We will solve the above equations for a flow past a semi-infinite flat plate located at 

z = 0, x ~ 0. Far away from the plate (for z --t 00) there is a uniform flow in the positive 

x direction, i.e., 

u = (Uoo , 0, 0) for z --t 00, t > 0. 

On the plate we impose the no-leak boundary condition u . n = 0, where n is a normal to 

the plate. We also impose the no-slip boundary condition u . s = 0, where s is tangential 

to the plate. Initially u = (Uoo,O,O) at t = 0. 

The Prandtl equations are known to approximate the N avier-Stokes equations near the 

plate, and are used therefore in a thin layer ° ~ z ~ zoo The Navier Stokes equations are 

employed in the region z ~ zoo In the Prandtl equations one assumes that e = (6,6,0), 

i.e.,6 is negligible in comparison to the other components (see e.g. [28]). Thus 
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{
8t6 + (u. \7)6 = R-18;z6 
8t6 + (u. \7)6 = R-18;z6 
div u = 0 

8v 8u 
6 = - 8z' 6 = 8z'u = (u,v,w). 

(2.2) 

(2.3) 

The Prandtl equations admite the two-dimensional steady state solution - the Blasius 

solution. However, the three-dimensional Navier-Stokes equations are unstable at high 

Reynolds numbers(R 2:: 1000), i.e., small perturbations in the Blasius solution may cause 

large perturbations in the solution as time progresses. Once the disturbances in the Blasius 

solution begin to grow, spanwise vortices appear, the solution then depends on the spanwise 

variable y, and there is a transition to turbulence. Theoretical aspects of this instability are 

given in Benney and Lin ([8]) and Benney ([7]); they suggest that the secondary motions 

produced by the interaction of three-dimensional modes with two-dimensional ones can 

produce profiles that are highly unstable. Physical experiments done by Kline et al. ([21]), 

Klebanoff et al. ([20]), and Head and Bandyapodhyay ([19]) showed that secondary motion, 

caused by the production of longitudinal vorticity due to three-dimensional disturbances, 

creates highly unstable profiles leading to turbulent spots. Klebanoff et al.([20]) suggested 

that the weak three-dimensional disturbances may control the nonlinear development of the 

flow and its transition to turbulence. The experiments of Head and Bandyapodhyay ([19]) 

for high Reynolds numbers (R 2:: 1000) indicate the existence of large number of vortex 

pairs or hairpin vortices, extending through at least a substantial part of the boundary

layer thickness; for the most part they are inclined to the wall at a characteristic angle 

of 40° to 50°. At low Reynolds numbers (R ~ 800) the hairpins are much less elongated 

and are better described as horseshoe vortices or vortex loops. Head and Bandyapodhyay 

[19] note that almost all investigators have used experimental techniques that limit the 

observations to relatively low Reynolds numbers, where the structure is markedly different 

from that at high Reynolds numbers; vortex lines tend to appear as low aspect-ratio loops 

rather than extended vortex pairs or hairpins. 
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One of the conclusions from the experim~ntal data in [21] is that the flow is periodic 

in the spanwise direction. We therefore solve (2.1) and (2.2) with the following periodic 

boundary condition. 
u(x, y + q, z) = u(x, y, z) 

e(x, y + q, z) = e(x, y, z). 

As was noted in [10], q was found to be roughly 0.1. 

3. The Numerical Scheme 

We first describe the random-vortex method for the Navier-Stokes equations and then 

the three-dimensional sheet method, called the tile method, for the Prandtl equations. 

Time discretization 

We split the N avier-Stokes equations into the Euler equations and the heat equation. 

The Euler equation (3.1) governs the flow of an inviscid fluid: 

(3.1) 

Note that for a two-dimensional case the last term in the left-hand side of (3.1) vanishes, 

and therefore vorticity is a material property, i.e., ~~ = ~ + (u . V)e = o. However, this 

is not necessarily true in three dimensions. 

The heat equation is 

(3.2) 

(it is also called the diffusion equation). Both (3.1) and (3.2) are easier to analyze than 

the Navier Stokes equations. We apply a Strang-type scheme to step the Navier-Stokes 

equations in time, using (3.1) and (3.2). This is done in the following way: we represent 

both problems above in the form 

6 

io 



For the first one 

A(e) = A1(e) = (e· V)u, 

and for the second 

For both operators we apply the Modified Euler scheme 

Let L(6.t) be the operator which acts on en to yield en+\ i.e., 

L1(6.t),L 2 (6.t) are defined as L(6.t) with A1,A2 replacing A. We finally arrive the fol-

lowing scheme for discretizating (2.1) in time 

According to [15], this scheme is second order accurate in time, is accurate up to order two 

in the time variable, even in the nonlinear case. The same time discretization w~s used 

also in [14]. 

Spatial Discretization 

(a) The Euler equations 

For an incompressible fluid the following relation ((3.7) below) between vorticity and 

velocity holds ([13]). Since div u = 0, there exists a function "p, called a stream function, 

such that 

u=Vx "p, (3.3) 
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and one may choose 7/J such that div 7/J = o. By definition 

e = \l x u, (3.4) 

and therefore, from (3.3), we find that 

(3.5) 

Thus we may determine the velocity from the vorticity by first solving the Poisson equation 

(3.5), and then applying (3.3). 

If G is the fundamental solution of the Laplace equation, then 

(3.6) 

where G(x) = -1/47rlxl, x = (x, y, z), and the integration is taken over the whole three 

dimensional space. Substituting (3.6) in (3.3), we find 

u(x,t) = J K(x - x')e(x', t)dx', (3.7) 

where 

K(x) __ -----:-1 -:-=- (~ ~z !x). 
- 47rlx1 3 

-y X 0 
(3.8) 

Note that (3.7) is a consequence of incompressibility only. 

In vortex methods particle trajectories are followed. Let x( a, t) be the trajectory of a 

particle in of the fluid which is at the point a at t = o. For fixed a the trajectory x( a, t) 

is obtained from the velocity field u as a solution of the ordinary differential equation: 

dx 
dj(a, t) = u(x(a, t), t) , x(a,O) = a. (3.9) 

Combining (3.7) and (3.8), we find 

dx J dt = K(x(a, t) - x'(a, t))e(x', t)dx' 

= J K(x(a,t)-x(a',t))e(x(a',t),t)da'. 
(3.10) 
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The last equality is true, since for an incompressible fluid the Jacobian of the transforma-

tion a( t) --+ x( a, t) is the identity. 

One must supply initial contions to (3.10). We therefore set the initial velocity and 

vorticity on a regular mesh 

and then track these particles in Lagrangian coordinates. To discretize the equations, we 

set e = 2: j ej, where the ej are functions of small support. Let K, j be the intensity of 

the j - th particle, i.e., K, j = J ejdxdydz. Then we obtain the following set of ordinary 

differential equations for the approximate locations of the particles Xi 

d- n 

~i (t) = lli(t) = L K.s(Xi(t) - Xj(t))K;j(t) 
j=l (3.11) 

X- ·(0) - a' z - z, 

where </> : R3 --+ R, </>.s = b</>(x/8) is the cutoff function, and K.s = K * </>.s is a smoothed 

kernel. K.s replaces the kernel K (defined in (3.8)), which is singular at x = o. Here 

K;j(t),Xj(t) approximate K,j(t) and Xi(t) respectively, the exact intensity and particle loca-

tions for the Euler equations. 

We may write K.s in the following way: 

K.s(x) = K(x)f.s(x), (3.12) 

where f.s(x) = bf(x/8). If f(x) is chosen to be radially symmetric, the relation between 

</> and f is </>(r) = f'(r)/47rr2 (see [6]). We specify f(x) = fer) below 
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This function is continuous with its first derivative at r = 1. Substituting (3.8) and (3.13) 

in (3.12) yields 

for Ixl > 8, 

and 

1 (0 -z 
K8 = - z 0 47rlx1 383 

-y X 

(3.14) 

For a three-dimensional Euler Equation vorticity is not a material quantity, and there-

fore we must track vorticity as well as blob locations. We use the equation 

Therefore, the evolution of vorticity along particle trajectories is described by the equations 

de 
dt(x(a,t),t) = (e(x(a,t),t). V'x)u(x(a,t),t), (3.15) 

where V' x is the gradient with respect to the Euleran coordinates. Applying (3.11), we 

find that the following equality holds for the approximatedvelocity u 

n 

V'xii(x,t) = L V'xK 8(X - Xj(t))~j(t), 
j=1 

where V' xK8 is derived analytically in Euleran coordinates using the definition of K 8 (3.15). 

Substitution of the last equality in (3.14) yields 

(3.16) 

This can be written in the form 

dd~i = t(~i A(Xi - Xj)~j(t) + ~r B(Xi - Xj)~j{t) + ~iC(Xi - Xj)~j(t)), 
)=1 

(3.17) 
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h - (-Z -y -Z) d were "'i = "'i' "'i ,"'i ,an 

Or more explicitly 

(3.18) 

for Ixl < 8, and 

(3.19) 

for Ixl > 8. To conclude, the semi-discrete three-dimensional scheme that we used for the 

Euler equations is: 

d- n 

~i (t) = Ui(t) = ?= KO(Xi(t) - Xj(t»K-j(t), 
z=l 

d~i = t(K-i . \7X)KO(Xi(t) - Xj(t»K-j(t), 
j=l 

(3.20) 

Xi(O) = ai, K-i(O) = "'~' 

where Ko is defined in (3.14), and the second eqution is given in more detail in (3.17)

(3.19). Here "'? are initial values of the intensities of the computational elements on the 

initial grid. 

11 



(b) The Heat Equation 

The second equation to solve is the heat equation 

Following Chorin ([10] and [12]) we use the random-walk method to step the heat equation 

in time, i.e., we move the blobs according to· 

where 'T}(.6..t) = ('T}1(.6..t),'T}2(.6..t),'T}a(.6..t)) and 'T}1,'T}2,'T}a are Gaussian random variables with 

mean zero and variance 2.6..t/ R, chosen independently of each other. 

Note that we use the trapezoidal rule in (3.11) and (3.16) in order to approximate 

spatial integrals. The error due to this approximation depends on the derivatives of the 

integrants, and in particular on the vorticity, i.e., if the vorticity grows so does the error. 

Therefore, if we find that the vorticity grows while using blobs for the Navier-Stokes 

equations, we replace a blob which carries a high enough vorticity with several blobs. The 

new blobs are placed at the same computational point, and share the same total vorticity 

of the original blob. Since the random walk is used to simulate the heat equation, these 

blobs will likely find themselves in different locations at the next time step. If one uses 

filaments, growth in vorticity causes stretching of the filaments. In this case one should 

split the vortex line into several short ones, and then use some interpolation between 

the endpoints of the old filament to keep a desired accuracy. This interpolation is an 

additional source of error, but it can be avoided if one adopts the three dimensional vortex 

blob method descibed above. 

Prandtl Equations 

The Prandtl Equations (2.2) used in a thin layer 0 ~ Z ~ Zo above the plate, were 

solved numerically by the tile method, which is the three-dimensional extention of the 
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sheet method (see [1o],[12]). This was done to evaluate the boundary conditions on the 

plate, since it was found in [12],[10], that blobs did not accurately represrnt the velocity 

field near the boundary. We describe the tile method for a region ° ::; z ::; 00, noting that 

the boundary conditions at z = Zo will be viewed as those at infinity, seen from the plate. 

In the tile method the computational elements are rectangles, parallel to the plate, 

that represent a jump in the velocity compo~ents u, v. Thus (6,6) is the intensity of the 

tile, where 6 = Uabove - Ubelow, 6 = Vabove - Vbelow. Consider a collection of N tiles Ti , 

with intensities ((6)i' (6)i), i = 1, ... , N and centers Xi = (Xi, Yi, Zi). The motions of these 

tiles are described by (2.3), i.e. 

and if one integrates these equations with respect to z, one has 

U(X, y, z, t) = uoo(x, y, t) -100 

6(x, y, z')dz' (3.21 ) 

V(x,y,z,t) = voo(x,y,t) + 100 

6(x,y,z')dz', (3.22) 

where uoo(x,y,t),voo(x,y,t) are the velocity components u,v as z -+ 00. By incompress-

ibility and the boundary condition w( X, y, 0, t) = 0, we have 

w(x,y,z,t) = -81; 1z 

u(x,y,z')dz' - 8y 1z 

v(x,y,dz')dz'. (3.23) 

Equations (3.21)-(3.23) provides a relation betwwen the vorticity the velocity, which re

places the one given by (3.7) for the interior region. 

The above equations can be approximated by 

Ui = U(Xi,Yi,zi,t) = Uoo(Xi,Yi,t) -1/2(6)i - 'L(6)jdjfj, 
j 

Vi = V(Xi' Yi, Zi, t) = Voo(Xi, Yi, t) + 1/2(6)i + 'L(6)jdjfj, 
j 
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where dj = 1 - IXi - xjl/hI, and fj = 1 - IYi - Yjl/h2 are smoothing functions, the 

summations in (2.24-2.25) are over all Tj for which 0 < dj :::; 1, 0:::; fj :::; 1, and Zj ~ Zj. 

Similarly, from (3.23) 

where 

and 

I± = Uoo(Xi ±hI/2,Yi,t)Zi - ~±(6)jdjlizj, 

J± = Voo(Xi,Yi ± h2/2,t)Zi + ~~(6)jdjftzj, 

The sums ~~, ~~ are over all Tj, such that 0 :::; fj :::; 1, and 0 :::; dj :::; 1, 0:::; dj :::; 1 

respectively. Similarly the sums ~~, ~~ are over all Ti, such that 0 :::; d j :::; 1, and 

o :::; ft :::; 1, 0:::; r; :::; 1 respectively. This is a thin vertical layer, and therefore the 

number of operations to calculate the velocity fields for the tile method is D(N). 

For simplicity, we describe the motion of a tile for a first order time stepping Euler 

scheme 

where 17 is a Gaussian random variable with mean 0 and variance 2!:!J.t/ R. Note that 'f} 

appears only in the Z component, since the Prandtl equation (2.2) assumes that vorticity 

diffuses in the Z direction only. 
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4. Boundary Conditions 

We first specify the boundary conditions for the region z 2: Zo, in which the Navier

Stokes equations are used. At infinity the flow is uniform and is in the x direction, i.e., 

u(x, y, z, t) ~ (U=, 0, 0) as z ~ 00. Boundary conditions also have to be imposed at 

z = Zo (see [28], pp. 111), and they link the two computational regions. If a tile finds itself 

in the region z 2: Zo after taking a time step, it turns into a blob. Similarly, if a blob enters 

the thin layer in which the Prandtl equations are employed, it becomes a tile. We assign 

the same circulation to a tile which turns into a blob and vise versa. Thus '" i = eihl h2, 

where "'i is the intensity of the blob, and ei is the intensity of the tile. In addition, we 

require continuity of u and v at z = Zo. 

The boundary conditions for the Prandtl equations are: 

(a) u(x,y,zo,t) = uoo(x,y,t), and v(x,y,zo,t) = v=(x,y,t), where u=(x,y,t) and 

v=(x,y,t) are calculated by the blobs, located at z 2: Zo, 

(b) u· n = 0 at z = 0, where n is normal to the plate. This is done by the method of 

images, i.e., for each blob or tile at (x,y,z), carrying vorticity e(x,y,z) we add an 

imaginary blob or tile at (x,y,z) with vorticity -e(x,y,z). 

(c) u· s = 0 at z = 0, where s is tangential to the plate z = o. This is done by creating 

tiles at the boundary, assigning vorticity to each of them (see [10]). In more details: 

we calculate Uo = u(x,y,O) = u=(x,y,t)- fo= 6dz and Vo = v(x,y,O) = v=(x,y,t)+ 

fo= 6dz, and replace the integrals fooo 6dz and fo= 6dz by the sums 2:j:1 (6)jdj fj 

and 2:j:1(6)jdj/j respectively. The only tiles which contribute to these sums are 

those located in the region {x,yllx - xl:::; hI, IY - yl :::; h2 }. If (uo,vo) =I- (0,0), new 

tiles are created at (x,y,O) with equal intensity e = (6,6,0), such that v'ei + ei :::; 

emax, where emax is a chosen small parameter. As a result the ~ew values of Uo and 
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Vo , denoted by Uo and vo, satisfy 

( 4.1) 

Periodic boundary conditions were imposed in the following way. For each blob or tile 

located at (x,y,z) two other imaginary blobs or tiles were added at (x,y ± q,z). To save 

computational time, further blobs or tiles was not added, as their contribution to the flow 

quantities became smaller the further they are from the computational domain. 

We restrict ourselves to the domain 0 :::; x :::; X o, rather than 0 :::; x :::; 00. Thus we 

remove any blob or tile whose x - component location exceeds X o. This is reasonable, 

since blobs and tiles located far away from the region of interest contribute little to the 

overall flow. In addition, this procedure economize the cost of computation, for otherwise 

a large number of computational elements became bunched near x = X o. 

5. Convergence 

The first convergence proof for vortex methods was given by RaId ([18]) for the two

dimensional Euler's equations. Convergence for the three-dimensional version of vortex 

method that was suggesteq. by Beale and Majda, for which spatial derivatives are ap

proximated by finite differences, was given in [4],[5],[2]. For our scheme, in which explicit 

differentiation is applied to approximate spatial derivatives, convergence was first proved 

by Beale[3], and then, using a different approach, by Cottet[9]. We quote the theorem 

appearing in [9], since it applies to a slightly more general case, i.e., the restriction d 2: 4, 

where d appears in (5.3)-(5.4) below, is removed in [9]. 

Let us first define for p E [1,00) and m 2: 0 the Soboiev spaces 

wm,p = {j,8Q j E LP(Rn ), lal :::; m} 
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and by II . II m,p the norm 

and for p =' 00 the usual modification. 

Theorem: Convergence in 3-D ([9]). 

Assume that the initial viscosity eo is smooth enough and that the following conditions 

holds for the cutoff function ¢>: 

[ ¢>(x)dx = 1, iR3 

and that there exist constants C and f3 > 1 such that 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

Then there exists a time T and a constant C, depending only on eo, such that for hand 8 

small enough 

Ilit - ullo,p ::; C8d, p E (3/2,00], t E [0, T]. 

We now apply this theorem to our scheme. Using the relation ¢>(r) 

derived in [6], we find that 

{ 
0 r>l 

¢>(r) = i!(1- r2) r<1. 
It is easy to verify that ¢>( r) satisfies (5.2) with d = 2. In addition, if one chooses the cutoff 

function ¢> to be infinitely smooth, second order accuracy is achieved. We would now like 

view the importance of condition (5.1), in case that the latter is satisfied for finite m only. 
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The error in vortex methods is usually estimated by bounding the part caused by the 

regularization of the singular kernel separately, and from the one caused by the discretiza

tion of the equations. We therefore write the error in the following form: 

e = ii - u = (uo - u) + (ii - uo) = e r + ed, 

where e r is the regularization error, caused by replacing the singular kernel K by a 

smoothed one K o, and ed is the discretization error. 

It was proved in [3],[9, Lemma 5.5] that 

for some time t E [0, r], provided that (5.2)-(5.4) hold. In addition, as was shown in [9], 

(5.6) 

in case that (5.1) holds for every m > O. A generalization of this theorem for finite m was 

given in [27, pp. 315] for a two-dimensional problem. We have to assume, in addition, that 

or <P E W m - 1,OO(R2) for m ~ 2 and has compact support. Then for all arbitrarily small 

s > 0 there exists a constant C 8, such that 

provided that (5.5) is replaced by c2"\5Cl' ::; h ::; c1bf3 , with 0: ~ fJ > 1. Therefore, by 

choosing 0:, fJ appropriately one can balance the regularization error with the discretization 

error. Similar results were proven in [2] for the three dimensional vortex methods suggested 
.. 

by Beale and Majda. In our case <p E Wl,OO(R3) and has compact support, and if one 

could apply similar results to a three-dimensional problem, the discretization error would 
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have been O(h2 /8). Therefore, for Ii= Oh2 / 3 , the error is at most of order h 4 / 3 • This can 

be improved by choosing an infinitely smooth cutoff function. 

We turn to the accuracy of the random walk used to model viscousity. It is well known 

that in two dimensions the random walk approximates the heat equation, though without 

high accuracy. More accurate error estimates were given in [17] for a one dimensional heat 

equation, using a random-walk method with creation of vorticity, i.e., 

p(llu-u llL2 <0 (ilt ~)) >1-~ II U IIL2 - R t + Vii - k2 ' 

where 

( 
1 ). ( 1 + y'llR) OR = 1 + R 1 + , 

J1 + 1/R 
N in the number of tiles, k is an arbitrary positive number, ilt is the time step, and P 

denotes probability. Note that OR is a decreasing function of R. 

To increase the accuracy for the heat equation, we intend to study the following 

possibility. The second order space derivatives appearing in the heat equation may be 

approximated by explicitly differentiating the smoothed kernel. The latter is done in a 

similar way to that suggested in [2] for the Euler equations. What we do is substitute 

(3.7) (a consequence of incompressibility only), into the heat equation, replace K by the 

smoothed kernel K6, and then have 

This will eliminate the error caused by the statistical process, and will yield a scheme, 

which is similar in nature to that applied to the Euler equations . 

6. Numerical Results 

We have to specify the following parameters for our numerical scheme. The initial grid, 

with spacing hI, h2, the time step ilt, the maximum allowed intensity of a newly-created 
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tile, ~maz, are parameters to be chosen. In addition, the cutoff 0, the thickness ofthe layer 

for which the Prandtl equations are used, Zo, and the physical domain 0 ~ x ~ X o, in 

which we keep track of the motion of the computational elements, must be specified. We 

set Xo = 1.5 (as in [10]). We picked Zo = CV2f::t.t/ R with C = 1.5, V2f::t.t/ R being 

the standard deviation of the random walk. We made this choice for Zo to ensure that 

a tile, located in the layer 0 < z S Zo, will have a high probability of moving out of the 

tile layer in a few time steps, and will then turn into a blob. We picked the Reynolds 

number R = 104 , since this was high enough to show the three dimensional effects and 

the transition to turbulence, as was also observed in the experiments in [19]. Following 

Chorin [10] we picked hd7r as the cut-off 8. This is in agreement with the condition in 

the convergence theorem in section 5, that the cut-off ° should be larger than the typical 

distance between neighboring particles, the latter being of order 1/ Vii in our problem. 

After fixing X o, Zo, and choosing 0, we had to pick the initial spacing hI, h2, emaz, 

and the time step f::t.t. To do this, we first ran the two-dimensional problem, in which the 

independent variables are x, z, and whose steady-state solution is analytically known to be 

the Blasius solution. We found out, as was also pointed out in [29], that hI and emaz have 

primary importance, since they control the number of newly created sheets. The latter 

determines the number of blobs, and therefore the number of computational elements. If 

larger numbers of computational elements are used, the error in both interior and exterior 

regions decreases. We tried the following choices for hI, f::t.t and emaz: 

(a) hI = f::t.t = 0.20,~maz = 0.1 

(b) hI = f::t.t = 0.15, emaz = 0.075 

(c) hI = f::t.t = 0.10,emaz = 0.050. 

For these sets of parameters we checked the drag, given by the following formula (see 
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e.g. [30],[10]) 

D(xo) = 100 

u(xo,Z)(Uoo - u(xo,z))dz, 
o . 

(6.1) 

and compared it with the Blasius drag Do = 0.6641 JxoiR. The integral in equation (6.1) 

was discretized by the trapezoidal rule 

m 

Dcom = LCiU(xo,i.6.z)(Uoo - u(xo,i.6.z).6.z, 
i=O 

where Co = Cm = 0.5, and Ci = 1, for 1 ~ j ~ m - 1. Here m = zmaxl.6.z, where Zmax is 

the maximal z, for which computational points where found in the region Ix - x 0 I ~ hl' 

and .6.z was chosen to be 0.004. The relative error in the drag I (D( x 0) - Do (xo)) I Do (xo) I 

for Xo = 1 is given in Table 1. In addition, in order to measure the intensity of the noise 

from the statistical process, we averaged the computed drag every ten iterations, i.e., 

9 

Davg = 1/10 L Dcom(t - n.6.t) (6.2) 
n=O 

and calculated the variance of the instantaneous drag from the averaged one. The variance 

of the drag is given by the following formula: 

V(D) = E(ID - (E(D)12), (6.3) 

where E(X) is the expected value of a random variable X. We approximated the expected 

values E(X) in (6.3) by X avg , where the average is computed as in (6.2). One would 

like to reduce the statistical noise, and therefore to decrease the variance by choosing the 

appropriate parameters. The results for the drag and variance in the two-dimensional 

problem are given in Table 1. The total computational time on a VAX-VMS computer is 

given in this table as well. 
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grid relative drag error variance No. of sheets No. of blobs Time 

(a) 0.52 0.061 95 76 3 min. 
(b) 0.21 0.024 139 151 13 min. 
(c) 0.14 0.016 344 415 127 min. 

Table 1 

One can learn from Table 1 that the finer is the grid, the smaller the relative error in 

the drag, and the smaller the variance. In addition, much more time is required for grid 

(c) than for grid (b). To make our computations affordable for a longer time in the three

dimensional problem, we chose the three-dimensional grid (b). We also had to specify h 2 

for three-dimensional problems. We chose h2 = q/4 for grid (a), h2 = q/6 for grid (b), and 

h2 = q/8 for grid (c). 

We examined the instability of the Blasius solution for high Reynolds numbers in 

a three-dimensional problem. This was done as follows (see [10]). For 0 ~ t ~ T = 1 

we approximated the Prandtl Equations, whose steady-state is the Blasius solution, using 

only tiles. In the latter vorticity is a material property and therefore instability can not 

occur. Note that the numerical solution converges to the Blasius solution as t -+ 00 and 

hI, h2 -+ 0, where hI, h2 is the size of the initial grid. We used the results of this scheme 

at T = 1 to be the initial conditions for the N avier Stokes equations. Instability for the 

Navier Stokes equations is shown, i.e., small perturbations in the Blasius solution cause 

large changes in the solution. We perturbed the Blasius solution by choosing the following 

initial condition at infinity: 

for ~q < y < tq 
elsewhere, 

where A = 10-3 • After T = 1 we used the scheme described in sections 3 and 4, in which 

tiles and blobs are present, and therefore instability might occur. 

We display all the results at t = 22.5. Velocity and vorticity are shown in the following 

two-dimensional planes: (a) y = tq, which describes the flow quantities as a function of x 
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and Z; (b) at the two planes x = 1,1.4, which shows the velocity and vorticity as a function 

of y and z. Notice that as x increases the more apparent are the three-dimensional features, 

i.e., the dependence on y and the transition to turbulence. This happens since the local 

Reynolds number R2: = U x / L increases for larger x. 

In Figures 1-3 we display velocit~ components computed at a regular mesh. Figure 1 

shows the x,Z components of the velocity aty = q/2. In Figures 2-3 the y,z components 

of the velocity at x = 1,1.4 respectively are displayed. These figures, as well as other 

figures represented for fixed x, show the three-dimensional features of the flow, i.e., the 

dependence on y. This is in accordance with results appearing in [25] and [26]; in the 

latter numerical results were performed for a periodic problem in both x and y. They 

indicate the three dimensional character of secondary instability, which is consistent with 

the idea that turbulence is intrinsically three dimensional. Vorticity is represented in the 

Lagrangian computational grid points in Figures 4-6. In Figure 4 the x, z components of 

vorticity at y = q/2 is displayed. One can see that for larger x the intensity of the vorticity 

increases, which is one of the features of transition to turbulence, i.e., vorticity is no longer 

preserved in the Lagrangian system as it is in a two-dimensional problem. 

In Figures 5-6 we show the y, z components of vorticity at x = 1,1.4 respectively. 

Note that for larger x the vorticity is no longer directed in one direction. This is in 

agreement with the results in [19], which indicate the appearance of small hairpins as the 

flow develops in the streamwise direction. Figures 7 through 9 show contours of the z

component of vorticity. These figures indicate that for larger x small scales phenomena 

appear. Figures 10 through-12 show contours of the y-component of vorticity, in which 

the results are similar to those of the z-component of vorticity. 

Table 2 gives the running times on a CRAY X-MP for the different three grids, and 

for different time levels. 
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grid t=3 t=6 t=9 t=12 t=22.5 

(a) 0.5 min. 1 min 2 min. 3 min. 6 min. 
(b) 7 min. 25 min. 43 min. 1 h. 7 min. 2 h. 13 min. 
(c) 2 h. 30 min. 

Table 2: Total computational time to reach t=3,6,9,12,22.5 

Tables 3 and 4 show the number of tiles and blobs, respectively, for various times 

(t=3,6,9,12,22.5) and grids (a,b,c). 

grid t=3 t=6 t=9 t=12 t=22.5 

(a) 263 323 344 360 348 
(b) 1080 962 1000 926 1098 
(c) 4548 

Table 3: Number of tiles 

grid t=3 t=6 t=9 t=12 t=22.5 

(a) 205 213 187 183 222 
(b) 1051 915 830 947 987 
(c) 6948 

Table 4: Number of blobs 

We found out that our numerical results agree with the experimental results of [19] in 

a way that both results indicate the existence of small hairpins at high Reynolds numbers. 

Note that in other experiments horseshoe vortices rather than small hairpins were found. 

As was explained in [19], the reason for the different results was that the experimental 

techniques of other investigators limited the results to low Reynolds numbers. 
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7. Conclusions 

The three-dimensional version of vortex methods used here were capable of resolving 

the three-dimensionality of the flow and the transition to turbulence. Away from the palte, 

we used a three-dimensional blob method, which is a natural extension of two-dimensional 

vortex methods. These methods can have high spatial accuracy, and they involve no 

elaborate calculation. Near the plate, the tile method approximates a thin boundary layer, 

and is a straightforward extension of the two dimensional sheet method. Therefore the 

two-dimensional and the three-dimensional problems can be similarly treated numerically. 
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