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·Abstract 

Deep-level def~cts in semiconductors have strongly localized 

wavefunctions, which sample near-neighbor potentials around the ·defect 

center. These defects th~refore can coupling strongly to the local lattice, 

leading to many interesting phenomena, including large lattice relaxation. One 

method to probe the defect-lattice coupling is by applying stress or pressure. 

The application of stress or pressure to a semiconductor sample containing 

deep-level defects alters the lattice spacings around the defects and 

consequently alters their energy position in the bandgap. The magnitude of the 

energy shift under stress, as well as the dependence of the energy shift on 

uniaxial stress direction, can provide information concerning the structure of the 

deep level and its symmetry. 

Uniaxial stress applied in conjunction with deep level transient 

spectroscopy is a relatively new technique for probing the symmetry of deep

level defects. Uniaxial stress lowers the symmetry of the crystal and can break 

the degeneracy of defects, leading to energy splittings. The effect of these 

splittings on the thermal emission of carriers from defects is discussed in detail. 

The limit of energy resolution for this thermal ionization technique are also 

investigated. 

Pressure and uniaxial stress can also affect the band-edges of the 

bandgap. Using iron-acceptor p~irs in silicon as stress-insensitive reference 

levels, the effects of uniaxial stress on the valence-band top is studied. It is 

found that the effective masses of the valence band must be redefined as a 

function of stress to be consistent with the splitting of the top of the valence 
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band. The new effective masses roughly conserve the center of gravity of the 

stress-split valence band. 

Substitutional transition-metal defects in semiconductors have the 

interesting property that the conduction band and valence band contribute 

nearly equally to their electronic structure. These defects therefore are only 
. ~ ~ ' , ~ 

sensitive to the gross features of the band structure and are not strongly 
' ' 

influenced by the details .of the band extrema near th~ edges of .the bandgap. 
_ + ~ ·' I ' I t. ' 

For this reason, these defects can be used as reference levels from which to 
' ' 

measure changes. in band structure. Specifically, they can be used to measure 

the band-edge hydrostatic deformation potentials. These deformation 
; ~ . ' ~· 

potentials haye important consequences for carrier mobility (through acoustic 

deformation-potential scattering) and breathing-mode lattice relaxation around 

defects. 
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Chapter 1: Introduction to Deep-Level Defects in 

Semiconductors 

A cubic centimeter of a semiconductor crystal contains on the order of 

1 Q23 strongly interacting particles. The complexity of this extreme N-body 

problem is reduced considerably by the periodicity of the crystal lattice. Bloch's 

theorem, based on translational invariance of the crystal potential, places a 

strong restriction on the form of the electron eigenfunctions, reducing them to a 

superposition of plane waves with discrete wavevectors. These electrons are 

scattered by the periodic potential of the crystal ions. Gaps in the energy 

spectrum of the crystal eigenvalues open at wavevectors that satisfy the Bragg 

condition. In the case of semiconductors and insulators, the Fermi level falls 

within one of the gaps. This gap is consequently called the fundamental 

bandgap. The exponential dependence of the intrinsic carrier concentrations 

on the bandgap is the classic signature of the semiconductor's electrical 

properties. 

When crystal atoms are removed, or displaced, or when impurities are 

incorporated into the crystal, the translational invariance of the crystal is 

destroyed and the simplification of Bloch's theorem is lost. The energies of the 

defect electron eigenstates are not excluded from the bandgap, and localized 

electron states can result. The task of understanding defect structure is a 

quantum mechanical many-body problem. Simplifications can still be made for 

some types of defects; if the defect potential is not locally very strong, and if it 

has a long-range coulombic field, then the defect electronic structure is 
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dominated by the band structure of the otherwise periodic crystal. This is the 

case of the shallow donor and acceptor levels. The electronic structure of these 

defects can be derived by considering the defect potential as a weak 

perturbation of the perfect crystal states. The defect wavefunctions are mostly 

composed of the Bloch states at the edges of the bandgap, and the energies 

are pinned to the respective band edges. 

The structures of defects that have strong local potentials, the so-called 

"deep level" defects, have been muc_h more difficult to understand. The strength 

. of the local potential P-revents the use of perturbation theory, and the energies of 

these defects are typically not pinned. to any easily recognizable band edge. 

The localization of the defect wavefunctions can also cause strong local 

coupling of the defect energy to the lattice, leading to many interesting but 

complicated phenomena related to large lattice relaxations around the defects. 

Furthermore, because of the many possible strong local potentials that can be 

produced, the properties of deep-level defects vary widely. These aspects of 

. deep-level defects make them interesting but difficult defects to study. Only in 

the past decade has strong experimental and theoretical progress been made 

in attempts to elucidate the structure of these crystal imperfections. The 

purpose of this thesis work is to use uniaxial and hydrostatic stress as a probe 

of deep-level defect structure. 

\ . 
I. Classification, of Deep-Level Defects and Defect Coupling to the 

Lattice . 

A. Classifica~ion of Deep-Level Defects 

The many varieties of deep-level defects can be roughly classified into 

three basic categories. There is some overlap between the categories, and 
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some defects resist classification altogether, but the categories cover most of 

the common deep levels and give an insight into similarities and differences 

among them. The three defect classes are: effective-mass-like defects, deep 

substitutional defects, and vacancy-related defects. 

Effective-mass-like defects are defects that have long-range coulombic 

potentials with central-cell potentials of weak or moderate strength. These 

defects are typically the double and triple donors and acceptors. The excited p

states are effective-mass states with hydrogenic energy spacings. The ground 

state, on the other hand, may experience a strong central-cell correction. The 

levels that tend to be effective-mass-like are the first ionization stages of these 

defects. These levels are usually not far removed in energy from the band 

edges and have pressure derivatives that are similar to the pressure derivative 

of the band edges. The ground state of the second or third ionization level of 

these defects can be deep in the bandgap and lose its special relationship to a 

specific band edge. 

Deep substitutional defects result when a host atom is replaced by an 

impurity leading to a strongly localized defect wavefunction. Examples of this 

class are transition-metal atoms or isoelectronic defects such as GaP:N. 

Considering only the transition-metal defects, the dominant characteristic of 

these defects is the partially filled d-orbital. The high occupancy of the d-shell 

frequently leads to high degeneracy (with accompanying Jahn-Teller distortion), 

and multiple charge states in the bandgap. The transition-metal defects can be 

classified into two subcategories depending on the site of the transition-metal 

atom: substitutional or interstitial. In the substitutional configuration, the 

transition-metal atom replaces a host atom and bonds strongly with the nearest 

neighbors. In the interstitial configuration, the transition-metal atom occupies 

the tetrahedral interstitial site in the anti-bonding directions from the nearest 
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neighbors. The difference in the bonding properties of these two configurations 

leads to different defect structure and properties. 

Vacancy-related defects occur when one or more host atoms are 

displaced and their sites remain vacant. These defects are characterized by the 

presence of dangling bonds, either reconstructed or unreconstructed. The 

dangling bonds occur at sites that are next-nearest neighbors. Therefore the 

interactions between dangling bonds tend to be rather weak. This is especially 

true for the Coulomb energy. The small Coulomb energy allows several 

different charge states to occur in the·bandgap. The vacancy is the canonical 

deep-level defect: It is the limiting case for the other two categories mentioned 

above. The presence of deep substitutional multiple donor or acceptor atoms, 

as well as substitutional transition metals within the vacancy do not strongly 

alter the dangling bonds. For this reason, the categories mentioned ·above are 

rather "soft" and involve considerable overlap in the classification of deep-level 

defects. 

A final category includes the complexes that are formed by associates of 

individual defects from these three basic classes. These complexes can have a 

combination of properties derived from the individual constituents. Because of 

the unlimited possibilities of combin~tion, this category is in fact the largest, and 

includes the least understood defects. Such scientifically and technologically 

important defects as the so-called EL2 defect in GaAs or the DX center in • 

AIGaAs may fall under this category. 

B. Defect-Lattice Interaction 

The electronic energy of a defect is a function of the lattice coordinates of 

the neighboring atoms. As these lattice sites are perturbed (either through 

phonons or applied stress) the defect energy will change. In addition to 
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external perturbations of the local lattice sites, the defect itself can affect the 

positions of the neighboring atoms. The change in defect electronic energy per 

unit change in the lattice spacing has the units of an energy gradient and 

defines the force acting on the atoms. These atoms will respond to the force, 

relaxing until the elastic energy counterbalances the electronic energy. This is 

the phenomenon of lattice relaxation: Lattice relaxation, especially when the 

relaxation is particularly large, can lead to many interesting and complicated 

dynamical properties including persistent photoconductivity and metastability. 

Defects with these properties, such as EL2 in GaAs and the DX center in 

AIGaAs, can have great technological and scientific importance. Therefore 

electron-lattice coupling is a key aspect of the structure of deep-level defects. 

Stress is one particularly direct probe of electron-lattice coupling, and is the 

primary motivation behind this thesis. Various aspects of lattice coupling will be 

discussed next. 

1. Defect Energy as a Function of Lattice Coordinate 

The total defect Hamiltonian can be written as a combination of 

electronic and ionic contributions to kinetic and potential energy 

H = T e +TN + Vee + VNN + VeN ' 

where Te and TN are the electronic and ionic kinetic energy terms, and Vee and 

VNN are the electron-electron and ion-ion interactions. The last term VeN is the 

electron-lattice interaction. The adiabatic (or Born-Oppenheimer) 

approximation simplifies this Hamiltonian by neglecting the kinetic energy TN of 

the ions compared to the electronic energy. For a review, see Stoneham[1975]. 
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·this approximation is justified by·considering the ratio of electronic to nuclear 

kinetic energy; which varies as 

Te I TN= (m I M )112, 

where M is the mass of the nucleus and m is the electron mass. Usually M is 

many orders of mag11itude larger than m and _the neglect of the nuclear energy 

is justified. However in defects that contain hydrogen, the nuclear mass is 

sufficiently small so that the Born-Oppenheimer approximation breaks down 

[Haller, 1980; Muro, 1986; Kahn, 1986]. For defects that do obey the Born

Oppenheimer approximation, the coordinates of the nuclei Q are considered to 

be classical variables (since there is no dependence on the ionic momenta). 

These coordinates may be varied continuously during the intermediate step of 

solving the electronic quantum-mechanical problem for the electronic energy 

E9 (Q) and the electronic wavefunction q,(r,Q) where the Q are parameters. The 

minimum of the electronic energy occurs at the equilibrium lattice coordinates 

Q0. The energy can be expanded about the minimum to give 

Ee(Q) = Ee(Qo) + 1/2 La ka (Oa- Oao)2 , 

where the summation is over different lattice normal modes and the ka are the 

local force constants for the different modes. The ionic motion is that of an 

harmonic oscillator and is found by solving [TN + E9 (Q)] 'I'(Q) = EN(Q), where 

Ee(Q) is the potential experienced by the ion, 'I'(Q) is the wavefunction·for the 

ionic motion, and EN(Q) are the eigenstates of an harmonic oscillatoL 

When a defect is present, a term linear in the lattice displacement is 

introduced and the energy is expressed as 

6 
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E =La [ 1/2 ka (Oa- Oao)2 + Aa(Oa- Oao)] + Ee(Co), 

where the first term is the elastic energy and the second term is the defect-lattice 

interaction. Aa is the defect-lattice coupling parameter for mode a.. For non

zero lattice-coupling the defect energy can be lowered by relaxing the lattice 

coordinates from Oo. Two types of lattice relaxation can occur: symmetry

preserving, and symmetry-breaking relaxation. When the lattice relaxation 

preserves the symmetry of the defect, the lattice relaxation is called a breathing

mode or isotropic relaxation. All defects can couple isotropically to the lattice. 

Defects that have electronic degeneracy can in addition couple to symmetry

breaking lattice distortions. The symmetry-breaking distortions remove the 

defect degeneracy and lower the energy of one of the degenerate manifold 

states. Spontaneous symmetry-breaking is called in this case the Jahn-Teller 

effect and has been studied in detail for molecules and crystal defects 

[Engelman, 1972; Stoneham, 1975]. 

A defect can couple to several different lattice modes, which can lead to 

complicated distortions of the defect. To understand the properties of a defect, 

these modes are often lumped into a single configuration coordinate with a 

single effective coupling parameter. This coupling parameter will in general be 

different, depending on whether the defect is occupied by a carrier or not. The 

total energy of a defect in the occupied and unoccupied states can be 

presented graphically in a configuration-coordinate diagram. A typical 

configuration-coordinate diagram for a deep level is shown in Fig.(1.1 ). The 

parabolas are the energy surfaces of the defect for the case of the defect 

ionized with the charge carrier in the conduction band, and the defect occupied 

\ 
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by the carrier. The lattice coordinate relaxes upon carrier emission by the 

amount 

Orelax = ( Aunocc - Aocc ) I k 

with the corresponding relaxation energy 

Ere lax = -1 12 ( Aunocc - Aocc )2 I k , 

where Aunocc and Aocc are the unoccupied and occupied lattice coupling 

parameters and k is the local force constant. 

Three transitions are depicted in Fig. 1 .1 by the arrows. Transition 1 is an 

optical ionization transition in which a carrier is remc;>Ved to the conduction 

band, while transition 2 is a photoluminescence transition in which the carrier is 

captured radiatively from the band into the defect. Both are "sudden" transitions 

in what concerns the lattice coordinate. These optical transitions are drawn as 

vertical lines on the configuration-coordinate diagram because they occur too 

quickly for the lattice coordinate to respond. This is the Franck-Condon 

principle. The difference between the absorbed energy in transition 1 and the 

emitted energy in transition 2 is called the Franck-Condon shift, which is 

WFC = ( Aunocc- Aocc )2 I k = 2 Erelax . 

The Franck-Condon shift is related to the normal-mode vibration frequency ro 

through the expression 

WFC = 2 S flro, 
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:where Sis the Huang-Rhys factor [Huang,1950] and is a measure of the 

strength of the lattice relaxation. The third transition in Fig. 1.1 is a thermal 

transition; it is an adiabatic transition with respect to ~he lattice degrees of 

freedom. The energy difference in a thermal transition is equal to the difference 

in equilibrium free energies between the occupied and unoccupied defect. 

Thermal-transition energies therefore involve total energies: elastic and 

electronic energies. Optical transitions involve only electronic energies. The 

·comparison between optical and thermal ionization energies can therefore yield 

information concerning the lattice relaxation around' a defect. 

2. Large Lattice Relaxation 

When lattice relaxation is very large, several interesting effects can occur. 

These effects include multiphonon capture and metastability. Multiphonon 

capture occurs during non-radiative recombination ~f carriers with defects 

[Huang,1950; Henry,1977; Stoneham,1981]. The capt~re occurs when the 

energy surfaces qf the occupied and unoccupied states intersect at a certain 

value of the configuration coordinate. One of the signatures of multi phonon 

capture is the exponential dependence of the capture cross section on an 

energy barrier Es , 

cr = croo exp[-Es I ks T] + cro , 

where croo is the high-temperature multiphonon capture cross section and cr0 is 

the capture cross section of a competitive capture process that short-circuits the 

multi phonon capture process. For low temperatures ( ks T << flro), the cross 
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section terds to a0 , which varies typically between 1 o-17 cm2 to 1 o-21 cm2 for 

defects in GaAs [Henry, 1977]. 

Thermal emission rates depend on the capture cross section and the trap 

energy Er through the equation derived from detailed balance (see Chapter II) 

e = 1/'t = c a exp[ -Er I ks T ] , 

where c depends on bulk and defect properties. In the temperature range 

where a depends exponentially on E8 this becomes 

1 /'t = c aoo exp[ - ( Er + Es ) I ks T ] . 

The thermal activation energy is therefore the sum of the trap energy and the 

barrier to capture. This point must be considered when comparing thermal 

emission energies (as obtained from deep level transient spectroscopy, or 

OL TS) with thermal equilibrium energies (as obtained from Hall effect 

measurements). In stress measurements Er and E8 are both affected by the 

stress. Care must therefore be taken when interpreting energy shifts [Li, 1987] 

measured by stressed OL TS. 

Perhaps the most interesting result of large lattice relaxation is defect 

metastability. Two teGhnologically important deep levels are EL2 in GaAs and 

the OX center in AIGaAs. Both of these defects exhibit metastable properties 

that have major impacts on devices that contain them. The electrical activity of 

EL2 (which is the compensating deep level responsible for semi-insulating 

GaAs) can be photo-quenched at 77 K into a metastable state [Bois, 1977; 

Vincent 1982]. The OX center in AIGaAs leads to persistent photoconductivity 

(PPC) in which a photo-ionized OX defect has a large barrier to recapture of a11 
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electron [Lang, 1979]. Th-ese metastable properties are suspected to be the 

result of large lattice relaxations in which the configuration-coordinate relaxes to 

such an extent in the metastable state that large energy barriers must be 

overcome to regain the stable state. 

3. Defect Stress Derivatives and Local Force Constants 

Lattice relaxation involves two quantities: the defect-lattice coupling 

parameter, and the local force constant. To fully understand lattice relaxation 

each of these quantities must be measured separately. The application of 

stress alters the lattice coordinates around a defect, thus altering the defect 

energy, the latter measured experimentally as a shift in a transition energy. If 

one can know how the lattice sites around the defect are perturbed by an . 

applied stress, then the measured stress derivative of the· defect energy can be 

related directly to the defect-lattice coupling. However, local force constants are 

not equal to the force constants in the bulk, and therefore stress derivatives (fike 

the relaxation energies) involve both the defect-lattice coupling and the local 

force constant.·· Although the defect-lattice coupling and the local force 

constants cannot be determined separately from stress experiments, lattice 

relaxation and stress derivatives are directly related, and lattice relaxation 

around defects are measurable [Samara, 1986, 1987a, 1987b]. A major 

complication arises in the case of isotropic relaxation because of the 

participation of the" band edge in the measured pressure derivative of the defect. 

The hydrostaticband-edge deformation potential was recently determined for 

several semiconductors [Nolte, 1987c, 1987e]. This work and its application to 

the calculation of isotropic lattice relaxation is described in Chapters V and VI of 

this thesis. 

12 
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It is still desirable to know the defect-lattice coupling and the local force 

constants separately, and attention has to be paid to how these two quantities 

affect the structure of the defect and how they can be either measured 

experimentally or predicted theoretically. The magnitudes of defect-lattice 

coupling paramet~rs spa,n a wide range for the case of de~p leve.ls. Two deep

level defects observed with DLTS in ·si, the thermal donor [Benton, 1984; Henry, 

1984] and the oxygen-vacancy [Meese, 1983 ], have axial stress derivatives of 

nearly 100 meV/GPa. The oxygen-vacancy defect observed by EPA has 

comparable stress derivatives [Watkins, 1961], while other vacancy-related 

defects have smaller, but still significant stress derivatives [Watkins, 1965, 1975]. 

Transition-metal defects, on the other hand,have axial stress derivatives 

[West, 1980; Nolte, 1987a] on the order of 5 meV/GPa. There is likewise a wide 

range of hydrostatic stress derivatives among deep-level defects. Defects in 

silicon all have relatively small isotropic stress derivatives [Nolte, 1987e], while 

some defects in GaAs (such as EL2 and EL6) couple very strongly to isotropic 

lattice modes [Nolte, 1987d]. Yet a large number of defects in GaAs (including 

all the transition-metal defects and many radiation-induced defects) have small 

(or vanishing) isotropic lattice coupling. 

There have been strong theoretical advances in the prediction of axial 

lattice couplings for some specific defects, most notably the vacancy in silicon 

[Baraff, 1980] as well as vacancy-related complexes [DeLeo, 1984]. But these 

approaches are heavily computational and cannot easily be generalized tQ 

other defect classes. The theoretical predictipn of isotropic defect-lattice 

coupling has been almost non-existent in view of the difficulty in defining 

absolute defect pressure derivatives. 

It is interesting to compare experimentally predicted Jahn-Teller energies 

(derived from experimental stress derivatives) with theoretical values. This has 

13 
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been done for the vacancy in Si in a review article by Watkins [see . 

Pantelides,1985]. -He finds that the experimental values are larger than the 

theoretical val.ues [Baraff,1980] by_a factor of. t~ree, m~ch of this difference 

being attributed to the local force constants around the vacancy. It is ~herefore 

clear that loc;:al forc!3 constants play an appreciabl~ .rol~ ,in the.qomparison of .. 

experiment with theory. B~cause of this importance, considerable theoretical 

[Baraff,1980; Del~o.1984] work has been performed on the force cons1ants 

around specific defects with substantial disagreement in th~ results, The local 

force constant remains an open problem; ·. ·' 

'· 

II. Transition-Metal Impurities in Semiconductors . 
Transition-metal defects are perhaps the best understood deep-level 

. . . 

defects in semiconductors. This state of understanding has come about for 
I ' 

several reasons: these defects are point defects that do not dramatically alter 
t I. ' . ' • -

the local bonding structure of the semiconductor; the availability of different 
I' ' ' ' , ..... -

chemical species that differ only slightly from their immediate neighbors in the . . 
periodic table has allowed systematic trends to be understood; their 

i ' 

wavefunctions are localized, which make them prime candidates Jor the use of 
' . 

Green's function calculations; and finally they can be introduced easily into 

semiconductor crystals either at growth or by diffusion. The ease of introduction 
I ' • ' ~ ~ ~ •, ' i 

of transition metals into semiconductors, though a boon for defect identification, 
. ' 

is a serious technological problem because these impurities are the primary 
j 

I ... t . 

defects intrdduced during high-temperature processing of integrated circuits. 
• • ' I I ' . . ., 

The technological importance of these defects has therefore provided an 

additional impetus for their detailed study. Because the structure of transition-
. . 

metal defects is so well understood, they are ideal test cases in which to study 
. . ·- ~- . 

·' 
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the effects of stress and pressure. Most of the experimental work of this thesis is 

undertaken on transition-metal impurities and complexes, and important 

conclusions of this thesis are based on the electronic structure of transition

metal defects. Therefore the present chapter includes a survey of the 

experimental and theoretical state of knowledge of transition-metal defects. 

A. Incorporation into the Crystal 

Transition-metal atoms have high diffusivities and high solubilities in both 

the group IV and group 111-V semiconductors. In silicon all the tr~nsition metals 

diffuse interstitially and t~nd to remain in interstitial sites in their electrically 

active form. Exceptions to this rule include the noble and near-noble transition

metal elements such as Cu, Au, Pt, and Pd. These defects occur substit~tionally 

in some of their electrically active forms. Among the 3d transition metals the 

diffusivities and solubilities increase as the atomic number Z increases from Ti 

to Ni [Weber, 1983]. As an example of typical diffusivities and solubilities, the 

results for Fe in silicon are 

D(Fei) = 1.3x1 o-3 exp[ -0.68 eV I k8 T] cm21sec 

S(Fei) = 6. 7x1 022 exp[ 7.9] exp[ -3.0 eV I ks T ]. cm-3 

In 111-V semiconductors transition-metal impurity atoms occupy the 

substitutional cqtion site. The diffusivities and solubilities in the 111-V compounds 

have not been studied in as much detqil as they have in silicon. However, the 

same trends have been observ~d. namely, incr~asing Z increases both the 

diffusivity and the solubility. The solubility limit in the 111-V semiconductors, 

around 1017 cm-3 , is rather low compared to silicon. 

~5 



Transition-metal impurities can easily pair with other impurities or defects 
• ·~o' 

f',• ,- '-'1 

in the crystal. This is seen dramatically in the case of the iron-acceptor pairs in 

silicon:· The total concentration of iron in silicon increases with increasing 

acceptor concentration. Furthermore, after iron diffusion, most of the electrically 

active iron occurs in the iron-acceptor pairs. At room temperature, interstitial 

iron is mobile enough so that it either forms the iron-acceptor pair, or it 

precipitates with other interstitial iron and loses its electrical activity. Iron

acceptor pairs exhibit interesting metastable properties, in which two 

configurations can be transformed among themselves [Chantre,1985]. This 

property has been attributed to the small barriers to iron diffusion, although the 

chemical trends in the activation energies as the acceptor species is changed 

have yet to be explained. In Chapter IV of this thesis the results of stressed 

DL TS on the iron-acceptor pairs are described and sever~! possibilities for the 

defect structure are discussed. 

B. Experimental Observation of Defect States 

1. Electron Paramagnetic Resonance 

Transition-metal defects in Si were first studied extensively using 

electron paramagnetic resonance (EPR) ~Y Ludwig and Woodbury [1962]. 

Transition-metal impurities are especially well suited for study by EPR because 

the d-shell is only partially occupied and therefore _has unpaired spins
7 

c In 

addition, several charge states are possible, providing a rich spectrum of 

signals for even a single transition-metal impurity. The d-orbitals are split by the 

tetrahedral crystal field into a doublet of the so-called e symmetry and a triplet of 

the so-called t2 symmetry. The occupancy of these states are determined from 

the d-shell occupancy of the free atom. In the case of interstitials, the neutral d-
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shell occupancy is dn+2, where n is the neutral free atom d ... orbital occupancy, 

and the two outer s electrons are promoted to the d-sheiL For substitutional 

species, the neutral d-shell occupancy is dn+2-v, where vis the valence of the 

atom that the transition metal replaces. The substitutional transition metal uses 

v electrons to satisfy the local sp3 bonqs. The valence in Si is v=4. In GaAs, the 

valence V=3 for the Ga-site. In ionic notation, the neutral charge state in GaAs is 

denoted by TM3+, which signifies the use of three electrons in the local bonds. 

This notation is merely used as a convenience and does not accurately reflect 

the chemical oxidation state of the transition-metal atom. 

Ludwig and Woodbury were able to explain the observed g-tensors with 

a simple one-electron model of the d-orbitals. The orbitals are filled according 

to Hund's rule of high spin. In the case of substitutional transition metals, the e

state is below the t2 state. The e state is filled with two electrons, and the t2 

state filled with three electrons before the e state is occupied by electrons with 

the reverse spin. This indicates that the pairing energy is larger than the crystal

field splitting. 

EPR probes the local magnetic structure of a specific charge state. 

Through spin-orbit interaction the g-tensor reflects the defect site symmetry. 

Information on the site symmetry of a defect is important for the development of 

a microscopic model of the defect. The hyperfine interaction giv~s additional 

information on local lattice sites and this aspect has been exploited in the 

technique of electron nuclear double resonance (ENDOR) in which the 

displacements of successive shells of atoms around the defect can be mapped 

out. The effects of stress [Watkins, 1961, 1965] or optical absorption can be 

included with EPR to .give even more information concerning the electron-lattice 

coupling parameter or the energy level position of the defect in the bandgap. 

Because of the high sensitivity of EPR to local symmetry, it is an excellent 
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~ . . 
technique· for probing lattice relaxations, especially Jahn~Tellerdistortion 

[Stauss, 1977; Kreos, 1977]. Despite this strength, it is often difficult to match 

EPR signals with a corresponding energy level in the bandgap. One means of 

providing a correlation between a defect observed by EPR with a defect level 

observed in the bandgap is to look for similar behavior under perturbation, such 

as stress. i This was particularly successful for the oxygen~vacancy, observed in 

stressed DL TS and stressed EPR [Watkins, 1.961 ;. Meese, 1983]: 

2. Optical Techniques ~ 

Optical absorption and photoluminescence studies of transition metals 

have·been successful in the 111-V semiconductors. This success can·be . 

attributed to the. relatively large bandgaps (> 1 eV) compared to the relatively 

small crystal-field splitting (,.1 eV). This situation makes it possible to observe 

intracenter absorption and luminescence at photon energies below the 

bandgap energy. The intracenter transitions occur between states split by the 

crystal field. These techniques therefore provide the most accurate' 

experimental values for the magnitude of cr}tstal-field splittings. ·The high 

energy resolution of optical techniques furthermore allows· the detection of small 

splittings ·of initial: or final states, which yield information on site symmetry and 

Jahn-Teller relaxations. Optical techniques are also easily used in conjunction 

with uniaxial stress [Hayes, 1979; Hayes, 1980; .west, 1980] and hydrostatic · · 

stress [Devaud, 1984] to yield stress couplings. 

Photo-ionization transitions·give values ,for the en·ergy level ora defect, 

but the ionization threshold for deep levels tends to be broad and·the 

absorption weak. Electrical characterization is better suited for measuring 

defect energy levels. This is also true for measuring stress effects. 'In Chapter 
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V, the effects of stress on ionization energies of several transition metals in 

GaAs are discussed. 

3. Energy Levels 

Several review$ give experimental energy-level positions for many 

transition-metal impurities in semiconductors. (For a review of transition metals 

in 111-V compounds see Clerjaud[1985] and for Si see Chen[1980] and 

Weber[1983]). Two notations in common use describe the charge state 

involved in a defect energy level: ionic notation and charge-state notation. In 

charge-state notation, the total electronic charge of the defect is considered. A 

donor level involves a neutral to positive charge-state transition, denoted as 

(0/+). An acceptor level is denoted as (-/0). The terms "donor" or "acceptor" for 

transition metals are anachronistic and refer only to the sign of the charge states 

involved. 

It is interesting to compare the chemical trends of the 3d transition metals 

in GaAs with the simple model of Ludwig and Woodbury. This is done in 

Fig.(1.2) for the single acceptor levels of 3d transition metal impurities in GaAs. 

These energy levels involve the TM3+fTM2+ charge states. The d-shell 

occupancy for the TM2+ charge state is presented at the bottom of the figure for 

comparison. Several interesting features are immediately apparent. First, the 

electronic states are deeper for higher Z. This leads to a decrease of the energy 

level in the bandgap as one goes from Ti to Ni. Second, the effect of the crystal

field splitting ~ct is seen as one finishes filling the estates at Ti and Co and 

begin filling the t2 states at V and Ni. Third, the exchange interaction J affects 

the energy difference between Mn and Fe as the d-shell is half filled with one 

spin, and a reverse spin is added to thee state. The Coulomb energy, U, not 

shown in the figure, determines the energy differences between different charge 
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Fig. 1.2 SL;Jbstitutiqnal 3d transition metal single acceptor levels in GaAs. The 

figure at the bottom shows the d-shell occupancy for the TM2+ 
I " ' .lr, 

ionization states. 
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states of a given impurity. This Coulomb energy is U ""0.2 eV, which is very 

close to the Coulomb energy of the vacancy [Pi coli, 1984]. 

The comparison between transition metals and the vacancy is not 

accidental. Many of the properties of the transition metals can be understood 

from the viewpolnt of an impurity occupying a vacancy. This interpretation in 

fact plays a fundamental role in defining a transition-metal-based reference 

level, which is discussed in section Ill of this chapter, and which has been 

extended to apply to stress properties as well [Nolte, 1987c]. These new 

aspects are discussed in length in Chapter V. 

C. Theoretical Predictions 

1. Cluster Calculations 

The first realistic theoretical studies of the properties of transition metals 

in semiconductors were performed by cluster calculations. The accuracy of 

cluster calculations is limited by the difficulty in defining the bandgap. However, 

these calculations give reasonable chemical trends and they do include the 

interaction of the impurity states with the bulk states of the host atoms. This 

interaction is largely ignored in tight-binding calculations. Calculations of 

substitutional transition metals have been performed for 3d metals in Si 

[Hemstreet, 1977] and GaAs [Hemstreet, 1980] and Sd metals in Si [Alves, 1986). 

The interstitial species has been calculated in Si for 3d transition metals 

·[Deleo, 1981; Deleo, 1982]. 

One of the important results of these calculations is the identification of 

the degree of mixing between the impurity atom states and the host states. Fully 

occupied states that are highly localized on the transition-metal atom and hav~ 

strong atomic-like character arE! buried deep in the valence band. States of t2 
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and e symmetry at the top of the valence band interact with these deep atomic

like states and are repelled into the bandgap. These bandgap states are 

partially occupied and produce the electrically active energy l_evels observed 

experi_mentally. The recognition that the gap states are host-lik~. while the 
:,•t. 

atomic:.like lev~ls ar~ buried deep in the valencE;l band.was an important 

conceptual breakthrough that ~ighlighted the importance of the band structure 

in determi[lif1g the structure of deep-level defects; Furthermore, for 

substitutional transition metals, the defect states in the gap may take on much of 
I . ' 

; 

the character of the vacancy. This lea~s to the vacan_cy model. of Watkins[1983] 

in whichthe structure of substitutional transition metals could be understood 

largely as a vacancy· occupied by a transition-metal il'!lpurity that .did not strongly 

alter the dangling bonds of the vacancy. 

The weak interaction of the transition-metal states with the vacancy has 

been expla_ined using inter-electron Co~lomb energy in the context of tight

bin~ing theory [Picoli,1984]. The Coulomb energy change caused by a~ding 

an electron to the transition-metal d-shell is roughly 8 eV, while the Coulomb 
t T • 0 0 • i ~ 

energy change caused by adding an electron to a vacancy dangling bond is 

only 0.2 eV. It is therefore much more energetically favorable to add or refT1ove . . ' . . ~ , 

electrons to ar)d from the dangling bonds than from the d-orbitals. There i,s 

mixing between the transition-metal orbitals and the dangling ~onds of the 

vacancy, but the defect eigenstates are mostly vacancy-like. The vacaf1CY 

Coulomq energy of 0.2 eV is reflected in the energy difference be~vyeen 

successive ionization stages of a single impurity and expl~ins t.he occurrence of 
.·, 

s~veral different charge states in. the .bandgap .. 

.. . 
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2. Green's Function Method 

While the results of cluster calculations provide important physical insight 

into the electronic struct1..,1re of transition-metal defects, the results are not highly 

accurate. The cluster calculations also have difficulty in defining the role that 

the conduction band plays in the defect str~cture. These deficiencies are mostly 

overcome in Green's function calculations. One of the n1ain ~trengths of the 

Green's function approach is the automatic inclusion of the correct band 

structure of the host crystal. This overcomes the difficulty that the cluster 

approximations have in defining the bandgap and gives an accurate 

representation of the conduction band. The Green's function theory of 3d 

transition metals in semiconductors has been carried out in d~tail by Zunger et 

al.[1982, 1983, 1986]. The results are qualitatively similar to many of the 

properties of the cluster calculation, although more accurate. In one aspect the 

Green's function approach is superior; this is the identification of the role of the 

conduction band in the transition-metal impurity structure. 

The results of the detailed Green's function calculations can be 

summarized in terms of a three-level model that describes the gross features of 

the electronic structure of substitutional transition metals. The three levels in 

this model are: 1) the energy of the maximiJm density of states in the upper 

valence band; 2) the energy of the maximum density of states in the lowest 

conduction band; and 3) th~ transition-metal d-electron energy. In this model 

three linear combinations of these states result: a bonding combination, an 

antibonding, and a non-bonding combination. The bondinQ and antibonding 

combinations are called crystal-field resonances (CFR's) in the valence and 

conduction bands respectively. The nonbonding states are the gap states and 

are called dangling-bond hybrids (DBH's). Th~ transition-metal gap states have 

strong dangling-bond character, ~imilar to the vacancy. This is the same 
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conclusion arrived at by tight-binding and cluster calculations, with an important 

exception. For high or low Z, the transition-metal level does not.pin to the 

vacancy level, as assumed by earlier models. 

-' The three-level modeL plays a central role in. the explanation of the. 

universal pressure derivative of substitutional transition metals, discussed in 

Chapter V ... The connection between the three-level model and the band 

deformation potentials is made in Chapter VI. 

Ill. Hydrost~tic Deformation Potentials and Heterojunction Band , 

Offsets 

- The band structure of a solid is altered by perturbation. The perturbation 

can include changes in composition, as for the tertiary compound AlxGP-1-xAs, or 

changes in lattice constant, as under pressure._ Because the bandgap of a 

semiconductor plays the central role in determining .the electronic properties of 

the material, it is· especially important to know how a perturbation will affect the 

edges of the bandgap. ( 

A. Band-Edge- Deformation ·Potentials 

Stress, pressure, or thermal vibrations can alter the· lattice spacings of the 

semiconductor host atoms. When- the symmetry of the lattice is reduced, 

degenerate band states may split. These splittings are easy to measure;' 

experimentally. For._this-reason, the shear and. normal deformation potentials of 

the states at the edge .of the bandgap have been we.ll characterized. For 

symmetry-preserving .compression or expansion, there are. no splittings, only 

shifts. It has been easy to measure the difference in the shifts of the edges of· 

the bandgap induced by pressure, but the hydrostatic shifts of the individual 

band edges had eluded direct measurement. Th_e hydrostatic deformation 
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potentials of the band edge contribute to several important phenomena 

including deformation-potential scattering of carriers. 

1. Deformation-Potential Scattering of Carriers 

The theory of deformation-potential scattering was developed by 

Bardeen and Shockley[1950]. In the limit of long-wavelength acoustic phonons, 

the phonon displacement field can be replaced by a slowly modulated strain 

tensor. In this limit, the effect of the phonons on the bafld structure and the 

effects of stress are equivalent. Therefore, the change in band energy 

measured by applied stress is proportional to the scattering potential 

experienced by an electron in the presence of a phonon field. 

The perturbation potential is 

0€ = :Sett ( V' . or ) ' 

where :Sett is the effective acoustic deformation potenti?l and (V · or ) is the 

strain induced by the phonons. The perturbation Hamiltonian for scattering an 

electron from the electron state with k-vector k to k-vector k' is 

where c1 is the longitudinal elastic constant and V is the volume of a un!t cell of 

the crystal. Inserting the scattering Hamiltonian into the Golden Rule leads to a 

mean electron-phonon scattering 'ime. The expression for acoustic-phonC>n

limited mobility becomes 
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2-12it e fl c 1 · .312 

ll= T 
.512 k3/2- 2 · m B .::.eff 

The effective deformation potential is· a combination of normal, shear and 

hydrostatic deformation potentials. Fo·; 'the ·case of the valence band this is .. 
J ' 

· -2 2 :( C I) [· - 2 1 2] 
.::. eff = a + Ct b +_ 2d .. 

While the normal and shear deformation.potentials band dare well known, the 

hydrostatic component, a, must be fitted from mobility data .. Such fitting has 

lead to a wide scatter of values that vary by more than a factor of 2 for'the 

valence band of GaAs. For the technology of high-purity and high-mobility field

effect transistors it is important to know. the hydrostatic deformation potential in 

order to place limits on acoustic-phonon-limited mobility. With the lack of 

experimental evidence for the hydrostatic deformation potenti-al, the values 

have been estimated theoretically. 

' "-

2. Theories of Hydrostatic Deformation Potentials 

Early theories of hydrostatic deformation potentials were based on the 

dielectric theory of the chemical bond [Phillips, 1970; Camphausen,. 1971) and 

on the linear combination of atomic orbitals·(LCAO) [Harrison, ·1980). These 

theories yield good values for differences, but are not reliable for absolute 

deformation potentials. It was sometimes assumed, without justification, that the 

conduction-band deformation potential contributed the majority to the bandgap 

deformation potential. Though this assumption was unfounded, it was in fact 

valid [Van de Walle, 1987a). More realistic calculations of absolute deformation 
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potentials involved band structure calculations using orthogonalized plane 

waves (OPW) [Collins, 1970] and linearized muffin-tin orbitals (LMTO) [Verges, 

1982] methods, but the deformation potential values obtained were too large to 

be consistent with mobility experiments. 

A breakthrough in the theory of hydrostatic deformation potentials came 

in 1987 from two independent sources. Van de Walle and Martin[1987b] 

succeeded in performing first-principles, self-consistent pseudopotential 

calculations of band-edge hydrostatic deformation potentials. Simultaneow~ly, 

Cardona[1987] argued that the earlier LMTO deformation potentials must be 

screened by the dielectric constant of the material before they can be used to 

calculate mobility. These two theoretical approaches yielded similar results and 

were consistent with mobility experiments. In Chapter V, these values will be 

shown to be consistent with the universal pressure derivative of transition-metal 

impurities. 

B. Heterojunction Band-Edge Line-Up 

A problem similar to finding the band-edge displacements under stress is 

the problem of finding the band-edge offset at a heterojunction interface. When 

two dissimilar semiconductors are in contact along a defect-free interface, the 

conduction-band and valence-band edges will not in general line up across the 

interface. The difference between the band edges is called the bano offset or 

band-edge discontinuity. This offset occurs over only a few lattice constants, 

compared to the thousand angstrom range of band-bending caused by the 

equilibrium of the Ferrni level. The band-edge offset is therefore an intrinsic 

property of the semiconductor interface and is not related to doping or f31ectrical 

properties. 
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The band offset is the fundamental component of bandgap engineering 

[Capasso, 1986,1987]. It defines the potential step experienced by charge 

carriers at the interface. This potential step can be used for confinement of 

carriers to two, one or even zero dimensions. It can also accelerate or 

decelerate hot carriers that travel perpendicular to the interface. The band 

offset need not be discontinuous, but varies continuously in compositionally 

graded semiconducting devices. For these reasons it is of fundamental 

importance to know the values of band offsets between the many different 

semiconductors. However the band-edge offset has been difficult to define both 

theoretically and experimentally. Experimental difficulties involve space-charge 

effects, lattice mismatch, interface defects and other characteristics of the·· 

interface that are difficult to control. The theoretical approaches have 

concentrated on the problem of defining·a suitable reference point.from which to 

measure the change in the band structure as the material is altered at the 

interface. 

1 . The Neutrality Level · 

Early attempts at defining band offsets analyzed the problem from the. 

aspect of surface polarization at the interface. A dipole layer at the interface 

would adjust the line-up across the interface [Tejedor,1978;Fiores,1979] .. The 

theory involved the analysis of the two specific materials in contact. The 

calculation of a surface dipole was generalized by Tersoff so that a reference 

energy could be defined for each material which would. line up across an 

interface. This reference energy was called the charge neutrality level. The 

neutrality level was originally defined by the energy for which the contribution of 

the conduction band to the crystal Green's function equaled the contribution of 

the valence band [Tersoff,1984a,1984b]. The computation of the Green's 
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function could be replaced by a simple rule of thumb that located the neutrality 

level at the midpoint of the indirect gap [Tersoff, 1985]. 

2. Transition-Metal Line-Up across Heterojunction Interfaces 

An interesting feature of the energy levels of transition-metal impurities is 

the fact that the relative energy spacings are the same in all isovalent 

semiconductors [Ledebo, 1982; Caldas, 1984]. The source of the invariance was 

not well understood, though there was the suggestion that the transition-metal 

levels tracked with the vacuum level. Langer[1985] recently proposed that 

transition-metal levels could be used to predict heterojunction band offsets. 

This conjecture was tested by comparison with experimental offset data from 

AIGaAs-GaAs heterojunctions, and the agreement was favorable. This specific 

heterojunction is well behaved because the materials are lattice matched. Data 

from other heterojunctions are not as consistent and the transition-metal-based 

reference level was only tested for this one heterojunction system. A theoretical 

attempt was made to explain the relation between the transi~ion metals and the 

reference level [Tersoff, 1987] and it was found that the transition metals are 

locked to the neutrality level within an additive constant if the Coulomb energy 

of the d-electrons is much larger than the Coulomb energy associated with the 

vacancy. 

In Chapter V, the transition-metal-based reference level is extended to 

include the effects of stress. Transition-metal defects in GaAs possess a 

universal pressure derivative. This pressure derivative is compared against the 

best first-principles calculations of band-edge deformation potentials and 

against the most recent mobility measurements. Excellent agreement is found 

in both cases. 
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Chapter 11. St_ressed Deep Level Transient Spectroscopy 

·, 1 ' .. ~ 

One of the :methods to probe the structure of a defect is to perturb the 

·.environment of the defect and measure how the defect reacts. Afnong 'the 

'common perturbations are: electric fields, magnetic fields,· polarized electro

magnetic fields,· and strain fields. Uniaxial-strain fields, in particular, are useful 

to determine defect symmetry because the strain can reduce the local symmetry 

of the defect and thereby break possible defect degeneracies. The magnitudes 

of the strain splittings' yield information about the axial defect-lattice coupling 

which is closely. 'related to the mechanism of Jahn-Teller distortion .• Uniaxiai 

· stress has been·commonly used in conjunction with optical spectroscopy and 

with· electron· paramagnetic resonance. The combination of uniaxial· stress with 

deep level transient spectroscopy (DLTS),on the other hand, has been a recent 
. • 1 ... • 

development [Meese, 1983]. One reason for the late appearance of stressed 

DL TS is that' DL TS suffers from limited energy ·resolution (roughly 1 Oo/o oft he 

·defect binding energy). Therefore defect splittings must be large for the stress 

effects to be measurable. Despite this handicap, DLTS has the advantage of 

high sensitivity to small concentrations of dee·p~level defects, an advantage 

which' is not shared by optical techniques or by EPA. In' addition, some deep

·level defects do have extraordinarily· large stress splittings that are easily 

measured by DLTS. ·ln:this chapter, the details· of stressed DLTS wilt' be 

developed, incluaing optimizatio ... n of the energy resolution of DLTS and the 

treatfl!ent of thermal emission from stress-split states. 
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1. Space-Charge Spectroscopy 

One of the fundamental goals of the experimentalist involved with deep

level defects is to observe the physical properties of a specified defect anq from 

these properties deduce the structure of the defect. The defects can have 

macroscopic properties (SIJCh as total concentration), or microscopic properties 

(such as symmetry or electron-lattice coupling). Several techniques are 

commonly used to measure the properties of deep-level defects. Each 

technique has its own strengths and weaknesses and specificity for some of the 

properties that a deep level can exhibit. The space-charge techniques are 

sensitive to all electrically active deep levels and are able to measure very low 

defect concentrations. Space-charge techniques rely on the space-ch(;irge 

layer in a semiconductqr beneath a rectifying contact. Deep-level defects 

modify the space charge and this modification can be measured as current, 

admittance, or capacitance of a semiconductor diode. The best known space

charge spectroscopy is deep level transient spectroscopy (DL TS). Space

charge spectroscopy is a thermal ionization spectroscopy; it measures the 

thermal emission of carriers trapped in deep levels. The thermal-emission 

probability depends on the temperature and on the activation energy for 

ionization. The free variable of this spectroscopy is temperature (related to the 

average phonon energy in the crystal) in the analogous manner that photon 

energy is the free variable of optical spectroscopy. Because space-charge 

spectroscopy is an ionization spectroscopy, it is only capable of mea~uring the 

differences in properties between two different charge states. The defect 

energy level in the bandgap is therefore related to a difference in energy 

between the two specific charge states. 
I 
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A. Bit~·sed Junctions in Semiconductors 

· Rectifying contacts are produced when the·Fermi level of a material in 

contact with a semiconductor is different from the Fermi level of the 

semiconductor. To reach equilibrium, charge is transferred between the 

materials until the Fermi levels match across the interface. The charge trahsfer 

depletes the free carriers from a region below·the contact. This is called the 

depletion layer. The width of this layer depends on the voltage difference 

between· the two materials and on the· dopant concentration of the 

semiconductor. In the case of a Schottky contact, the depletion of the metal is 

negligible and the junction is one-sided on the semiconductor side. The width 

of the depletion layer is given by (MKS units) 

... 

(2.1) 

.. 
where £is the dielectric constant, Vbi is the original voltage difference between 

the semiconductor and the contact material, Vap is the externally applied 

voltage, and INA- Nol is the density of the space-charge in the depletion layer 

f arising from the ionized dopants. Because the depletion layer supports no 

charge carriers, it behaves as a dielectric layer of width w between .the contact 

and the bulk semiconductor-- both of which are conducting materials. The 

capacitance of this dielectric slab is 

·--c _ Ae£0 
- w 

'-l ' 

' (2.2) 
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where A is the area of the contact. 

Deep-level defects present in the depletion layer modify the steady-state 

space-charge density. If carriers are injected into the depletion region, the deep 

levels will trap the carriers. After the carrier injection pulse stops, the trapped 

carriers on the deep l~vels will be thermally emitted with a mean timet and will 

be swept out of the depletion region by the electric field. For the case of an 

electron trap, the capacitance as a function of time is 

,j Nrexp(-t/t) 
C=Co 1- INo-NAl 

(2.3) 

where Co is the steady ... state capacitance and tis measured from the time the 

injection puis~ stops. The presence of deep levels can therefore be detected by 

a relaxation of the junction capacitance after a forward bias pulse. The 

relaxation time t depends on the defect activation energy and on the 

temperature. 

B. Detailed Balance and Emission Rates 

The relaxation rate is derived from the principle of detailed balance. In 

equilibrium, the rate of thermal emission from a deep level is equal to the rate of 

carrier capture 

eb=nvcrs, (2.4) 
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where e is the emission rate, b and s are the occupied and unoccupied defect 

fractions, n is the number of carriers in the band 1with thermal velocity v, and cr is 

the capture cross seqtion. The occupation fractions are related through 

. bls = y exp( -(Er - Et) I ks T ) , (2.5) 

where y is the degeneracy factor of the defect level. The emission rate is 
' ·. 

therefore ,. 

e = y1 n v s exp (-Et- Er) I ks T). (2.6) 

This is rewritten using the effective density of states 

n = N exp ( Eband - Et) I ks T ) (2.7) . . 

yielding 

. . . 
e = y1 N v exp( - L\G I ks T ) , (2.8) 

where L\G is the free energy of ionization to the band edge. The free energy 

.consist~ of an enthalpy term and an entropy term. The temperature 
' ' J j ·• • ~ I • 

depende~ce of the emission rate yields th~ activation enthalpy of the defect. 

C. Deep Level Transient· Spectroscopy (DL TS) 

The space-charge techniques were developed if!, broad form by 

Sah[1970]. A convenient method of analyzing the transient response of the 

sample diode as a continuous function of temperature was developed by 

Lang[1974]. This analysis technique is called the rate-window technique and in 
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this form the space-charge technique became a true spectroscopy, called deep 

level transient spectroscopy. This spectroscopy of deep levels is described by 

Miller and Lang [Miller, 1977; Lang, 1979). Many varieties of transient 

spectroscopy have been developed [Sah, 1981] which measure capacitance 

[Miller, 1977], current [Borsuk, 1980], or charge [Farmer, 1982] transients and 

these systems have been optimized with respect to noise [Miller, 1975], spatial 

resolution [G. Li, 1985] and accuracy of the energy determination 

[Thurber, 1982). Despite the fact that DL TS is a thermal spectroscopy which 

relies on probabilistic thermal averages rather than the absolute energy 

differences observed in optical transitions, the energy determinations can be 

quite accurate when temperature and electric-field effects are taken into 

account. However, the broad response linewidth of standard DL TS as a 

function of temperature severely restricts the energy resolution of the technique 

when defect levels are closely spaced in energy. In this case, the DL TS signal 

is composed of multiple exponentials. The problem of DL TS resolution has 

been studied in detail [Nolte, 1987b) and certain aspects will be discussed in a 

following section under signal analysis. 

II. Experimental Apparatus 

A. Temperatur~ Control 

Cooling is provided by a CTI-Cryogenics refrigerator, Model 21 Cryodyne® 

Cryocooler. This system is a closed-cycle sterling-engine refrigerator that uses 

helium as the working gas. The refrigerator can reach a minimum temperature 

of 1 0 K. Above 80 K it has between 5 - 1 0 Watts of cooling power. Below 60 K 

the cooling power drops continuously to zero at 1 0 K. The closed-cycle 

refrigerator has the advantage that it requires no liquid refrigerant. The base 
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· te-mperature'-of 1 0 K is sufficient to observe thermal emission from defect levels 

with binding energies' greater than 20 ·meV. This allows for the observation of 

all deep levels and .even some effective-mass levels. Only shallow levels are 

inaccessible to obser-Vation in thistemperature range.· 

. Heating is-controlled by introducing helium exchange gas into the vacuum 

chamber around the CTI cold-head. When the cold head is below room · 

temperature, the gas conducts heat from the outside. The ·exchange gas also 

plays the important role of equilibrating temperatures within the sample 

chamber. ·Additional heating is supplied by a 25 Watt power resistor. The 

maximum temperature can reach 430 K. 

The temperature is measured by a Lakeshore Cryotronics DT-470 series 

temperature diode. This sensor is calibrated to a base temperature of 1.4 K and 

a maximum temperature of. 475 K. The diode is calibrated through a standard 

voltage vs. temperature curve. All DT-470 series sensors track this curve with a 

tolerance between 0.25 K and 2 K. Repeatability is within ±1 0 millikelvin' over 

multiple thermal cycles. The V vs. T curve is contained in a programable read 

only memory (PROM) in a DRC-80 digital thermometer. The output from the 

DRC-80 is either an analog voltage proportional to the temperature, or a binary 

coded digital (BCD) output with 16 binary data channels. 

B. DL TS Stress Apparatus 

The uniaxial stress· experiments described in this thesis were perlormed by 

a DLTS uniaxial stress apparatus. The stress apparatus was designed with two 

-constraints: the the-rmal and mechanical constraints of the CTI cold head, and 

the mechanical constraints of 1 GPa. 

The first constraint arises from the attachment ·af the stress apparatus to the 

top of the CTI cold head within the system vacuum chamber. The means of 
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applying stress must be communicated to the sample stage through the 

vacuum, requiring a vacu~m feedthrough. Also, the CTI cold head is supportep 

by thin-walled stainless steel which cannot support any significant load. The 

stress rig therefore was designed to contain the stress internal to a stress box, 

with no load on the cold head. The cold head is thereby isolated from any load 

which might occur if there is a mechanical failure. Because of the low cooling 

power of the CTI, the stress-rig mass must be kept to a minimum using a 

material with a high thermal conductivity. The second constraint is the 

maximum load which must be delivered to the semiconductor sample, Of the 

common semicondwctors, silicon has the highest yield strength of roughly 

1 GPa. This pressure exceeds the yield strength of the 300 series of stainless 

steels. 

A cross section of the DL TS stress apparatus is shown in Fig.(2.1 ). The 

stress box is situated on top of the CTI cold head. Stress is applied through a 

spring and lever system. The spring is capable of delivering a maximum force 

of 1 00 Newtons. This is multiplied by a factor of 10.7 by the lever arm. The 

sample is vertical in the sample holder and is compressed by a piston of 

hardened steel. The sample cross section is 1 mm2. The stress apparatus can 

therefore supply up to 1 GPa of uniaxial stress. The spring is compressed by a 

screw pushing on a thrust bearing on top of the spring. The screw is turned by a 

screw driver that enters the vacuum chamber through a vacuum feedthrough. 

As force is applied to the lever, the lever flexes and the endpads between the 

piston and the sample compress. Therefore to measure the deflection of the 

spring, a test rod runs through the screw driver to the bottom of the spring. By 

measuring the relative displacements of the test rod and the top of the screw 

driver, the absolute compression of the spring can be measured without 

interference from internal flexing or compressing. 
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The requirement of low thermal mass, high thermal conductivity and high 

strength was satisfied by aluminum 6061 alloy. The stress box is constructed of 

this aluminum, except for the steel sample ~older and the steel spring. 

Stainless steel extrudes at 1 GPa, so the piston pushing on the sample Wc;iS 

made of 17-4 PH steel, thermally hardened at 900 oc for 1 hour to a Rockwell 

hardness of 50. The thermal properties of the stress rig were improved by the 

addition of a copper braid to aid the cooling of the lever arm, and by a 

retractable liquid nitrogen cold finger. 

The stress calibration is an important aspect of the stress apparatus 

because one of the main thrusts of this thesis work was to obtain absolute stress 

derivatives. The temperature dependence of the spring constant was measured 

externally by applying a direct load on the spring and measuring the deflection 

at several temperatures. The spring-constant data are shown in Fig.(2.2). The 

data were taken at room (295 K), dry ice (195 K), liquid nitrogen (77 K) and 

liquid helium (4 K) temperatures. Within the apparatus, this cal.ibration is 

checked by applyin9 stress to a standard sample. The oxygen thermal donor in 

silicon is an excellent test sample because it shows dramatic splitting under 

moderate stresses. Stress data for the thermal donor are shown in Fig.(2.3). 

The model for the thermal donor predicts a separation of 92 meV/GPa between 

the peaks. This pressure derivative was verified experimentally by two 

independent groups [Benton, 1984; Henry, 1984]. From this standard sample it 

is possible to observe a slow increase of the spring constant with rep~ateq use 

caused by stress hardening. The estimates of the errors in the parameters that 

determine the value of the applied stress are: deflection of spring= 2%, sample 

area= 1%, spring constqnt = 3% and lever arm= 5%. These ~rrors add to a 6% 

error in external calibration. By using the thermal-donor internal calibration, the. 

last two errors are systematically red!Jced. Though these errors are small, a 
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substantially larger error is associated with the mounting of the sample. This 
' .... l 

emphasiz~s the importance of experimental technique. 

C. Experimental Technique 

The stress apparatus applies up to 1. 00 Newtons on a sample with an area 

of 1 mm2 and a height of 6 mm. The alignment of this sample is therefore 

difficult, but of critical importance. A 10% inhomogeneity in the stress on the 

sample introduces a 10% additional shear strain that would not be present if the 
. . ' 

sa!Tlple ~ere perfectly loaded. This 1 0% effect can overwhelm the sm~ller 
' ' 

measurement errors for systems that are sensitive to shear stress. To ensure 

proper vertical mounting of the stress sample, the sample is lightly pre~sed 

against the side of a vertical anvil, machined with a tolerance of 2.mil. Endpads 

of index card paper cushion the ends of the brittle sample from the steel. pistons. 
• I .. I 

These endpads compress'and distribute the load evenly over the ends of the 
' ' 

•. i 

sample. The pistons and their slots are machined vertical, again within 2 mil 

tolerance, to remove any play in the vertical alignment. This close tolerance 
\ 

~ .. • • + ' 

required that the sample holder be made from steel rather than 606.1 aluminum 

because steel more closely matches the thermal contraction of the hardened 

steel pistons. 

DL TS probes the near surface of the semiconductor sarl)ple. Therefore, to . 
obtain an accurate measurement of the stress shift of a defect in the sample it is 

necessary to measure the defect signal on both sides of the sample. This is 

done by forming rectifying contacts on two opposing surfaces and switching the 

sign of the bias. Fora given .bias, one contact.will be under reverse bias and 
- . ; . . ~ 

the other will be under forward bias. Though. the forward.,biased contact . . . . 

contributes to the total capacitance of the sample, it does not contribute to the 

6C which arises from the deep levels in the depletion layer of the recHfying 
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contact. In this way, a stressed DL TS spectrum is taken of both surfaces of the 

diode and averaged to yield the stres,s derivative of the defect. This technique 

also gives a direct measurement of the stress inhomogeneity. The typical 

inhomogeneity is around 5%, although it can be as high as 1 0%. 

Temperature tracking is the last important technical problem with stressed 

DL TS. Because the sample is subject to such strict constraints in terms of 

alignment and stress, the temperature diode cannot be placed near the sample. 

Furthermore, the steel sample holder has low thermal conductivity and some 

amount of steel lies between the sample and the temperature sensor. When the 

system is under vacuum, this steel is the only thermal link between the two. 

Therefore, during cooling under vacuum there is a lag in the temperature 

experienced by the sample and the temperature read by the thermometer. 

During warming, on the other hand, the helium exchange gas provides a good 

thermal link that equilibrates the temperatures within the stress box. For this 
I 

reason, data are only taken while warming up under a helium exchange gas. 

D. Signal Analysis 

The capacitance of the sample diode is monitored by a 1 MHz Boonton 

model 72B capacitance bridge. A schematic of the bridge is shown in Fig.(2.4). 

The DC bias is applied to the HI terminal, while the pulse is applied to the LO 

terminal of the centerr-tap coil. The output signal can be analyzed by either 

analog circuitry or by computer data acquisition. The advantage of the analog 

circuitry is the high repetition rate and the corresponding high signal-to-noise 

ratio. The advantage of the data acquisition is the ability to capture and analyze 

the capacitance transient. Because of these relative strengths, the two analysis 

methods are used for different pwposes. For broad temperature scans to 

survey the deep levels present in a sample, the analog system is used because 

43 



Lo Hi 
4~ 

.- ~ •1.~------ --+--..... :........, 
' ... ~ L_ : ~~ ~ r;_r-
~--- 'I 

Sample 

1 MHz 
filter 
~ Pr~amp 

~--r----,1 

1 MHz 
oscillator 

....._· R_e_f_e_re_n_c_e--1 Phase Sensitive 
1-----...l' 

Detector 

Amp 

,, 
.. ·Output 

XBL 883-8386 

" ' 

Fig. 2.4 Schem·atic diagram of the Boonton capacitance bridge. 

r-

44 

• 



• 

... 

it can run unattended and has a superior signal-to-noise ratio which can pick 

out low concentrations of defects. For precise stress measurements, the 

computer system is used because the transient can be observed directly and 

the decay-time constant measured as a function of stress. The computer system 

is also superior for finding activation energies because a single thermal scan 

will give the full Arrhenius plot. With the analog system, several thermal scans 

would be required to get several points of the plot. 

1 . Computer Data Acquisition 

In the computer data acquisition mode the transient signal is captured and 

digitized by a Tektronix Model 2230 digital storage oscilloscope. This digitizer 

has 8-bit resolution. Successive acquisitions can be averaged in the data 

buffer in the scope which reduces the effect of the discrete signal. The scope 

has a minimum time-base of 5 ms/div for single sweep signals, and 0.05 ms/div 

for repetitive storage. The record length for a single sweep can be 1 Kbyte or 4 

Kbyte. The 1 Kbyte record fills the scope screen, so this record length is used 

for the DL TS application. The averaged signal is transferred to an IBM AT 

personal computer on a general purpose interface bus (GPIB). The 

temperature from the DRC-80 thermometer is read from the BCD output of the 

thermometer by the IBM PC data acquisition and control adapter .. A block 

diagram of the computer-controlled data acquisition is shown in Fig.(2,5). The 

transient signal time constant is titted by the Marquardt-Levenberg non-linear 

least squares methoq to the function 

S(t) = A exp[ -Vt ] + B . (2.9) 
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The baseline shift B must be included because the scope time-base may not 

capture the full transient in the 1 Kbyte record. 

2. Analog Rate.-Window 

A schematic of the analog rate-window circuit is shown in Fig.(2.6). The 

signal correlator triggers the pulse generator at a rate dependent upon the 

operator-set time constant and receives the raw ~ignal from the Boonton 

capacitance bridge. The raw signal is amplified and the baseline is subtraqted 

from the signal to yield the baseline-restored signal. The restored signal is 

multiplied by an exponential decay with a decay time equal to the operator-set 

time constant. The multiplied signal is integrated and output to an x-y recorder. 

The response signal is a maximum when the thermal-emission rate is equal to 

the inverse of the time constant and is zero when the emission rate is much 

larger or much smaller than this value. This is the origin of the expression "rate

window". Ramping the sample temperature leads to the deep-level defect line

shape characteristic of the rate-window analysis technique. 

The details of the response lineshape have not been studied in detail 

before. Therefore the effects of the various operations on the lineshape are 

investigated and some general trends and conclusions are described which are 

valid for the many types of weighting functions that are used in the rate-window 

techniques. An absolute low bound on the resolution exists which is 

independent of the energy of the deep level. The low bound does depend on 

the density of states of the bulk material as well as on the capture cross section 

of the defect. 

After a deep-level defect in the depletion region of a diode is filled by a 

forward-bias filling pulse, it will thermally emit the captured c(lrriers into the 

valence or conduction band with the rate 
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(2.1 0) 

derived by means of detailed balance, where cro is the capture cross section, 

Nv is the effective density of states at the band edge, Vth is the thermal velocity 

of carriers in the band, and .1H is the emission activation enthalpy of the defect. 

The rate-window technique gives a response that peaks when the emission rate 

is equal to a specified value. The response is formed by applying three linear 

operations to the raw, measured signal. First, a baseline time to is defined and 

the value of the signal at this time is subtracted from the raw signal. Second, 

the baseline-restored signal is multiplied by a weighting function with a 

characteristic time constant related to t0. Third, the resultant function is 

integrated over time. Because the DL TS signal is composed of decaying 

exponentials, the second and third operations together are equivalent to 

performing a Laplace transform of the weighting function. The high-temperature 

side of the response lineshape can therefore be understood by looking at the 

trends of the Laplace transforms as the weighting functions are varied. The 

baseline restoration, however, modifies the Laplace transform for slow emission 

rates at the lower temperatures. The low-temperature side of the response 

lineshape is therefore dominated by the effect of baseline restoration. 

A general, analytic expression can be derived in a straightforward manner 

for the full-width half-maximum (FWHM) linewidth of the response as a function 

of temperature. If e1, T1 and e2 , T2 are the emission rates and temperatures at 

which the response is half of the maximum, and e0, T0 are the emission rate and 

temperature at which the response is a maximum, then the temperature 

resolution is given by 
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,(2.10) 

where the subscripts 0, 1, and 2 refer to the values of a, N, v and e evaluated at 
.•• , ... 1 • • 

the temperatures T0, T1, and T 2 respectively. 
I , 

To facilitate the comparison between the various weighting functions and 
,·· .f • J ' ' ! ' :· 

baseline restoration times, t~isequation can be rewritten as . - \ ' . ' ( 

(2.12) 

. ' , 

where 't* is the effective time constant measured in units of t0, and x1 and x2 
.' l . . 

are the ratios of the half-maximum time constants divided by 't*t0• 

This equation is still quite general, yet se-veral observations can be made 
. . . 

regarding its qualitative behavior. First, the linewidth does not depend explicitly 
• . -'\• ' • i ' :. 

on the binding energy of the deep level. Second, the linewidth depends only 
~ ' ' ' ~.; ~ . '~ 

weakly on the temperature through the temperature dependence of the density 
, .. ' ~ ' ""' 

of states and the thermal velocities. Third, the exact value of the linewidth 
. . 

depends sensitively on the cancelation between the two terms in parentheses. 
t j I I 

Typical values for ln(crNv't*tofare of the order. of 20, while ln(xl) and ln(xz) are 
. ~ '· ·. 

I J .. 

typically of the order of 1. Therefore the linewidth is determined predominantly 
'· "'i .1 

' ~ ... . ~ 

by the defect capture cross section and the baseline restoration time to (both of 
; . , 

Which Can VarY by many orders Of magnitude) and depends rather weakly on 
""': ' l . ; ' ., ~ .-

the th~ specific choice of weighting functio.n (which defines 't*). 

As mentioned earlier, the details of the high-temperature side of the 
. . 

response lineshape is determined from the properties of the Laplace transform 
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of the weighting functions. Neglecting baseline restoration, the response for a 

weighting function w(s,t) is 

R(s,t) ::; s Jexp( -t/t) w(s, t) dt , (2.13) 

where s is the weighting function rate, and t is the emission rate of the deep 

level as a function of temperature. This response is just the Laplace transform 

of the weighting function. The transforms of three common weighting functions 

are given in Table ( I ). The high temperature lineshape is determined by the 

numerators in Table ( I ) because the product st vanishes as the temperature 

increases. Clearly, the response for the sine function vanishes faster at high 

temperatures than the responses for the cosine and decreasing exponential 

functions. 

Table I. Transforms of exponential decay 

w(s,t) = exp(-st) 

w(s,t) = sin(st) 

w(s,t) = cos(st) 

R(s,t) = (st) I (1 + st) 

R(s,t) = (st)2 1 (1 + (st)2) 

R(s,t) = (st) I (1 + (st)2) 

The functional form of the high-temperature response of these and all 

other Laplace transforms is simply the Laplace transform of the leading term in 

the Taylor's expansion of the weighting function. Therefore if the leading term 

in the weighting function goes as tn, then the high temperature dependence of 

the response goes as (st)n+ 1. To increase the steepness of the slope, which 

decreases the high temperature half-maximum half-width of the final response, 

the leading term in the Taylor's expansion of the weighting function should have 
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as high an order as possible. This is nothing more than weigh.ting to later times 

which reflects the fact two decaying exponentials separate hyperbolically with 

increasing time. The price, of course, for the decrease in linewidth is the 

corresponding decrease in the signal-to-noise ratio. 

Baseline subtraction is necessary both to remove any DC drifts in the 

signal and to make measurements feasible in a reasonable length of time . 

. ·Baseline restoration does not affect the high-t~mperature response of the 

Laplace transform, so the remark about weighting to later times is still val.id. 

However the baseline subtraction does cut off the low-temperature response of 

the Laplace transform, providing the characteristic DL TS lineshape .. 

The tirhe constant of the weighting function 1 /s and the baseline 

resto.ratio~ time to both provide characteristic measurement times. They are not 

equal in general, though they usually are both of the same order of magnitude. 

As s or t0 or the functional form of the weighting functions are changed, the 

emission rate e0 for which the response function is a maximum changes. To 

compare the various response functions, a dimensionless time constant is 

defined which relates e0 to to explicitly, and to s implicitly. The dimensionless 

effective time constant is t* = 1 I e0 t 0. As a rule of thumb t* :;:; 2 Is t 0, . 

i.e. e0 :=: s/2, but this is not true in general, especially when 1/s > t0. For a given 

weighting function, ass decreases the function weights to later times with 
I 

respect to t0, decreasing the linewidth. This causes t* to increase towards unity, 

, but it can never exceed it. 

Changing either s or t0, or both, changes the temperature at which the 

. DL TS response peaks. This artificially affects the calculated linewidth through 

the temperature dependence of the density of states. Therefore to compare the 

results for various weighting functions with different values of sand t0, it is 

necessary to "normalize" the responses such that the peak always occurs at the 
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same temperature. This is done, in principle, by choosing a set function and a 

set ratio 1/st0, and then changing sand t0 simultaneously until the peak occurs 

at the same temperature T0. Since the ratio 1/st0 determines the effective time 

constant t* for the function, the results to be compared can all be plotted versus 

t*. 

The full-width half-maximum linewidths for nine functions covering a 

range of 1/st0 are plotted in Fig.{2.7) vs. t*. The magnitude of the linewidths 

depend on crNvt, which is taken equal to 109 in this example. Several features 

can be noted. First, the linewidth for a set function decreases as t* increases; 

this is nothing more than the effect of decreasing the linewidth by weighting to 

later times. Also, the linewidth from several different functions which have the 

same t* decreases as the order of the leading term in the Taylor's expansion 

increases. A deviation from this last observation occurs for the sine function 

with low t*. This is due to the oscillatory nature of the sine function leading to 

an additional effec~ive baseline subtraction when st0 > 2. Furthermore, the 

weighting functions which are monomials have only one t*, regardless of the 

choice of s, and they occur at the limits of the relevant weighting functions ass 

goes to zero such that only the first term in the Taylor's series of the weighting 

function remains. 

The most important res~lt from Fig.{2.7) is that there is an absolute l9wer 

bound to the linewidth. This limit is approached as t* approaches unity. Of 

course the linewidth limit, which js always finite, is approached with vanishing 

signal to noise. The Taylor's expansion of o(t-t 0) around t = 0 has the highest 

order leading te'rm of any function defined on the interval (0, t 0), producing the 

minimum linewidth. Therefore the delta function produces the minimum 

linewidth of all weighting functions. 
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The resolution limit as a function of aNvt0 is plotted in Fig.(2.8). The 

linewidth decreases for increasing a and t 0. The capture cross Sf?Ction a can 

vary in magnitude from 10-12 cm2 for defects with coulombic excited ~tates, to 

10-22 cm2 for deep repulsive centers. Therefore semi-.shallow, effective-mass

like states typically have quite narrow linewidths. Although a is not a variable 

property of the deep-.level defect, t 0 is set by the experimenter, and can be 

increased from microseconds to seconds. The values in Fig.(2.8) are only the 

low bound on the possible linewidth. The actuallinewidth will be larger than 

this value, depending upon the choice of weighting function. 

As stated previously the minimum linewidth is approached only at a cost 

of signal-to-noise ratio. For a single shot, the signal is 

fto 
S = Jo w(t) S(t) dt 

(2.14) 

where S(t) = s(t) - s(to), s(t) being the raw signal. The noise is 

J t ) 1/2 
N = l1 'I w(t) 1

2 
dt 

(2.15) 

For repetitive signal averaging the signal-to-noise ratio becomes 

S/N I rep= .Jrep rate * S/N I one shot 
(2.16) 

where ./rep rate= 1/~ . 
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The signal-to-noise ratios for eight of the weighting functions in Fig. (2. 7) 

are plotted in Fig.(2.9). The signal-to-noise ratio decreases roughly 

exponentially with increasing 1:*. This reflects the fact that weighting to later 

times decreases the signal-to-noise ratio by weig~ting the tails of exponentially 

~ decreasing signals. At small effective time constants the signal-to:noise ratio 

also falls off because the time constant of the weighting function is considerably 

smaller than the measurement time to creating considerable "dead" time before 
'r 

the next repetition. As pointed out by Miller et al. [Miller, 1975], the largest 

signal-to-noise is obtained for the decaying exponential weighting function. 
' 

. The largest signal-to-noise ratio occurs when the time constant of the' 

exponential is roughly half of t0 . 

~· ,~ 

In this section the efficiency of the .rate-window technique has been . 
investigated. An absolute lower bound on the temperature linewidth is found 

which was independent of the defect activation energy. This lower bound does 

depend on the capture cross section and on the baseline restoration time, both 

of which can vary by many orders of magnitude. The smallest achievable 

·, energy linewidth is about 7%. The most usual situations give linewidths that 

vary from 9% to 15%. The smallest linewidths are given by using a weighting 

function that has a high-order first term in its Taylor's expansion. For this reason 

the best practical resolution is obtainable with a double-boxcar integrator using 
I • j ' o 1 • " 1 

narrow windows and a long delay after the pulse. 

Ill. Carrier Emission Rate Shifts under Uniaxial Stress 

Thermal-emission rates from deep-level defects can be shifted by stress. 

The shifts arise from several sources: the removal of electronic or orientational 

degeneracy of the defect; the removal of electronic or orientational degeneracy 

of the band edge; and the change in the capture cross section of the defect. 
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Any combination of these effects may also occur. Only in the case of 

orientational degeneracy of the defect is there an emission-rate splitting leading 

to multi-e~ponential decays. 

In the following section the case of emission from a split ground-stat~ level 

to a single band is considered. 

A. Defect-Ground-State Splitting 

The ground state of a defect can have degeneracy that is lifted by a 

reduction in the crystal symmetry from uniaxial stress. The breaking of the 

ground-state symmetry will have associated with it a linec;1r splitting as a function 

of stress. The generation and capture processes between a split ground state 

and a single band are shown in Fig.(2.1 0). 

B<;~nd 

Level 2 
Level 

.. .. .. .. 

'Ill 

912 921 
~ ,.. 

.. T J.. 

Fig. 2.1 0. Emission and capture processes between a split ground ~tate and a 

single band, 
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· The total number of occupied defects as a.function of time, N(t), is measured 

experimentally as the change in the space-charge of a junction. At a given time, 

N1 (t) defects will have a carrier occupying the lower ground state, while N2(t) 

defects will have a carrier occupying the higher ground state. These are related 

by the equation: 

(2.17) 

) 

If the probability Jor the emission of a single carrier per unit time from the lower 

state is e1, arid the equivalent probability from the upper state·is e2, then the rate 

of change of N(t) is 

(2.18) 

' The expressions for e1 and e2 can be obtained through the principle of detailed 

balance applied to each of the ground-state levels. Two equations result, 
' 

corresponding to the rates into and out of each level. These are 

~1b1 + g12 = nvcr1s1 + g21 

e2b2 + g21 = nva2s2 + g12' (2.19) 

where e1 and e2 are the probabilities of emission per unit time to the band edge 

from levels 1 and 2 respectively, cr1 and cr2 are the capture cross sections, g21 is 

the .rate from level 2 to level1, and g12 is the complementary rate from level1 to 

level 2. The fractions of populated levels are b1 and b2, while s1 and s2 are the 
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fractions of the unpopulated levels. The b's and s's are related by the 

expression 

(2.20) 

where y is the degeneracy factor of the originally unsplit level, Ef is the Fermi 

level, and Ek is the free.energy of the kth level. Solving for the probabiliti~s of 

emission to the band edge yields 

e1 = y-1 nvcr1e-(Ef-E1)/ksT + (921- g12)/b1 

e2 = y- 1 nvcr2e-(Ef-E2.)1ks T + (g12 - g21 )/b2 . (2.21) 

The argument of detailed balance is carried out under the conditions of 

equilibrium, therefore g21 /g 12 = (N+ 1) IN, where N is the expectation value of 

the number of phonons of energy (E 1 - E2). In all cases ks T >> (E 1- E2), so 

N >> 1 and g12 = g21. This causes the last terms in the above equations to 

vanish. Using the definition of the density of states of the bandedge leads to the 

equations for the emission probabilities 

e1 = y-1 Nvcr1e-H/ks T 

e2 = y-1 Nvcr2e-H~ks T, (2.22) 

where H1 and H2 are the enthalpies, and the entropy terms have been 

absorbed into the capture cross section. These probabilities are just what is 

obtained if the two levels were considered to be independent. 
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Eq. (2~18) can now be expanded to provide a differential equation for N(t), 

which is the physically measured quantity. N1(t) and N2(t) can be expressed as 

a ratio 

N2(t) I N1 (t) = f(t) , (2.23) 

,• i•. ·"' . . l ' ' 

where f(t) is an arbitrary function of time. The use of this relation and eq.(2~ 18) 

yields .. t 

dN (t) . ( 1 ) · ( · f(t) ) . -at= -e 1 f(t) + 1 N(t)- e2 f(t) + 1 N(t) 
(2.24) 

This differential equation cannot be solved for a general function f(t), but it is 
' ~ t ' ' . ' f ' ~ ., • ~ : 

easy to solve ,for several specific func~ions f(t) which corr~spon~ to com~on 
' ~- ,... • • ' ' • ' I • • • -: •. ·.i 1 J • f 

physical situations. . , 
.i 

. Case # _1 : If f(t) = 1 ( the levels are actually degenerate ) then . -
~ * ~ ••• • .... • - -~ ' ' [~ .• ~ 

'· -·.1 

N(t) = N(O)e-eot , (2_.25) 

where e0 is the constant emission rate for. ~p splitting: 

Case# 2: If f(t) = const (the coupling rate g12 between N1 and N2 is faster 
. ,_ ' 

than the emission rate to the band ) then 

N(t) -~· N(O)e-~*t , (2.?6) .. 
- ..... 

where e* is a constant effective emission rate. 
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Case# 3: If f(t) = e-(e 1-e2)t (the two levels are entirely uncoupled, g12:;:: 0) 

then 

(2.27) 

which is a true bi-exponential and would yield a double DL TS peak. 

Case# 4: If f(t) =general function of time (there is some coupling between 

the states, but not enough to maintain equilibrium during the emission process ) 

then N(t) is in general not an exponential function and the DLTS peak would be 

warped. These cases are discus?ed in more detail below. 

1. Electronic Splitting 

The situation of case # 2 occurs for an electronically split deep level. This 

is because the ratio between N1 and N2 , for relatively small splitting, is constant 

(equal to the Saltzman factor). Assuming a Saltzman distribution for the ra~io of 

the split levels N1/N2 = g exp(-~E/kT), where g is the ratio of level degeneracies 

for the split levels, the emission rate from a split state is 

(2.28) 

where ~E = ~E 1 + ~E2 is the sum of the separate shifts from the center of 

gravity. DLTS produces a peak response at the temperature at which e* equals 

a preset rate. For a constant preset rate, the peak temperature shifts as stress is 

applied. At small stresses and energy splittings, the shift in temperqture is non

linear in the applied stress. This non-linearity is caused by the exponential 

dependence of the Soltzman factor on stress. The details of the temperature 
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'shift at low stress might give some indicatio.n of the type of electronic 

degeneracy. The interpretation of low stress data can be complicated, however, 

by the effects of stress on the band structure of the material. 

When the Saltzman factor becomes negligible at sufficiently large 

splittings, the emission only occurs from the lowest energy level of the split 

state: The change in temperature of the DL TS peak is then linear in. stress. 

Therefore high-stress data are required for easy interpretation of the energy 

shift of the lower energy component of a split level. It is interesting to note that 

in the high~stress limit, when emission only occurs from the lowest energy level, 

the effective emission rate becomes e* = e1 (1 +g). The factor (1 +g) correctly 

compensates for the loss of degeneracy g of the originally degenerate ground 

state. 

i': 

·, 2. Orientational Splitting 

If defects are orientationally degenerate, distinct defects will have different 

activation energies; there will be no communication between the different 

populations N1 and N2. This corresponds to case #3 for which a biexponential 

decay results. Therefore, DL TS will exhibit multiple peaks for orientational 

splitting, but only a single peak, shifted in temperature for electronic splitting. 

The possible orientational degeneracies of point defects in tetrahedral 

semiconductors have been catalogued by Kaplyanskii[1964] along with the 

relative splittings and magnitudes. The final case, case# 4 above, would occur 

if there were weak thermal communication between the two levels. This case 

could opcur for an orientationally degenerate defect that coul9 reorient during a 

time comparable to the mean time for thermal emission: 

. -
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B. Other Stress Effects 

In addition to the splitting of defect ground states, the b?nd stqtes to 

which the trapped carriers are emitted can also be split by uniaxial str~ss. This 

occurs for the conduction band of semiconductors with indirect bqndgaps, and 

for the valence band in all the tetrahedral semiconoucton~. The splitting of the 

band edge is typi~ally as large ?S qr larger than the splitting of the def~ct state, 

so this effect must be considered when analyzing thermal emission uno~r 

stress. In Chapter Ill, this effect is investigated for general split bqnd edges and 

then the results are applied to the specific c~se of the valenc~ band in silicon. 

This analysis includes changes in the effective masses. 

Finally, stress can affect properties of a defect other than its energy 

position in the bandgap. The prefactor of the thermal-emission equation 

contains the term 

a= aoo exp[ -Es I ks T] exp[ 6S/k] . (2.29) 

Stress can affect the capture cross section aoo, the barrier to capture Es, and the 

change in entropy 6S. Changes in the capture cross section have been 

observed ·for defects in GaAs [Barnes, 1982]. Stress naturally alters the barrier 

to capture because this barrier is a direct result of defect-lattice coupling. This 

effect has been used to determine lattice relaxation properties of the DX center 

in AIGaAs [Li,1987]. Finally, changes in 6S have been measured in pressure 

experiments [Samara, 1987a, 1987b]. In chapter VI, a relationship between 

d6S/dp and changes in local force constants that occur upon carrier emission 

from a defect is derived. 
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Chapter Ill. Treatment of the- Valence Band under Uniaxial 

Stress ~ -·· - . ' 

I. Introduction . _ 
'· 

1- · •. Semiconductors are placed in states of uniaxial stress for many different 

applications. Far-infrared detecto.rs based on shallow-,level absorption -are 

often placed under uniaxial stress to· extend the sensitivity of the detectors to 

longer wavelengths-[Haller, 1979]. Carrier statistics, and in particular the density. 

Qf states at the band edge, play an important role in these,devices by defining 

defect occupancies and carrier detrapping lifetimes. Uniaxial stress is also 

commonly used as a probe of defect symmetry and structure. In particular, there 

has been recent work in the use of· uniaxial stres~ in conjunction with thermal 

emission of carriers from deep-level defects [Meese, 1983; Benton, 1984] 

_. Defect energies are derived by measuring .the rates of thermal emission of 

carriers from defects to the band edge .. The emission probability is defined 

through detailed balance, which includes the density of states in the band and 

. -the thermal velocites of.the carriers. For these applications and techniques, it is 

· crucial to understand how the uniaxial stress affects the. thermal emission of 

carriers from defects. 

. iThere have.been decades of research covering the. s~ress properties of 

.the band edges (and shallow levels) in semiconductors. Much of the theoretical 

[Hasegawa, 1963; Aspnes, 1978] and experimental work [Dresselhaus, 1955], 

has been focused on defining the effective masses and the deformation 

potentials of the band extrema. The typical analysis techniques include 
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excitonic recombination luminescence [Merle,1978; Laude,1971] and cyclotron 

resonance [Hensel, 1963], all studied successfully under uniaxial ~tress. The 

structure of the valence band has presented a challenge because of its non

parabolic energy bands. The valence band in silicon is also complicated by the 

small spin-orbit splitting. The deformation potentials of the valence-band edge 

have been measured accurately using luminescence, and are found to vary 

non-linearly with stress because of interaction with the split-off band. The 

curvature of the valence band has been studied through cyclotron resonance 

under uniaxial stress. Good agreement has been found between theory and 

experiment for large stresses [Hasegawa,1963; Balslev, 1965]. 

These analysis techniques investigate the stress properties of the band 

extrema alone; they do not give a good measure of the effects on the energy 

band structure at wave vectors away from the extremum point in k-space. Yet 

the thermal properties of carriers in the bands at finite temperatures depend 

strongly on the band structure away from the extremum. In this chapter, the 

thermal-emission probability of holes from electrically active defects in the 

bandgap to the valence-band edge is emphasized. It therefore must be 

cot:~ side red how stress affects valence-band states with energies several k8 T 

from the band edge. The results derived for the band-edge effective density of 

states and the thermal velocities are general and can be used for any problem 

involving carrier statistics under stress. This chapter begins by describing the 

zero-stress structure of the valence band and the difficulty of defining an 

effective mass. In section Ill the derivation of thermal emission from defects to 

multiple, independent bands is presented and generalized to include the 

continuous energy dispersion of a band with a complicated structure such a~ 

the valence band under uniaxial stress. 
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II. Structure of .. the Valence Band 

The top of the valence band in silicon originates frqm the three valence . . ~ . ' . 

p-orbjtals of silicon. At the center of the 8rillouip Z0!1e the band is t~ree-fold 
• ' I .J • • - ' , ' 

dege~erate (in the absence of spin-orbit effect) and tran~forr:ns as the fs(Oh) 

representation of the point group of the crystal. For.fini~e k-vector this 

deg~neracy is broken, resulting in .energy dispersion with ~ Sl)1a!l .a~d a large 
f .._ ~ I 

curvature. Under the influence of the spin-orbit interaction, the fs symmetry at . . ' ~ .... 

the r P.oint is broken into a rs quartet corresponding to j = 3/2 and a r1 doublet . . . ~ , ~ 

. corre~ponding to j =. 1/2, which i,s split off from theTa.energy by an am9unt .150 , 
. ~ ' . 

called the spin-orbit splitting. ~ilicon is special among the common 

se!11iconductors in thatthe spin-orbit splittin,g .i~ .relatively small compared to the 
- - . . . ~ 

bandgap; .1~0 = 0.044 eV compared to Egap = 1.15 eV. This small splitting has 

important cons,equences for the structure of shallow acceptor wavefunctions, 

and plays a significant role in high stress experiments, as will be discussed later 
.· . t.., -

in this thesis. . . . 

The energy dispersion, including the spin-orbit interaction, is shown for 
' r • '"' ' 

finite k-vector in Fig.(3.1 ). The structure of the valence band is.composed of a 
. . . 

heavy-hole band and a light-hole band (which are degenerate at the center of . . 

the ~rillouin zone) and a split-off band., The energies of the heavy and light 

holes are given by 

I • 

E(k) =Eo+ (fl2k2/2mo) (A± ( 92 + sC2)112) 

S ~ ( ~x2ky2 + kx2kz2 + kikz2)fk4 , . .. (3.1) 

...•.. 

where th~ plus sign is. for light holes, and the minus sign is for heavy holes. The 

parameters A, 8 and C determine the ~urvatwe of the bands, and henc~ the 

effective masses. The curvatures of the bands at the origin are not unique, but 
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Fig. 3.1 Structure of the valence band at zero-stress. The spin-orbit 

interaction splits the original rs symmetry at k = 0 into ra and r7 
symmetries, separated by ~so· 
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depend on the direction of the k-vector. Effective masses can still be defined by 

expanding the fluted energy surfaces in spherical harmonics [Lipari, 1970]. In 

this spherical approximation, the average effective masses are given by 

(3.2) 

The parameters A, 8 and C have been found from cyclotron resonance 

experiments [Hensel, 1963; 8alslev, 1965] to be A= -4.27 , 8 = -0.63, and 

ICI = 4.93 at 1.26 K. The corresponding .zero-stress heavy- and light-hole 

masses are m*h = 0.47 and m*1 = 0.16. 

' Ill. Thermal Emission of Carriers to Multiple Bands 

The total probability for the thermal emission of a carrier from a single 

defect to multiple bands is the sum of various independent emission 

probabilities. These bands may be degenerate, or not. For heuristic purposes 

the case for two distinct bands is considered first, denoted as band 1 and band 

2. Since no distinction can be made whether the carrier is emitted to band 1 or 

to band 2, the emission processes to these bands are independent and the total 

emission probability per unit time becomes 

(3.3) 

' ~ 

where the gj are the generation rates of carriers from the defect level to band i. 

Since all the defects with the same ground state are equivalent, they will all 

have this same emission probability, which will lead to a single exponential 

decay of the DL TS signal 
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N(t) = N(O)e-eot . (3.4) 

The expression for e0, can be obtained through detailed balance. The 

detailed balance equation is 

-(3.5) 

where the subscripts 1 and 2 refer to the two different bands, Vj is the thermal 

velocity of the carriers and ni is the number of carriers in the re$pective band, s 

is the fraction of unoccupied defects, b is the fraction of occupied defects, anq a 

is the capture cross section which may be different for capture from different 

bands. The transition processes are shown in Fig.(3.2). 

The ratio of occupied traps to unoccupied traps is 

bls = y exp[ -(ET-Ef) I ks T] . (3.6) 

where ET is the defect binding energy, Ef is the Fermi level andy is the defect 

degeneracy factor. For a single band the number of carriers occupying that 

band can be approximated as 

n = niexp( (Ef - Ei) I kT) = N exp( (Eband - Ef) I ks T) . ~3. 7) 

where ni is the intrinsic carrier concentration in the band, and Ei is the intrinsic 

Fermi level. The band effective density of states is given by 

(3.8) 
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Fig. 3.2 Transition processes between a defect and multiple bands. The 

capture and thermal emission probabilities from and to two different 

bands are presented. 
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where mds * is the density-of-states effective mass. Equation (3. 7) can be 

retained for each bqnd separately in the multiple band situation 

where N1,2 is the density of states defined in the same manner as for a single or 

degenerate band, and E1,2 is the respective band-edge energy. 

Solving directly for g1 + g2 gives the total emission probability 

e( 't) = c T2 { cr 1 ('t) m* 1 ('t) exp[(Er('t) - E 1 ('t)) I ksTl 

+ cr2('t) m*2('t) exp[(Er('t) - E2('t)) I ksT] } . (3,10) 

This equation is the independent-band model for emission of carriers to two 

bands. The stress dependence 't of the effective masses, ~nergies and capture 

cross sections have been explicitly included. 

The quantities m* 1 ('t) and m* 2('t) are averaged effective masses arising 

· from the mass dependences of the thermal velocities and density of states. This 

average effective mass is 

m* = (m* ds)312 (m*th)-112 ' (3.11) 

where m* ds is the density-of-states mass defined by 

(3.12) 

where the m1 are the principal values of the effective-mass t~nsor. The thermal 

effective mass m*th is defined by the average thermal velocities <V>rms ;;IS 
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m*th = 3 ks T/ <V>rms2 

= 1/3 [ 11m1 +11m2+ 11m3]. (3.13) 

The emission probability in the inqependent-band model of eq.(3.1 0), 

though 'a hi-exponential in temperatu're, yields a single exponential relaxation in 

time, and hence a single DLTS peak. It is interesting to note, however, that the 

system discussed above will have a non-linear Arrtienius plot. Although all the 

transient.s may b~ single exponentials, the emission rate is determined by 
~ ' "'-. 

several emission probabilities, and each probability will have a different 
. ' •· . 

) ; 

activation energy. This presents some difficulty when attempting to determine 

an activation en~rgy by plotting the emission rate as a function of 1 IT. In order 

to find the. defect activation energy ET, all parameters describing the various 
• • i " . . 

bands must be known accurately and used to fit the data to the above equation. 
' j .. , • 

Th,e conduction band_ minima in the indirect-gap semiconductors 
' ' ' . -~ . . ' . . ' . . . . ' 

represent truly independent bands with well-defined density of States-and 
. • ! 

carrier effective masses. In the zero-stress limit these minima are degen~rate 

and the carrier emission occurs to each equivalent minimum with equal 

probability. Under the application of unia~ial stress, the degeneracy is lifted 

and the minima become inequivalent. The emission process in this case is 

determined simply by extending eq.(3.1 0) to include the correct number of 
• • t . 

minima and their respective energy shifts. The effective masses are not altered 

(to first-order) by the application of stress. 

The thermal emission of holes to the valence band, on the other hand, 

ca_nnot be defined rigorously in terms of emission to multiple, independent 
' I • • • t, 

bands. This is especially true for the zero- and low-stress case. The difficulty 
- . . 

originates from the spin-orbit interaction and the complicated structure it 
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imposes on the top of the valence band (described in section II). This struqture 

cannot be described exactly by two independent bands at zero or low stress 

because the two bands mix. Furthermore, it is impossible to uniquely define an 

effective-mass tensor for the valence band. These features make it difficult to 

apply eq.(3 .. 1 0) to the thermal emission of carriers to the valence band. In this 

situation, the detailed balance eq.(3.5) can be made more precise by replacing 

it with: 

a0 s Jv(E,t) n(E,t) dE = b J g(E) dE , (3.14) 

where the number of carriers at energy E is given by 

n(E,t} = N(E,t} exp( -( E - Ef) I ks T) (3.15) 

and N(E) is the density of states at energy E. For complete generality, the stress 

dependence of the density of states and thermal velocity is included explicitly. 

The average energy;. and stress-dependent thermal velocity v(E,t) is 

v(E,t} = (1 I fl) (n·VkE)E,t 

where 

(3.16) 
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and. n is the unit vector pointing along .the direction, of the k-vector. The term 
L • • J 

dSE is a mono-energetic surface element in k-space .. The thermal emissio.n rate 

is therefore 

ThoUgh this expression has the~advantage of being rigorous, it must be 

evaluated numerically. 

The problem can be simplified considerably by developing an 

independent-band model for the valence band. This model approximates the . ' . 

valence band as two independent bands'that displace rigidly with changing 

stress. When this approximation is extended to the case of non-zero stress, 

eq.(3.17) reduces to the previous eq;(3.1 0) after substitution of appropriate 

effective masses and energy splittings of the. top of the valence band under 

uniaxial stress. In the next section the energy splittings of the valence band are 

described in detail and the application of the independent-band approximation 

is discussed. 

IV. The Valence Band under Stress 

A. Energy splittings under stress 

There are three deformation potentials describing the strain couplings of 

a ~a state. These are: a, the hydrostatic;~ the normal; and d the shear 

defo~mation potentials. The splittings in the_ limit of small stresses are giv~n by 
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· .1E(t)2 = b2f2 [ (Exx- eyy)2 + (Exx- Ezz)2 + (eyy- Ezz)2] 

+ d2[ exy2 + Exz2 + Eyz2] . (;3.18) 

The deformation potentials are [Merle, 1978] b = -2.1 eV d = -5.1 eV at 77 K. 

The splittings described by eq.(3.18) are only valid in the limit of small stresses 

such that the valence-band splitting is negligible compared to the spin-orbit 

splitting ~so- For stresses greater than 0.1 GPa, however, the coupling of the 

the top of the valence band with the split-off band is strong enough to prodt.Jce 

significant corrections to the shifts Qescribed in eq.(3.18). The coupling of the 

top of the valence band to the split-off band under uniaxial deformation can be 

calculated directly for all stress directions and magnitudes by extending the 

stress Hamiltonian of Bir and Pikus [Pikus, 1960] to include the split-off band. 

This Hamiltonian represents the valence bands according to the j=3/2 and j=1/2 

angular monemta. The eigenvalues of the full 6x6 Hamiltonian matrix reduce to 

three values with double (Kramer's) degeneracy, because stress does not 

break time-reversal symmetry. For stress along either the <1 00> or <111 >. 

directions the z-component of the angular momentum quantum numbers mJ 

remain good quantum numbers, and if the stress direction is taken as the 

quanti~ation axis, then there are no matrix elements of the stress Hamiltonian 

between states with mJ and -mJ. The Hamiltonian for [001] stress reduces to a 

1 x1 matrix for the mJ = ±3/2 and a 2x2 matrix for the mJ = ±1/2. The 2x2 rnatrix 

has the following eigenvalues: 

(3.19) 
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where E1oo = 2b(s11- s12)T. For the case of stress in the [111] direction, the 

quantization axis can be rotated to coincide with the stress axis to obtain similar 

eigenvalues. For the case of arbitrary stress direction the mJ are no longer 

good quantum numbers and the Hamiltonian reduces to a 3x3 matrix which · 

yields three eigenvalues. The energy shifts for stress parallel to-[1 00] are 

shown in Fig.(3.4) compared to the shifts described by·eq.(3.18) in the abse·rice 

of coupling to the split-off band. Under [1 00] compression the ra degenerate 

.· valence band splits into X6 and x7 Kramer's doublet representations with the X7 

t- band moving into the bandgap. This X7 band couples with the X7 split-off band, 

· producing nonlinear shifts for the top of the valence band: The interaction · 

under 1 GPa produces nearly a 50% correction to the value predicted by 

eq.(3.18). The angular dependence of the energy shifts for 1 GPa is shown in 

Fig.(3.3) in comparison with the ·splittings of the rs state in the abse.nce of spin-

. ·- orbit splitting., One of the remarkable features of the valence band under stress 

is the fact that the-energy shifts are isotropic within 10%. 

The energy splittings.defined by eq.(3.18)'are valid only for the valence 

band extrema at the r point for zero k-vector. Points on the dispersion curve for 

finite k-vector will-shift by different amounts, depending on the magnitude as 

well as direction of the k-vector. In other words, the bands are not rigidly 

displaced in energy, but are warped by the-application of stress. Yet, the· 

energy splittings of eq.(3.18) are convenient to use in the independent-band 

·approximation as the energies by which two independent bands are rigidly 

displaced. The effect of the additional warping under stress of the originally 

fluted energy surfaces must therefore be included as changes in the effective 

' masses describing the density of states and the thermal velocities. The 

· appropriate effective masses which enter the independent-band approximation 

are discussed in the next section. 
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B. Effective Masses under Stress 

The effective mass of a band extremum is proportional to the inverse 

curvature of the electron energy as a function of k-vector. Bands described by 

spherical energy surfaces have a unique effective mass, while bands described 

by elliptical or spheroidal energy surfaces can be described uniquely by 

effective-mass tensors. The density-of-states effective mass m* ds is defined in 

eq.(3.12) as the cube root of the product of the principal values of the mass 

tensor. The energy surfaces of the valence band at zero-stress, however, are 

not elliptical or spheroidal, but are described by fluted or warped spheres. This 

makes it impossible to uniquely define an effective-mass tensor, as stated 

before. 

The structure of the valence band becomes much simpler for high 

stresses applied along the <1 00> or <111 >directions. For large stresses in 

these directions (strain energy>> k8 T), the energy surfaces are described by 

prolate and oblate spheroids which do have well-defined effective-mass 

tensors. The principal values of the effective masses for these stress directions 

are given in Table I where N2= 3 (82+ C2) [Hasagawa, 1963]: 

Table I 

<100> 

m112,11 = 1 /(A + 8 Z(x) ) 

m112,1. = 1 /(A- 1/2 B Z(x) ) 

m312.11 = 1 /(A - B ) = 0.28 

m312,1. = 1/(A + 1/2 B)= 0.22 

<111> 

m112,11 = 1 /(A+ 1/3 N Z(x) ) 

m112,1. = 1 /(A- 1/6 N Z(x) ) 

m3/2,/l = 1/(A -1/3 N) = 0.75 

m312,1. =1/(A + 1/6 N) = 0.18 
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The function 

Z(x) = (1/2) ( 1 + ( 1- 9x) ( 1- 2x + 9x2)-:1/2) (3.20) 

., .. 

describes the effect of coupling to the split-off band on the principal values of 

the effective-mass tensor, where the quantity x = L\E(-t) I L\so-

}he function Z(x) = 1 in the absence of coupling to the split-off band. For 

1 GPa, the value for silicon is Z(x=0.4) =:= -0.9,.which dramatically alters the 

. -principal values of the effective-mass tensor, and has important conse_quences 

in ESR [Hensel, 1963]. The density-of-states mass; however, remains 

surprisingly unaffected (<5% at 1 GPa) and therefore this extra mixing of the 

effective mass can be neglected in stressed DL TS., It is interesting to point out 

that these high-stress effective masses have the property that the average 

thermal inverse effective mass is exactly 

(3.21) 

independent of the strength of the coupling to the split-off band 

[Hasegawa, 1963}. The valence band under large stress is accurately described 

by two rigidly displacing, independent bands with well-defined effective 

masses; no approximations are required. 

The- situation for small stress (strain energy << ks T) is substantially more 

complicated than the case of large stress because of the strong mixing of the 

originally degenerate bands. The curvature of the energy dispersion becomes 

a function of the magnitude of the k-vector as well as its direction. Again, as in 
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the zero-stress case, there is no unique method to define an effective density-of

states mass. Two methods are described next to define average stress

dependent density-of-states effective masses. The first method defines the 

effective masses through the curvature of the energy dispersion. The second 

method (which is presented in this chapter) defines the valence band as two 

rigidly displacing parabolic bands and finds the appropriate density-of-states 

effective masses for these bands. Both of these methods begin with the Bir

Pikus strain Hamiltonian describing the energy shifts under stress of the 

electron-energy dispersion curves. 

In the absence of coupling to the split-off band, the electron Hamiltonian 

including stress and k-vector is [Pikus,1960) 

/·· 

Ec2 = 1/2 b2 [(Exx- £yy)2 + (Exx- £zz)2 + (eyy- £zz)2 ] 

+ d2 [ £xy2 + £xz2 + £yz2 ] , 

Eck = Bb[ 3 (ki exx + kl eyy + ki £zz) - k2~] 

+ 2Dd [ kxky £xy + kxkz £xz + kykz £yz ] , (3.22) 

where ~ = (s11 + 2s11)T is the dilatation (Tis negative for compressive strain). 

The spherical approximation of the valence band [Lipari ,1970] can be extended 

to include stress by deriving the appropriate irreducible-spherical-tensor 

operator that represents the strain field caused by applied uniaxial stress 

[Broeckx, 1987). Stress-dependent effective masses can also be obtained 
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through numerical calculations by finding the curvature in the two branches 

[Kelso, 1982] of eq.(~.22). Qualitatively similar results to Kelso are obtained by 

replacing 8, C and D respectively in the above equation by 

8' = ( 82 + (1/6)C2 )112, 

C'=O , 

(3.23) 

The new Hamiltonian gives (by definition) the correct effective masses at zero

stress. For finite strain the effective masses are found by calculating the 

curvature of the two branches of eq.(3.22) for directions parallel and 

perpendicular to the applied stress direction and applying eq.(3.12). Thermal 

averages are taken by weighting the curvature with the 8oltzman factor. The 

effective masses are therefore functions of both stress and temperature. The 

results for the density-of-states effective masses at 77 K and 20 K are given in 

Fig.(3.5). The light and heavy holes mix quickly with increasing stress, and 

saturate to constant values defined by eq.(3.21) for high stress. The mixing rate 

is faster for lowe·r temperatures because the effective mass is dominated by the 

curvature at smaller k-vector and the high-stress limit is approache~ more 

quickly. 

The second approach for defining the stress-dependent effective masses 

(the independent-band model) obtains the stress and energy-dependent 

density of states of the valence band. This density of states is used with the 

energies given by eq.(3.18) to fit the effective masses for the rigid, independent 

bands. The density of states of a band is defined by the electron-energy 

dispersion equation E(k,t) through the integral 
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N(E;t) =: J o( E- E(k,t) ) d_k. 

·. 

. . (3.24) ] 

< .. 
This integration was carried out numerically for the case of compres~ive stress 

applied along the [1 00) and [111) axes. By symmetry, for [1 00) stress, only 1/16 

of the Brillouin Zone is considered. For [111] stress only 1/12 of the Brillouin 

Zone is sampled. Furthermore, it is only necessary to consider the density of 

states within several k8 T of the band extremum, which limits the magnitude of 

the k-vector to only 1/20 of the value at the Brillouin Zone boundary. Therefore, 

the volume of k-space sampled in the integration was approximately 1/400 of 

the volume of th~ Brillouin Zone. Within this volume, 50,000 _points were 

sampled. The results of th~ integration for [1 00) stres~ are shown as the data 

points in Fig.(3.6a-c) for 't = 0.0, 0.3, and. 0.6 GPa respectively. Results for [111] . . . 
oriented stress are ~uantitatively similar. Coupling to the split-off band .was 

neglected in this analys~s.' The.solid curves are the result ofthe independent-. . 

ban_d model. This model· predic!s density of states that vary as the square .root 

of energy, with ~ multiplicative prefactor that depends on- the effective .mass of 

the respective band raised to the 3/2 power (from ~q.(3.8)). The model fits the 

numerical data well for zero-stress, but there are deviations f~om the 

independent-band moqel for finite stress. "fhe deviations occur within the 

region of energy in which the two bands are strongly mixed. This interaction 

modifies the ~urvature of the energydisper.sion relation 1hrough avoided 

crossings, which di~e~tly affect the density of states. 

~The d~pend~~ce of the thermal-e_rDisslon ,probabili~y o~ .t.~e density~of 

s~ate~ is weighted exponenti~lly ~owards the band edge. Therefore, to compare 

the results of Fig.(3.5) with the ,results of the numerical calculation of N(E,t), it is 
' ...: "-.I • ', ' ' ( 

convenient to define an effective density of states by I ' 
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N = J N(E,t) exp(-E I ks T) dE I N(E,O) • (3.25) 

The inverse of this quantity as a function of stress is plotted in Fig.(3.7) for the 

numerical calculations. In the independent-band model, eq.(3.25) is equivalent 

to 
.. 

( m((t) )312 exp(EE I ksT) + ( mh(t) )312 exp(-EE I ks T) 

N= (3.26) 

where m1(1:) and mh('t) are the stress-dependent effective light-hole and heavy

hole masses; and Ec is the energy shift of the respective. band edge defined in 
·- . . ~ - . ~ 

. ... ~ 

eq.(3.18). The result of eq.(3.26), using the effective masses from the spherical 

approximation, is compared in· Fig.(3.7) to the exact numerical result from 
~ . 

eq.(3.25). This function is proportional to the fractional change in the emission 

time constant of a defect that is insensitive to stress. The result of the spherical 

approximation clearly disagrees with the exact numerical calculation for low 
I . ~ \ , 

I 

stresses. The spherical approximation would predict an increase of the 
, I . 

emission time for small stresses. For low stresses the emis-sion would still be 

predominantly to the heavy-hole band, which is moving away from the defect 

energy (although the thermal emission is weighted by a Boltzman factor), 

beca'u'se the heavy-hole band has the larger effective density .. of states .. This 

produces·the initial increase in the emission time constant:. With increasing 

stress, however;the Boltzman factor increasingly favors emission to the light

hole band, which is approaching the defect energy, and therefore.·the time 
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Fig. 3.7 The inverse thermal density of states defined by eq.(3.25) as a 
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Spherical Approximation uses the effective masses from Fig. (3.5). 

The curve labeled Numerical is the exact result using the accurate 

density of states from eq.(3.24). 
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constant eventually decreases. Under the higher stresses, the values of the 

spherical approximation approach the exact numerical values. This 

demonstrates that the spherical approximation does in fact give the correct 

density of states in the limit of zero-stress, as well as the correct effective mass 

for the light hole in the limit of large stress. However, the predicted partitioning 

of the density of states between the two bands by the spherical approximation is 

incorrect. The error has arisen from the (incorrect) use of the effective masses 

from the spherical approximation with the band-edge energy splittings 

(eq.(3.18)). The energies and effective masses cannot be defined separafely. 

Once one of these quantities is defined, the other quantity is completely 

determined. Because the energy splfttings of the band edges are well 

established, it is convenient to retain these energies and then find the 

appropriate effective masses for the density of states. The correct effective DOS 

masses as a function of stress can be derived by applying the exact results of 

Fig.(3. 7) to eq.(3.26). In ·eq.(3.26) the "rigid" bands are forced to shift in energy 

by E£, and then the effective masses are adjusted to yield the value from 

eq.(3.25). The resulting DOS effective mass values are shown in Fig.(3.8) for 

77 K. At zero stress, the two masses are nearly equal, in strong contradiction to 

the spherical approximation, yet the total density of states is the same for both 
. . ' 

models. At high stresses, the light-hole effective mass approaches the 

asymptote 1/A correctly described by eq.(3.21 ). 
• 1 !t 

The near equality of the DOS light- and heavy-hole effective masses at 

low stress has the important consequence that the center of gravity of the 

splitting valence bands is approximately conserved as stress is increased. This 

fact is reflected by the zero-slope asymptote of the thermal density of states in 

Fig.(3. 7) for zero stress. This would not be the case if the masses from the 

spherical approximation were used; in that case the center of gravity would shift 
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away from the band edge. Shifts in the center of gravity of electronic states is 

caused by the trace (or hydrostatic component) of the strain tensor, which has 

already been included by the term M in eq.(3.22). 

The density of states plays a major role in the analysis of the change in 

thermal emission rates. However, the effective mass that is used to define the 

. effective density of states has a different 9rigin than the effective mass that 

describes the thermal velocity of carriers in the band .. Though:the thermal and 

density-of-states masses are certainly related through the curvature of the 

energy dispersion, it remains to establish the connection between the two 

masses and find the combined effective mass of eq.(3.11 ). This is done 

numerically by integrating eq.(3.16) over k-space in an analogous fashion to the 

evaluation leading to the density of states N(E). The calculated average 

· velocity as a function of energy is plotted in Figs.(3.9a-c) for 0.0 GPa, 0.3 GPa, 

and 0.6 GPa of compressive uniaxial stress oriented along [1 00]. The best fit 

from the independent-band model is included as the solid line. The 

independent-band model clearly overestimates the velocity in the region near 

the strong mixing of the two bands, just as the model underestimates the density 

of states in Fig.(3.6) in the same energy region. This is a direct consequence of 

the interaction of the two bands which results in avoided crossing (from 

symmetry considerations). The avoided crossing changes the curvatures and 

slopes of the bands near the crossing point and therefore alters the density of 

states and thermal velocities. The independent-band model therefore has 

difficulty modelling the the density of states and the energy-dependent 

velocities separately near the crossover between the light- and heavy-hole 

bands for moderate stresses. Thermal-emission probabilities, however, do not 

depend on these properties separately, but depend on the product of the 

density of states with the carrier velocity (see eq.(3.5) ). This product is 
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Fig. 3.9 The average energy-dependent velocity for a) 0-stress, b) 0.3 GPa 
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presented in Fig.(3.1 0) for the three stresses of Figs.(3.6) and (3.9). Both the 

density of states and the velocity depend on the square root of the energy, so 

the independent-band model predicts a linear dependence on energy for the 

product of the two values. The best fit from the independent-band model is 

included.as the solid curves. The independent-band model gives an excellent 

fit to the numerical calculations for all values of stress, even in the energy region 

in which there is strong mixing of the two bands. This is because the thermal 

emission is insensitive to the dynamics of the holes (and hence the avoided 

crossing) and only samples the phase space available through the term 

[ J dSE] in eq.(3.17). The independent-band model is therefore able to model 

thermal-emission probabilities very accurately. 

To find the appropriate combined effective mass of eq.(3.11) the full 

thermal-emission-rate equation eq.(3.17) is evaluated numerically and 

compared to the normalized thermal emission rate based on the independent

band model 

eo(t) m1(t) exp(EE I ks T) + mh(t) exp(-EE I ks T) 
= 

eo(O) 

(3.27) 

The resulting values for the combined effective masses are shown in Fig.(3.11 ). 

From the DOS and combined effective masses, the thermal effective mass is 

derived from eq.(3.11 ). All three effective masses for the light holes are given in 

Fig. (3.12) for compressive uniaxial stress oriented along [1 00] at T = 77 K . The 

heavy-hole masses are approximately given by mh*(t) = 2mt(O)- mt(t). 
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In this chapter, the energy shifts and the effective masses have been 

described which are appropriate for the independent-band model describing 

the heavy- and light-hole valence bands under uniaxial stress. The 

understanding of how these parameters vary with stress is essential to derive 

the energy shifts of a defect under stress from the independent-band model of 

eq.(3.1 0). To test the completeness of this understanding of the valence band, it 

is useful to observe the DL TS spectrum of a defect which is insensitive to stress. 

This defect level can act as a reference level from which the properties of the 
' ' 

valence band under stress can be measured. Iron-aluminum pairs in p-Si are 

chosen as insensitive reference levels. In the next chapter the structure of the 

iron.:acceptor pairs are described and a justification is given of the insensitivity 

of the pairs to stress. Using the FeAIIevel as a refe~ence, the validity of the 

independent-band model is tested using the stress-dependent effective masses 

shown in Fig._(3.11 ). 
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Chapter IV. Iron-Acceptor Pairs in Silicon 

I. Previous Research and Pairing Reactions 

Iron-boron pairs are the dominant defects present in Si:B following iron 

diffusion and quenching. They constitute part of a larger class of iron-acceptor 

pairs including FeAI, FeGa, and Fein. The pairing reaction occurs in p-type 

material in which the Fermi level lies in the lower half of the gap. For this 

position of the Fermi level, both the iron and the acceptor are ionized, but with 

opposite charge. The resulting Coulomb attraction between the ionized donor 

and acceptor provides the mechanism for the capture of the mobile interstitial 

iron by the substitutional Group Ill element. 

Iron-acceptor pairs in silicon were first detected by Ludwig and 

Woodbury[1962] using electron paramagnetic resonance (EPA). The defects 

were found to be highly anisotropic and to exhibit trigonal symmetry, except for 

Fein which exhibited orthorhombic C2v symmetry (ordinarily called rhombic 1). 

Recently a rhombic I configuration has also been identified [van Kooten, 1984] 

for FeAI using EPA. Detailed studies of the EPA of FeB pairs in silicon have 

been carried out independently by Gehlhof and Segsa[1983] and van Kooten 

et. al.[1984] They both arrive at a strong negative trigonal field. On physical 

grounds the trigonal field would be expected to be strongly repulsive because 

of the negative charge of the boron. The model for the iron-acceptor pairs 

(derived exclusively from the EPA data) places the iron in the tetrahedral 

interstitial site adjacent to the substitutional boron in the trigonal centers (2.35 A 

nearest neighbor separation). In the rhombic I center of FeAI the iron is 
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assumed to be situated in the next-nearest-neighbor interstitial site with respect 

to the boron (2.72 A n.ext-nearest-neighbor separation). Of course, the iron 

atom is likely to relax towards the substitutional site because of the attractive 
' ' 

Coulomb field. 

· · lron.:acceptorpairs in silicon have been studied extensively using·deep· 
' ' ' 

·level transient spectroscopy [WOnstel, 1982; Kimerling, 1983]. After iron· 

diffusion in silicon a level is observed at Ev_ + 0.44 eV. This level is assigned to 
. ' 

the isolated interstitial iron. A level is also observed at Ev + 0.10 eV in Si:B 
r ' • ' ~ ' ·' • ' • ! ' ·~ ' ' .'1 •• •;. ' ; .. ;· •. ..-

after iron diffusion which has been ascribed to.the FeB pair. Two qefect levels 
I • ,·> • ' 

have been observed in Si:AI after iron diffusion; one at Ev + 0.13 eV and 
' 

another at Ev + 0.20 eV. These have tentatively been identified as the rhombic· 
; • • ~ . • •·. '. - • • T '. ! • . . .. ,''' 

I and trigonal FeAI configurations observed in EPR [Chantre, 1985]. Tw.qJ~vels 
' . • . ' . J ~':~ .;' . ~ ' : 

associated with FeGa pairs occur at Ev + 0.24 eV and Ev + 0.17 eV in Si:<;3a, 
• < • • .. ' • -··· 

while a level associated with Fein occurs at Ev + 0.2 eV in Si:ln. 

. As proposed by Ludwig and Woodbury, the 4s electrons of _interstitia) 

transition-metal ele.~ents in silicon are not required for bondin.g and are. 

transferr.ed to the 3d shelL The iron interstitial energy level ( Ev + 0.44 eV ) is 
• I • •' 

' .. 
assigned to the first ionization stage of iron, fe+/FeO, ora 3d7-to-3d8 . .· .. • .. ' 

configuration transition~ The iron-a~ceptor pair energy levels, which lie. 

between the interstitial level and the acceptor levels, are considered to involve 
' • ~ t \. ~ . • • ' ' 

the second ionization stage of iron, Fe++fFe+, wit~ the acceptor remaining· . 
,. ~ ., r' ~ ' ,· •. I ' ' -~, 0 

ionized and thus negatively charg~d. This _is a 3d6-to-3d7 t3lectron 

configuration transition. The second ionization stage of iron is normally buri~d 

deep within the valence ban~ [Zunger, 1986], ~ut the presence of the n~gativ~ly 

charged acceptor pushes the energy leve! up, out of th_e valence band a.nd into 

the bandgap by Coulomb repulsion. 
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Iron-acceptor complexes have been investigated with photoluminescence. 

The luminescence from the isoelectronic trap observed in Si:Feln has been 

shown to be consistent with a <1 00> orientation of the constituent atoms 

[Sauer, 1983] which is also the symmetry observed by EPR for Fein pairs. An 

isoelectronic trap observed in Si:FeTI shows similar structure as the Fein trap 

[Thewalt, 1982], but stress and magnetic field perturbations indicate that the FeTI 

related trap may undergo temperature induced transformations between 

trigonal and rhombic configurations [Watkins,1985]. On the other hand the 

luminescence from the isoelectronic trap observed in Si:FeB exhibits no axial 

symmetry under the application of a magnetic field [Mohring, 1984]. This lack of 

orientational splitting of the no-phonon line, along with other less direct 

evidence [Schlesinger, 1983], leads to the conclusion that the FeB related defect 

observed in photoluminescence is not the FeB pair observed in EPR. 

Perhaps the most interesting feature of the iron-acceptor pairs is their 

metastability. Chantre et al.[1985] have demonstrated that the FeAI(2) defect is 

a metastable state of the FeAI(1) defect. A metastable configuration has also 

been found for FeGa [Benton, 1987]. The transformation between the two 

configurations is controlled by charge-state dependences of the total energy. 

The activation energy for the transformation is about 0.5 eV. The 

phenomenological model proposed to explain this metastability is based on the 

electrostatic energy of the Fe+ in the electric field of the ionized acceptor. The 

iron atom in the stable state is assumed to lie in the nearest-neighbor interstitial 

site, while in the metastable state it is assumed to lie in the next-nearest

neighbor interstitial site (this model is identical to the model proposed to explain 

the EPR results of FeAI). The model gives reasonable predictions for the 

energy differences between the stable and metastable states, and the activation 

, .energy for transformation is of the same order as the activation energy for 
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diffusion of interstitial iron. On the other hand, the model cannot explain the 

chemical dependence of the metastable state. In the purely electrostatic model 

the local strain induced by the mismatch in the ionic size of the acceptor atoms . 

compared to the silicon atoms should push the iron atom further from the 

substitutional acceptor site, thereby reducing the activation energy as the 

acceptor atom ionic. radius increases. This is directly opposite to the observed 

trend. The influence of the central-cell potential.of the acceptor on the iron 

wavefunction should be negligible when the iron is situated at the next-nearest

neighbor site, leading to the roughly same activation energy for all the 

metastable states. This is not the case. The metastable state activation energy 

increases with the binding energy of the isolated acceptor, suggesting · 

substantial overlap of the iron wavefunction wi_th the central-cell potenti?l.of the 

acceptor. 

It is clear from the foregoing review of the experimental observations of 

iron-acceptor complexes in silicon that the defects can exhibit a large variety of 

sometimes contradictory symmetries, and show interesting metastable behavior 

which is not yet fully understood. To attempt to determine the symmetries of the 

iron-acceptor pairs, uniaxial stress.was applied in conjunction with DL TS. 

II. Stress Data 

A. Experime~tal Details 

Iron diffusion into samples of 5 x 1015 cm~3 boron or aluminum doped 

silicon samples was performed by first coating the sample with FeCI3 and then 

heating for·two hours at 1000 oc in an argon atmosphere. The chlorine had no 

measureable effect on the iron diffusion or on the electrical characteristics of the 

sample after diffusion~ The use of the FeCI3 was not essential; some samples 
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which were cleaned carefully and annealed at 1000 °C were found to have 

comparable iron concentrations. This iron may have been present already in 

the sample and was simply activated by the high temperature anneal. The 

samples were quenched in air, th.en annealed at 80 oc for two hours. The 

quench is necessary to capture the iron as interstitials without precipitation, and 

the subsequent 80 oc anneaiing stage facilitates the movement of the iron 

interstitials to speed up their capture by the substitutional acceptors. The 

samples were etched and allowed to oxidize before evaporation of 300 A of 

gold onto one surface to form the ohmic contact. The rectifying contact was 

formed by evaporating 1 000 A of AI onto the opposite side. The evaporation 

was performed with minimal current in order to avoid heating of the contact. 

The aluminum was covered by 300 A of gold to protect the aluminum from the 

indium electrical contacts. Typical concentrations of the FeB and FeAI levels 

after preparation ranged from 5x1o12 cm-3 to 5x1o13 cm-3. 

The samples to be used for stress experiments were cut from the contacted 

sample into 1 x 1 x 6 mm3 parallelepipeds. The ends of the cut samples were 

etched to remove the sharp edges. Copper wire (32 guage) was attached to the 

samples using pressed indium contacts. Samples were mounted into a DL TS 

stress rig capable of achieving 100 Newtons per mm2, or 1 GPa of uniaxial 

stress. 

The stress data were taken with the time constant of the DL TS correlator 

set to a fixed value, usually around 3ms. Zero-stress data were taken, then the 

stress was increased by intervals of about 0.1 GPa to nearly 1 GPa. The zero

stress measurement was repeated afterwards to check for hysteresis. Data 

were always taken for increasing temperature under 1/100 atm of helium 

exchange gas in order to equilibrate the temperatures within the stress rig and 

remove any effects from thermal hysteresis. A representative example of stress 
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Fig. 4.1 DL TS spectrum of FeB under [11 0] uniaxial compression. The data 

were taken for a constant emission time constant of 3 ms, with the 

stress varying from zero to 0. 76 GPa. The period of each scan was 

approximately 3 minutes. 
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Fig. 4.2 DL TS spectrum of FeAI in Si under [1 00] uniaxial compression. Data 

were taken for a constant emission time constant of 3 ms. 
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data ft;>r FeB is shown in Fig.(4.1) for increasing stress along a <11 0> direction 

at constant emission rate, and for. both FeAI defects in Fig.(4.2) for a <1 00> 

stress. Two features are evident: first, there are no splittings greate~ than 2 

KIGPa; second, the peak shifts in temperature by roughly 15 K/GPa. The effect 

of thermal emission to a stress-split valence band has b~en considered in 

chapter Ill and explains much of the large observed shift in temperature of the 

DLTS peak. Using this analysis, the shifts in energies of the defects can be 

extracted. These shifts in defect energy may provide information on the 

possible defect symmetries. 

B. Shear Dependence 

The shifts in the temperature of the defect peak positions for increasing 

stress are shown in Fig.(4.3a-d) for the two defects under [1 00] and [111] 

stresses. The solid lines are the best fit of the data to eq.(3.1 0) using the 

combined effective masses of Fig.(3.11) of chapter Ill. The only free parameter 

is the shift of the defect energy under stress, which in all cases is small 

compared to the shift of the valence band edge. The data fit the theory well in 

all cases. It is important to note that there is no evide~ce of an increase in the 

peak temperat~re under small stresses as is incorrectly predicted by the 

spherical approximation. 

The results of this analysis are shown in Fig.(4.4) for the FeAI defects. 

Energy shifts under 1 GPa are plotted against stress direction.· The origin of 

energy is taken at the center of gravity of the top two valence bands. The zero 

stress energies of the iron-acceptor pair are also indicated. There are two 

contributions to the shift in t~mperature of the DLTS peak. The predominant 

contribution stems from the splitting of the valence band. The remaining 

contribution is from the total energy shift of the FeB pair, which can be broken 
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Fig. 4.3 Change in temperature of the DL TS peak with increasing stress for a 

constant emission rate for a) FeAI(2) under [1 00] stress, b) FeAI(2) 

under [111] stress, c) FeAI(1) under [1 00] stress, and d) FeAI(1) under 

[111] stress . 
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Fig. 4.4 Shear energy dependence of the FeAI(1) and FeAI(2) defects under 1 

GPa as fitted f~om Fig.(4.3). The hydrostatic shifts are from 

WOnstel[1982b] and Weber[1987]. The deviation from the hydrostatic 

shift is the anisotropic dependence. The error on these values is ± 2 

meV/GPa. 
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into a hydrostatic component and a shear component. The activation energy for 

thermal emission is therefore the difference between the shifted defect energy, 

and the energy of the topmost edge of the split valence band. The hydrostatic 

components are -4.0 meV.GPa for FeAI(1) and -3.2 meV.GPa for FeAI(2). When 

these values are subtracted from the total energy shifts of the defect, the shear 

energy shifts remain. 

Ill. Defect Symmetries 

The energy shifts of the iron-acceptor complexes show qualitatively 

similar anisotropy. There is a consistent anisotropy of 5 meV/GPa for both 

defects, but the baseline is shifted for the FeAI(1) defect relative to the FeAI(2) 

defect. The uncertainty in the measurements and the complicated analysis 

produce error. bars that make this anisotropy a one-standard-deviation effect. 

Such uncertainty makes any conclusions concerning the symmetry of the defect 

impossible. However, it is interesting to understand why the stress sensitivity of 

the iron-acceptor pairs is so small. To help elucidate the problem, the expected 

stress properties of several possible structures for the iron-acceptor pairs are 

presented next. These are: trigonal symmetry; rhombic symmetry; and a dipole 

in T d symmetry. 

A. Trigonal Defect 

The energy shifts of a trigonal defect are shown in Fig.(4.5). Trigonal 

defects experience largest shifts when stressed parallel to <111 > directions, 

and zero shift for stresses along <1 00> directions. The defect levels associated 

with the 3d6 -> 3d7 transition on the iron atom can be written as 

3d6 + ev -> 3d7 
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where an energy ~E is required to promote an electron from the top of the 

valence band to produce the 3d7 configuration from the 3d6 configuration. The 

energy balance for the transition is 

E(3d6) -2 e2/Eavd + E(vb) + ~E = E(3d7)- e2/Eavd, (4.1) 

where E(3d6) and E(3d7) are the total energies of the 3d6 and 3d7 

configurations of the isolated, interstitial iron atom respectively when occupied 

in their ground states. The terms e2 I Eavd are the contributions of the 

electrostatic energy to the total energies of the initial and final states, where d is 

the separation between the iron atom and the acceptor atom, and Eav is the 

dielectric permitivity integrated from E(oo) to E(d). These terms arise from 

d 

e21Eavd = - J ( e2/e(r) r2 ) dr. (4.2) 

00 

This energy is on the order of 1 eV (assuming that E ~ 10 ), and is responsible 

for pushing the energy of the 3d6 to 3d7 transition of isolated interstitial iron up 

out of the valence band. E(vb) is the energy of the valence band, and ~E is the 

activation energy. Usually E(vb) is taken as the origin and ~E is simply the 

difference between the total energies of the two configurations. Under applied 

uniaxial stress the change in the activation energy as a function of stress t 

becomes 

~E(t) = ~E(3d7;t)- ~E(3d6;t)- ~E(vb;t) + e2/Eavd(t) , (4.3) 
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where the iron-acceptor separation dis explicitly considered as a function of the 
. . 

stress. The effect of stress on the valence band has already been considered in 

chapter Ill. From the above considerations, it is clear that the splitting of the r 

initial state as well as the final state under uniaxial stress must be considered. 

This is demonstrated for the trigonal iron-acceptor pairs in in Fig.(4.6). The total 

energy of the pair oriented along the [111] stress axis decreases more for the 

3d6 initial state than for the 3d7 state because of ~he extra charge: in the initial 
. . 

state. If the defect is free to reorient at the elevated temperatures of DL TS, then 

the orientation parallel to the stress direction will be preferentially populated 

and the total defect energy difference between the 3d6 and the 3d7 states will 

increase by the· amount proportional to e2/el~cd. The defect is insensitive to 

[1 00] oriented stress and there would be no shear shift for this stress direction. 

Therefore, the shear shifts shown in Fig.(4.4) are consistent with a reorienting 

trigonal defect. 

The shear stress derivative for the defect can be calculated for this 

electrostatic model. The expression is simply 

(4.4) 

where e1oc =·e(d) is the local dielectric permitivity at the site of the iron atom, and 

s44 is the shear compliance constant. The experimental value is 5 meV/GPa. If 

d=2.35A (nearest-neighbor interstitial distance), then the local dielectric 

constant would be £1oc = 1 0. This is near the value of the full bulk dielectric 

constant for Si. Therefore the small shear stress shift of the FeAI(1) pair is 

consistent with the electrostatic model of Chantre. However; the justification of 

such a large dielectric constant for such short distances remains an open 

problem. Furthermore, the defect must be required to reorient to explain the 
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Fig. 4.6 The dependence of the thermal ionization energy on applied stress 

after the effects of stress on the valence band are removed. The 

splitting from the electrostatic interaction of the Fe with the acceptor is 

larger for the 3d6 configuration than for the 3d7 configuration. 
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sign of the shift for [111] stress if that shift originates with the defect. The 

possibility that this shift is an artifact of the valence band cannot be ruled out. 

B. Rhombic Defect 

The model for the defect observed in EPR with rhombic I symmetry 

places the iron in the next-nearest-neighbor interstitial site. The position of the 

iron is shown in Fig.(4.7) nested between a pair of bonds at a distance of 2.72A 

from the substitutional site. In the actual defect, the iron is likely to relax towards 

the acceptor site. There are six equivalent orientations for the iron atom in this 

case corresponding to the six combinations of bond pairs. The symmetry of this 

defect is C2v and it has associated with it two deformation potentials. These can 

be calculated in a similar fashion to the deformation potential calculated for the 

trigonal defect. The results are 

dE<111 >/dt = 1/2 2 s44, 

dE<100>/dt = -2/3 (e2/elocd) (s11- s12), (4.5) 

where 2 is the transverse deformation potential describing the interaction of the 

iron with the pair of bonds. The splittings of C2v symmetry are shown in 

Fig.(4.8). In a similar manner to the case of the trigonal defect, the defects 

oriented along the [1 00] stress direction have lower energy than those oriented 

perpendicular to the stress direction. The decrease in the activation energy for 

[1 00] oriented stress can only be explained if the defects are J)Ot ~llowed to 

reorient. In this case, the DLTS peak will be broadened slightly, with more 

weight in th~ defects perpendicular to the_ stress. The energy separation 

between these orientations decreases with increasing stress ~md would explain 
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.,. Fig. 4. 7 Rhombic I model for the FeB pair in silicon seen in the (11 0) plane . 

The iron has six configurations among all six equivalent bond pairs. 
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Fig. 4.8 Stress splittings for a rhombic I defect. 
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the decrease observed for the FeAI(2) defect for [1 00] stresses. The sensitivity 

of these rhombic defects to [111] oriented stress would be small. 

The magnitudes of the shear shifts for the FeAI(1) and FeAI(2) defects are 

therefore seen to be consistent with the electrostatic model of Chantre et al. 

The change in sign of the shear contribution is furthermore only consistent with 

the respective trigonal and rhombic symmetries for these defects if the trigonal 

FeAI(1) defect is allowed to reorient and the rhombic FeAI(2) defect is not able 

to reorient at the temperatures of DL TS. Of course, the similarity in the 

anisotropy between the FeAI(1) defect and the FeAI(2) defect suggests that this 

anisotropy may arise from the valence band and not from the defect at all. A 

0.5 eV error in the relative values of the deformation potential parameters b and 

d for the valence band could account for the observed shifts. 

C. Classical Dipole in a Tetrahedral Environment 

As a final possibility for the defect structure, the stress properties of an 

electric dipole in a tetrahedral field are considered. This model is motivated by 

the fact that, to lowest order, the iron-acceptor pairs can be represented as 

simple electric dipoles: the iron is positively charged, the acceptor is negatively 

charged, and there is some small separation between them. The dipole 

operator in the tetrahedral group Td transforms .as the T2 representation of that 

group, which is a threefold-degenerate representation. Neglecting coupling to 

higher order T2 multipole moments of the tetrahedral crystal field, a dipole can 

orient in any direction with the same total energy, with no potential barriers; the 

dipole is a free rotator. When uniaxial stress is applied, a dipole located at the 

tetrahedral site must exhibit anisotropic energy shifts which depend on the 

direction of the stress. Specifically, the total energy of the dipole has an angular 

variation compatible with that of the T2 symmetry. The energy :variation of the 
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three components of the dipole with stress orientation is shown in Fig.(4.9) for 

specific values of normal and shear deformation potentials 8=1 0 meV/GPa and 

C=3 meV/GPa·respectively. It must be emphasized that this is a classical 

result. The three curves shown in Fig.(4.9) are the principal values of the 

energy ellipsoid describing the energy surface of the dipole in the strain field. 

As the stress direction is changed, the principal axes of the energy surface are 

altered and the dipole reorients accordingly to the direction having the lowest 

energy. 

In fact, the dipole described by an iron-acceptor pair has a spatial extent 

which would couple the dipole to higher T 2 multi pole moments of the 

tetrahedral crystal field. This results in a hindered rotator. In general terms, 

there should be a threshold energy below which the rotator becomes a librator, 

and the tetrahedral symmetry is then lowered: the isotropy of the system is 

destroyed. The potential energy must have minima in certain directions, 

possibly in the <111 > or <1 00> directions. If these minima are shallow, the 

defect retains much of the stress behavior of a tetrahedral T 2 state. Yet the 

localization of the iron atom in these minima would explain the anisotropic 

symmetry observed in EPR and photoluminescense. Such a dipole model·' 

could in fact explain the large variety of symmetries observed by different 

techniques at different temperatures. 

To carry this model further, the effect of trigonal minima on the stress 

behavior of a T 2 dipole can be calculated to compare with the experimental 

results to see if the model might be consistent with observation. A dipole of T 2 

symmetry will e·xhibit four equivalent minima in this case. This effect can be 

modeled by considering the T 2 state to be split by a trigonal field into an A1 

singlet and E doublet of C3v symmetry. The size of the splitting, .1, is a measure 

of the potential hindering free orientation of the dipole in the crystal. If this 
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Fig. 4.9 Stress splittings of a defect with T2 symmetry. In the illustration, the 

piezospectroscopic constants are 8=1 0 meV/GPa and C=3 meV/GPa. 

119 



dipole model is correct, then the iron-acceptor pairs should reorient easily. 

Reorientation was also invoked to explain 'the sign of the anisotropy for the 

FeAI(1) defect. To test for reorientation at low temperature, uniaxial stress was 

applied in conjunction with EPR. This technique has the advantage of high 

sensitivity to small changes in defect structure under stress, and all orientations 

of the defect can be observed individually. 

IV. Stressed EPR 

The paramagnetic center observed in EPR is attributed to the 3d7 

configuration of the iron. The hyperfine splitting from the interaction with the 

spin 3/2 on B1? is clearly observable and gives a positive identification of the 

defect. The FeB and FeAI EPR signals show strongly anisotropic g-tensors with 

C3v symmetry. This symmetry is consistent with the iron occupying the next-
. . . 

nearest interstitial site adjacent to the ionized boron. Stress was applied in 

conjunction with EPR to attempt to observe electronic redistribution or 

reorientation of the C3v axis of Fe·B pairs. 

In order to observe the FeB defect in the paramagnetic 3d7 

configuration, the Fermi level in the material must be pinned above the FeB 

level. This can be achieved by diffusing Fe into the material in excess of the B 

conc'entration, and quenching rapidly to capture the iro-n as electrically active 
.I •· 

interstitials. This pins the Fermi level at the Ev + 0.40 iron interstitial level. Iron 

from FeCI3 was diffused into the EPR samples at 1150 °C for 30 minutes in a 

vertical oven and quenched rapidly by dropping the samples into diffusi.on

pump oil. The quench rate on the order of 200 °C/sec was sufficient to prevent 

the iron from precipitating and the material remained semi-insulating (Fermi 

level pinned around mid-gap) even at room temperature. The side surfaces of 

the [111] oriented 1 x1 x6 mm3 samples were lapped after the diffusion and the 

120 



ends faced off perpendicular to the vertical orientation, followed by a polish 

etch. The samples were attached to the bottom of a 14 GHz E PR (TE011 ) cavity 

mounted in a Janis varitemp cryostat which could be stabilized at temperatures 

from room temperature to 4.2 K. A maximum of 0.1 GPa could be applied to the 

sample with a polystyrene plunger. 

The 8-field was set parallel to the [1 -1 0] direction for which the EPR 

signal consisted of two closely spaced peaks from the [1 1 1] and [-1 -1 1] 

oriented defects, and two peaks from the other two directions. The maximum 

stress of 0.1 GPa was applied to the sample at the measurement temperature of 

11 K and no change in the relative amplitudes of the parallel and off-parallel 

defects was observed. This rules out reorientation at low temperature. To test 

for reorientation at higher temperatures, the maximum stress was applied at 

around 230 K, then the sample was cooled for thirty minutes to 180 K and then 

the temperature dropped in five minutes to the 11 K measurement temperature 

at which the stress was removed. The stress was removed before the 

measurement to ensure that there was no stress broadening of the EPR signals. 

No observable changes in amplitudes were seen. Finally, the maximum stress 

of 0.1 GPa was applied to the sample at 270 K for sixty minutes, after which the 

sample was cooled slowly to 230 K at a rate of 1 K/min maintaining the stress, 

and finally quenched to the measurement temperature of 11 K. The EPR 

spectra were taken after the stress had been released at the base temperature 

of 11 K. No significant changes in the amplitudes of the EPR signals originating 

from the defects parallel and off-parallel were observed. From the magnitude of 

the stress and the temperature at which the stress was applied, an upper limit of 

0.3 eV per unit strain can be set for the strain-coupling of the defect. From this 

upper limit, we can conclude that the FeB pairs will show energy splittings 

under uniaxial stress less than 3 meV/GPa. Such small splittings are below the 
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resolution of DL TS and are not likely to account for the common anisotropy in 

the FeAI(1) and FeAI(2) defeCts. Therefore, this anisotropy is most likely an 

artifact from the splitting of the top of the valence band. 

V. Conclusions 

In this chapter, the results of Chapter Ill have been used to find the shear 

dependence of iron-acceptor pair defect energy on stress orientation. A 

common anisotropy of 5 meV/GPa was observed for both the FeAi(1) defect and 

the ~eAI(2) defect. The magnitude of this anisotropy is consistent with the 

electrostatic model of Chantre which requires the 'dielectric constant to be 

E(r)"" 10 for a separation of 2.35 A. The sign of the anisotropy is only consistent 

if the FeAI(1) defect has trigonal symmetry and· reorients, while the FeAI(2) 

defect has rhombic symmetry and is not able to reorient. Although this 

symmetry assignment is consistent with the symmetry assignments for these 

defects from EPA, there is no evidence from stressed EPA that the FeB defect 

reorients under uniaxial stress. Therefore no conclusions can be made 

concerning the symmetries of the stable and metastable iron-acceptor pairs. 

Because· of the insensitivity of the iron-acceptor pairs to shear stress, they 

become a convenient reference point from which to measure thermal emission 

of holes to the stress-split valence band. The shift in temperature of the FeAI 

defect DL TS peaks co·nfirms the calculations of Chapter Ill that the density of 

states is divided roughly equally between the two displacing bands. This 

·partition conserves the center of gravity of the split bands and accounts for the 

zero-slope asymptote of the temperature shift ofthe DL TS peak at low stresses. 

Furthermore, the 5 meV/GPa anisotropy observed for both the FeAI(1) and 

FeAI(2) defects may reflect a relative errpr between the accepted values of b · 

and d. 
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Chapter V. Hydrostatic BandaEdge Deformation Potentials 

I. Band Offsets 

The energies of extended electronic (Bloch) states of a crystal change 

adiabatically with changes in crystal volume. This fact is expressed 

conventionally in terms of the tight-binding model of solids: as atoms are 

brought together from infinite separation, the individual atomic states overlap, 

forming bonding and anti-bonding combinations which have energies that 

spread into energy bands. The equilibrium lattice separation is determined by 

the trade-off between electronic bonding energy and repulsive nuclear-nuclear 

energy. The total energy is minimized at the equilibrium lattice spacing R0. In 

the case of a semiconductor, a gap in the energy spectrum between occupied 

and unoccupied states occurs at the equilibrium lattice spacing. The edges of 

this gap, the valence and conduction band edges, vary in energy as the lattice 

spacing is changed. 

The dependences of the band-edge energies on the crystal volume can be 

defined in several equivalent ways. The change of the band-edge energy with 

lattice spacing is given by the slope of the line tangent to the energy curve at R0, 

and would be expressed in the units of eV/A. A more convenient measure of 

the energy dependence on crystal volume is the hydrostatic deformation 

potential, denoted by a, which describes the energy change per unit volume 

strain, or equivalently 

a= dE I d(lnV) . (5.1) 
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E:lectron states which have energies that decrease under compression have a 

positive .deformation potential. An important distinction must be made between 

relative and absolute deformation potentials. The relative change of the 

conduction and valence band edges under pressure can be measured easily 

using photo-excitation across the bandgap as the bandgap is altered by applied 

pressure. However, this technique measures only the difference between the 

individual band-edge shifts; the absolute energy shifts of the separate band 

edges cannot be measured this way. 

Absolute hydrostatic deformation potentials describe the isotropic coupling 

of electronic states to the· lattice. This chapter is concerned with the isotropic 

coupling of the states at the band edges to the lattice. This isotropic electron-

. lattice coupling plays an important role in several seemingly disparate aspects· 

of the physics of semiconductors: acoustic deformation~potential scattering of 

charge carriers, band offsets in strained-layer superlattices, and volume 

relaxation around deep defect centers-upon carrier emission. . 

Despite the importance of isotropic electron-lattice coupling, the absolute 

hydrostatic deformation potentials of the band edges have been elusive 

parameters that have evaded direct measurement. The difficulty in measuring 

the absolute band-edge deformation potentials arises from the fact that the 

band edges are buried roughly 5 eV in energy below the vacuum energy level, 

which is a possible reference level from which·to measure absolute energies. 

This large .separation in energy between the reference level and the band 

edges !ntroduces a large uncertainty in the measurement of small perturbations 

on the energy levels. This uncertainty has precluded the direct,measurement of 

absolute deformation potentials. 
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An alternative approach to measuring the band-edge deformation 

potentials would be to measure the changes in the band-edge energies with 

respect to an 'internal' reference level. Small changes in the energy separation 

between the band edges and the reference level could therefore be measured 

accurately. The need to define an internal reference level in semiconductors 

has arisen lately in the context of heterojunction band offsets. At the interface 

between two dissimilar semiconductors there are discontinuities (or offsets) in 

the energies of the valence and conduction band edges. These band 

discontinuities are the basic building block of the novel semiconducting devices 

designed through bandgap engineering. It is therefore of primary importance 

that these discontinuities be known accurately. Accurate experimental 

measurement of these discontinuities has only been possible, however, for the 

limited class of interfaces in which the lattice constants of the two materials 

match closely. For lattice-mismatched interfaces, local strain fields complicate 

the growth of the interfaces and the measurement of the discontinuities. 

In the absence of good experimental values for the band offsets, there has 

been much theoretical activity focused on predicting the band lineups. Several 

approaches have been taken, from first-principles calculations [Van de 

Walle, 1987] to empirical rules-of-thumb [Tersoff, 1985]. One encouraging 

approach to predicting band lineups has been to define an intrinsic energy in 

each semiconductor material which lines up across an interface between two 

different materials [Flores, 1979; Tersoff, 1984]. This intrinsic energy has been 

called the charge neutrality level, because this is th.e energy which must match 

up across an interface in order to minimize surface polarization [Tersoff, 1984]. 

Tersoff has defined the neutrality level as an inflection point in the real part of 

the Green's function describing the perfect crystal. The inflection point is 

interpreted as the energy of a localized electronic state in the bandgap for 
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which the contribution of the conduction bands to the structure of the localized 

state equals the contributions from the valence bands. It has been suggested 

that this construction of the neutrality level is equivalent to defining the energy 

position of the neutral vacancy. This connection between intrinsic deep-level 

defects and the neutrality level suggests that deep-level defects, or at least 

vacancies, could be used to predict band lineups. Namely, the band lineups 

obtained by lining up the energy levels of the vacancy between two different 

(but isovalent) materials should be the correct band discontinuities. 

The energy levels of vacancies are difficult to characterize because of the 

tendency for vacancies to form complexes and because of strong reconstruction 

of the dangling bonds leading to large lattice relaxations. This complicates the 

use of vacancies to predict band lineups. However, it has been established that 

many deep substitutional impurity defects have strong vacancy-like structure. In 

particular, the energy structure of substitutional transition-metal defects have 

been described in terms of the Watkins' vacancy model [Watkins, 1983]. Before 

the connection was made between deep-level defects and band discontinuities, 

however, it was found experimentally that the relative spacing of the transition

metal levels in one 111-V semiconductor was the same in several other isovalent 

semiconductors [Ledebo, 1982]. This observation was substantiated through 

Green's function calculations of transition metals in 111-V and II-VI compounds 

[Caldas, 1984]. Later, Lange~1985] amassed experimental data for the energy 

levels of several transition metals in 111-V and II-VI semiconductors, and again 

found, striking evidence for the invariance of the relative energy spacings 

between the transition-metal energy levels within isovalent semiconductors. By 

lining up these energy levels among the semiconductors, the band offsets 

between various semiconductors were predicted.· This lineup hypothesis was 

tested for the single case of the lattice-matched GaAs-AIGaAs system, and was 
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found to agree well with experimental measurement of the band discontinuities. 

A physical explanation for the lineup of transition-metal defect levels across a 

hetero-interface was provided by Tersoff and Harrison[1987] based on the 

charge transfer between the d-shell of the transition metal and the dangling 

bonds of the vacancy. They found that the transition-metal defects were locked 

to the neutrality level within an additive constant. 

The establishment of an internal reference level from which changes in 

band structure can be measured has direct application to the problem of 

measuring the absolute band-edge deformation potentials. The principle of the 

lineup of transition-metal defect levels across a hetero-interface is general and 

should apply as well to the interface between two materials that differ only by a 

perturbation. This is illustrated by the stress homojunction in Fig.(5.1 ). The 

interface is between two materials that differ only by their state of strain. The 

neutrality level, and hence the transition-metal level, remains constant across 

the interface. The band discontinuities, in this case, are the band-edge 

deformation potentials, which are precisely the electron-lattice perturbation 

potential that enters into the theory of acoustic deformation potential scattering. 

To measure the band-edge deformation potential, a stress homojunction is not 

required. By measuring the pressure derivative of a transition-metal defect level 

by an ionization technique such as deep level transition spectroscopy (DL TS), 

one is in fact measuring the isolated band-edge pressure derivative. 

In this chapter, evidence is presented that the transition-metal-based 

reference level is valid for measuring band-edge deformation potentials. GaAs 

is selected as the ideal test material and DL TS stress data are provided from 

several different transition metals in GaAs among several different charge 

states. It is found that they possess a universal pressure derivative. This 

pressure derivative is compared to the deformation potentials obtained from 
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Fig. 5.1 Strain-induced homojunction. The semiconductors on the left and

right differ only by their state of strain. The transition-metal level is 

taken as the reference. The band discontinuity caused by the strain is 

directly proportional to the band-edge deformation potential. 
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acoustic-phonon-limited mobility, and from first-principles theoretical 

calculations. All three values agree within experimental error. This cross

correlation among the values from three very different techniques provides a 

strong internal consistency. In section Ill the principle is extended to include 

other semiconductors including lnP and Si. Again the correlation of pressure 

data with mobility data and theoretical calculations is emphasized to give a 

strong, internally consistent argument for each material. 

II. Band-Edge Deformation Potentials in GaAs and lnP 

If transition-metal impurity levels are to provide a valid reference level from 

which pressure-induced changes in band structure can be measured, then the 

transition-metal levels in a given material must possess a universal pressure 

derivative. This transition-metal pressure derivative must be independent of 

chemical species and charge state. This universality hypothesis was tested by 

measuring the pressure responses of several substitutional transition metals in 

GaAs. The choice of a 111-V semiconductor as the test material over group IV 

materials is based on two points. First, the 111-V semiconductors incorporate 

transition-metal impurities only substitutionally, which is necessary for the 

transition-metal impurity levels to behave as reference levels (vacancy-like 

defects). Transition metals in the group IV semiconductors can occur either 

substitutionally or interstitially. This introduces complications that remove group 

IV semiconductors as unambiguous test materials. This complication is not 

insurmountable, and the case of Si is discussed in section Ill of this chapter. 

Second, the relatively wide bandgaps in the 111-V's, compared to Si or Ge, allow 

several different charge states of the same transition-metal impurity to produce 

defect levels in the bandgap. This point is important for the investigation of 

possible charge state dependences of the defect pressure derivatives. The 
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specific choice of GaAs over the other 111-V semiconductors is based on the fact 

that the identification of isolated transition-metal impurity levels in GaAs has 

been·more successful than in other 111-V compounds because GaAs is available 

in higher purity, and because the technological importance of transition metals· 

in GaAs has driven a wealth of research on this topic. This point is important for 

the investigation of possible chemical trends in the pressure derivatives. 

A. Transition-Metal Pressure Derivatives 

Transition-metal impurities in 111-V compounds have been observed to occur 

only substitutionally and to occupy only the cation site, Gain the case of GaAs. 

Because of the high occupancy of the transition-metal d:.shell, these'impurities 

can introduce many different charge-state levels into the bandgap. The charge 

states are· conventionally labeled in ionic notation, with the 3+ charge state 

denoting the neutral defect after three electrons are used to satisfy the valence 

of the missing group Ill atom. In this notation, single acceptor levels are 

associated with the 3+/2+ charge-state transition, and single donor levels are 

associated with the 4+/3+ charge-state transitions. The d-electrons experience 

an environment with tetrahedral symmetry. This tetrahedral crystal field splits 

the d-orbitals into a triplet of t2 symmetry above a doublet of e symmetry. 

These manifolds are occupied according.to Hund's rules, i.e. high spin is 

favored, except in special circumstances [Caldas, 1986]. The electronic 

structure of transition-metal impurities have been studied in detail through 

Green's function calculations [Zunger, 1986]. 

1. Transition-Metal Impurity Levels 

The properties of Ti and V transition-metal impurity levels in GaAs have 

been tested using deep level transient spectroscopy (DLTS). The energy levels 
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Fig. 5.2 Energy levels of Ti and V in GaAs and lnP. The band-offset obtained 

by lining up the transition-metal levels should provide the band

offsets that would occur at a heterojunction interface between these 

two materials. 
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in the bandgap are shown in Fig.(5.2). All of the defect levels shown in GaAs 

act as electron traps and therefore their energies are referred to the conduction 

band enedgy. The Ti impurity introduces two defect levels[Hennel,1986], an 

acceptor at Ec- 0.24 eV and a donor at Ec .. 1.00 eV. The V impurity has one 

acceptor level [Brandt, 1986] at Ec - 0.14. These two chel!lical species include 

two different charge states with both t2 and e state occupancies: 

2. Uniaxial Stress 

To study the stress properties of the transition-metal energy levels, 

compressive uniaxial stress was applied in conjunction with DL TS. Uniaxial 

stress contains both shear and hydrostatic components. To separate out the 

contribution from the hydrostatic components to the energy shifts it is necessary 

to analyze the symmetries of the initial and final states in the thermal ionization 

transition observed by DL TS. The electronic structure of the acceptor level of Ti 

is shown in Fig.(5.3).- The initial charge state after the defect has trapped an 

electron during the filling pulse is Ti2+. This corresponds to a 3d2 configuration 

with a two-electron atomic F-term. The F symmetry is split by the tetrahedral 

crystal field into manifolds which transform as the A1, T1 and T 2 representations 

of the tetrahedral group, with the A1 state as the ground state. The final state in 

the thermal ionization involves the Ti3+ charge state with a 3d1 configuration 

and an electron in the conduction band. The one-electron 0-term is split by the 

crystal field into T 2 and E manifolds. This crystal-field splitting of the 3d1 

configuration is in fact the crystal-field splitting of one-electron theories. The 

ground state of the final state is the Estate. 

Under the application of uniaxial stress, the totally symmetric A1 _initial state 

experiences no contribution from the shear stress. Therefore all shear 

contributions arise in the final state from the shear dependences of the electron 
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in the conduction band and the E-state. For the case of GaAs, the conduction 

band minimum is non-degenerate and the energy shift of the conduction band 

is therefore also insensitive to shear stress. Therefore all shear contributions 

arise from the E symmetry of the Ti3+ charge state. Finally, E-symmetry is 

sensitive only to <1 00> oriented stresses. For stress oriented in the <111 > 

directions there is no contribution from the shear components of the uniaxial 

stress to the energy shift of the defect level. For this case, the observed energy 

shift of the defect arises entirely from the hydrostatic component. 

The Ti acceptor level is one of a small number of special cases in which 

<111 > oriented stress removes the shear contribution to the defect energy shift. 

For general transition-metal defects, there will be a contribution from shear 

stress, even for <111 > oriented stresses. Therefore, to perform hydrostatic 

experiments with uniaxial stress, the magnitude of the shear contributions must 

be known. This magnitude is measured easily for the case of the Ti acceptor by 

comparing the stress response of the defect for [111] oriented stress with the 

response for [1 00] oriented stress. The difference in the energy shifts between 

these two directions is from the shear deformation potential of the one-electron 

E-state. This shear contribution is roughly 5 meV/GPa [Hayes,1983] for 

transition-metal defects. This must be compared to the hydrostatic pressure 

derivative of the bandgap, which is 110 meV/GPa. Therefore the contributions 

from the shear component of the uniaxial stress is less than 5% of the 

hydrostatic shift in the worst case. To eliminate or reduce any shear 

component, samples are always stressed in the <111 > direction~.. For the 

Ti(3+12+) level the energy shift originates only from the hydrostatic component 

of the stress. 

The stress data from the three transition-metal levels of Ti and V in GaAs in 

Fig.(5.2) are given in Fig.(5.4). These levels possess a universal pressure 
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Fig. 5.4 Energy shifts of the DL TS peaks as a function of [111] oriented 

uniaxial stress. The corresponding deformation potential for the 

bottom of the conduction band in GaAs is -9 eV ± 1 eV. 
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derivative within a scatter of values. The best fit line gives a value for the 

conduction band deformation potential in GaAs of ac = -9 eV ± 1 eV. By 

considering the bandgap deformation potential [Wolford,1985] of 8.6 eV, this 

gives the top of the valence band a deformation potential of av = -0.7 eV ± 1 eV. 

The levels of Ti and V in lnP are given in Fig.(5.2). ,The pressure derivative of 

the Ti(4+/3+) level gives a deformation potential for the bottom of the conduction 

band of ac = -7 eV ± 1 eV. The valence-band deformation potential is obtained 

to be av = -0.6 eV through subtraction of the bandgap deformation potential 

[Muller, 1980] of 6.4 eV from the conduction-band value. 

B. Acoustic-Phonon-Limited Mobility 

The existing experimental values of the deformation potentials 

determined from the analyses of carrier transport or free carrier absorption are 

highly unreliable as they range from -7 eV to -17.5 eV in GaAs [Wolfe,1970; 

Lee,1978] and from -3.4 eV to -18 eV in lnP [Takeda,1984; Nag,1978]. Such 

large variations of ac lead to more than one order of me3:gnitude spread in the 

relative contribution of deformation-potential scattering to the total scattering 

rate. The high values of the deformation potentials were in most cases obtained 

from fitting of the electron mobility [Lee, 1978] or free carrier absorption 

[Pfeffer, 1984] to theoretical models in which the effect of compensation was not 

accounted for. It has been shown recently [Look, 1983] that the best fit to 
' ~ 

electron mobility in high-purity, low-compensation GaAs is obtained with ac in 

the range .-9 eV to -10 eV. The direct measurement of ac is in excellent 

agreemen~ with this result. 

The introduction of AIGaAs/GaAs modulation doped heterostructures 

allowed for a substantial reduction of ionized impurity scattering, enhancing the 

relative contribution of acoustic phonons in limiting the low-temperature 
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electron mobility. However, even in this case the values of the deformation 

potential used to explain the temperature dependence of the electron mobility 

[Walukiewicz,1985; Mendez,1984] ranged from -7.0 eV to -13.5 eV. Lately, 

there is growing evidence based on new mobility calculations [Lei, 1985] that 

the value of ac = -8.5 eV satisfactorily accounts for the acoustic phonon 

deformation potential contribution to the electron scattering in n-GaAs/AIGaAs 

heterostructures. In addition, an analysis of the hole mobility in p-type 

GaAs/AIGaAs modulation doped heterostructures provided a value 

[Walukiewicz, 1987] of av = -1.0 eV again in excellent agreement with the 

present determination. 

Much fewer data are available for the deformation potentials of lnP. The 

present determination of -7 eV is consistent with the values [Taguchi, 1987; 

Walukiewicz, 1980] ac = -6.5 eV and -6.8 eV to explain electron mobility. 

Evidently, the measurements cannot be reconciled with such large values 

[Nag, 1978] as -18 eV or such small values [Takeda, 1984] as -3.4 eV for the 

conduction-band deformation potential reported in the literature. The acoustic

phonon scattering of the valence-band holes can be described in terms of the 

effective deformation potential 

(5.2) 

where av. bv, dv are valence band deformation potentials and c1 and ct are 

longitudinal and transverse elastic constants. The constants bv and dv are well 

known from uniaxial stress experiments [Wiley, 1975]. Using the values of av. 

the values 2eft(GaAs) = 6.1 eV and 2eff(lnP) = 6.6 eV are obtained which 

compare very favorably with the values 6.6 eV and 7.0 eV reported by Wiley. 
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It is evident from the above discussion that the values of the hydrostatic 

deformation potentials obtained from the transition-metal reference levels can 

explain consistently experimental data on electron and hole mobility in GaAs 

and lnP. This provides. additional support for the proposed method of directly 

measuring the band ... edge deformation potentials using the transition-metal 

defect levels. It should be noted finally that the present experimental data 

confirm recent theoretical calculations which report values [Cardona, 1987] of 

ac(GaAs) = -8.8 eV and ac(lnP) = -5.9 eV. These results also agree with 

calculations [Van de Walle, 1987a] that predict that avis typically an order of 

magnitude smaller than ac. In conclusion, it has been shown, for the case of 

GaAs, that different transition-metal species among various charge states 

possess a universal pressure derivative within a scatter of values. This 

pressure derivative is in fact the pressure derivative of the band edge of the bulk 

material. The corresponding values for the band-edge deformation potentials 

are much more accurate than those determined by indirect methods, and give a 

consistent explanation of a variety of experimental data on electron and hole 

mobility in GaAs and lnP. This technique is simple, and universal, and should 

be applicable to both 111-V and II-VI semiconductors as well as group IV 

materials. 

Ill. Extension to Silicon 

The transition-metal reference level translates naturally from the 111-V 

compounds to silicon. In practice, however, the application to silicon is 

complicated by several difficulties experienced in silicon, but not in most of the 

111-V compounds. First, most transition-metal impurities in silicon occupy 

interstitial sites and do not qualify as suitable reference levels, as will be shown 

later. The transition metals that do assume substitutional sites are heavy 
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elements with 4d or 4f electrons in the core, and it is not clear a priori how these 

inner-core electrons influence the electronic structure of these defects. The 

second difficulty arises from the fact that the pressure derivative of the indirect 

bandgap in silicon is an order of magnitude smaller than the pressure 

derivatives of the direct gaps in most of the 111-V semiconductors. While this 

should present no fundamental difficulties to the theory, the ability to compare 

theoretical calculations of band,.edge deformation potentials to experimental 

values is hampered by the current accuracy of the calculations. Despite these 

difficulties, sufficient experimental and theoretical evidence exists to define an 

absolute reference level in silicon from which defect as well as band properties 

can be measured. 

Deep-level defects which are candidates for defining a reference level 

should share a common pressure derivative that is independent of charge state, 

chemical species and binding energy. This fact was established experimentally 

for the substitutional transition-metal impurities in GaAs and it was shown that 

the corresponding band-edge deformation potentials were consistent with 

mobility experiments and with theoretical calculations. The analogous system 

in Si are the substitutional transition elements Pd and Pt. The pressure 

derivatives of these isolated elements, as well as several complexes, have 

been measured previously (Ste)ffler, 1986]. The acceptor level of both impurities 

( Pd(-/0) and Pt(-/0) ) have equal pressure derivatives, which are similar to the 

pressure derivative of the Au acceptor level [Li, 1985; Samara, 1987]. On the 

other hand, the pressure derivatives of the levels assigned as Pt(O/+) and 

Au(O/+) have substantially different values. At first sight, this would cast doubt 

on the validity of using these heavy transition-metal elements as reference 

levels. However, additional defect pressure derivatives are available which can 

explain the discrepancy. Taking the value of the pressure derivative of Pd(-/0) 
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Fig. 5.5 Pressure derivatives of several defects in Si. The origin is taken as 
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and Pt(-/0) as the origin, the pressure derivatives of many deep-level defects in -

Si are plotted in Fig.(5.5) along with the pressure derivatives of the band edges. 

The defect values fall into three general classes: 1) shallow levels with pressure 

derivatives pinned to the nearest band edge; 2) interstitial transition metals with 

large negative pressure derivatives de'pending on the chemical speCies; and 3) 

deep substitutional impurities including transition metals and deep double 

donors which all have similar pressure derivatives. This third class of defects 

satisfies the criterion for providing an absolute reference level. The Pt level at 

Ev + 320 meV, which had previously been assigned as the substitutional Pt(O/+) 

donor, has a pressure derivative consistent with the interstitial transition metals. 

Considering the propensity of the transition metals in Si to occur interstitially, 

this Pt level is likely to arise from the interstitial configuration and therefore 

explains the discrepancy between the pressure derivatives of the two Pt levels. 

Pressure derivatives of transition-metal defects in silicon should therefore 

provide a criterion for distinguishing substitutional from interstitial impurities (or 

complexes). 

The inclusion of the chalcogens Se and S in the class of substitutional 

impurities which define a reference level has not previously been suggested. 

Their structure would seem to be substantially different from the structure of 

substitutional transition metals which locks the transition-metal defect levels to 

the neutrality level. In fact, the levels arising from Te do not have pressure 

derivatives similar to those of Se and S. However, the chemical trend in the 

pressure derivatives of the chalcogens shows a remarkable feature: the 

pressure derivatives for decreasing atomic number Z approach the value 

defined by the substitutional transition metals. Such behavior may be 

reconcilable with theories of substitutional deep traps in covalent 

semiconductors [Hjalmarson, 1980] which do predict asymptotic behavior for 
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strongly electronegative substitutional elements. These defects take on 

vacancy..,like wavefunctions, as do the substitutional transition metals which are 

locked to the neutrality level. Therefore, the near-equality of the low Z 

chalcogen pressure derivative with the pressure derivative of subs!itutic;mal Pd 

and Pt provides additional experimental evidence for the ~xistence of a 

reference level in Si. 

The deformation potentials of the band edges, measured with respect to 

the Pd and Pt levels, are ac = 2d + (1 13)2u = + 2.4 eV ,and av = +0.9 eV. From 

the reported value [Laude,1971 1 of Eu = 8.6 eV, the value :::d = -0.5 eV is 

determined. These values· can now be compared to theoretical calculations 

and mobility experiments to check for consistency. The most accurate 

calculation of the band-edge .deformation potentials in. Si comes from ab initio, 

self-consistent pseudopotential calculations [Van de Walle,1987b1 of the 

valence band which yield a value av = +0.8 f3V. The conducti~n band 

deformation potential is obtained by adding the deformation potential of the 

bandgap to this value. This gives ac = + 2.3 eV. This excellent agreement 

between the values from the transition metals and the calculated values is a 

further indication that the pressure derivatives of the substitutional transition , 

metals in Si provide an accurate reference level, although such remarkable . 

close agr~~merit between experiment and theory is somewhat fortuitous since 

the error on the calculation is estimated to be ±0.5 eV. 

A more important ~est of the values for the band-edge deformation 

potentials comes from mobility measurements. Acoustic-phonon-limited 

mobility is given by [Herring,19561 

Jl = (1 13) e [ tu I m11* + 2 t1. I m1. * 1 , (5.3) 
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where 

't1_ = 'tO T-3/2 ( E 1 ks T)-112 (5.4) 

and 

. (5.5) 

In this expression c 1 is the longitudinal elastic constant, and E is the average 

electron energy. It has been found [Norton,1973] that a best fit to experimental 

data on electron mobility in silicon is obtained for 'to= 3.56 x 1 o-9 sec K312. 

Using eq.(5.5) with the empirical condition 3d+ (1/3)3u = 2.4 eV the values 

3u = 9 eV and 3d = -0.6 eV are found. This value of 3u compares very 

favorably with the reported value of 8.6 eV from the effects of uniaxial stress on 

indirect excitons [Laude,1971 ]. Therefore the determination of 3d using the 

transition-metal pressure derivatives is consistent with the electron mobility 

data, and is certainly more accurate than previous values obtained from mobility 

data alone. 

The effective deformation potential describing scattering of holes by 

acoustic phonons is 

( 5.6) 

where c t is the transverse elastic constant. The deformation potentials 

bv = -2.2 eV and dv = -5.1 eV are well established [Merle,1978]. Using the value 

of av = -0.9 eV one obtains 3ett = 7.3 eV which again is very close to the value 
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of 7.5 eV found from hole mobility analysis in p-type silicon [Wiley,1975]. 

Therefore, the values of the hydrostatic band-edge deformation potentials in 

silicon determined from substitutional transition:.metal pressure derivatives have 

been found to provide a basis for a consistent explanation of electron and hole 

mobilities. In conclusion, it has been established that strong evidence exists for 

a pressure reference level in silicon based on heavy substitutional transition 

metals as well as on low-Z chalcogens. From this ~eference level the first 

accurate value for 2d is provided which is consistent with the best mobility data. 
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Chapter VI. Isotropic Defect-Lattice Coupling in 

Semiconductors 

I. Introduction 

The total energy of a defect in a semiconductor crystal is a function of the 

lattice positions of the atoms surrounding the defect. The equilibrium lattice 

positions are determined by the minimum energy configuration. The lattice 

positions in this configuration are usually distorted from the lattice positions of 

the perfect crystal in the absence of the defect. Different charge states of the 

same defect may have different equilibrium lattice configurations. Therefore 

after the emission or capture of a carrier, the lattice coordinates around the 

defect will relax to the new equilibrium configuration. Jahn-Teller systems are 

examples of lattice relaxation that is driven by the spontaneous breaking of 

degeneracy arising from defect symmetry. Considerable research, both 

theoretical and experimental, has been conducted on Jahn-Teller systems 

[Engleman, 1972]. Of primary interest in the Jahn-Teller distortion is the Jahn

Teller coupling parameter describing the change in defect electronic energy 

with changes in the lattice coordinates around the defect. In the case of 

symmetry-lowering distortions, this axial coupling parameter can be measured 

by observing the splitting of the ground state. The measurement involves 

usually small differences between energy levels and can be measured 

accurately. 

In addition to axial, symmetry-lowering coupling to the lattice, defects can 

also couple isotropically to the lattice. This coupling involves no energy 
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splitting. Rather, the defect ground-state energy is lowered by a symmetric 

inward or outward breathing-mode relaxation. To measure a shift in energy, a 

reference must be defined from which to relate the change in the ground-state' 

energy. Before the definition of such a reference energy, isotropic defect-lattice 

coupling parameters had not been accessible to experiment, and estimates of 

the coupling were restricted to the realm of theory [Scheffler,1982; 

Lindefelt, 1983; Lindefelt,1984]. Despite the difficulty in measuring isotropic 

defect-lattice coupling·, breathing-mode lattice relaxation can contribute to 

scientifically and technologically interesting phenomena such as multiphonon 

capture [Henry ,1977] and metastability (as for the EL2 and OX defects in GaAs 

and AIGaAs respectively). 

Defect energy levels in the bandgap of a semiconductor are defined by the 

energies required to change the charge states of the defects and promote 

carriers to ftie conduction or valence band edge. These activation energies 

change under applied pressure because the pressure affects the band edge 

energies as well as the defect energies. If the band-edge deformation potential 

can be determined, then the effect of pressure on the defect alone can be 

isolated and related to the problem of lattice relaxation. The topic of the change 

in the band-edge energy under pressure has been discussed in chapter V. In 

the present chapter the physical basis for the use of transition-metal defects (or 

more generally the use of the average sp3 hybrid energy of a semiconductor) as 

an absolute reference level·is developed. The magnitudes of chemical trends 

in the pressure derivatives of transition-metal defect levels, which would give 

the limits of validity for using these levels as a reference, are estimated. The. -

dependence of the deformation potentials of defects on the localization of the 

defect wavefunction is discussed in section Ill. Two extremes of behavior can 

be recognized between defects with highly localized wavefunctions that couple 
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strongly to the their local environment, and defects with weakly localized 

wavefunctions for which the local band extrema contribute significantly to the 

defect deformation potentials and the local coupling of the defect energy to the 

lattice is negligible. In section IV breathing-mode relaxations around defects 

are discussed and a relationship is established between changes in local force 

constants and changes in entropy which occur upon carrier emission. The 

results of this section are applied to calculate volume relaxations around 

defects in GaAs, most notably the EL2 defect in GaAs. 

II. Transition-Metal Pressure Derivatives 

It has been demonstrated in the last chapter [Nolte, 1987c, 1988] that 

transition-metal defect levels possess a universal pressure derivative. The 

band-edge deformation potentials derived from this pressure derivative agree 

well with mobility measurements [English, 1987; Mendez, 1985] and with recent 

theoretical calculations [Cardona, 1987; Van de Walle, 1987b]. This pressure 

derivative can therefore be used as a pressure derivative reference level from 

which the absolute pressure derivatives of other defects can be measured. 

Although the evidence for this pressure derivative reference level is compelling, 

the physical basis for the universal pressure derivative was not discussed. The 

answers to these questions are found in the relationship between the structure 

of deep-level defects and the band structure of the host crystal. 

A. Transition-Metal Defect Structure 

Substitutional transition-metal defects in semiconductors can be visualized 

as transition-metal atoms occupying simple vacancies [Watkins, 1983]. The 

basic validity of this viewpoint has been borne out by many different theoretical 

techniques ranging from tight-binding models [Picoli, 1984] to first principle 
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Green's function calculations [Zunger,1986]. First-principles Green's function 

calculations have been the most successful theoretical technique for describing 

transition-metal defect structure. Though these calculations are computationally 

intensive, a simple descriptive modet has been developed [Zunger, 1986] based 

on the accurate Green's function results. This is the three-level model of the 

transition metals. In this model, the conduction bands are condensed into a 

single level whose energy coincides with the energy of the maximum density of 

states in the conduction band, E* c. about 3 eV above the top of the valence 

band in GaAs. Likewise, the valence band is represented as a single level that 

occurs at the energy of the maximum density of states in the valence band, E*v. 

roughly 2 eV below the top of the valence band. The transition-metal atom 

introduces an atomic level as the third level in the three-level model whose 

energy shifts as a function of chemical species. The transition-metal levels 

interact with the conduction and valence bands equally through an interaction 

matrix element V d· The mixing of levels produces a bonding combination that is 

resonant with the valence bands, a non-bonding combination that produces 

localized levels in the bandgap: and an antibonding combination that is 

resonant with the conduction bands. These levels are shown in Fig.(6.1 ). A 

value of 2 eV for Vd reproduces many of the trends deduced from the accurate 

Green's function calculations. 

The condensation of the conduction and valence bands into single levels at 

E* c and E* v respectively to represent the effect of the band structure on the 

electronic properties of these deep must be justified before the three-level 

model can be used for any predictive purposes. The energy separation 

between E* v and E* c can be identified with the Jones' zone gap. The Jones' 

zone gap is the fundamental bandgap (in the extended zone scheme)that 

opens up at the Fermi level. The magnitude of the bandgap is roughly constant 
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among isovalent semiconductors, and in the 111-V compounds is about 5 eV. 

Because of the two-atom basis in the unit cell of the· zinc-blende structure, this 

fundamental gap is folded back into the first Brillouin zone in the reduced zone 

scheme. The weight of the density of states in a given band is carried.by the 

edge of the Jones' zone gap. This gap is often referred to as the dielectric, or 

optical, gap because transitions between the edges of this gap have large 

oscillator strengths and therefore dominate the frequency-dependent dielectric 
' 

response of the materials. This optical gap is not to be confused'with the 

fundamental bandgap which is the gap over which thermal excitation of carriers 

dominates the electrical properties of the semiconductor. 

The Jones' zone gap can also be identified as a result of the tight-binding 

picture of the band structure. In th~ tight-binding model, the sp3 hybrids of 

individual atoms overlap with nearest neighbors, producing bonding and anti-. 
bonding combinations. The periodicity of the lattice further spreads out these 

levels into the valence and conduction bands respectively. The initial energy 

separation between the bonding and anti-bon9ing combinations of the sp3 

hybrids is roughly 5 eV, i. e., the Jones' zone gap. With the removal of nearest

neighbor interactions, as in a vacancy, the states reduce to localized dangling 

sp3 hybrids. The Jones' zone is therefore seen to be directly associated with 

the sp3 hybrid energies of the semiconductor atoms. This dominance of the 

gross features of the band-structure on the electronic structure of deep 

substitutional impurities is general and applies to impurities other than transition 

metals. It has been shown previously [Nolte, 1987e] that even the deep 

chalcogen levels in Si and the isoelectronic N level in GaAs [Nolte, 1988] (which 

is actually resonant with the direct conduction band) are insensitive to the 

proximity of local band extrema, and have pressure derivatives that behave in 

much the same manner as the transition metals. 
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B. Limits of Universality 

The question concerning the pressure derivatives of the transition metals 

remains to be addressed. Experimental data have been given previously 

(chapter V) describing the similarity between the pressure derivatives of Ti, V 

and Ni. To give a qualitative model of the chemical trends in the pressure 

derivatives of the transition metals, the three-level model is used. This model is 

already known to produce qualitatively correct chemical trends in the transition

metal binding energies. In this model, the pressure responses of various band 

extrema are ignored, and the effect of the pressure dependences of the band 

structure on the defect energy levels is contained entirely in the pressure 

response of the Jones' zone gap. This gap has been measured in GaAs under 

pressure [Zallen, 1967] to increase by 60 meV/GPa. For convenience, the 

center of the Jones' zone gap is taken as the origin. The importance and 

validity of this choice of origin will be discussed later. With this choice, the 

energy E* c increases by 30 meV/GPa and the energy E* v decreases 

symmetrically by 30 meV/GPa. The lattice dependence of the interaction matrix 

element Vd is assumed to vary as an inverse power of the lattice spacing d; 

V d-n doc . (6.1) 

For illustration, the exponents n = 0 and 2 are considered. In the case when 

n=O, there is no dependence of Vd on the lattice. The choice of an exponent of 

2 is motivated by suggestions from tight-binding arguments [Harrison, 1980]. 

The three-level model is solved for zero stress and 1 GPa. The resulting · 

pressure derivatives of the non-bonding states in the Jones' zone gap are 

shown in Fig.(6.2) where the pressure derivative of the center of the Jones' 
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zone is taken as the zero. For the case of n = 0, the pressure dependences of 

the non-bonding states are constrained by the pressure derivatives of the edges 

of the Jones' zone gap with limiting values of± 30 meV/GPa. For states near 

the center of the Jones' zone gap, these effects roughly cancel. The 

fundamental bandgap covers a relatively small range of energies near the 

center of the Jones' zone gap, so the transition-metal defects all have relatively 

small pressure derivatives within this range. When the values of n = 2 is used, 

the lattice dependence of Vd can cancel or even overpower the effects of the 

band structure. For all cases, the pressure effects of either the band structure or 

the interaction between the transition metal and the lattice roughly cancel for 

defects near the center of the Jones' zone gap. This crude model may therefore 

help to explain the universal pressure derivative of the transition-metal defects. 

The dependence on the specific model is not crucial. Simple tight-binding 

calculations that include the s and p orbitals of the transition metal also give 

values for the defect hydrostatic deformation potentials that are under 0.77 eV. 

These simple models (which neglect electron-electron interaction) all conclude 

that the pressure derivatives of the transition-metal defects are similar to the 

pressure derivative of the center of the Jones' zone gap. 

Ill. Defect Hydrostatic Deformation Potential Equation 

The total energy of a defect depends on the lattice positions of the 

neighboring atoms. If stress alters the local lattice positions, the defect energy 

will respond. Therefore, stress perturbation can give a good measure of the 

defect-lattice coupling through the defect deformation potential. However, the 

situation is not this easy in practice. An example of this are shallow donors in 

GaAs. These defects have large hydrostatic deformation potentials, yet do not 

couple to the local lattice. For the more general case of deep-level defects, it is 
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crucial to separate out the effects of the band structure on the defect 

deformation potential from the effects of local lattice coupling. This can be done 

qualitatively by deriving the expression for the defect deformation potentiaL. 

In the one-electron approximation, the Hamiltonian governing the defect 

· electron consists of a kinetic energy term T, and a potential energy term that 

involves the potentials of all the atoms in some neighborhood of the origin of the 

defect: 

H = I.m V(am) + T , (6.2) 

where V(am) is the potential of the crystal with the defect and am is the position 

vector of the mth neighbor to the defect origin. Under the application of external 

stress, the position vectors are altered such that the new Hamiltonian is 

H = ~m V (am + ~am) + T , (6.3) 

where ~am is the change of the position vector due to the strain. The deformed 

Hamiltonian can be expanded to lowest order to give 

(6.4) 

where the V(am) are functions of position and the differential operator is a 

position operator .. Clearly, if the. strain is small, the term I.m (~am·V')V(am) can 

be taken as a perturbation describing .the response of the electronic energy to 

applied stress. The defect .deformation-potential operator can now be defined 

in terms of the crystal potential: 
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Eij = Lm ajm Vi V(am) . (6.5) 

The index m refers to the mth neighbor, and the indices i and j are the 

coordinates . 

To investigate the effect of the perturbation Hamiltonian on the defect 

wavefunction, first-order perturbation theory can be applied for either 

degenerate or non-degenerate defect states. The first-order matrix elements of 

the perturbation Hamiltonian acting on the unperturbed defect ground state 'P(r) 

are: 

dE = Lm I 'P*(r) [(~am·V) V(am)] 'P(r) d3r. (6.6) 

This expression is general, but is far from transparent for explaining how the 

magnitudes of defect deformation potentials vary with the details of the binding 

mechanism and with the radius of the defect wavefunction. A more obvious 

expression can be derived through partial integration, in which the differential 

position operator is transposed to operate on the defect wavefunction rather 

than on the potential term. The new expression for the energy matrix elements 

is 

dE= Lm ~am· [ -J V'P*(r) V(am) 'P(r) d3r ] + C. C. (6.7) 

where the integrated term evaluated over the infinite surface has vanished 

because the wavefunction decays exponentially far from the defect center . 

The effect of defect wavefunction localization can now be investigated by 

considering the product of the defect envelope wavefunction with its gradient 

'P(r)V'P(r). When this product is large at the sites am of neighboring potentials, 
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the contribution to the defect deformation potential from this charge state will be 

large. This product will be maximum at a site am when the envelope 

wavefunction radius is approximately equal to the neighbor distance: 

r"" am. This can be demonstrated explicitly by choosing a 1 s envelope function 

and placing a delta function potential a distance d from the d~Ject origin. The 

delta function potential is taken as a perturbation and represents the 

contribution of the local lattice sites to the defect energy. The change in the 

defect energy due to the effects of pressure on the site of the delta function is 

proportional to the contribution of the coupling of the local lattice to the defect 

deformation potential. The relative deformation potentials as a function of the 

radius a0 of the defect wavefunction are shown in Fig.(6.3) ford= 1, 1.5, and 2 

A. The striking results of this analysis are: first, that the deformation potential 

decreases roughly exponentially for a given d when the defect radius a0 is 

much larger or much smaller than d; and second, that the maximum defect 

deformation potential decreases roughly exponentially as the perturbation 

potential distance d increases. 

The first point concerning the dependence of the defect deformation 

potential on the localization radius of the defect wavefunction has important 

consequences for comparing the deformation potentials of shallow levels, 

which are weakly localized, with the deformation potentials of deep levels, 

which are strongly localized. If the lattice sites that contribute strongly to the 

defect binding energy are near neighbor to the center of the defect, then those 

~ites will contribute strongly to the defect deformation potential only if the defect 

wavefunction radius is approximately equal to the near neighbor separation. 

Because the deformation potential depends exponentially on the defect 

wavefunction radius, the deformation potential rapidly vanishes as the 

wavefunction radius increases. In the limit of the shallow level defects, the local 
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contribution to the defect deformation potential vanishes. The 'second point 

concerning the dependence of the maximum deformation potential on the 

distance of a contributing potential from the defect center is important for 

comparing the deformation potentials of different deep levels. The smaller the 

deep level wavefunction radius is, the potentially larger the deformation 

potential can be. It must be reemphasized that only a si'ngle charge state of a 

defect is being considered in the above analysis. The experimentally measured 

deformation potential is the difference between the deformation potential~ of 

two different charge states. In fact the transition metal defects provide a good 

example of strongly localized defects that have a zero net defo'rmation potential. 

The coupling of a specific transition metal charge state to the lattice can be 

strong, yet the coupling remains constant as the charge state is changed. 

The localization of the defect envelope wavefunction is not the only 

contribution to the defect-lattice coupling. The band structure of the crystal also 

influences the deformation potential. To include the effects of band structure on 

the defect deformation potential the defect wavefunction can be described in a 

perturbative approach as a linear combination of Bloch states of the perfect 

crystal 

'i'(r) = Ln,k bn,k(r) <l>n,k(r) , (6.8) 

where <l>n,k(r) are Bloch states, and the indices n and k refer to the band and k

vector. The coefficients bn,k(r) describe the localization of the defect in real 

space. Using this wavefunction in eq.(6.7) and considering only diagonal terms 

in the Hamiltonian yields 
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dE ""' Lm .1am { J V(am) Ln k l<l>n,k(r) 12 [ bn,k(r)]V[ b* n,k(r)] d3r 
' 

+ J V(am) Ln k I bn,k(r) 12 [<J>n,k(r)]V[<J>n,k(r)] d3r} 
' 

+ c.c. (6.9) 

The first term on the right hand side involves the gradient of the envelope 

functions, and therefore is the contribution to the defect energy from the local 

interaction of the defect with its immediate environment. The second term 

involves the grad!ent of the Bloch functions and is the contribution to the defect 

energy from the band structure. This expression is approximate, and the 

neglect of off-diagonal components has not been justified (though the 

expression is correct for effective-mass defects for which the summation over n 

and k is dropped). However, if it is taken as a crude approximation of the effects 

of stress on a general defect, then the origin of various contributions to the 

defect energy shift can be roughly identified by rewriting it qualitatively as 

2defect""' 2envelope + ~ an k 2n k ~n.k ' ' 
(6.1 0) 

where the first term on the right-hand side is the contribution from the local 

interaction between the defect electronic energy and the neighbor ions around 

the defect, and the second term is the contribution from the band structure. The 

role of these two terms can be understood in two opposite limits: the limit of 

shallow effective-mass levels; and deep substitutional defects (such as 

transition-metal impurities) . 

In the case of an effective-mass level, the sum over nand kin the second 

term of eq.(6.9) is restricted to a single band extremum. The second term 

therefore reduces to a value related to the band-edge deformation potential. 
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. The contribution from the first term is negligible in the case of an effective-mass 

defect because the envelope wavefunction is too delocalized t~ have an 

appreciable amplitude on the nearest-neighbor lattice sites, and therefore the 

local coupling ofthe defect to the lattice vanishes. Shallow-level defects 

therefore have deformation potentials dominated by the deformation potentials 

of the band edge, and do not couple strongly to the local lattice. 

The other extreme is the case of deep substitutional defects. For these 

defects, the conduction band and the valence band contribute approximately 

equally to the electronic structure. If the two-level model of the crystal band 

structure is adopted (i.e. the Jones' zone gap) then the contributions roughly 

cancel. Therefore, for deep-level defects, the deformation potential is 

dominated by the interaction of the defect energy with the near-neighbor lattice 

sites. An important example to consider are the transition-metal defects as well 

as other vacancy-related defects. These defects have wavefunctions that· 

extend over several near-neighbor lattice positions, and by eq.(6.9) should 

therefore have strong coupling to the lattice. Yet precisely these defects define 

the absolute zero of the defect deformation potentials. This apparent 

contradiction can be resolved by considering two important points concerning 

lattice coupling and its experimental measurement. First, the defect -lattice 

coupling can have different signs for different shells of neighbor atoms: one 

shell might move inwards while the next shell moves outwards. These lattice 

displacements decrease rapidly as distance from the defect center increases, 

heavily weighting the effects of the first shell. But the net effect of lattice 

distortion on the defect may be relatively small despite a large coupling to a 

particular shell. Second, defect deformation potentials are the result of the 

difference in lattice coupling between two different charge states. In the case of 

the transition metals, the universal pressure derivative is only the statement that 
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all charge states of all chemical species have the same lattice coupling. This 

coupling to the lattice can in fact be non-zero. On the other hand, some deep

level defects exhibit strong differences in the coupling to the lattice between two 

charge states. For these defects the local coupling of the defect to the lattice 

contributes predominantly to the defect deformation potential. 

Some defects fall between the two extremes of effective-mass defects 

and strongly localized defects. For these more general defects it is important to 

consider the effects of the band structure on the lattice coupling. This 

contribution to the measured defect deformation potential does not influence the 

lattice relaxation around the defect. This caution extends mainly to deep 

effective-mass-like defects for which the extended Coulomb potential may 

contribute as much or more to the electron binding energy than the strong 

central-cell potential. For many of the vacancy-related or intrinsic defects, on 

the other hand, band-structure effects are likely to cancel and the measured 

defect deformation potentials can be related to breathing-mode relaxations 

around the defects. 

IV. Breathing-Mode Relaxation around Defects 

The proportionality constant between the change in defect energy and 

the change in the lattice positions around the defect in the electron-lattice 

coupling parameter of a defect. This electron-lattice coupling has the units of an 

energy gradient or force, and is in fact the force acting on the atoms neighboring 

the defects. The neighboring atoms respond to this force by relaxing to new 

equilibrium positions determined by the balance of electronic energy and 

elastic energy. The elastic energy is supplied by the work performed during the 

relaxation on the local bonds. The relationship between the electron-lattice 
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·coupling and lattice relaxation for a defect in a given charge state can be 

described in general terms by the simple force equation for a spring 

F=kX. (6.1'1) 

In ionization spectroscopy, single charge states can no! be measu~ed . · 

separately (as they can in EPA), rather, differences between the initial and final 

charge states are measured. The total differential of eq.(6.11) is therefore the 

relevant equation for ionization spectroscopy 

dF = k dx + X dk . (6.12) 

For the case of a defect coupling isotropically to a surrounding elastic medium, 

the expression becomes 

E= 8/::..V + V 1::..8, (6.13) 

where 2 is the isotropic deformation potential describing the change in electron

lattice coupling between the initial and final state, 8 is the local bulk modulus 

around the defect, and Vis the volume occupied by the defect: The first term on 

the right-hand side of the equation corresponds to the elastic energy change 

associated with volume relaxation upon carrier emission. The second term 

corresponds to the change in the local force constants upon carrier emission. 

Solving eq.(6.13) for the change in volume yields 
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8 .18 .1V=--VB B 
(6.14) 

which is the volume relaxation of a defect associated with the emission of a 

carrier . 

This expression was derived from simple microscopic arguments relating 

the defect electronic energy gradient to the elastic forces around the defect. An 

equivalent expression for volume relaxation upon carrier emission has been 

derived based entirely on thermodynamic arguments [Samara, 1986]. This is 

done by taking into account that the pressure derivative of a Gibb's free energy 

at constant temperature is equal to a volume change 

(d.1G/dp)T = .1V. (6.15) 

The Gibb's free energy for the thermal emission of carriers from deep-level 

defects is given by 

.1G = .1H - T .1S , (6.16) 

where .1H is the activation enthalpy for carrier emission, Tis the temperature, 

and .1S is the change in entropy upon carrier emission. By combining eq. (6.16) 

with eq.(6.15) and solving for the change in volume yields 

.1V = d.1H _ Td.1S 
dp dp 

(6.17) 
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By comparing eq.(6.14) (which is based on microscopic arguments) with this · 

equation (based on purely thermodynamic arguments) it is found that the first 

term on the right side of each equation is identical, by definition. This allows for 

the identification of the second term in eq.(6.17) involving the change in entropy 

with the term in eq.(6.14) involving ~herelative change in the local force 

constants, namely 

V ~8/8 = T d~S/dp. (6 .. 18) 

Therefore, by measuring the pre~sure dependence of the activation enthalpy 

and entropy of a deep-level defect, the volume relaxation around the defect and 

the relative change in local force constant upon carrier emission can be· 

calculated. 

Two complications arise in the calculation of the volume relaxation: the 

first involves the the contribution of the band-edge deformation potential to the 

measured activation enthalpy; the second concerns the problem that local force 

constants may differ from the force constants of the bulk material. The activation 

enthalpy for a defect is defined as the difference in total energy between the 

initial and final state 

~H = E(2,02) + E(eband)- E(1 ,01) , (6.1. 9) 

where E(2,02) and E(1 ,01) are the total energies of the defect in the final and 

initial states at the equilibrium configurations 02 and 0 1 respectively. The.final 

state includes a carrier at the band edge with an energy E(eband). Usually the 

band energy is taken as the origin, which causes no difficulty in the 

interpretation of activation energies. As perturbations are applied, however, the 
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perturbations affect the band-edge energies discussed in chapter V as well as 

the energies of the different defect charge states. Under pressure, the activation 

varies as 

d~H/dp = { dE(2,02)/dp- dE(1 ,01 )/dp }+ dE(eband)/dp . (6.20) 

In this case the effect of applied pressure on the band edge enters on equal 

footing with the effect of pressure on the defect states alone. The quantity in 

brackets is the absolute pressure derivative of the defect, which is proportional 

to the defect deformation potential. The last term in eq.(6.20) is the band-edge 

pressure derivative. To measure the absolute pressure derivative of a defect, 

the band-edge pressure derivative must be known. It was shown in chapter V 

that band-edge pressure derivatives can be measured with respect to transition

metal defect levels in semiconductors, and therefore this last term no longer 

presents a difficulty for measuring the electron-lattice coupling of deep-level 

defects. 

The second complication that arises in the measurement and calculation 

of lattice couplings is the fact that the local force constants around a defect can 

be different than the force constants in the bulk material. The measured defect 

deformation potential is given by 

2defect = { dE(2,02)/dp - dE(1 ,01 )/dp. }/8 , (6.21) 

where 8 is the bulk modulus of the crystal. However, if the local force constants 

around the defect are different from those in the bulk material, then the 

measured deformation potential 2 will differ from the "true" deformation potential 

:::· by 
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::.· = (8'/8) ::. ' (6.22) 

where 8' is the local bulk modulus at the defect. Eq.(6.14) for the calculation of 

the volume relaxation around a defect on carrier emission was derived from a 

microscopic model relating defect electronic and elastic energies. In this 

equation, the terms on the right hand side should involve the "true" deformation 

potential and the local bulk modulus 

(6.23) 

rather than the values that are measured externally. This possible difficulty in 

calculating the volume relaxation around the defect is eli~inated by the fact that 

the effect of the local force constants affect 8 and s equally, and therefore 

S'/8' = S/8. (6.24) 

These effects also cancel for the se~ond term in eq.(6.14), .and eq.(6.14) 

reduces to eq.(6.17). The important conclusion here is that the calculation of 

the volume relaxation around the defect on carrier emission is insensitive to the 

local force constant. This is not an accident, because eq.(6.17) has also been 

derived from thermodynamic principles which are general and must be 

insensitive to the microscopic details of the problem. 

166 



V. Deep-Level Defects 

Having developed the relationship between absolute pressure derivatives 

and volume relaxation around defects upon carrier emission, the pressure 

derivative data for several defects in GaAs can now be presented and the 

corresponding lattice relaxations calculated. The absolute pressure derivatives 

of several defects in GaAs are presented in Fig.(6.4). The origin on the vertical 

axis is defined by the pressure derivatives of the Ti(3+12+) transition-metal 

levels. Included in the figure are the pressure derivatives of the important band 

· extrema, as well as the shallow acceptor and donor levels which are pinned to 

the valence- and conduction-band edges. In the case of the shallow 'donor 

levels, the large absolute pressure derivative does not arise from strong 

coupling to the local lattice, but from the coupling of the extended conduction

band states to the lattice via the band-edge deformation potential.· This 

distinction between the contributions to the defect deformation potential from 

local coupling and the coupling of the band states was made in eq.(6.1 0) of 

section Ill. The envelope wavefunctions for shallow levels are too delocalized 

to contribute to the defect deformation potential, the only contribution coming 

from the nearest band edge. This distinction is an important one to make 

because the large pressure derivative of the shallow donors, if used blindly in 

eq.(6.15) would suggest a large volume relaxation upon electron emission. 

This is clearly not the case for the shallow donors, and some caution must be 

taken when calculating the volume relaxation of effective-mass-like deep levels. 

These defects may be dominated in their pressure response by a nearby band 

extremum. 

For localized defects, the proximity of band extrema to a defect level can be 

unimportant to the pressure response of the defects. This is especially evident 

in the case of deep defects that produce energy levels resonant with the direct 
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conduction band in GaAs. Despite their proximity to the conduction band, the 

pressure derivatives of two resonant levels, the Cr(2+/1 +)transition-metal level 

[Hennel,1982] and the nitrogen isoelectronic level [Wolford,1985], fall in the 

range of small pressure derivatives shared by the deep transition-metaf levels. 

These isolated substitutional impurities do not couple strongly to the lattice, nor 

do local band extrema affect their pressure response. For these defects, the 

electronic structure is controlled by the gross features of the conduction and 

valence bands equally. 

In contrast to the isolated substitutio.nal defects, the deep grown-in defects 

EL2, EL3 and EL6 do couple strongly to the lattice. The especially large 

coupling of the EL2 defect is intriguing in light of the interesting metastable 

properties that this defect exhibits. The volume relaxation around a defect upon 

carrier emission, as calculated from eq.(6.14), is the result of changes in the 

electron-lattice coupling as well as changes in the local force constants. It has 

been demonstrated [Samara,1987a,1987b] in Si that the contribution from the 

change in the local force constants to the pressure derivatives of defect 

activation energies is only several meV per GPa. This contribution is negligible 

compared to the large pressure derivatives for these grown-in defects, so the 

volume relaxation can be calculated from the pressure derivatives alone. 

Because of the scientific and technical interest in the EL2 defect, the lattice 

coupling of this specific defect is discussed next. With the definition of a 

convenient reference level for measuring absolute pressure derivatives, 

published data on the pressure derivatives of several different transitions 

associated with EL2 can be reviewed and used to study the isotropic electron-
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·;l~hice coupling parameters of the defect. The pressure derivative of EL2 has 

two main features: it is uncharacteristically large, and it is non:linear. The 

magnitude of the pressure derivative leads to an extraordinarily large inward 

lattice relaxation of 23% upon electron emission. Such a large lattice relaxation 

seems to be incompatibl.e with the relatively small relaxation (-6% volume) 

calculated for the isolated As-anti site defect [Scheffler, 1984]. The non-linearity 

has been observed directly [Dobaczewski, 1987] i~ the pressure dependence of 

the thermal ionization transition of DL TS, but was also inferred from the 

pressure-dependent Frank-Condon shift [Zylbersztejn, 1978]. 

Three transitions for the EL2 defect have been measured under pressure. 

The pressure derivatives of these transitions are [White, 1977; Nolte, 1987d] 

1: . ()E~ap I Ro + aEctf()p I Ro- aEo/ap I Ro = +1.2 ±10 m,eV/GPa, 

1\: aE~ap I R+ + aEctfc1P I R+- ()Eof()p I Ro = +30 ±1 0 meV/GPa, 

Ill: aEo/ap I R+ - aEvtf()p I R+ - ()E~ap I R+ = + 17 ±1 0 meV/GPa , 

. (6.25) 

where the pressure derivatives of the separate charge states are evaluated at 

the relevant equilibrium lattice positions. If the lattice-coupling were linear, then 

the transition energies from transition I and Ill would add to the pressure 

derivative of the bandgap of 11 0 meV/GPa. Actually, the sum falls short by a 

factor of four. This has caused some confu-sion in the literature, in which it has 

been stated that the EL2 defect tracks with both the valence band and the 

conduction band. 
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To lowest order, the non-linearity of the lattice coupling of the neutral and 

charged charge states can be included in the pressure derivatives as 

aEotap = Ao + Bo (R - Ro) , 

aE_;ap = A+ + 8+ (R - Ro) , (6.26) 

for which the pressure derivatives are a functi~n of _lattice coordinate. 

Eqs.(6.25) can now be solved for the lattice coupling parameters Ao, A+, Bo and 

8+: 

8+ .=- 90 meV/GPaA ± 75 meV/GPaA , . 

Bo = + 315 meV/GPaA ± 75 meV/GPaA I 

A+- Ao = -108 meV/GPa ± 15 meV/G.Pa. 

(6.27) 

The relative pressure derivatives of the two charge states are plotted in 

Fig.(6.5). The non-linear lattice coupling occurs primarily in the neutral charge 

state. This strong non-linearity in the coupling of the neutral state may have 

implications for understanding the metastable properties of the defect, because 

it is the neutral state that is transformed into the metastable_state through optical 
• 

quenching. 

V. Conclusions .1 

Isotropic lattice relaxation has been one of the defect properties most 

difficult to measure experimentally. The lack of a reference from which to 

measure absolute· shifts had restricted this study primarily to theory. The 

pioneering work of Samara and Barnes on the thermodynamic relationship 
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between pressure derivatives and volume relaxations provided the first 

estimates of volume relaxations around deep-level defects upon carrier 

emission. However, the lack of a well-defined origin left broad limits for the 

magnitudes and even signs of the deep-level volume relaxations. With the work 

on transition-metal-based reference levels discussed in this thesis, an accurate 

estimate for the absolute origin of pressure derivatives has been provided. With 

this origin, accurate calculations of the volume relaxations of deep-level defects 

in GaAs are now possible. 

Before calculating the volume relaxations of defects based on the pressure 

derivatives of substitutional transition-metal defects, it was first neccessary to 

explain the universal pressure derivative of the transition metals from physical 

arguments. From simple models it was found that that the well-established 

vacancy-like structure of the transition metals locks them to the center of the 

Jones' zone gap. This gap carries the weight of the density of states of the 

bonding and anti-bonding combinations of the sp3 hybrids of the semiconductor 

atoms. The center of the Jones' zone gap therefore plays the role of the 

average vacancy energy in the crystal. The effects from the lattice dependence 

of the interaction of the d-shell electrons with the vacancy dangling bonds, as 

well as from the lattice dependence of the bonding and antibonding separation, 

roughly cancel for the defect states near the center of the Jones' zone gap. 

Transition-metal defects therefore follow the average sp3 energy of the crystal. 

Defect structure is influenced by local coupling of the defect electronic 

energy to the lattice, as well as by the band structure of the crystal. Both of 

these effects determine the defect deformation potential. Volume relaxation, on 

the other hand, is only a function of the local coupling to the lattice. To separate 

out the effects of the band structure from the local lattice-coupling, a general 

expression was derived for the defect hydrostatic deformation potential. One 
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"result of this derivation was the relationship between the magnitude of the local 
- . 
coupling to the lattice with the localization of the defect envelope wavefunction. 

' - ' 

For envelope wavefunctions that are either too extended or too localized, the 

magnitude of '¥V'¥ is too small on the near neighbors to allow for. strong 

coupling to these lattice sites. Another other important result urges caution to 

be used when considering the volume .relaxations of defects ~hat may have 

moderate or strong effective-mass-like. structure. For these defects, the local 

band structure may contribute as much ·or more to the defect deformation 

potential than the local coupling to the lattice. 

The thermodynamic connection between pressure derivatives and volume 

relaxation is a macroscopic relationship that does not i"nvolve th~ 'microscopic 

origin of the defect deformation potenti~l. From simple considerations of the 

force constants around the defect and energy gradients, the enthalpy and 

entropy pressure derivatives were identified with the local deformatipn potential 

and local force constants respectively.. It was als~ shown that the calculation of 

volume relaxation is independent of the local forces constants. With the 

establishment of a sound experimental and theoretical basis for the calculation 

of defect volume relaxations, several defects in GaAs were considered. The 

important defect EL2 in GaAs was f~und to have an extraordinarily large 

isotropic coupling to the lattice, with an associated inw~rd volume relaxation of 

roughly 23% upon electron emission. Furthermore, the large non-linear 
' . 

electron-lattice coupling of the defect was found to be predominantly in the 

neutral state. These aspects may have important implications for understanding 

the metastable properties of the defect. 

Several problems remain unsolved concerning the isotropic coupling of 

defects to the lattice in semiconductors.. One difficulty in the calculation of 

defect volume relaxation is the problem of precisely defining a relaxed volume. 
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Different shells of near neighbors can experience large distortions with different 

signs. It remains to define clearly how the measured volume relaxation is 

related to these multiple distortions. Perhaps the most important problem is the 

experimental measurement of isotropic lattice relaxation in a single charge 

state. All defect characterization techniques that rely on ionization transitions 

can only measure changes in lattice-coupling parameters and local force 

constants between two different charge states. These techniques cannot 

measure absolute shifts in the separate charge states. Charge-state specific 

techniques, such as EPR or ENDOR, can provide some information about near

neighbor lattice positions. But these techniques cannot separate the effects of 

local force constants and electron-lattice coupling. In view of the simplification 

of many outstanding problems that has followed the introduction of transition

metal reference levels, it may yet be possible to find an analogous reference 

from which absolute shifts in single charge states can be measured . 
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