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ABSTRACT 

We report measurements of the· inelasticity of the 

large angle scattering of Na+ by Dz, HD, and Hz in the 

initial relative energy range 0. 74 - 16.9 eV. The inter-

pretation of the vibrational inelasticity leads to the 

conclusion that perpendicular (C2v) rather than collinear 
+ ,,. conformations of the Na - n2 system produce the most 

intense inelastic scattering. The results of exact 

clas··sical trajectory calculations ivhich elucidate t:h~ 

effects of oscillator orientation and internal potential 

function on the inelasticity of collisions are presented. 

By fitting the calculated inelasticities to the experimental 

data, we have deduced both the energy and length parameters 

of a two term exponential repulsive potential·for this 

system. • 

; ,. 



Ion beam scattering techniques have been nota.bly effective 

in elucidating the nature of vibrationally inelastic molecular 

2 

collisions. In the earliest published experiment of this type, 
1 Gentry, Gislason, Mahan, and Tsao measured the complete angular 

distribution of the vibrational-rotational inelasticity in 

collisions· of 
+. 

N2 with He .. Subsequent experiments from the 

same laboratory gave complete velocity vector distributions for 

the inelastic scattering of OZ+ and NO+ by He at a number 

of init~al rel~tive energies. 2 Interpretation of these experi­

ments led to the refined impulse. approximatiort3 as the correct 

classical expression for the vibrational inelasticity in 

collinear collisions near the impulse limit . 

. Moore and Doering4 were the first to resolve the excitation 

of discrete vibrational le~els in their experiments on small 

angle, high energy scattering of H+ and H 2 + from Hz, n2 , 

and. N2 . A more extensive investigation of the H+ - Hz system 

by Herrero and Doering5 has since appeared, and these authors 

also have reported6 the.observation of superelastic collisions 

of vibrationally exc-ited. H2+ with several targets. Udseth, 

Giese, and cientry 7 measured the differential cross sections for 

excitation of resolved vibrational states in the 

system at low relative energy (10 eV) and scattering angles 

smaller than the rainbow angle. Subsequently, a much more 

extensive investigation of the system has been completed by 

these authors. 8 

Moran and Cosby9 reported the detection of vibrational 

inelasticity in the + Ar - n2 system in 1969, and·subsequently, 

- I 
I 



Cosby and Moran, 10 and Petty and f'.toran 11 published their 

investigations of the small angle inelastic scattering in the 

3 

+ + + ' 
Oz - Ar, 0 - o2 , and CO - Ar system~. In these studies, the 

excitation to individual vibrational levels was resolved, and the 

angular and energy dependence of the inelastic collision 

probability determined. 

The alkali metal ions in collision with Hz, Dz, and HD 

should.be parti~ularly informative systems for the study of 

collisi~nal inelasticity because both collision partners have 

closed electronic shells, and all possible electronic excitations 

and chemical reactions are quite endoergic. Experiments on the 

large angle scattering of K+ by Hz and Dz were reported by 

Dittner and Datz 12 in 1968, and a more complete description of 

thes·7 experiments, together with some results on the scatteri:1g 

of Na + from Hz and Dz were published in a second paper. 13 

Vart Dop, Boerboom, and Los 14 , 15 also have studied the scattering 

of K+ from Hz and Dz, with particular emphasis on higher 

relative energies. Toennies and coworkers 16- 18 have made a 

series of investigations of the scattering of Li+ by Hz, and 

in the most recent .results, have detected the resolved excitation 

of Hz to its first three excited vibra~ional le~els. 

In view of the attractive simplicity of the alkali ion-

hydrogen molecule systems, and in response .to certain apparent 

differences in the behavior of the Li+ - Hz and K+ - Dz 

systems as initially repoited~lZ,l 6 we undert~ok the scattering 

of Na+ by Dz at large angles using an experimental technique 

d . ff · f h 1 d b n· a 12 13 d , · · 1 ·er1ng rom t at emp oye y - 1 ttner an· Dat z ' an 1 oemn es 



and Coworkers. l 6- 18 w t . t 1 lt h e repor our exper1men a resu s ere, 

and interpret ~hem in terms of a model which is significantly 

different from those which have been employed in the past. 

Apparatus and Procedure 

4 

A diagram of the apparatus used in theSe experim~nts is 

shown in Fig. 1. The ion gun is based on the design·of Haskell, 

Heinz, and Lorents. 19 ·Ions are emitted from a heated button of 

alkali alumino~silicate, acceleiated, centered and focused onto 

the entrance aperture ofan ion energy selector of the 127° 

electrostatic deflection type.· The latter .is similar to the 

design of Marmet and Kerwin, 20 and employs concentric cy1 indrical 

g~ids (200 lines/in, 60% transmission) to effect the ion de­

flection. A.Faraday cup is positioned directly·opposite the 

entrance aperture of the selector, so that th~ ion beam intensity 

before ener~y.~analysis can be optimized by adjustment of the· ion· 

gun. 

The energy selector was operated at a resolution of 3% of 

the energy of the beam in the selector. The transmission of the 

selector was satisfactory when the ion energy in the selector 

was 4 eV or greater. Focusing requir~ments connected with the 

subsequent acceleration of the·energy selected ions made it 

impractical to pass the ions through the energy selector at 

less than 10% of their final laboratory energy in the scattering 

region. Thus the laboratory energy spread of the tinscattered beam 

was never less th~n 0.12 eV FWHM. 



After leaving the energy selector, the ion beam was 

accelerated and focused into the scattering cell by a three 

element aperture lens designed by using the results of Imhof 

and Read. 21 .The scattering cell has fixed entrance and exit 

apertures, so only scattering at 0° ± 1. 0° in the laboratory 

is observed. The cell was machined from stainless steel and 
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was enclosed by a liquid nitiog~n cooled copper jacket. The 

oper~ting temperature of the cell was -177°C, which considerably 

decreased the lbss in resolutiori which results from the thermal 

motion of the scattering gas. 

The energy distribution of the ions leaving the scattering 

cell was measured with an electrostatic energy analyser which 

was in large measure identical to the ion energy selector. In 

]Daking a scan of the energy spectrum of the scattered ions, a 
'• 

thre~ element aperture lens was used to actelerate or decelerate 

ion~ to a fixed kinetic energy which was passe~ by the energy 

analyser. The ions which had been scattered through 180° in 

the center-of~mass coordinate system were of primary interest, 

and had lower kinetic energy in the laboratory than the un­

scattered beam. In early experiments, observation of the back­

scattered ions was impeded by a background which resulted from 

scattering of the primary beam from the outer deflecting grid 

of the electrostatic energy analyser. To avoid this difficulty, 

a 25 x 2.5 mm slot was cut in this grid; and this allowed the 

fast beam ions to leave the deflector region unimpeded. The 

distortion of the deflectirig field which resulted from this slot 

was minimizcLl by adjusting the potential of another concentric 

grid of larger radius. 

' " 
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The i6ns passed by the energy analyser were accelerated into 

a Bendix ModeL 4028 Chanrteltron Electron Multiplier. A nickel 

mesh was used ~o prevent penetration of the cathode potential of 

the multiplier into the energy analyser region. A small flag .. 

electrode -could be pas itiopeci in fron-t of ttie analyser .e,x.~·t $,lit, 

which,· all,mved ,obs,errVation of unscattered beam withou~·-:overioading 

the ~lectron' m\11 ~i~lier. Pul~·~es from the mu~ tiplier were sent · 
" 

to ·a· icaler-teletype system, or to a digital~to-analog 'conver~ef 
' ; 

and X-Y recorder. ~lasti~ scattering from helium was u~ed to 

calibrate the ion energy scale in the. vicinity of 180o- sc;attering 

in the barycentric system. 

'The ~ntire ion source~ cell, and detection system was 

mounted on the lid of a lO~inch stainless steel vacuum can~ The 

system was pumped by a 6-inch oil diffusion pump protected by a 

liquid nitrogen cooled baffle, and was baked at 12 5°C for 12 

hours prior .. t.()· experiments. This resulted 1n a pressure of less · 

than io- 7 Torr, and. stable electrical ~peration. 

Experimental Results 

As has been explained in detail a number of times 2,l3 , 16 

wh~n a heavy proj-ectile is :scattered·~ from a, light target gas 
. ... . 

. . . . .· ... . . 

molecule,· a ,scatterJng angle of 0° ·in the laboratory corres-

ponds both t~ o~ (forward) and 180° (backward) scattering in 

the center-of-mass coordinate system. The collisions which 

produce scattering at and near 180° have small impact parameters, 
I 

and are expected to produce the greatest vibrational inelasticity 

.,in <i. syst_en~ where the attractive part of the intermolecqla~ 

potential f~weak. 
+?.,.: ·{!·f' ., \ 

Thus, the scattering of Na · ·~nd 
,-. 

, r- _; . , ._,., .. 

' ,'' \ .· 
_ .. _: .,._ 

' i 
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through a barycentric angle of 180° was studied in the relative 

energy range from 0.74 to 16.9 eV. The val~e of the inelas­

ticity 6E at the intensity peak of the energy spectrum of the 

backscattered + Na is given in Table I as a function of the 

initial relative energy. A few experiments were performed using 

H
2 

and HD as target molecules, and the results of these are also 

included in Table I. Because of the effe~ts of increased target 

gas motion, poorer resolution in the barycentric system, and the 

absence. of a convenient target gas to calibrate th~ energy scale 

accurately, the results from these last two sy~tems were s6mewhat 
"+ 

less sati~factory than those from the· Na - n
2 

experiments. 

In Fig. 2, we show examples of the energy ·spectra of + Na 

scattered from n2 at two different initial relative energies. 

For cbmparison, the corr~sponding elastic scattering of Na+ from 

He is shown. At the lower initial relative energy of 11.8 eV, 

Na+ recoiling from n2 has its intensity maximum at a laboratory 

energy slightly greater than the position which corresp6nds to 

elastic scattering~ Since higher laboratory energies correspond 

to inelastic scattering in this angular region, the maximum in 

the curve corresponds to a relatively small inelasticity, 1.1 eV. 

In addition, comparison o£ the scattering of Na+ from n2 with 

that from He shows that in the former case there is very signi-

ficant broadening of the peak in the direction of inelastic 

scattering. 

The inelastic scattering of Na+ from n2 is more evident 

in the data ~aken at the higher relatiVe energy of 16.30 eV, as 
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is shown in Fig. 2a. Here both th~~di~placement of the intensity 

maximum from the value expected for elastic scattering and the 

asymmetric broadening in the direction of inelastic scattering 

are quite pronounced. As the initial relative energy is increased 

still further, both these features become more obvious. 

It should be noted that there is a small amount of asymmetric 

broadening of the distribution of + 
Na scattered· by He, even 

though only elastic scattering can be expected in this case. 

This effect is attributable to the finite angular resolution of 

our apparatus, since ions elastically scattered through barycentric 

angles slightly less than 180° will, if detected; appear to have 

a larger laboratory velocity and smaller relative velocity than· 

true elastic scattering at 180°. 

The inelasticities found in this ·research are in very good 

· h h d b s· h'' 1 22 · h agreement w1t · t ose reporte y c ott er 1n t e energy range 
. . 

( 8 - 17 eV) . common to both experiments. This agreement is parti-
.· ···. 

cularly si~nificant in view of the different experimental 

techniques· used to analyze the scattered ion energy. The 

inelasticities reported by Dittrter and Datz13 for this syste~ are 

somewhat greater in the high relative energy (7 - 15 eV) regime 

h h f . d . I .. h d b S h'" 1 2 2 t ant ose oun 1n t11s researc an y c ott er. At lower 

relative energies, the inelasticities of Dittnerand Datz 

considerably exceed our results and those of Sch6ttler. 

Discussion 

In the past,·vibrational irielas~±city has been discussed in 

terms of quantum mechanical and classical models which have their 

I 
I 
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23 . 24 
.or1g1ns in the work 9f Jackson arid Mot t, . Zener, and Landau 

25 . 
and Teller. . In these models, it is assumed that an atom A 

' strikes the atom B of a diatomi~ molecule BC while the system 

maintains a collinear arrangement throughout the collision. It 

is also assumed that while the A-B interaction occurs, the BC 

distance remains constant. This ~static oscillator''.approximation 

is also a feature of a more recent model 26 in which. collinearity 

·is not assumed. Thus, although the significance of this fact 

has only ~airly recently been recognized, 3 vibrational energy 

transfer models of the Landau-Teller (L-T) type are based on an 

impulse approximation to the exact molecular mechanics. 

The implicit impulse approximation in 1-T models limits 

the range of mass combinations for which these models are 

numerically accurate and physically realistic. ·Kelley and 
. 27 Wolfsberg showed that the mass parameter 

.· ···. m = AC/BM 

was a convenient indicator of the success to be expected from th~ 

1-T model. Here A, B, and C stand for the masses of the atoms, 

and M is the total mass. For values of m greater than 0.25, 

exact classical trajectory calculations showed that considerable 

compression of the oscillator occurs during collinear collisions, 

and the exact energy transferred to vibration was less than that 

computed using the 1-T model. This observation remains valid 

even when the corrected version of this model, 3 the "refined 

impulse approximation '1 , is used. For the Na + - n2 system, 

m = 0.8519, so the static oscillator or impulse models of 
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collinear collisions can not be an adequate basis. for discussion 

of the experimental results of the experiments reported here. 

In view of the prevalence of indiscriminate applications of 

L-T based theories to experimental data, it is worth ~xploring 

the following very simple model, which shows clearly why the 

static oscillator approximation can not be expected to be accurate 

for systems which have ·large values of the mass parameter m. 

The model also leads us to a preferabie means of interpreting our 

experimental data. 

As is well-known, 2a the relative kinetic energy T of a 

collinear iriatomic system can b~ writteri in the diagonalized 

fqrm 

where the coordinates X and Y are related to the internuclear 

distances rAB, rAC by 

When X and Y are used as Cartes ian coordinates and the 

potential energy V(X, Y) is plotted in the third dimension, a 

mass particle sliding without friction on the potential energy surface 

will execute a motion which is the correct representation of the 

actual dynamics of the three atom collinear collision. Also, in 

the X, Y coordinate system, lines of constant and 

intc'rsect at an internal angle 13, which. is given implicitly by 

~I 



BM = AC 
1 
m 
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Thus the potential energy surface for a diatomic molecule BC 

bound .by a square well potential and interacting with A via a 

hard sphere--p.ofentTai-has·the appearance illustrated.in Fig. 3a. 

The exact trajectory followed by the representative particle 

for this simple system consists.of an initial leg parallel to the 
. 

X-axis (if initially rBC = 0), followed by segments generated 

by specul~r reflection off the walls as they are encountered. 

Reference to Fig. 3a shows that when the angle S is large (and 

m small) the outgoing leg of the trajectory will be nearly 

parallel to the incoming leg. That is, rBC changes very little 

during the time that the three atoms are close. This is just the 

cirGumstance under which static oscillator or impulse models 

empl~ying more realisti~ potential energy surfaces are reasonably 

accurate. For the hard sphere-square well oscillator system, 

the geometry of Fig. 3a leads to the following simple expression 

for the vibrational inelasticity ~E in terms of the initial 

relative energy Er' and the mass distribution parameter B:. 

~E 2 - = sin (2S) = 
Er 

4ABCM (1) 
(A+B) 2(B+C)Z . 

This is also high energy limit of the refined impulse approximation. 3 

One can also see from Fig. 3a that if S is small (m large), 

the initial A-B interaction will induce a very substantial 

compressive motion in the oscillator, and this invalidates the 

·impulse models for such systems. In fact, when S is less than 

52° (m > 0.6104) 3 second hard sphere interaction between A and B 
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will occur before thG system separates. For even smaller values 

of B, three or more such interactions will occui as the atom B 

oscillates between A and C. This multiple collision phenomenon 

has been discussed by Benson and coworkers, 29 and by Secrest. 30 

The complications of the trajectoty that are associated with 

small values of B are most extreme for the colline~r.·collisions 

discussed here. However, even for non-collinear ~ollisions, 

static oscillator models are of doubtful validity when B is 

small .. In these circumstances, the initial interaction of the 

atoms A and B must immediately induce some form of motion, either 

vibrational or rotational, in the diatomic BC. Consequently, the 

forces during the outgoing leg of the trajectory may be quite 

different from those during the incoming leg, and the static 

oscillator approximation can not be reliable. thus, for example, 

h 1 . . lO 'll f h . t d "11 d 1 f Sh. 26 t e app 1cat1on o t e or1en e osc1 ator mo e o 1n 

to scattering.'.in the 

seems ~nappropriate. 

+ o2 - Ar 

Since B 

and 

is 4 7. 3° for the 
+ . 

Na - D 
2 

system, it is clear that a collinear impulse model can not be 

applied to this system. 

There is another factor which precludes the application of 

Landau-Teller type models to our experimental work. The 

assumption that the collinear arrangement of atoms leads to the 

most effective transfer of energy into vibration is not necessarily 

correct. The recent classical trajec·tory calculations of Kelley 

and Wolfsberg 31 show that for zero impact parameter collisions of 

systems with small values of a, the dependence of the exact 

inelasticity on the angle betwqen the axis of the diatomic 

molecule and the relative velocity vector can be quite complicated, 
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.and the inelasticity is not in general a maximum for the collinear 

arrangement. .In addition, there is the imp or tan t fact that th.e 

probability of. finding a diatomic molecule oriented such that its 

axis makes an angle a with the direction of the relative 

velocity vector is proportional to sine. Consequently, collinear 

and near collinear collisions occ~r most infrequently~· Thus if 

collisions in which a is near 90° (broadside collisions) have 

associated with them appreciable inelasticity, they may indeed 

make the dominant contribution to the energy t~ansfer rate. 

An indication of the possible importance of broadside 

collisions with zero impact parameter can be gleaned from a 

simple hard sphere~square well os~illator model. If the 

diatomic molecule is homonuclear (B = C) and if the atom A 

approaches it with zero impact parameter and with the relative · 

velocity vector perpendicular to the molecular axis, then 

throughout ·~h:.e: collision the molecule will maintain this 

orientation, and the motion can again be described in terms of 

just the two coordinates X andY. Let the A-B separation at 

which their hard sphere repulsion occurs be called d. Then 

the equation for the repulsive wall between A and B2 in X-Y 

space is 

where a 2 is defined as in the collinear problem, but for this 

homonuclear case has the value 4A/(A + 2B). The physically 

significant part of this ellipse is shown in Fig. 3b. In the 

region of small Y, it is cut off by the finite hard sphere 
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distance of closest approach of the two B atoms.· At larger 

values of Y, the ellip~e may or may not intersect a line of 

constant Y which corresponds to the outer lip of the oscillator 

square well potential. 
. . - - . . - .. - .. - . - - - ... - - -·· - --· -- -- - . - -

If the diatomic is initially not vibrating, the first leg 

of the trajectory of a representative particle on this surface 

is parallel to the X-axis, as indicated in Fig. 3b. Specular 

reflection of the representative particle occurs when the 

trajectory reaches the elliptical wall that represents the hard 

sph~re interaction of atom A with the two B atoms. If the 

slope of the ellipse at this point is. timy; and if there are no 

further encounters with the elliptical wall, then a simple 

argument shows that the changi in the vibrational energy of the 

oscillator is given by 

which is the exact analog of Eq. (1). 

The slope of the ellipse at Y , value of Y e at the 

equilibrium internuclear distance.of the diatomic molecule, is 

tany = -

This expression shows that the excitation energy will be deter­

mined by the mass factors contained in the quantity a 2 , and in 

addition, the size of atom A relative to the internuclear 

separation of the diatomic at the time of impact.· This latter 
,. 

point is an important departure from the collinear case, where 

the size o! atom A has no effect on the inelasticity. 27 

(2) 

- I 



15 

From this simple hard sphere model it is possible to deduce 

that broadside collisions shoulJ increase in importance as the 

relative energy is raised. If the hard sphere size parameter d 

is regarded as energy dependent, decreasing as the relative 
. .. - - - ... - . - - -· .. , - - . ~ - -·· ... _ ·-

collision energy increases, then in the limit of low energy 

d/Y >> 1. C6nsequently, y approaches 90°, essentially no e 

force is exerted along the axis of the diatomic molec~le, and 

the inelasticity of the collision approaches zero. As the energy 

is raised, d/Y decre~ses, and y e increases and approaches 

135°. At this point ~E/Er will be unity, if multiple collision 
. 

effects which result fro~ the co~tractiori of the oscillator are 

avoided. If the initial relative energy and the inelasticity are 

great enough so that dissociation of the oscillator occurs as a 

result of the first inte:taction with A, these multiple collision 

effects in fact will be avoided. At very high· energies, the 

effective size parameter d will be such that y approaches 

180°, and 6E/Er again tends toward zero. Estimates of the hard 

sphere parameter for the Na+ - D 
2 system suggest that in the 

range of relative energies employed in our experiment, the 

fractional inelasticity ~E/E r 
should be an increasing function 

of the initial relative energy, while the fractional inelasticity 

for collinear and nearly collinear col,lisions should be energy 

independent in the bard sphere approximation. Thus broadside 

collisions are very likely to be most important in the higher 

energy regime. 

While the hard sphere models are convenient and valuable 

g u i Ll c s t o t h c ph y s i c a 1 des c rip t i on o f co 1 1 is i on s , an in t e r p r c t a -

tion of the experimental results requires an unde-rstanding of 
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the behavior of the system under a more realistic interaction 

potential. Accordingly, we have made exact classical trajectory 

calculations in order to evaluate the inelasticity as a function 

of relative energy for collinear and broadside collisions. The 
... - - .·- ... - - ..... -·· ~ .. ·- -

interaction potential between the external atom A and the diatomic 

was taken to be 

V = A' [exp(-rAB/L) + exp(-rA(:/L)] ( 3) 

where A' is an energy parameter, and L is a length parameter. 

This "dumbbell" potential is perhaps the simplest that has any 

claim to r~alis~, and ha~ ~ualii~tive.fe~tures which are similar 

to some displayed by the Li + - H
2 

potential calculated by ab 

. . . SCF h . 32 1n1t1o tee n1ques. The internal potential energy of the 

diatomit molecule was taken to be either the harmonic 

1 2 
VBC = z k(6r) 

or Morse 

VBC = D{l - exp [ -a(llr)] }
2 

potential. Here llr is the deviation of the internuclear 

distance from its equilibrium value, k is the force constant 
0 

for hydrogen (5.725 md/A), D is the dissociation energy (4.748 eV) 
o_l 

and a is the standar~ Morse parameter for hydrogen (1. 944 A ) 
. 27 31 

The calculations were carried out using standard procedures, ' 

with a step size small enough so that the total energy was con­

served to within 0.01%. The initial conditions were such that 

the target molecule \vas neither rotating nor had any vibrational 

motion. 
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The results 6f the calculations of the inelasticity as a 

function of initial relative energy for collinear collisions of 

Na+ w1'th n
2 

h · F' 4 are. s own 1n 1g. . The potential parameters 

chosen for these exploratbry calculations were A' = 384 eV and 
o· 

L = 0.247 A, values consistent with predictions of Amdur 

repori~d by Dittner and Datz. 13 There is a very large. difierence 
.. 

in the inelasticities displayed by the harmonic ~nd Morse 

oscillators, an effect which was briefly noted previously by 

Kelley and Wolfsberg. 27 The origin of this difference is 

suggested by the complete trajectories displayed in Fig. 5. On 

the harmonic oscillator surface, the path of minimum potential 

energy (the adiabatic path) is noticeably curved. Consequently, 

the initial straight line motion of the representative particle 

carries it away from the adiabatic path where it experiences 

forces which lead to compression of the oscillator. Tne rather 

soft harmon~c ·repulsion between the two atoms of the. D2 .· ···. 
molecule allows this compression and the resulting re-expansion 

to occur without substantial transfer of energy back into relative 

translation, and the collision is rather inelastic, although 

less inelastic than a refined impulse calculation 

(6E = 3.3 eV at Er = 10 eV) would have suggested. 

In contrast,. the adiabatic path on the Mars~ oscillator 

surface is not strongly curved, and small deviations from it 

produce large increases in the potential energy. Consequently, 

the trajectory of the representative patticle remains close to 

the adiabatic path, and crosses the equipotential lines at nearly 

normal incidence. The result is a rather sm.:tll inelasticity. 
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It" is clear that these effects of the oscillator potential on the 

inelasticity are apt to be most important foT systems in which the 

mass parameter is large and the relative energy is high, since 

under these conditions compres~ion of the oscillator during the 

collision may be mo~t significant._ . ____ . -·- _ -·· __ . _ -·· __ 

The results for the calculated inelasticities of broadside 

collisions are shown in Fig. 6. · Two major features are immediately 

apparent. Over much of the relative ~nergy range, the inelasticities 

for the Morse oscillator are roughly an order of magnitude greater 

for the broadside approach than for the corresponding collinear 

collision of Fig. 4. In addition, the differences between the Morse 

and harmonic oscillators are not as great as was true for the 

collinear case, and for the b!oadside case, the more realistic 

Morse potential leads to a greater inelasticity than does the 

harmonic potential. 

Also shown in Fig. 6.are the predictions of an approximate 

analytical mbdel for the inelasticity of broadside collisions with 

an harmonic oscillator. The model is the direct analog of the 

refined impulse model for collinear collisions, and is derived in 

detail in the appendix. While not particularly accurate for the 

mass combination used here, it can be used effectively to estimate 

the inelasticities for broadside collisions in which the mass 

parameter m is small. 

The reason for the increased inelasticity associated with 

the Morse oscillator is evident in the trajectories displayed in 

Fig. 7. In both the Morse and the harmonic cases, the collision 

initially forces an expansion of the oscillator as the trajectory 

nears its turning point at small X. However, due to the relatively 
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confined oscillation in the harmonic case, some of the energy 

transfer~ed to the oscillator in the initial stage of the colli­

sion is transferred back to translation as the collision partners 

start to separate. In contrast, as the Morse oscillator expands, 

it encounters a potential energy which rises rather slowly, and 

the energy initially imparted to it is retained as kinetic energy 

and slowly increasing potentialenergy. The contraction of the 

oscillator does not occur until the collision partners are well 

separated, so the return of the oscillator energy to translation 

is minimized. 

The foregoing calculations make obvious the importance to 

the energy transfer process of collisions in which the diatomic 

molecule is perpendicular to the relative velocity vector. It 

is a).so important to assess the importance of molecul~r orientcticns 

int~rmediate between perpendicular and collinear. Figure 8 gives 

the results of calculations in which the impact parameter was 

kept constant at zero while the initial orientation angle 6 

between the relative velocity vector and the molecular axis was 

varied. At each relative energy, a substantial range of 

inelasticities occurs, and it is clear that the energy transfer 

reaches a maximum for orientation angles of the order of 15-20°. 

The inelasticity of collisions in which the orientation angle is 

near 90° is a substantial fraction of the maximum inelasticity 

at small orientation angles, and increases in relative importance 

as the collision energy is raised. 

From the results of Fig. 8, one can conclude that the most 

probable inelastic process in the energy spectrum of ~!a+ 

:II 
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scattered from n2 comes from perpendicular collisions. While 

orientation angles near 20° havc.thc greatest inelasticity, the 

occurrence of such collisions must be w0ighted with a small value 

of sine (-0.3). More important, however, is the fact that the 

inelasticify .. is a-··rapldly-··varying function ·of the orientation· 

angle in this small angle region. Consequently, only a small 

range of orientation angles contributes to the intensity of this 

very inelastic scattering. In coritrast, the inelasticity is a 

slowly varying function of orientation angle near a= 90°, and 

these large orientation angles have associated with them the 

largest values of the sine weightinj factor. Thu~ a considerable 

range of frequently occurring orientation angles give inelasticities 

near that associated with perpendicular collisions. Moreover, 

it is these nearly perpendicular orientations that give scattering 

to '180° · in the barycentric system l~hen the impact parameter is 

zero. Thus, if the most intense inelastic feature of the back-

S·Cattering in the + Na - D 2 system is to be characterized in 

terms of a simple two-dimensional picture, a perpendicular 

orientation-zero impact parameter model is most appropriate. 

It is of interest to deduce the values of the potential 

parameters A' and L of Eq. (3) by rep~oducing the energy 

dependence of the most probable inelasticity using the calculations 

for zero impact parameter perpendicular col lis ions. The best fit · 1 

of the calculated inelasticity to the experimental data for the 

Na+ - n2 system is shown in Fig. 9. The potential· parameters 
0 

for the curve sho\~n are A' = 150 eV, and. L = 0. 40 A. Since 

completing our work, we have learned that Faubel and Toennies 33 



have analyzed- the- data of Schottler22 by' using the same 

perpendicular ~ollision-tero impact parameter model employed 
0 

here, and obtain A' = 100 eV and L = 0.454 A for the 

potential energy parameters. The similarity of the conclusions 

seems quite satisfactory. 

The perpendicular collision model provides a way_of 

r~producing the energy dependence of the most probable 

inelasticity at large barycentric angles, using reasonable 

potential parameters. It is of interest, therefore, to attempt 

to reproduce the full inelastic energy spectrum by extending 

the model; One possible procedure would be to calculate the 

full angular and energy distribution of the scattering, using 

complete classical trajectories obtained from a full set of 

properly weighted initial conditions.· However, this procedure 

would produce far more information than is ne~essary for 

comparison ~~_th the experimental data, which involve scattering 

at only one barcentric angle. Consequently, the following 

more efficient method was pursued. 

Consider an initially stationary (nonvibrating, non­

rotating) target diatomic molecule. The orientation angle 

of the molecular axis with respect to a reference line through 

the molecular center-of-mass and parallel to the initial 

relative velocity vector is a, and • is the initial 

azimuthal angle of the projectile, measured from the plane 

determined by the aforementioned reference line and the 

molecular axis. The initial distance of the projectile from 

the reference Une is the impact parameter b. Let S(0, E) 

21 



V be the intensity per unit extension in b, ~' and <t>, of the 

scattered Na+ at the laboratory angle 0 and laboratory 

22 

energy e:. The variables 0 and e: are, of course, functions 

of b, a, and <f>. To calculate the scattered ion energy spectrum 
. .. - .. - . -. - - ·- .... - - .. - -·· ~~ ·-

at a laboratory angle 0 = 0, the quantity see, e:) as a 

function of b, a, and <t> must be weighted properly and summed 

over all the values of b, a, and <t> which give scattering at 

0 = 0 and vaiious particular values bf .e: which we-shall call 

E1 . The expression 

s ina de d<t> bdb 

formally accomplishes this summation. Here S (0, E1 ) is the 

intensity of Na+ at a nominal laboratory angle of zero_, and a 

particular laboratory energy E1 . The Heaviside function which 

has the property 

H (x) = 1 X ~ 0 

H(x) = 0 X < 0 

is used to symbolize acc~ptance of only those scattered ions 

(4) 

which fall ~ithin the angular width 60 of-the detector, and the 

Dirac 5-function insures that only events which lead to the 

laboratory energy E1 are counted. 

The intensity distribution S(0, e:) could be taken from a 

full calculation of the scattering. However, since this function 



is needed only in the vicinity of 180° in the barycentric 

system, a simplification is possible. For particular values of 

the impact parameter b and azimuthal angle ~' a restricted 

S(G, E) can be obtained from curves of the inelasticity as a 
.. . - - - . - . - - ·- .•.. - - - - -·· 

23 

function of the orientation angle e, such as the ones shown in 

Fig. 8 for b = 0, ¢ = 0. This restricted, 5(0, E) is in fact 

proportional to the derivative dB/d(6E) which can be evaluated 

from such a curve. If the inelasticity-orientation curves were 

available for all values of b and ~~ the full function S(G, E) 

could be constructed. However, examination of sample trajectories 
• 0 

shaHs that only a small range of imp act parameters ( 0 ~ b ~ 0. 15 A) 

gives scattering with the detector band pass at. a nominal bary­

centric angle of 180°. In this small impact parameter range, 

the inelas·ticity is quit~ insensitive to either the impact para-

meter or azimuth~l angle ~. For example, at 10 eV initial 

relative energy, the maximum value of the inelasticity changes in 

magnitud~ by less than 10%, and the orientation angle e at 

which this maximum occurs changes by less than 10° as the impact 
0. 

parameter varies from zero to 0.15 A. Changes in the other 

portions of the inelasticity-orientation angle curve are smaller, 

and changes which occur at small values of e are largely 
\ 

compensated by opposite changes in the inelasticity which occur 

at supplementary values of ej 

Since inelasticity is insensitive to • and b for small 

b, Eq. 4 can be replaced by 

( S) 
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where S(E) is evaluated using trajectories for which ~ and b 

are both zero. The constant c contains a partial cross section 
-

term and the laboratory angular resolution. The square of the 

ratio of the final laboratory velocity of Na + its final v to 

velocity u in the barycentric systems enters as a result of 

accounting for the change in the angular bandpass in the barycentric. 

system as the inelasticity varies. When calculated numerically, 

§(O, E1) has the appearance of a histogram, since the inelasticity 

was calculated from a set of trajectories in which initial values 

of e spaced by 2.5° were used. This histogram, which assumes 

effectively infinite energy resolution at ·the detector as well as 

no target gas motion or beam energy spread, must be convoluted 

with an apparatus energy resolution function before being compared 

with experimental data. To effect this convolution, an apparatus 

function derived f~om the experimental elastic scattering from 

He was used._·. 
1•·, 

To find an optimum set of potential energy parameters, an 

energy spectrum calculated using assumed values for A' and 1 

was compared with experimental data, appropriate adjustments to 

the parameters made, and the calculations and comparison repeated. 

Figure 10 shows examples of the results of this fitting procedure. 

In the right hand panels, the histograms obtained from the 

:trajectory calculation are shown. In the left hand panels, the 

experimerttal data appear together with the apparatus resolution 

function and the calculated fit to the experimerital data. With 

a single set of pntential parameters, it was not possible to fit 

the scatteretl ion energy spectrum exactly over the full range of 
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initial relative energies. The parameters Osed in the calcula-
0 

tions of Fig. 10 (A' = 65 eV, L = 0.55 A) represent a compromise 

which fits both the intensity maximum and the inelastic tail 

reasonably well over the full exp~rimental range of initial 
- .. - .... - . -. - - ·- .... - - --- ..... -- ·- - .. - -

relative energi·es. The most apparent discrepancy between the 

calculation and experimental data occurs in the region of the 

inelastic tail. Intensity in this very inelastic region results 

from collisions in which the orientation ·angle e is of the order 

of 20°. Use of a smaller value of the range parameter improves 

the fit in this region, which suggests that the interaction 
. 

potential is slightly stifter f~~ collin~ar than for perpendicular 

conformations. 

It should also be mentioned that a fit to experimental data 

was obtained from a set of calculations in which the impact 

parameter b as well as the orientation angle 8 was varied. 

The convoluted energy spectrum from the full two-dimensional 

calculation was virtually indistinguishable from the calculations 

using only a zero impact parameter. Consequently, the simpler 

procedure seems justified. 

Figure 11 shows a comparison of the calculated and experi-

mental inelastic spectrum for + Na - HD collisions. The 

potential parameters used were those derived from the best fit 

to the Na+ - D 
2 data. Generally quite satisfactory agreement 

between the calculations and experiment is obtained, although 

the deviations in the regions of the inelastic tail are quite 

noticeable at the higher relative energies. There arc rather 

significant differences bcth'ccn the mechanics of + Na - D 
2 

and 

+ Na - HD collisions. Nearly collinear collisions in which the 
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atomic arrangement is + Na - HD are very inelastic, appreciably 

more so than the nearly collinear + Na - n2 collisions. 

Consequently, the very inelastic tail is more prominent in the 
+ Na - HD experiments. Nearly collinear cOllisions of the type 
+ Na - DH have only slightly greater inelasticity than do exact 

perpendicular collisions, and consequently contribute to the 

spectrum in the region of the intensity peak. The fact that 

despite these differences in the mechanics of the n2 and HD 

systems the same potential parameters reasonably reproduce the 

experimental energy spettra re-enforces confidence in the derived 

intermolecul~r poieritial. 

In the model used to fit the experimental data, the zero 

point oscillation present in real oscillators was ignored. It 

can be argued that for high energy collisions, this procedure 

may ·lead to reasonable results, since it emph~sizes the potential 

energy surface in the region of the equilibrium oscillator 

distance, as does the weighting derived from the ground state 

vibrational wavefunction. To explore this problem further, 

trajectories were run in which the oscillator had the zero point 

vibrational energy, and several values of the initial vibrational 

phase were explored. A phase averaged intensity histogram was 

calculated and compared with one obtained without zero point 

energy. Differences \vere evident which could lead in a full 

analysis to different values of the potential parameters. 

However, it is not clear that this classical phase averaging 

procedure is more appropriate than the procedure which we have 

follOHQU. The questj on might be an~;h'~red by testing the effective­

ness of the potential we have derived in predicting the appearance 

of resolved vibrational transitions. 

I 
• i 

\ 



The two sets o£ potential parameters A' = 150 eV, 
0 0 

L = 0.40 A and A' ~ 65 eV, L = 0.55 A derived-from this work 
• .0 

bracket the parameters A' = 100 eV, L = 0.454 A found by 

Faubel and Toennies. Although these three sets of parameters 

may seem rather different, the potentials to which they 

correspond are virtually identical in the range 9 - 18 eV, 
0 .· . 

= rBC = 1. 3 - 1. 0 A. The fractional deviations at large 
+ 

Na - n2 separations tend to be large because the potentials 

are small in this region. At high energy (>20 eV) and small 
0 

separations CrAB = rBC < lA) the potentials deviate again. 

However, within the relative energy range of our experiments, 
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the three potentials are quite similar. This set of experiments 

seems to be the first in which both parameters of an exponential 

repulsive potential have been deduced from vibrationally inelastic 

scattering. 

Acknowledgement: This work was supported by the U. S. 

Atomic Energy Commission. 
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APPENDIX 

Consider zero impact parameter collisions of an atom A with 

a homonuclcar diatomic molecttle R2 in the perpendicular 

orientation shown in Fig. 3b. Let the total potential energy be 

given by 

. - r 
V = 2 A' e AB I 1 + ~ k ( t.r) 2 

where t.r is the deviation of the di~tomic internuclear separation 

from its equilibrium value.. Now if X, the separation of the 

centers-of-mass of A and B, is such that 4X2 > r 2 , then we can 

write 

The Lagrange equation for the X-motion is in this approximation 

ffiX 

where 

m = 2A B/(A + 2B). 

The last term r 2;sx2 in Eq. (Al) can be dropped, since it is 

much smaller than unity. 

is the classical turning point, let x = X - X 
t' 

and let r be the equilibrium separ~tion of the diatomic. In e 

the exponential term of Eq. (Al) let r 2}8X be replaced by 
2 re /8Xt. Then the approximate equation for the X motion is 

2/\" -x/L mx = · c . --r:-

·'· 

(Al) 

(A2) 
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where 

or half the potential energy at the turning point. Now Eq. (AZ) 

can be integrated to give 

where 

-x/ L · 2 e = sech (v t/21) 
0 

i~ the initial relative velocity. 

For the oscillator~ the Lagrange equation is 

·~(~f) + k(~r) = 
A" (~r+re) -:x/1 
21 (x + X ) · e 

t 

(A3) 

(A4) 

where ~ = B/2, the reduced mass of the oscillator. As a further 

approximation, set x and ~r to zero in the pre-exponential 

factor. Straightforward geometric considerations lead to the 

express ion 

where tany is the slope of the equipotential at the turning point 

as used in Fig. 3b, and a= 4AB/(A + 2B). Then Eq. (A4) becomes 

2A" 2 
~(~r) + k(~r) = aL ctny sech (v

0
t/21) .(AS) 

Equatioh (AS) constitutes a driven oscillator problem, so the 

energy transferred to vibration can be obtained in the usual 

manner 3 from the square of the Fourier transform of the force. 

The result is 

~E 
E r 

(A6) 



But ZA" is. the potential energy at the turning point, and is 

given in terms of the initial kinetic energy by 

2A" = ..! m v 2 sin2y. 2 0 

Substitution into Eq. (A6) gives 

30 

(A7) 

which i$ the ~xact analog of the refined impulse expression3 for 

energy transfer in collinear collisions. However, in the ~resent 

problem the quantity y is determin~d not just by the masses, 

but by the potential energy surface. 

To use Eq. A7, y must be found. The potential energy at 

the turning point r e. is 

2 
2A" = 2A' exp[-(Xt + re /8Xt)/L) = 

Make the substitution 

and rearrangement gives 

E 1/(1 + ctn2y). re 

1n(l+ctn2y)-!n(E /2A') 
xt = L [ . r l 

· 
1 

+ 2ctn y 
a2 

For small values of ctny, this becomes 



X 
t 

-- ·---- -··-··- -- Er 
-L in ZA' 

which may be solved by successive gpproxirnations to g1ve Xt' 

and then tany. 

31 
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Figure Captions 

Fig. 1 A diagra8 of the alkali metal ion scatterin~ apparatus. 

A: Ion source assembly. B: Liquid nitrogen cooled copper 

clamp. C: Energy analyser. D: Faraday cup. E: Beam flag. 

F: Channeltron detector. G: Scattering cell. H: I~n 

energy selector. 
.·;· 

F~g. 2 
+ Examples of the energy spectra of Na scattered at a· 

barycentric angle of 180° from n2 and He. The abscisca 

is the·laboratory energy of the scattered + Na . The energy 

scales have been adjusted by the amount indicated by using 

the calculated position of the elastic scattering from He 

as a calibration point. The v~rtic~l line~ indicat~ the 

positions expected for elastic scattering, and the suspended 

tic-marks located positions expected for inelastic scattering 

to the excited vibrational states of n2 • 
. · , .. _ 

Fig. 3 Potential energy stirfaces for the collision of a hard 

sphere atom with a square-well diatomic oscillator. (a) 

Collinear conformation. (b) Isosceles triangle conformation. 

For definitions of the symbols, see the text. 

Fig. 4 The calculated inelasticity 6E as a function of initial 

relative energy Er for the collinear collisions of Na+ with 

n2 . Note that over most of the relative energy range, the 

inelasticity calculated a~suming an harmonic oscillator 

potential for n2 is much greater than that calculated assuming 

a i·lorse potential function. The external potential en·crgy 
0 

function. is an exponential repulsion with I. = 0. 247 A. 
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Fig. 5 Skewed coordinate representations of the collinear 

collisions of Na+ with n2 at 10 eV initial relative 

energy. The potential energy contours are labeleJ in eV, 

taking the zero as the oscillator minimum at infinite atom-

diatom sep-ai"atie·n·;···- The- ordinate· -r is scaled to give the 

actual internuclear separation of n2 . (a) Harmonic potential 

function for. n2 , inelasticity 6E = 2.07 eV. (b) Morse 

potential function for n2 , 6E = 0.17 eV. In both cases, 

the exponential repulsion of Eq. 3 is used, with A' = 384 eV 
0 

and L. = 0.247 A. The dotted lines locate the adiabatic 

path on each surface. 

Fig. 6 The vibrational inelasticity 6E as a function of 

initial relative energy Er for the collisions of Na+ with 

n2 ·\in the isosceles triangle conformation. Exact results 

ar~ given for n2 treated as a Morse and as an harmonic 

oscillator. The predictions of the approximate refined 

impulse model described in the Appendix are also given. In 

all cases the external potential of Eq. 3 was used with 
0 

A' = 384 eV, and L = 0. 24 7 A. 

Fig. 7 Exact trajectories for the collisions of Na+ with D . 
2 

in the isosceles triangle conformation. The ordinate is the 

actual internuclear separation ~f n2 , the abscissa is the 

separation of the centers of mass of Na+ and n2. The 

initial relative energy was 10 eV in both cases, and the 

external potential energy was that g1ven by Eq. 3 with 
0 

A' = 384 eV and t = 0. 247 A. In panel (a), n2 was taken 
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to be an harmonic oscillator, and the inelasticity 6E = 1.61 eV. 

In panel (b) D2 is assumed to be a Morse oscillator, and the 

inelastitity 6E = 2.72 eV. Note that in the latter case the 

oscillator does not contract until it is well separated from 

the ion. The opposite is true in the harmonic case. 

Fig. 8 The fractional inelasticity 6E/E as a function of the r 

orientation angle a between the n2 internuclear axis and 

the relative velocity vector. The impact parameter is zero, 

the external potential is the same as in Figs. 4~7, and n2 
is taken to be a Morse oscillator. Not~ that the relative 

importance of collisions near the pirpendicular o~ientation 

increases markedly with increasing initial relative ~nergy. 

Fig. 9 Exact calculations of the vibrational inelasticity 

(solid line) for the perpendicular orientation-zero impact 

parameter .col.lision model fitted to the ·exp .. erimental ·data 
+ .· .. 

for Na ·- n2 collisions (squares). Deuterium was taken 

to be a Morse oscillator. The potential parameters of Eq. 3 
0 

which give this fit are A' = 150 eV and L = 0.40 A. 

Fig. 10 The fitting of the complete calculated energy spectrum 

Of Scattered Na+ t th . t 1 d t o e exper1men a a a. (a) Initial 

relative energy· 7.41 eV. In the right hand panel, the 

histogram gives the distribution of energies of Na+ calculated 

from the zero impact parameter collision model with proper 

weighting of molecular orientations. In the left ~and panel, 

the c6nvolution of the histogram with the apparatus function 

(Fit) is comp8red lvith the experimental Jata (circle's). The 

curve labeled + Na - He is the experimental elastic scattering 
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from which the apparatus furiction was taken. (b) A similar 

analysis for collisions at 13.3 eV initial relative ericrgy. 

Fig: 11 The fitting of the calculat~d energy spectra of + 
Na 

scattered from HD to the experimental data for two values 

of the initial relative erier~y. The notation and procedure 

.are the same as in Fig. 10. 

( . . 

:r: 

. ' 

_-
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Table l 

Experimental inelasticities for Na + bnckscattered 
from hydrogen r:10 1 c c ul c s . 

+ + 
-II Na - n2- Na 2 

Lxp. E£ a 
Er 

b ·LIE c 12xp. E£ E t.E r 
\' 0. 

I (eVL ( cV) (cV) ~No. .( eV) (eV) ( eV) 

. 7 7a 20 . 2.96 0.00 51 30. 2.40 0.23 

41 20. 2.96 0.00 53 40. 3.20 0.08 

42 2 5. 3.70 0.00 54 50. 4.00 0.22 

7 7b 30. 4 ·. 44 0.00 55 60. 4~80 0.11 

. 38 30 . 4.44 -0.01 
.), 30 . 4.44 0.03 

45 35. 5.19 -0.01 

77c 40. 5.93 0.07 + Na -HD 
\ 

64a 40. 5. 0 3 ·. 0.14 

46 40. 5.93 0.11 ·Exp. E£ Er liE 

. 6~b 45 . 6.67 0.20 No. (eV) ( eV) (eV) 

64c 50. 7.41 0.23 71 70. 8. 0 8 0 .. 6 8 

49 so·. 7.41 0.00 72 80. 9. 2 3 . 0.38 

64d 55. 8~15 0.27 73 . 90. 10.38 0.62 

59 60. 8.89 0.24 
\_ 

./ 74 100 . 11.54 0.69 

64e 60. 8.89 ' 0. 4 2 75 110. 12.69 1.22 

60 70. 10.37 0.63 78 130. 15.00 2.11 

62 80. '11.85 1.10 79 150. 17.31 2.81 

68 85. 12.59 1. 20 81 190. 21.92 5. 79 
' 

63 90. 13.33 1. 69 80 200. 23.08 7.48 

69 90. 13.33 1.53 82 250. 28.85 12.78 

70 95. 14.07 2.07 

65 100. 14.81 2. 74 
4 ; 

·66 110. 16.30 -3.46 

67 114. 16.89 3.92 

a + 
Tnitia:J lnboratory energy of Na 

b Initial relative energy 

c Most probable inelasticity . ! 
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r-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness "or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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