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ABSTRACT: An analytical model that assumes variable height asperities and full 
interaction between them has been developed and implemented numerically to study the 
behavior of a single fracture under stress. The model has been used to calculate specific 
stiffness and aperture profiles for specified fracture geometries. The formulation takes 
account of the deformation of the half-planes defining the fracture which is shown to 
lead to changes in aperture geometry that are not predicted by other asperity models. A 
parameter sensitivity study shows that specific stiffness varies significantly depending on 
the size of the asperities, their height distribution, and their spatial orientation. Curves 
of stress vs. specific stiffness generated with the model are found to agree in shape and 
magnitude with those obtained in the laboratory for rock specimens. 

1 INTRODUCTION 

Understanding the properties of fractures under stress is important in characterizing 
most geological sites and predicting the behavior of underground engineering structures. 
The purpose of the present study is to identify the parameters that play an important 
role in determining the mechanical response of a single fracture to applied loads. An 
important application of the work is the description of fracture closure as a function of 
stress. The ability to describe changes in aperture geometry with changes in stress is cru
cial to predicting fluid flow through fractured rock (see, e.g., Tsang, 1984 and Brown, 
1987). 

Specific stiffness is a property that defines the relationship between applied stress and 
fracture deformation. More formally, specific stiffness is defined as the average applied 
stress divided by the average displacement across the fracture interface in excess of the 
displacement that would occur if the fracture were not present. Laboratory experiments 
on single fractures in rock indicate that specific stiffness is initially a sharply rising func
tion with stress that levels off and approaches a constant value (e.g., Goodman, 1976; 
Bandis et al., 1983; and Pyrak-Nolte et al., 1987). 

A common approach to modeling the mechanical deformation of fractures has been to 
represent the fracture surfaces as parallel planes separated by asperities of varying 
height. Greenwood and Williamson (1966) modeled the contact between a plane and a 
nominally flat surface covered by a large number of asperities with heights described by a 
specified statistical distribution. The asperity tips were taken to be spherical and their 
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deformation calculated from the Hertzian solution for an elastic sphere in contact with a 
plane. Their model was extended by Greenwood and Tripp (1971) to the case of two 
rough surfaces in contact. Gangi (19i8) used what he termed a bed of nails model to 
describe the permeability of a fractured porous rock as a function of confining pressure. 
The asperities were modeled as rods with equal spring constants and heights following a 
power law distribution. Brown and Scholz (1985, 1986), like Greenwood and Williamson, 
assumed the asperity tips to be spherical and modeled their deformation using the Hert
zian solution. However, they also included a term for tangential stresses arising from the 
oblique con tact of spheres so that the stresses at the contacts are not restricted to be 
normal. Implicit in all the asperity models discussed above is the assumption that the 
contacts are sufficiently far apart so that they do not interact mechanically. Further, the 
closure of the fracture is based solely on the deformation of the asperities between the 
opposing fracture surfaces. 

2 THE MODEL 

The model that we have developed is also an asperity model but differs from those 
described above in two important ways. First, the constraint that the deformation at a 
contact point is independent of the other asperities is removed. Secondly, the deforma
tion of the half-spaces defining the fracture is accounted for in addition to the deforma
tion of the asperities. This formulation can lead to significant changes in void geometry 
with increasing stress that are not observed when only the deformation of the asperities 
is considered. An accurate description of the void geometry is important in predicting 
fluid flow through the fractures because of the highly nonlinear relationship between fluid 
flow and aperture (Iwai, 1976; Witherspoon, et al., 1980; and Pyrak-Nolte et al., 1987). 

For the results presented here, the asperities are modeled as circular disks of varying 
height. The asperities are not assumed to be mechanically independent. Rather, the 
force carried by each asperity depends on its height and the heights and proximity of 
neighboring asperities. The deformation of the asperities is calculated from the elastic 
compression of the disks. The deformation of the half-spaces defining the fracture is cal
culated using the Boussinesq solution for displacement beneath a loaded circle assuming a 
constant stress boundary condition. The deformation at any point on the half-planes is 
assumed to be a linear combination of the displacements caused by the forces acting on 
all asperities in the region. The calculation of specific stiffness is based on the average 
deformation of the fracture surfaces and asperities. 

3 CHANGES IN FRACTURE APERTURE WITH STRESS 

Figure 1a shows a two-dimensional slice through an idealized fracture with the dotted 
lines representing reference planes. If only the deformation of the asperities is considered, 
and a normal stress is applied, the reference lines remain parallel and come together by 
an amount that depends on the deformation of the contacts. For the case of a simple 
interpenetration model, the surfaces come together in a manner eq1,1ivalent to allowing 
the top and bottom fracture surfaces to overlap as illustrated in Figures 1b-ld. If 
instead, the asperity tips are modeled as spheres and the Hertzian solution is used to cal
culate the deformation of the tips, the reference planes still remain parallel and come 
together an amount equal to the deformation of the asperities. For both cases, the 
dimensions of the asperities themselves are important, but their spatial location on the 
fracture surface is not. 

For comparison, the model described in Section 2 was used to calculate the displace
ment across the same idealized fracture pictured in Figure la. To apply the model, the 
fracture surface is first discretized as shown in Figure 2a. When a. normal force is 
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applied, the reference lines no longer remain parallel because the asperities indent the 
half-spaces defining the fracture. This is illustrated in Figures 2c and 2d where the 
dashed lines show the calculated deformation of the reference planes. 

Adding in the deformation of the half-plane results in much greater changes in fracture 
aperture than would occur if just the deformation of the asperities were considered. To 
see this, compare Figure 2d to Figure 1c. In 1c, the reference lines have come together 
22.6% compared to their original position under zero load. In 2d, the average displace
ment of the two reference planes is 25.7%. Even though the displacement of the refer
ence planes is roughly equal, Figure 2d shows a greater reduction in aperture and appre
ciable changes in void geometry. 

This change in geometry has important implications for fluid flow through the frac
ture. The asperities have the effect of propping the fracture open while more than aver
age closure occurs in open areas. To illustrate, consider the idealized case of a single cir
cular asperity between two parallel fracture surfaces as pictured in cross-section in Figure 
3a. Under zero load, the fracture aperture b is everywhere equal and fluid flow is pro
portional to b 3 (Snow, 1965). As the load is increased, the fracture surfaces deform as 
illustrated in Figure 3b. The aperture at the asperity is b -8 where 8 is the deformation 
of the asperity. The high aperture pockets formed around the asperity are everywhere 
surrounded by a region of smaller aperture (a). Under stress, the large voids formed 
around asperities will affect the storativity of the fracture whereas the permeability will 
be largely controlled by the smaller aperture regions adjacent to the voids. 

4 SPECIFIC STIFFNESS 

To begin to understand what properties of the fracture surface are important in deter
mining specific stiffness, the model described in Section 2 was used to perform a. parame
ter sensitivity study. In particular, the effects of spatial geometry and the dimension and 
distribution of heights .of the asperities were studied. Finally, model predictions were 
compared with laboratory measurements. 

For a. fixed spatial arrangement, the maximum stiffness that can be obtained occurs 
when all asperities are of equal height. In this case, contact area,. and thus specific 
stiffness, are constant a.t all stresses. Fixing the heights at 35 microns and holding con
tact area constant at 25%, the effect of varying the asperity diameter was explored. The 
results, summarized in Table 1, show that the stiffest configuration (f) is for the smallest 
disk diameter considered (1 mm). The implication is that the more disperse the contact 
area, the stiffer the in terfa.ce. 

Next, the effect of varying the height distribution of the asperities was investigated. It 
is the distribution of heights that determines the rate at which asperities come into con
tact with increasing stress. In developing realistic fracture models, it is important to 
consider the spatial correlation of the asperity locations and heights. Nonetheless, as a 
first step in demonstrating the model, we have considered disks of equal diameter (1 mm) 
distributed randomly across a. planar surface. In reality, fracture surfaces are irregular 
rather than planar and parallel. However, the deformations calculated for the idealized 
parallel surfaces can be superposed on the actual irregular surfaces to obtain the true 
profile. ' 

Curves of specific stiffness were generated using 100 disks distributed in an area of 3.14 
cm2 as shown in Figure 4. The maximum contact area in this case is 25% when all disks 
are in contact. Using this spatial distribution, specific stiffness as a function of applied 
stress was calculated for a variety of height distributions. The resulting curves, and his
tograms of the height densities, are plotted in Figure 5. The results show that for a fixed 
spatial geometry, a wide range of behavior can be obtained by varying the distribution of 
heights of the asperities. In all cases, the stiffness curve rises sharply as increasing 
numbers of asperities come into contact and then begins to level off as the rate at which 
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asperities come into contact diminishes. Eventually, the curve will asymptote when there 
is no increase in con tact area with increasing stress. 

For comparison, the specific stiffnesses calculated using the model are compared to a 
curve obtained by L. Pyrak-Nolte et al. (1987) in the laboratory for a granite core sample 
with a fracture oriented perpendicular to the axis of the core. In making the model cal
culations, a Young's Modulus of 50.0 CPa and a Poisson's ratio of 0.2 was used to coin
cide with the values of the granite used in the laboratory experiment. For the laboratory 
data, specific stiffness was calculated by taking the inverse of the tangent slope to the 
stress vs. displacement curve. The curve obtained from the laboratory data is plotted in 
Figure 5 as the bold line. As can be seen from the figure, the curves obtained using the 
model, assuming a maximum contact area of 25% and asperity heights distributed 
between zero and 100 microns, bracket the results obtained in the laboratory for this 
particular specimen. The best matches are with curves 3 and 4 which have height distri
butions that are more tightly ciustered than those used to generate curves 1 and 2. 

The horizontal lines in Figure 5 show the maximum stiffness that can be achieved 
using the particular spatial configuration shown in Figure 4. The curves represent the 
limiting case that occurs when all asperities are of equal height. Curves 5, 6, and 7 
correspond to asperity heights of 30, 50, and 80 microns, respectively. The difference 
between the lines is due to the difference in the compressibility of the asperities; the 
shorter asperities are less compressible and thus create a stiffer interface. The small 
difference between the lines indicates that the absolute asperity height is not as impor
tant as the distribution of heights. 

The spatial orientation of the disks is also an important parameter. When all disk 
heights are made equal, the only difference between the arrangement in Figure 4 and 
arrangement I in Table 1 is the spatial distribution of the disks. The symmetric distri
bution I yields a specific stiffnessof 54.3 El2 Pa whereas the more clustered arrange
ment of Figure 4 gives a value of approximately 9.0 El2 Pa. In other words, for this 
particular case, holding contact area, disk djameter, and height constant, specific stiffness 
decreases roughly 83% in going from a symmetric spatial distribution of contact to a 
more clustered distribution. As"previously discussed, the predicted curves in Figure 5 
were derived for a specified spatial geometry. The sensitivity of specific stiffness to the 
assumed spatial distribution may explain in part the discrepency between observed and 
predicted results. 

5 CONCLUSIONS 

In modeling the behavior of a single fracture with an asperity model, it has been shown 
that accounting for the deformation of the half-spaces defining the fracture leads to 
greater reductions in aperture than would be calculated if only the deformation of the 
asperities were considered. In addition, the spatial geometry of the asperities becomes 
important leading to differential deformation of the fracture surfaces t~at can result in 
significant changes in void geometry. This change in aperture geometry with stress is 
important in fluid flow calculations. 

The spatial geometry of the asperities, their dimension and height distribution have all 
been shown to be important parameters in determining fracture stiffness. For a constant 
contact area, small, dispersed contact points form a stiffer interface than large or 
clustered contact areas. The distribution of heights affects both the shape and magni
tude of the stress-stiffness curve. The more nearly equal the heights, the stiffer the frac
ture is. The distribution of heights is found to be more important than the absolute 
height. Finally, the proposed model has been shown to yield values for specific stiffness 
that are consistent with those observed in the laboratory for single fractures in natural 
rock. 



... 

- 5-

· REFERENCES 

Bandis, S. C., A. C. Lumsden and N. R. Barton 1983. Fundamentals of rock joint 
deformation. Int. J. Rock Mech. Min. Sci. 20:249-268. 

Brown, S. R. and C. H. Scholz 1985. Closure of random elastic surfaces in contact. 
J. Geophys. Res. 90:5531-5545. 

Brown, S. R. and C. H. Scholz 1986. Closure of rock joints. J. Geophys. Res. 
91:4939-4948. 

Brown, S. R. 1987. Fluid flow through rock joints. J. Geophys. Res. 92:1337-1347. 
Goodman, R. E. 1976. Methods of Geological Engineering in Discontinuous Rocks. 

New York: West Publishing . 
Greenwood, J. A., and J. B. P. Williamson 1966. Contact of nominally flat surfaces. 

Proc. R. Soc., London, Ser. A. 295:300-319. 
Greenwood, J. A., and J. H. Tripp 1971. The contact of two nominally flat rough 

surfaces, Proc. lnst. Mech. Engr. 185:625-633. 
lwai, K. 1976. Fundamental studies of fluid flow through a single fracture, Ph.D. 

thesis, Univ. of Calif., Berkeley. 
Pyrak-Nolte, L., L. R. Myer, N. G. W. Cook, and P. A. Witherspoon 1987. Hydraulic 

and mechanical properties of natural fractures in low permeability rock. To appear 
Proc. Sixth International Congress on Rock Mechanics, Montreal, Canada. 

Snow, D. T. 1965. A parallel plate model of fractured permeable media. Ph.D. thesis, 
U niv. of Calif., Berkeley. · 

Tsang, Y. W. 1984. The effect of tortuosity on fluid flow through a single fracture. 
Water Resour. Res. 20:1209-1215. 

Witherspoon, P. A., J. S. Y. Wang, K. lwai, and J. E. Gale 1980. Validity of cubic 
law for fluid flow in a deformable rock fracture. Water Resour. Res. 16:1016-1024. 



-6-

la. Zero Load 

lb Cm 

lc 

ld 

Figure 1. Schematic diagram of the change 
in aperture with increasing stress for a 
cross-section through an idealized fracture 
assuming a simple interpenetration model. 
The reference lines have come together 13%, 
23%, and 32% in Figures 1 b, 1c, and ld, 
respectively. 
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Figure 2. Calculated change in aperture with 
increasing stress u~ing the model described 
in Section 2 for the same idealized fracture 
pictured in Figure 1a. The reference lines 
ha.ve come together 17% and 26% in Figures 
2c and 2d, respectively. 
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Figure 3. Cross-section of aperture for a single asperity between parallel plates under 
zero load (a) and after a load is applied (b). 
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Estimated 
stiffness (MPa/m): 

Contact area: 

Disk diameter (em): 

Estimated 
stiffness (MPa/m): 

Contact area: 

Disk diameter (em): 

1.31 E7 

25% 

0.7 

1.18 E7 

25% 

1.0 
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1.30 E7 

25% 

0.7 

1.65 E7 

25% 

0.2 

c ' 
3.23 E7 

25% 

Strip width - 0.1 

5.43 E7 

25% 

0.1 

Table 1. Specific stiffnesses calculated for spatial arrangements with equal contact areas 
of 25% but varying disk sizes. · 

OISC LOCATIONS £25% MAXIMUM CONTACT AREAl 

Figure 4. Spatial orientation of discs used to generate the curves of stress vs. stiffness 
plotted in Figure 5. Disc diameters are lmm; 
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Figure 5. Curves (1-4) of stress vs. specific stiffness for the spatial geometry shown in 
Figure 4 and different height distributions (plotted as histograms). The bold line is a 
curve obtained from laboratory data for a granite core specimen containing a single frac
ture. Lines 5-7 are the values of stiffness calculated assuming the asperities to be of 
equal height (heights of 30, 50 and 80 microns, respectively). 
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