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ABSTRACT 

• 

L F:.. . 

~ 
By considering the speq!ic problem of Brownian motion, we 

derive the frequency spectrum of fluctuations in the spatial 

integral of a quantity obeying a diffusion equation. The 

spectra are 1/f-like over large ranges of frequency for 1-, 2-, 

and 3-dimensional systems. Spectra from computer simulations 

confirm our calculations. 
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The problem of independent particles undergoing Brownian motion has been 

extensively studied.
1 

It is well known that for a small subvolume in a large 

. 2 
reservoir the mean square fluctuation, ( (Lm) ) , in the number of particles 

is ( N > , the average number iri that volume. To our knowledge, however, the 

* . . frequency spectrum, S (w) = ( N(w)N (w) ) , of this quantity has not been 

expli.citly calculated. We calculate S(w) under the assumptions that the par-

ticle density obeys a diffusion equation and that the particles are subject 

to a random force which gives rise to their motion. S(w) is shown to be 1/f-

like over many decades in frequency. The theory, which is applicable to any 

quantity obeying a diffusion equation, suggests a plausible explanation for 

the occurrence of 1/f noise in many different systems, and yields quantitative 

2 predictions of its magnitude that are in good agreement with experiment. 

Specifically, we consider the problem of particles undergoing Brownian 

motion due to their interaction with the surrounding medium. The statistical 

-+-+ 
nature of the system is described by a random force, F(x,t), which is the 

-+ -+ 
force acting on a particle at x at time t. F is assumed to have zero average, 

to be uniformly distributed in direction, and to be uncorrelated in space and 

time. As we are interested in time scales long compared to the viscous damp-

ing time, the velocity of each particle is the product of a generalized mobil-

ity, ~, and the instantaneous force. The particle current density is then 

-+ -+ -+ '-+ 
given by j = n~F where n(x,t) is the particle density. If on(x,t) is the 

-+-+ 
fluctuation inn about its average,n

0
, j(x,t) 

If we average over an ensemble of such systems 

-+ 

-+ . -+ 
= ~n F + ~onF. 

0 

with equal initial densities, 

the first term vanishes since < F ) = 0, and the second term must give the 

-+ -+ 
diffusion current, -DVn(x,t). We assume, therefore, that each system is ade-

quately described by: 
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-+ 
j j.Jn F(~, t) - D~n(~, t) 

0 
(1) 

-+ -+ 
for small fluctuations. Conservation of particles requires that V • j +an/at o, 

and we obtain 

-+ -+ 
1Jn V • F 

0 
(2) 

To find the frequency spectrum of fluctuations in the number of particles 

in a given volume out of an infinite system, we limit ourselves initially to 

a !-dimensional diffusion process and let 

00 00 

1 ·J f ikx -iwt n(x,t) = 2TI dk dwe e n(k,w), (3) 
-00 -00 

where from Eq. (2) 

n(k,w) 
' 2 

= ikn lJF(k,w)/(-Dk + iw). 
. 0 . . 

(4) 

Since the number of particles in 
·~ 

the region between 
~ 

-~ and ~ at time t is 

given by N(t) = J n(x,t)dx, N(w) 
..;.~ 

N(w) 

= J n(x,w)dx or 
-~ 

-1 ' 
k n(k,w) sink~ dk. (5) 
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* The frequency spectrum is defined by S(w) = ( N(w) N (w) ) . The uncorrelated 

nature of F in space and time implies that it has a white spectrum in w space 

and k space. Thus we set <F(k,w)F*(ki ,w) > = F 2o(k-k')/~2n 2 so that S(w) 
0 0 

reduces to 

S(w) 
2F 2 

oo 2 
= __ o_J sin ki 

'IT -= k2 
(6) 

00 

F 
2 

is a measure of the average amplitude of the random driving force; 
0 

Its 

value may be determined from the requirement that J S (w) dw = <.(fiN) 2 
> = 

= ( N ·> = 2n i, from which ,.,.e find F 2 
= Dn /TI. S(w) may now be explicitly 

0 0 0 

integrated to give 

S(w) = -e . [1 -e (sinS+ cos8)], 

h ') - ( . I ) l/ 2 Th 1 f w ere t; = w w . e natura · requency 
0 ' 

defined by the problem is h\
0 

S(w) ~ 2-l/Zn-l n1/ 2n w~312 for w ~ w , and S(w) ~ 
0 0 

w ~ w. S(w) is plotted in Fig. l(a). 
0 

1/2 -1 -1/2 2 -1/2 
2 'IT D n i .W 

0 

(7) 

for 

As a check on the formalism one may obtain from Eq. (4) the space-time 

correlation function, c(s, 1) = ( n(x+s, t+T)n(x, t) > , 

c(s,T) = n (4TIDT)-l/Z exp(-s 2/4DT), 
0 

(8) 

1 which is the familiar result for a !-dimensional diffusion process. The 

physical insight into the connection between 1/f-like fluctuations and diffu-

sion, however, comes from a calculation of the frequency-dependent correlation 

' * function, c(s,w) := ( n(x+s,w)n (x,w) ) . For the !-dimensional case, we obtain 

from Eq. (4) 
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c
1 

(s ,w) 
= n ~ cos [ ('IT /4) +I s I !_A] -I s I I A 

2ttDl/2wl/2 e 
(9) 

where A(w) = (2D/w) 112 is thew-dependent correlation length and is a measure 

of the average spatial extent of a fluctuation at frequency w. A low w fluctua-

tion effectively samples F over a large coherent volume giving a large amplitude. 

The low w behavior of S(w) is easily understood in terms of c1(s,w). When 

w ~ w , A(w) ~ 2~ and the fluctuations become correlated across the entire length. 
0 . 

N~w S(w) can also be expressed as 

(10) 

2 
Since c

1
(s,w) is independent of s as w + 0, S(w) + (2~) c1 (0,w) as w + 0, 

which is exactly the result obtained above. 

In the high w region A.~ 2~, and, although 2.Q. may be divided into many 

correlated regions of length A, only the two end regions can fluctuate independ-

ently of the others. The behavior is then best understood in terms of one 

dimensional flow across the boundaries. From Eqs. (1) and (4) we find 

2 j(k,w) = iwn0~F(k,w)/(-Dk +iw). If N1 (t) represents the number of particles 

on one side of a boundary at x =~'we have that ()N/at = j(.Q.,t), and 

-1/2 -lfo() N1 (w) = (2'1T) w • exp (ik.Q.) j (k,w)dk. Thus 
_,oO 

Dl/2n 
= --..,--~0..,_... 

2
3/2 3/2 

'IT w 
(11) 

for fluctuations due to flow across a single boundary. For w ~ w the flows 
0 

' 2 -1/2 -1 1/2 -3/2 
across the two ends are independent, and S(w) + 2 < N1 (w) > = 2 'IT D n

0
W , 

as before. 
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The formalism can be readily generalized to m dimensions. If N(t) is the 

m number of particles in a box of volume 2 ~ 1 ... ~m' then 

s (w) 
m 
IT 

i=l 

2. 
sin k.JI.. 

l. l. 

k.2 
1 

· z I . 2 The requirement that ( (6N) ) = S(w)dw gives F 
0 

n D/TI, .: ---~-
o . 

(12) 

Although we have been unable to determine a general analytic expression for 

S(w), we can determine.many of its characteristics from the behavior of the 

appropriate w- dependent correlation function, which retains :L.ts 

dependence on exp (-Is I I A.) in all dimensions.· Thus, ·in 2 dimensions 

c
2 

(s ,w) 
. 2 

= n ker(/21si/A.)/27T D, 
0 

.. (13) 

where c2(s,w)-+ (n0/2n
2

D)51.n(Y'2- :\/lsi> for s ~A. and :.·. 

' . -1/2 
· c2 (s,w) ex: lsi · exp (-/2 lsi/:\) for s '}>-A.. In 3 dimensions 

(14) 

.·• 

In m dimensions there are m characteristic lengths, 251. .• As in 1 dimen-
1. 

sian one expects changes in the spectrum when A.(w) = 251. .• This defines them 
l. 

2 
natural frequencies as wi - D/2ii • The simplest spectra are those in which 

all the w. are equal. 
l. 00 

In 2-dimensions, for a circle of radius a, 

S(w) = 2Dn0a~ I kdkJ1
2

(ak)/(D2k4+w2). 
' 0 

There is no simple limit for w ~ w • 
0 

For w ~ w :D/2a2, S(w) -+ 2-l/2n aDl/Zw-312• 
. 0 . ,o' 

The simplest 3-dimensional case is a sphere 

of radius a, for which S(w) may be calculated exactly: 
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S(w) 
5 ~8 2 8 2 5 = 8n a [e (1+28+8 /2) .cos8 + (l+e- sin8) (8 /2-1)]/D8 0 . . 

where 8 =<w/w-) 112 
0 

fQr w > w 
0 

with w - D/2a2• 
0 

5 -+ 2n
0

a /3D for ~ ~ w
0

, and is shown in Fig. l(f). 

For 2 and 3 dimensions, .the high w behavior is again best understood 

iri terms of flow across a boundary •. When A ~-any ,length,- 2.!1,1' 

(15) 

only the outer shell of the volume can fluctuate indepenoently of the remainder 

.and then only by !-dimensional flow across the boundary. Eq. (11) may be 
. l • . 

.. imm_edi~tely generalized~ If w~ divide a multidimensional surface into independ­

ent areas, dA, the -number of particles per unit length in the direction perpen-

dicular to the .surface is. n
0 

dA, a~d . the total mean square fluctuation across 

the boundary is the sum of those for each dA. Thus the high_w behavior of an 

arbitrary volume.of surface area A is 

(16) 

Eq, (16) leads to the same high frequency behavior for 2 and 3 dimensions 

as before. 

The low w behavior, on the other hand, is characteristic of 

c (~,w) in the limit A> s. Thus in 2 dimensions we expect S(w) ex: R.n(l/w), 
m 

while in 3 dimensions we expect S(w)-+ co~s.tant, as w -+0~ 

Although both low and high w limiting behavior is readily understood in 

all dimensions, the intermediate behavior of Eq. (12) in which wi < w < wj 

is complicated both physically and mathematically. In this region A is 

smaller than some t. and greater than.others. S(w) is a monotonically decreasing 
1 . 
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function of w. We expect a relati.v~l{~smo~th transition from low to high 

w behavior with changes in slope generally occurring only at wi. In 2 dimen­

sions,for a box 2~1 x 2~2 with ~l ~- ~21both an e~act series calculation for a 

finite lattice. [Fig. l(b)] and ~api)roximate integration techniques. [Fig~ l:(c) l 
-1 .. • 

give essentially an w spectrum· for w1 "< w < w2. 

As a test of the theory and in an attempt to determine the slope in the 

intermediate region, w~ simulated Brownian motion on a computer. A ran.dotrt 

walk model was used in 2 and 3 dimensions with electrical nois~ ·determining 
' ' 

the direction of each step. After each particle had been moved, the ·number in 
. ·~ ;: .. 

a given subvolume was counted. This q~antity was used as the dri~ing·f~tce for 

a series of tuned circuits modeled in the computer whose o'utput was. squared and 

averaged to give the spectra. We have used the same method to measure lo~ fre­

quency noise spectra of actual electrical devices. 2 Several of the simulations 

are shown in Figs. l(d), (e), (g), and (h). ~he results confirm our expecta:­

tion that there is a smooth transition from high frequency behavior (w-3 /
2

) to 

low frequency behavior, and that the intermediate region is well approximated 

-y by w , where y ~ 1. 

The procedure for determining S(w) developed here is not limited to 

Brownian motion but is appli~able.to any diffusion mechanism. In general, the 

fluctuating variable, .N(t), corresponds .to a spatial integral of the .. quantity 

obeying the diffusion 

2 or F , is determined 
0 

equation,.Eq:. (2), while 

'- . 2 
from f S (w) dw = ·< (L:.N) > • 

the magnitude of the sp~ectrum, 

Both the spectrum, with its 

dimensionality-dependent 
-3/2 '· .... 

and w high frequency 

low frequency behavior, 1/f -like intermediate region, 

limit, and the frequen2y-dependent correlation length 

are characteristic of the diffusion process. 
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FIGURE. CAPTION 

Fig. 1 Fluctuation spectra: (a) and (f) are exact calculations, (b) and 
! .. , 

(c) are approximations, and (d), (e), (g), and (h) are computer 

simulations. Each scale division represents one decade. 

.J 
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