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ABSTRACT

L Y

| By considering the speé@ic probleﬁ of Brownian motion, we
derive the frequency spectrum of fluctuations in the spatial
infegral of a quantity obeying a diffusion equation. The
| .épectra_are 1/f-1ike over large ranges of'frequéncyvfor 1-, 2-,
| and 3;diméhsiona1 systems. Spectra from éomputer‘simuiations

confirm our calculations.
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The problem of independent particles'undergoing Brownian ﬁdtion_has been
extensively studied.l it is well known that for a small sﬁbvolume in a large
reservoir the mean square fiuctuation; ((AN)Z'), in the number of parficléé |
is (N ) , the average number in that volume." To our knowledge, however, the
frequency spectrum, S(w) = (N(Q)N#(w) ), of this‘gqaﬁtity'has not been
explicitly calculated. We célculate S(Q) under thé éssumptions:that the par- .
ticle density bbeys a diffusion equation and that the particles'are subject ;
to a random force which'giVes rise to their motion. S(w) is shown to be_l/f;_ 
like over many decades in frequency. The theory, which is applicable to aﬁy
quantity.obeying a diffusion equation, suggests a plaﬁsible explapation for
the Qccﬁrrence of 1/f noise iﬁ many.diffefent systems, and yields qqantitative
‘ predictioné.of ité magnitudé‘thét are in good agreeﬁent with experiment.2

‘Specifically, we consider the préblem of pérticles underéoing_Brownian_
motion due to their interaction with the surfounding medium.'.Thé étatistiéal "
nature of the system is described by a random force, f(;,t), which is fhé
fo?ce acting on a particle at ;.at time t. %Iis assumed to have zero averége,
to be uniformly distributed in direction, and to be unCorrelated in space and
time. As we are interested in time scales long compared to the viscbus damp-
ing time, the velocity of each particle is the product of a generalized mobil-
ity, H, and the instantaneous force. The particle current dehsity is then_k
given by §'= nuf where n(;,t) is the particle density. If Sn(;,t) is the .

> > -> o
fluctuation in n about its averageyn , jlx,t) = unoF + uénF.

If we average over an ensemble of such systems with equal initial densities,
| > .
the first term vanishes since (F )= 0, and the second term must give the o
’ > > X
diffusion current, -DVn(x,t). We assume, therefore, that each system is ade-

.quatelyvdescribed by:



= uno'f’(?c,t)' - Iﬁh(?{,t) i . W

for small fluctuations. Conservation of particles requires that V + j + on/d3t = 0,

and we obtain
2 v > , ' '
DV'n - on/dt = o V¢ Fo. . (2
To find the frequency‘Speétrum'of fluctuations in the number of particles

in a given volume out of an infinite system, we limit ourselves initially to v

a l-dimensional diffusion process and let

aGe,t) = 3= [ di [ dwe™ e qc,u), : (3)

where from Eq. (2)

: n(k,w).= iknoﬂF(k,ub/(—Dkz + iw)._ S (4)

Since the number of particles in the region between - and & at time t is

. : ) 2
given by N(t) = f n(x,t)dx, N(w) = f n(x,w)dx oOr
: : -9 Lo -4
N(w) = (2/n)l/zf Kl ngk,w) sink® dk. ¢ (5)

-00
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' ' *
The frequency spectrum is defined by S(w) = (N(w) N (w) ?>. The uncorrelated
nature of F in space and time implies that it has a white spectrum in @ space

* ' :
and k space. Thus we set {(F(k,w)F (k',w) ) = F026(k—k')/uzn02 so that S(w)
reduces to
2 2w 2 2
0 f sin"k& k' dk

il

2 2.4 2° ' o (6)

S(w) =
o -0k D7k +w

2
Fo is a measure of the average amplitude of the random driving force. Its
[+ o]

value may be determined from the requirement that f S(w) dw = (.(AN)2 Y =

=(N) = 2noQ, from which we find F02 = DnO/n. S(w) may now be explicitly

=00

integréted to give

1/2 o
X -9 6)] &
S(w) = —_  [1 -~e (sinb + cos R
: /5%w3/2
where 0 = (w/wo) . The natural frequency defined by the problem is w = D/20°.

-1/2. -1 D1/2n0w—3/2 1/2n'1Df1/2n L

2m’1/2 f
(o) .

S(w) » 2 for_w.> W and S(w) »> 2 or
w < wé. S(w) is plotted invFig. 1(a).

Aé a check on the formalism one may obtain from Eq. (4) the sbace—time
gorrelation function, c(s,Tj = {n(xts,t+TDn(x,t) ), |

/2

c(s,T) = no(4ﬂDT)_l exp(-52/4DT), ' (8).

which is the familiar result for a l-dimensional diffusion process.l The
physical insight into the connection between 1/f-like fluctuations and diffu-
sion, howeVer,_comes from a calculation of the frequency-dependent correlation

. % A
function, c(s,w) = (n(xts,w)n (x,w) }>. For the l-dimensional case, we obtain

from Eq. (4)
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e

n, cos[(m/4)+|s| /\]

) e - A
c,(s,w) = —= e ISI/V
1 : 2ﬂD1/2wl/2 ’

(9

where A(w) = (20/w)Y/?

is the w-dependent cqrrelatioﬁllength and is a measﬁre

of the avefage épatial extent of a fluctuation at freduency w. A 16w w fluctua-

vtioﬂ»effectively samples F over a'large coherent volume giving a léfge amplitude.
The low w behavior of S(w) is easily understood in'termé of cl(s,w). When

w <'wo, A(m):> 2% and the fluctuations become correlated across the entiré'length.

Now S(w) can also be ekpressed as

S(w) . = deI fdxzcl(xl - xsz). .'(;O)

”Since cl(;;Q) is independenﬁwéf s as.Qm;NO, S(w) + (22)2c120,w) a;'w + 0,
which is exactly the result obtained above.

In the high w region A < 22,_and, although 22 may be divided inté many
,‘corfglated fégions pf 1ength A, only the two end regions can fluctuate independ-
éntiy of the others. The behavior is then best understood in terms of one
dimensional flow across the boundaries. From Eqs. (1) and (4) we find

2

jlk,w) = iwﬁouF(k,w)/(—Dk +iw). If Nl(t)'represents the number of particles

“on one side of a bounﬁary at x = 2, we have that BNl/Bt = j(&,t), and
, - . , ‘
N (@ = 20 25 Yexp (1k8) 3 w)dk. Thus

2 : ,Dl/Zn

..~ F 0
2; 0 dk o
ENT(w) ) = i =
1 2n g 24 2 5372, 372

(11)

for fluctuations due to flow across a single boundary. For w > W, the flows

across the two ends are independent, and S(w) ~ 2.<N12(w) ) = Z—llzﬂ_lDl/znowf3<f

as before.
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The formalism can be readily geheralized to m dimensions. If N(t) is the

number of particles in a box of volume kal...lm, then

S 5
s e 1 sin kit
“pict? 11k

s = & )“‘FO a2
:The requlrenentjfnat ((AN)2 ) = fS(w)dw'giVes F02 = noD/v.F-“—

Alfhengh we have-been unable to determine a genefal analytic expressicn.fer
S(w), we can determine,many of its characteristics_from the benavicr'of the
ﬁappropriete Q—dependent correlation function, which retains‘its.v.

dependence on ex%(—lsl/k) in all dimensions. Thds,’in 2 dimensions
¢,(s,0) = n ker(/Z|s|/M/2n’p, . Q3

'Where'cz(s,w) > (na/ZH?D)Qn(JE‘x/lél) for s < \ end )

R - : _1 2 X . L . ’ .'»,
cz(s,w) « |g]” / exp (f/f ls|/A) for s> A. 1In 3 dimensions

] _ n -ls}/a . o
cy(8,0) = —5=— cos(|s|/N)e . | (14)
: . 41°Dls| o C o
In m dlmen31ons there are m characteristlc lengths, 22 ‘Asvin l dimen-
sion one expects changes in the spectrum when A(w) li. This defines the m
natural frequencies as W, =z D/ZSZ,i + The simplest spectra are those in which

all the wi are equal. In 2-dimensions, for:a circle of radius a,

oo
2 _ .
S(@) = 20n_a” [ kdkd, (ak)/(D2k4+w2) For 0> w =D/2a%, () * 2 1/2noaDl/2w 32
. B - o s . .
There is no simple limit for w < w, . The simplest 3- dimensional case is a sphere

~of radius a, for which - S(w) may be calculated exactly
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S = 8n_a’[e 0(1426+6%/2) cos® + (1te ’s1nd) (67/2-1)1/D0°  (5)

where 6 E(w/md)l/2 Cwith w E__D/gaz. S(w) 21/2n062D1/2w-3/2

.fqr w > W, o > znoa5/3Dyfor w < W, s and is sﬁown in Fig. 1(f).

For 2 and 3 dimensions, .the high w behavior is again beét understood
* in terms of flow across-a béundary.  When A < any Mlength;,ZQis
only the outer shell of thevvolume can fluctuate independently of the remainder
:ﬁand_;henrbnly.by 1—diﬁep$ional flowvacrqss the boundary. Eq. (115 may be
-L-ipmgdia;ely generglized, ’If wgvdivide a multidimensional surface into independ-
v_ ent areas, dA, thg'humber of parpicles per unit length in the direction perpen-
dicular to_ﬁhe surface is;nodA, aquthe tot§1 medn square~f1pétuatiop across
the boundary is the sum Qf_phose fpr‘each'dA._ Thus the high w behavior of an

-arbitrary volume of surface area A is
S(w) > Dl/ZnO%/E3/2ﬁw3/2._ - a (16)

Eq

(16) leads to the same high frequency behavior for 2 and 3 dimensions
as before.

The low - . Q behavior, on the other hand, is chgracteristic gf
cm(a,w)-in the limit A > 8. Thus in 2 d%mensions’Qe gxpegt S(w) « ln(l/w),.
while in 3 dimensions we expect S(w)> constant 4 as w 0. |

" Although both low and high'wvlimiting behavior is readily understood 1in
all aimensioné, the intermediaﬁe behavior of Eq. (12) in which w; <w< wj
is complicated bbth physically and mathematically. In this region A is

smaller than some Qi and greater than others. S(w) is a monotonigally decreasing
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function.of w, ;We'expect:a relativelyvsmooth transitionvfrOm'low to high

w behaVior with changes in slope generally occurring only at m . In 2 dimen—v
sions, for a box 2% X 22 with 21 > lz,both an exact series calculatlon for a
finite lattice [Fig l(b)] and approximate integration techniques [Fig l(c)]
give essentially an -1 spectrum for wl <w < wz

As a test of the theory and in an attempt to determine the slope in the

intermediate“region,.we simulated'brownian motion on a computer. A random
vmalk‘model was used in 2 and 3 dimensionsrmith electrical noise‘determinipg-'
the directiondofbeach step. After each particlejhad been moved,wthexnumber in
Aaﬂgiyen subyolume was counted,“ This quantity was used.as thefdriying;force for
‘awseries of'tuned circuits modeled in the“computer whoSeﬁoutput Was—squared and
averaéed to.giyeAthe spectra, We have used the same method to measure low fre-
quency noise spectra of actual electrical devices.2 'Seyeral of the Simulations
are shown in Figs.,l(d), (e), (g),ﬁand (h). The results confirm'our expectaf

' -3/2

‘tion that there is a smooth .transition from high frequency behavior (w ) to

low frequency behavior, and that the intermediate region is well approximated '
‘ibyAm—Y, where Y § l;

The procedure for determining S(w) developed here is not limited to
Brownian motion but is applicable to any ‘diffusion mechanism. In general, the
fluctuating variable, N(t), corresponds to a ‘spatial integral" of the. quantity
obeying the diffusion equation, Eq. (2), while the magnitude of the spectrum,
or F;z, is determined from fS(w)dw -((AN) .. Both the spéctrum; with its
d1mens1onality—dependent low frequency behavior, 1/f-1like intermediate region,
and W 3/2 high frequency limit and the frequency-dependent correlation length

are characteristic of the diffusion process
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FIGURE CAPTION

Fig. 1 Fluctuation spectra: (a) and (f) are exact calculations, (b) and
(c) are approkimations, and (4), (e); (2), and (h) are compﬁter

simulations. Each scale division represents one decade.
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