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NUCLEAR DISSIPATION AND THE ORDER TO CHAOS TRANSITION 

W.J. SWIATECKI 

Nuclear Science Division, Lawrence Berkeley Laboratory, University of 
California, Berkeley, California 94720 

The transition from ordered to ch~otic nucleonic motions in the nuclear 
mean-field potential is reflected in the disappearance of shell effects 
in nuclear masses and deformations, and in the transition from an elastic, 
through an elastpplastic, to a dissipative behavior of the nucleus. 

One of the major themes of contemporary science is the study of order to 

chaos transitions in dynamical systems~ An abstract dynamical system is one 

whose n degrees of freedom evolve in time according to certain specified 
mathematical rules. Remarkable progress in this general field is currently 

taking place. It is described in the following way in a book on Order and 

Chaos by BergA, Pomeau and Vidal: 1 "In recent years ·a new kind of physics 

has been emerging, which has been variously termed nonlinear, turbulent or 
chaotic. Its extremely diverse subject matter includes hydrodynamical 
turbulence, chemical kinetics and the study of electronic circuits. The 

similarity in the structure of these.diverse phenomena results from a profound 
mathematical theory: the modern theory of nonlinear systems ... The field of 

investigation in such studies appears quite large, since it encompasses the 

analysis of ~11 time-dependent phen~mena. Treating the major types of 
behavior or evolution without direct reference to the actual matter through 
which they are manifested, this body of doctrine resembles a physical theory 

as powerful and structured as, for example, thermodynamics." 
A sub-class of such theories especially relevant to the nuclear problem 

deals with conservative systems where the time development is formulated in 

terms of a Hamiltonian function of the n degrees of freedom and their 
conjugate momenta. The corresponding 2n-dimensional phase space is the 
natural arena in which to describ~ the evolution of the system. The 
classification of various structures that appear in this space for generic 
types of Hamiltonians has been the subject of intense research in the recent 
past. The explosive growth of this field is associated with the discovery of 
an unsuspected g0ld mine in this ancient discipline of analytical dynamics. 
The gold mine is located in what used· to be thought of as an uninteresting, 

arid desert between two well-cultivated coastal regimes, the regime of 
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integrable systems and the regime of chaotic systems. The term 'integrable 

system' refers to a rather special limiting situation, where there are as many 

constants of motion as there are degrees of freedom. In this case the 

evolution of a system with given initial conditions explores only a fraction 

of the available phase space. For a bound system this is usually in the form 

of an n-dimensional torus. Different initial conditions define different 

tori. In the fully chaotic regime a system started with even a single initial 

condition explores all of the phase space that is not excluded by a few 

overall conservation laws. This is the regime of Boltzmann's statistical 

mechanics, with a probability fog permeating phase space in place of the 

tori. Until relatively recently it was generally believed that the 

intermediate regime between the integrable and the chaotic limits is a dull 

area where tori dissolve gradually into the Boltzmann fog. What was found 

instead is that the intermediate regime has a wonderful structure, with 

necklaces of tori within tori within tori in a fractal succession, 

interspersed with chaotic regimes of fog, and with webs of interconnections 

almost organic in appearance. Instead of a desert, there is a luxuriant rain 

forest, which changes in intricate ways as the deviation from integrability of 

the Hamiltonian is cranked up . The discovery of this gold mine in theoretical 

dynamics may rank in importance with the discoveries made by Hamilton and 

Boltzmann in the ordered and chaotic regimes. The new structures uncovered 

are in fact much richer than those in the familiar regimes. Fig.l is an 

attempt to give an impression of this modern view of dynamics . On the left 

FIGURE l 
Pictures of phase space: Poincare tori on the left, Boltzmann fog on the right 
and the fractal jewels of the generic Hamiltonian phase space, as illustrated 
by the 'circle map' from ref. 2. 
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you see Poincare crowned with his tori. On the right sits Boltzmann wreathed 

in fog. The central panel, taken from ref. 2, gives an impression of what the 
real generic phase space looks like. I cannot resist quoting Michael Berry's 
rapturous description of this· new landscape. In commenting on a sketch .of 
such a phase space in his 1978 article on "Regular and Irregular Motion" 3 he 
says: "I do not know who first drew this astonishing picture; but even the 
detail shown is a woefully inadequate approximation to the true situation. 
What a wonderful hierarchy! Near each rational invariant curve there are 
hyperbolic fixed points with associated chaotically wandering curves, and 
elliptic fixed points surrounded with invariant curves which repeat the whole 
structure ad i·nfinitum ... a lacework of intimate intermixing of integrable and 

stochastic motions. It must be emphasized that all this is in no sense 
pathological. It is the generic situation for solutions of Hamilton's 

equations." 
What has all this to do with nuclear physics? The explosive growth in 

order-to-chaos research is due in large measure to computer studies of 
relatively simple, nonlinear, non-integrable systems, such as the Henon-Heiles 
two-dimensional anharmonic oscillator, 4 or the stadium potential. 5 (The 
former refers to the motion of a mass point in a pbtential well of finite 
depth whose equation in polar-coordinates is V = (l/2)r2 - br3cos3e, the 
latter to an oval cavity with impenetrable walls.) Even such simple systems 
exhibit many of the fascinating features of the generic order-to-chaos 
transition but, despite great efforts expended on them in the past decade, 
unexpected discoveries continue to be made, and several questions remain 
unanswered, especially in the guantal version of the order-to-chaos problem. 
But the relevance of these studies to nuclear physics, and the relevance of 
nuclear physics to order-to-chaos research, is at least obvious. A good 
starting point for nuclear theory is the mean-field approximation, in which 
nearly independent nucleons move in a common potential well. This potential 
well does in fact resemble an anharmonic oscillator for light nuclei and a 
cavity for heavy nuclei. Thus, much of nuclear theory done in the past has 
been unwittingly exploring aspects of the order-to-chaos problem, in fact the 
especially interesting guantal version of the problem. However, with one 
notable exception, the insights gained in nuclear physics have not been 
incorporated in order-to-chaos research. (The exception is the random matrix 
theory of nuclear level spacings and statistical reaction theory.) 
Conversely, it is only recently that nuclear physicists have become generally 
aware of order-to-chaos research that is relevant to nuclear physics. 

In order to illustrate the similarities in the two originally independent 
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branches of science, fig. 2 compares the phase space of the classic 

Henon-Heiles problem, and of planar particle trajectories in an idealized 

spheroidal nuclear potential. 6 In both cases one has a two-dimensional 
potential well of finite depth, which may be described by a simple function of 
two cartesian coordinates x,y. In the nuclear case the well is like a 
Woods-Saxon potential and the problem is integrable if the well is spherical 

but becomes non-integrable for a deformed nucleus. The same is true for the 
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FIGURE 2 
Poincare sections for the Henon-Heiles problem at energies from 25% to 100% of 
the escape energy (right)4, and for a particle with 99% of the escape energy 
moving in a diffuse potential representing a light nucleus with axes ratios 
increasing from l to 2 (left)6. 

• 
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Henon-Heiles potential, where integrability is lost as the particle energy is 
raised from small values towards the escape energy. What· is shown in fig. 2 

are Poincare sections through the phase space, the sections being by the y,y 
plane at fixed x (the value of x follows from energy conservation). Consecu­
tive intersections of this plane by a particle trajectory with a given initial 
condition form a series of dots. The dots lie on a closed curve if the motion 

• in phase space is on a Poincare torus. If the motion is chaotic the dots 
generate a Boltzmann fog. The left part of fig. 2 shows how the transitibn 
from order to chaos takes place as a function of increasing deformation in the 
nuclear case. The right hand portion shows a similar sequence for the much 
studied Henon-Heiles problem. The theory of the generic' pattern sequences in 
such a transition from order to chaos has been the subje~t of intense research 

in analytical dynamics. 

• 

A second example of investigations of similar problems in nuclear physics 
and in order-to-chaos dynamics is shown in fig. 3. The upper part is taken 
from an exhaustive recent study entitled "The quest for quantum chaos", 5 

XBL 885-1673 

FIGURE 3 
The intensity pattern of a very 
high eigenmode in the stadium 
potential (top).5 Regular 
patterns like these are the rule, 
although the classical orbits that 
seem related (middle part) are 
hi~hly unstable. Studies of 
planar orbits in the integrable 
spheriodal cavity (bottom) 
are important in understanding 
nuclear deformations.7 
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attempting to relate classical and quantal trajectories in the stadium 
potential. In this remarkable work, carried to the limits of available 
computer power, the eigenfunctions of the wave equation can be solved 
numerically for thous~nds of eigenstates. One of the unexpected results was 
the ubiquity of wave functions with easily recognizable similarities to highly 
unstable classical trajectories. The classical stadium problem is one which, 

in a technical 
instabilities. 
one might have 

sense, has been proved to be chaotic because of such 
Yet, in the quantized version, patterns of trajectories that 

thought would be highly evanescent, show up all the time. 

The suggestion has been made that this might be due to the relative proximity 
of the stadium to the spheroidal shape, which corresponds to an integrable 

problem {for any eccentricity). The bottom part of fig. 3 is taken from a 
1977 study, 7 in the nuclear context, of classical and semiclassical 
trajectories in such a spheroidal cavity. The aim was to achieve a simple 
understanding of nuclear deformations. The two problems, quantum chaos in the 
stadium and shell effects in deformed nuclei, are clearly related, but I 
believe these relations remain largely unexplored. 

What are some of the general lessons we have learned about the nuclear 
problem that we now realize are governed by the order-to-chaos tran~ition in 

nucleonic motions? In the case of static nuclear properties, the outstanding 
qualitative lesson could be stated like this: 

*** When the nucleonic motions inside the nucleus are integrable, one 
expects to see strong shell effects in nuclear structure, e.g. in nuclear 
masses and deformations. 

***When nucleonic motions are chaotic, one expects smooth, statistical, 
Thomas-Fermi, Droplet Model approaches to be good approximations. This is 

because phase space is much more uniformly filled with the Boltzmann fog in 
this case. 

Before going on to the question of nuclear dynamics and dissipation let me 

remind you of some of the simplest unanswered questions in the realm of 

statics. One problem is to understand the washing out of shell effects. 
Thus, the macroscopic-microscopic approach to nuclear energies, in particular 
the Strutinsky shell correction method, is based on synthesizing the insights 
obtained in the two limiting regimes of integrable and chaotic systems. But I 
believe it is true to say that a proper understanding of the intermediate 
regime is still lacking. How do shells dissolve with deviations from 
integrability or, conversely, how do incipient shell effects emerge as the 
system first begins to feel its proximity to an integrable situation? This 

• 
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question has, for a good reason, remained largely unanswered: even at the 
classical level, and even for simple schematic problems like the stadium, the 
transition from of order to chaos exhibits unexpected and intricate features. 
For example, it was only the discovery of the,famous Kolmogorov-Arnold-Moser 
theorem in analytical dynam~cs that revealed how a generic integ~able system 
has the amazing tendency to hang on to its integrable~iike behavior in the 
face of non-integrable perturbations. The KAM theorem states, in effect, that 
"tori are tough." Fig. 4 illustrates this point symbolically. (It also notes 

IMPERVIOUS TO FOG* 

KAM TORI: TOUGH! 
qua ite q~i ure. 

*ONLY IN THREE DIMENSIONS 

FIGURE 4 
The Kolmogorov-Arnold-Moser 
theorem demonstrated the enduring 
character of tori. Hence their 
importance as an organizing 
element for the phase space of 
non-integrable systems, impeding 
the spread of chaos. 

the important fact that in 3 dimensions tori serve as barriers preventing the 
spread of Boltzmann fog, i.e., of chaos, from one region of phase space to 
another: In more than three dimensions the fog can sneak around the tori in 
what lS called Arnold diffusion, a subject of active current research.) 

The relevance of the toughness of KAM tori to nuclear physics may be at 

·~ a quite fundamental level. Thus, the relative accuracy of the nuclear 
independent-particle model may be due not only to the Pauli principle, which 

, suppresses two-body correlations between nucleons, but also to the KAM theorem 
which helps with the survival of integrable-like, independent-particle 
properties in the face of residual nucleon-nucleon interactions. More 
generally, the usefulness of a quasi-particle approach in the theory of Fermi 
liquids may be related to the toughness of KAM tori. In a way, we owe a debt 
of gratitude to Kolmogorov, Arnold and Moser for.the applicability of 
Strutinsky's shell correction method to nuclei. But it also follows that to 
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understand how shell effects are washed out when the nuclear shape moves away 

from integrable configurations, or when the nuclear temperature is increased 
and the Pauli blocking becomes less effective in suppressing the non­
integrable features of the residual ~nteractions, we will need help from 
general theories of the transition from·order to chaos in quantal systems. 

The type of problem one is dealing with here is illustrated in the 
schematic example in fig. 5, which shows the total energy of A quantized 

particles of mass min a spherical cavity with radius r
0
A113 • If the 
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FIGURE 5 
The energy of A particles (4 per 
eigenvalue) in a SP.herical cavity 
of radius R = r0 A1 13 • The smooth 
curves are successive statistical 
apP.roximations, to order A, A2/3, 
A1 13 , appropriate in the chaotic 
limit. -lhe curve at the bottom 
represents deviations of the exact 
result from the highest-order 
approximation. These deviations 
are associated with the presence 
of tori in phase space caused by 
integrability. 

phase space could be considered as filled with Boltzmann fog, one could apply 

the following asymptotic formula (due to Weyl-Balian-Bloch-Baltes8} for the 
average density of ei~envalues, p(k), per unit interval of wave number, k,. 
in the case of a cavity with volume V, surface area S and integrated curvature 
K (given by the surface integral of the local curvature R-~ + R-~): 

2 2 p(k) = Vk /2•- Sk/8• + K/12• + .... ( 1 ) 

For a sphere this leads to the following expression for the total energy of A 
part i c 1 e s : · 

(2) 

where c is a constant, not yet calculated analytically, but equal to about 
1 according to fig. 5. This figure shows the prediction of eq.(2) to order A, 
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A213 , A113 , as well as the rema1n1ng deviations. These deviations are, 
like a Strutinsky shell correction, the differences between a sum over 
eigenvalues and a smooth approximation. Now suppose the sphere is distorted 
and the potential well is made diffuse, or residual interactions are switched 
on. How will the shell effect fluctuations decrease with increasing size of 

such non-integrable perturbations? We now realize that this is a question 

concerning the transition from order to chaos, i.e. the destruction of 
Poincare tori in phase space. To understand properly this transition we need 
the help of the experts in this field, often outside nuclear physics, who have 
concerned themselves with this general problem for some time. 

A simpler question along these lines, which also has not been answered, 

concerns the completely chaotic limit. Suppose the shape of the potential in 
which th~ non-interacting particles are contained has lost all integrability, 
and the Boltzmann fog has taken over. Assume that we are now allowed to use 
the well-established random matrix t~eory to discuss the distribution of the 
eigenvalues in this potential. 9 (The Weyl-Balian-Bloch-Baltes formula gives 
the average level density and the random matrix theory provides information 

about fluctuations around this average.) Suppose one now sums the fluctuating 
eigenvalues and subtracts a smooth average. How big will the remaining 
deviations be? I am not aware of a formula for, say, the .RMS value of these 
residual deviations, but such a formula is surely just around the corner, 
since all the necessary information seems contained in the random matrix 
theory. 10 A formula like this would be a valuable addition to the 
macroscopic-microscopic theory of nuclear masses and deformations, as it would 
represent a certain irreducible limit on the accuracy of Liquid-Drop or 
Thomas-Fermi type approximations. Will this limit come out to be 1 MeV or 
0.1 MeV for a typical nucleus? State-of-the art macroscopic-microscopic mass 
formulae are now accurate to 1 MeV or less, and it would be nice to know at 
what level the fluctuations in the density of the Boltzmann fog become 
relevant. 

Now to the question of dynamics. How does an idealized system composed of 
nearly independent particles in a potential well respond to the potential's 
time dependence, for example to changes in shape? Much less is known in a 
rigorous way about this question, considered as an abstract dynamical 
problem. This is true even at the classical level and our i~norance is worse 
in the quantal case. In the ;pecial context of nuclear physics, a large body 
of valuable experience has, indeed, been accumulated, usually without the 
realization that the problem is intimately related to the transition from 
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order to chaos in nucleonic motions. The general lesson emerging from such 

studies of nuclear dynamics seems to be along the following lines11 : 
*** When the nucleonic motions inside the nucleus are integrable, the 

response of the nucleus to shape changes should resemble that of an elastic 

solid. 
*** When the nucleonic motions are chaotic, the response should be that of 

a very viscous fluid, with an unusual type of viscosity. 
*** In the intermediate regime an elastoplastic behavior is expected. 
In a qualitative way these expectations go back many years, to Hill 

and Wheeler12 and to SUssmann, 13 among others. They are based on the 

observation that for an integrable system the energy spectrum will be 
qualitatively similar to that of a Hill-Wheeler box or, to take a somewhat 
more realistic shape, to a spheroidal cavity. 14 Fig.6 shows the energy 
spectrum of an N-particle system in such cavities. Each parabola-like curve 
corresponds to deforming the system with the particles hanging on to their . 
constants of the motion, i.e. to their quantum numbers. In the example of 

the box (but not for the spheroid} this corresponds simply to stretching each 
wave function along one axis in a volume-preserving way. One readily verifies 
the following theorem: a system of any number of independent quantized 
particles, in a potential of any form, whose wave functions are stretched in a 
volume-preserving (quadrupole} way, responds near an equilibrium configuration 
with a stiffness that is twice its kinetic energy content. Thus, if we write 
the increase of the kinetic energy E as 

l\[ = (l/2}Ka2 , 

where a specifies the relative increase of the dimension of the axis being 
stretched, then the stiffness K is given by 2E. For a Fermi gas of A 
particles with Fermi energy mv212 and energy per particle three fifths of 
the Fermi energy, this gives 

( 3} 

where M is the total mass of the system. Thus the stiffness is proportional 
to the total mass or total particle number and is, therefore, a bulk property, 
like the stiffness of a solid. Incidentally, the in'ertial resistance of a 
spherical mass M with radius R against volume~preserving quadrupole 
stretchings is given by 

2 Meff = (3/lO}MR , 
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so that the frequency of the associated giant quadrupole resonance would be 

(4) 

This turns ou\ to be in remarkably close agreement with measurements. 11 

Coming back to fig. 6, if during the deformation of the system the 
particles can be induced to give up their constants of the motion and to 
redistribute themselves into the lowest energy states at each deformation, 
then the stiffness of the system will correspond to the much softer envelope 
of the parabola-like curves. One can readily verify that for a system with a 
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FIGURE 6 
In an integrable system correspond­
ing toN particles in a Hill­
Wheeler box (middle panel) or a 
spheroidal cavity (bottom panel), 
the deformation-energy spectrum 
consists of parabola-like curves 
characterized by a solid-like 
stiffness. The envelope of these 
curves defines a softer, fluid­
like deformability. As integra­
bility is destroyed, most energy 
levels begin to avoid each other 
(top panel), and an elasto-
plastic behavior is expected. 
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thin surface, such as a classical or quantized gas in a cavity, the stiffness 

of this envelope is proportional to A213 (or, for a fixed A, to the surface 
area of the system) so that one is now dealing with the stiffness of a fluid 
endowed with a surface tension. For a Hill-Wheeler box these features had 
been studied exhaustively by, among others, C.F. Tsang, from whose 1969 

thesis15 fig. 7 is adapted. The top parts of the figure were drawn to bring 
out the similarity with fig. 5. The bottom part verifies the predicted 
dependence of the envelope on deformation. But what does it take to make the 
particles give up their constants of the motion and redistribute themselves 
into the most comfortable energy states defining this envelope? Evidently one 
must perturb the integrability of the system sufficiently so that the 
constants of the motion, i.e. the tori in phase space, i.e., the quantum 
numbers in the quantized problem, i.e. the parabola-like curves in the energy 
spectrum, lose their significance. If these features disappear entirely, one 
is in the chaotic regime and the fluid-like behavior should be in evidence. 

~ 200 
No 

E 100 ......... 
N 

.ol:! 
::::::: 
>­
(!) 
a: w 
z w 

1260r----r----r----r----.---, 

E(a) 

1240 

N = 60 
A = 240 

11801------:~~ 
0.1 0.2 0.3 

DEFORMATION a 

0.4 

XBL 885-8442 

FIGURE 7 
The top panel is like Fig. 5, but 
for the Hill-Wheeler box. The 
middle panel displays the exact 
energy after subtraction of the 
statistical approximations (to 
order A2/3 and Al/3). The 
bottom panel verifies the 
theoretically calculated response 
of the system to stretching of one 
side of the box by expa with 
contractions of the other sides by 
exp(-a/2). 
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What kind of fluid will it be as regards its dynamic behavior? There exist 
idealized studies11 •21 •22 of this 'chaotic regime• dynamics (questioned as 
regards their relevance to th~ nuclear problem in ref. 16) which suggest that 

the fl~id should be very viscous, with a novel type of viscosity, the 
so-called •one-body dissipation.• This dissipation is typified by the 
following •wall formula' for the rate of energy flow from the shape degrees of 

freedom to the particles of the gas 

wHere p is the mass density of the ~as, v is the mean particle speed, equal 
tq (3/4)v in the case of a degenerate Fermi gas, ~ is the normal velocity 

' 
of a surface element do, and the integral is over the surface of the 
container, assumed in this case to-be deforming without overall drifts or 
rotations. 

(5) 

In general, a nuclear system will be neither fully integrable nor fully 
chaotic. Its energy spectrum will look more like the schematic drawing in the 
upper part of fig. 6, adapted from Sussmann. 13 The dynamical behavior of 
the system will now depend on the speed of the deformation. For slow 
deformations the system will follow the fluid-like lowest-energy curve. For 
fast deformations it will be inclined to jump across the gaps at the avoided 
level crossings, the more efficiently the higher the deformation speed. Thus, 
at a given instant, some of the energy will be stored as elastic energy, but 
some will be drained out in the form of dissipation as the particles rearrange 
themselves into more sensible patterns of motion appropriate to a given 
deformation. It is especially W. Norenberg and his collaborators who have 
been developing theories of such elastoplastic behavior. 17 This scheme 
is epitomized by the introduction of a type of force (attributed to Maxwell) 
whose magnitude is not just proportional to the instantaneous velocity ~ of a 
coordinate q, as with ordinary dissipation, but to an exponentially weighted 
integral over the time history of this velocity: 

Such a force has the property of acting in a dissipative way for slow 
deformations and in an elastic way for fast deformations. 

The above theories are only two examples of studies of nuclear dynamics 
that bear to a greater or lesser extent on the question of nuclear 
dissipation. I should mention especially the transport type theories of 

(6) 
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Weidenmliller and collaborators, the linear response theories typified by the 
work of Hoffmann, Siemens and others, the theories of nuclear collisions with 
friction due to Gross and collaborators, hydrodynamic studies of fission and 
nuclear collisions by Nix, Sierk and others, the master-equation treatment 
explored by Moretto and collaborators, and the particle-exchange theory of 
nuclear collisions due to Randrup, Feldmeier, D~ssing and others. Most 

prominent are, of course, the extensive simulations of nuclear dynamics based 
on the time-dependent Hartree-Fock method, initiated in the nuclear context by 
Kerman, Koonin, Negele, and extended by several groups. Extensive references 
to the above theories, as well as confrontations with experimental data can be 
found in refs. 19, 20, and 23. Here I would like to make just one comment 

about all these theories, including those I mentioned earlier. They have one 
feature in common, namely that they were developed at a time when the 
relevance of the order-to-chaos transition in the nucleonic motions to the 
question of nuclear dynamics was not fully appreciated. Take as an example 
the TDHF theories. Because of the key role of integrability, it seems clear 
in retrospect that in order to have a chance of forming a reasonable estimate 
of a nuclear system's response to shape changes, whether elastic, elasto­
plastic or dissipative, one needs to pay particular attention to the breaking 

of symmetries and to the inclusion of residual interactions. A theory with 
artificially imposed symmetries and without residual interactions may be very 

adequate for static problems, but it cannot be expected to provide a good 
guide to dissipative effects. 

Let me end by giving you a sample from a recent study concerned with 
illustrating the relation between the transition from order to chaos in the 
individual-particle motions of·an idealized system to its dynamical response 
as a whole. 21 Figure 8 shows what happens to the energy-content of a gas of 
non-interacting particles in a container, when the container is made to 
oscillate periodically around the spherical shape. In the top and middle 

parts of the figure the deviations of the surface of the container from the 
sphere are proportional to Legendre polynomials of order 2, 3, 4, ·5 and 6. 
In the bottom part the oscillations are exactly spheroidal, so that without 
the iime dependence the problem of the particle motions would be ex~ctly 
integrable. In all cases the time dependence is slow (adiabatic) with respect 
to all but the slowest particles of the gas. The different curves show the 
relative increase in the energy content of the gas for five complete periods 
of the oscillations. (The motion is started from rest at the maximum 
amplitude of the deformation.) In the case of the distortions P3, P4, 
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FIGURE 8 
The relative energy change of a 
gas of particles inside a cavity 
undergoing five complete oscil­
lations around the sphere. In the 
bottom panel the oscillations are 
spheroidal and, with decreasing 
frequency (as labeled by n}, the 
response tends to a reversible, 
elastic one. The index n is the 
ratio of the maximum tip speed to 
the Fermi velocity v. The curves 
labeled Pn refer to oscillations 
proportional to Legendre 
polynomials. Except for P2 the 
resulting monotonic, dissipative 
energy increase is close to that 
predicted by the wall formula, 
whose overall trend is indicated 
by the dashed line. 

P5, P6, the· increase of the energy is monotonic, corresponding to a purely 
dissipative response of the system. This response is, in fact, in close 
agreement with the wall formula, eq.(5}, whose prediction would be 

indistinguishable from the curve labeled P5. The case of (small} P2 
deformations represents near-integrability, and the response of the system is 
partly elastic, as shown by the reversible bumps in the energy superimposed on 

a dissipative background. In the case of the spheroidal oscillations in the 
bottom part of fig. 8 the response is largely elastic, tending in fact to 
perfect reversibility as the speed of the oscillations, characterized by the 
adiabaticity index n, tends to zero. These different responses illustrated 
in fig. 8, varying from dissipative to elastic, are brought into 
correspondence with the order-to-chaos transition in fig. 9.· This figure 
shows samples of Poincare sections of the phase space for particle 
trajectories in variously deformed static containers. In this sample all the 



a= -0.01 
·0. 

>- 0.5. 
1--
G 0 0 

: I 

I • . / 

_J 
w -0.5 > 

-1 
a. 1 
>-
1-- 0.5 \ G I 
0 0 I 
_J I w I > -0.5 / 

-1 ....__.___.__..;.,_,_~~"--'-~ 
a. 1--~~~~~~ 

i:: 0.5 
G 
g 0 
w 
> -0.5 

~1....__.___.__~~~~~ 

1.-~...---,.,~~,..,.,--...---. 

·0. 0.5 

i:: G o 
0 u1 -0.5 
> ·· ...... 

-1 .__.___.__........._~...,.......~---'-' 

0 

POSITION p 

16 

a= -0.05 a= -0.1 

(/>:·\; 
; I • 
I \ : 

\_\ ........ . 

POSITION p POSITION p 

FIGURE 9 

a= -0.2 

POSITION p 

,....-
/ / 0 
i I Q 
i I a: 
I! W 
\ \ I \ \ fu 
\ .... ..._ 

XBL 885-8438 

Poincare sections by the plane containing the cylindrical polar coordinate p 
and velocity p for a sample of 10 particles of the gas studied in fig. B. 
Tori give place to chaos as the amplitude a of the non-integrable deform­
ations is increased. (Negative values of a correspond to oblate shapes.) 

trajectories are in a plane containing the axis of symmetry. The magnitude of 
the deformation is given by the parameter a, which for the spheroid is the 
relative elongation of the major axis. The negative values of a indicate 
oblate deformations. For the polynomial types of distortion the amplitude is 
chosen so as to result in the same RMS deformation as for the spheroidal 
distortion at the given a. In the case of the spheroid the Poincare 
sections at all deformations show the existence of tori, in agreement with 

' expectation. In the case of P4 and P6 there is largely chaos, except for 
small deformations. (The survival of these tori for not too large 
non-integrable perturbations is an illustration of the KAM theorem.) The case 
of P2 deformations is intermediate: for small to moderate deformations the 
tori survive as for the spheroid, but eventually chaos begins to invade the 

(' 
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phase space. Thus fig. 9 provides a qualitative explanation of the dynamic 
behavior seen in fig. 8. It also provides a crude illu~tration of the generic 

patterns of tori within tori, characteristic of the initial stages of the 
order-to-chaos transition. The full richness of these structures is not 

~· really in evidence because the plots in each panel of fig. 9 are based on only 
ten initial conditions for the particle trajectories, and much of the detailed 

~ structure is lost because of the coarseness of this scan. 
The theme of my talk was the relation of the order-to-chaos transition to 

nuclear dissipation. My emphasis has been on taking some of the familiar 

elements of nucle~r physics and relating them to the expanding field of 
nonlinear dynamics. Much remains to be learned about this relation even at 
the classical level, but the outstanding problem is, of course, to generalize 
the discussion to the quantal level. A conceptually simple study that 
suggests itself is a thorough investigation of a quantal gas of 
non-interacting particles in variously deforming time-dependent containers. 
Figure 10 illustrates one such study, now ten years old, and I chose it to 

stress both the paucity of ~uch elementary calculations and the continued lack 
of understanding of the numerical results. (Why does the result for the 
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Figure 10 
One of the few available studies 
of a quantized gas of independent 
particles in an oscillating spher­
oidal potential, representing an 
idealized medium weight nucleus.22 
The classical calculations are for 
a container with zero surface dif­
fuseness. The quantal calculations 
are for a realistic value of the 
diffuseness (a=0.66) as well as for 
a much smaller one (a=O.l). Why 
does the larger diffuseness give 
results more nearly like the clas­
sical (closely reversibl~) plot? 

,~ quantal problem in the more diffuse well resemble the classical calcula~ion in 
a sharp we 11 ?) One thing that we have learned is t~at there. are good reasons 

~ why even such an idealized problem is full of subtleties. I believe that 
understanding thoroughly such model calculations should be helpful in making 
progress with the much more difficult realistic nucl~ar problem. 

let me finish with the following thought. The field of nuclear physics has 
been revitalized recently by two major developments. One is the establishment 
of contacts with the subhadronic world of Quantum C~romodynamics. The other 
is the conta~t with the world of Quantum .Chaotic Dynamics. The fqrmer 
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is the contact with the world of Quantum Chaotic Dynamics. The former 
establishes a bridge to the fundamental field of particle physics, the latter 
to the universal field of nonlinear dynamics. Working in nuclear physics is 
not a bad way to keep in touch with both. 
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